Thèse soutenue

Conception et réalisation d'un drone hybride sol/air autonome

FR  |  
EN
Auteur / Autrice : Sylvain Thorel
Direction : Brigitte d' Andréa-Novel
Type : Thèse de doctorat
Discipline(s) : Informatique temps réel, robotique et automatique
Date : Soutenance le 14/11/2014
Etablissement(s) : Paris, ENMP
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Centre de robotique (Paris)
Jury : Président / Présidente : Philippe Martinet
Examinateurs / Examinatrices : Brigitte d' Andréa-Novel, Jean-Michel Coron, Tarek Hamel, Bruno Steux
Rapporteurs / Rapporteuses : Isabelle Fantoni, Pascal Morin

Résumé

FR  |  
EN

Ce travail est dédié au contrôle non linéaire d'un drone de type quadricoptère dont la spécificité est de pouvoir voler aussi bien que se déplacer en glissant sur le sol, à la façon d'un aéroglisseur. Dans un contexte d'exploration autonome de bâtiment, ce concept hybride permet d'économiser les batteries lorsqu'il n'est pas nécessaire de voler puisque le drone profite des surfaces planes pour se déplacer sans avoir à compenser la gravité ; il peut ainsi prolonger l'autonomie au-delà de la vingtaine de minutes typique d'un quadricoptère classique. Contrairement aux véhicules terrestres à roues, les capacités de franchissement de notre drone sont fortement augmentées car son aptitude au vol l'autorise à éviter les obstacles, à changer d'étage ou passer par une fenêtre. L'étude menée ici concerne essentiellement le déplacement surfacique de ce drone hybride, et vise à concevoir et implémenter une loi de contrôle capable d'asservir ce système sur des trajectoires planes au sol. Ce drone terrestre est similaire à un système sous actionné de type glisseur ; le problème de la stabilisation en un point est donc distingué du suivi de trajectoire en raison de la condition de Brockett que ce système ne satisfait pas ; notre plateforme ne peut donc pas être stabilisée par des retours d'états continus. En s'appuyant sur la littérature, cette thèse propose différentes approches théoriques en temps variant, fonctions transverses, platitude ou encore par "Backstepping" pour répondre à ces problèmes. Après une phase d'identification du modèle dynamique employé, la partie expérimentale, exploitant un système de Motion Capture pour récupérer les informations de position et d'orientation du système, valide ces lois de contrôle et de commande pour le suivi d'une trajectoire circulaire simple.