Thèse soutenue

Micro-imagerie par résonance magnétique de matériaux solides en rotation à l'angle magique

FR  |  
EN
Auteur / Autrice : Maxime Yon
Direction : Franck FayonDominique Massiot
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 24/10/2017
Etablissement(s) : Orléans
Ecole(s) doctorale(s) : École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (2012-.... ; Centre-Val de Loire)
Partenaire(s) de recherche : Laboratoire : Conditions extrêmes et matériaux : haute température et irradiation (Orléans ; 2008-...)
Jury : Président / Présidente : Catherine Bessada
Examinateurs / Examinatrices : Dominique Massiot, Catherine Bessada, Jean-Claude Beloeil, Christian Bonhomme, Danielle Laurencin, Dimitrios Sakellariou

Résumé

FR  |  
EN

L’imagerie par résonance magnétique est une technique non invasive et non ionisante permettant de caractériser la structure anatomique des tissus biologiques mous via la localisation des signaux de résonance magnétique nucléaire (RMN) des molécules mobiles. Cependant, l’application de l’IRM pour l’étude des matériaux rigides reste difficile dû aux forts élargissements des raies de résonances inhérents aux matériaux solides qui diminuent la résolution et le rapport signal sur bruit des images obtenues par encodage fréquentiel.La rotation à l’angle magique (MAS) permet de moyenner efficacement les interactions anisotropes de l’état solide par une rotation de l’échantillon, réduisant ainsi la largeur des raies de résonance. Dans ce manuscrit la possibilité de combiner la rotation à l’angle magique et l’IRM pour effectuer de la micro-imagerie multidimensionnelle et multi-nucléaire (¹H, ³¹P, ²⁷Al et ⁵¹V) à très haut champ magnétique (17,6 T) de matériaux solides avec une résolution et un rapport signal sur bruit largement supérieur à ceux obtenus en condition statique est démontrée. Une large gamme de matériaux (polymères, céramiques et tissus calcifiés biologiques) a été étudiée. Des images avec une résolution comprise entre 30 et 300 μm ont pu être obtenues pour des fréquences de rotation MAS allant jusqu’à 20 kHz, en utilisant des séquences IRM d’écho ou à temps d’écho nul. La possibilité d’utiliser un schéma de sous-échantillonnage associé à des algorithmes de reconstruction est aussi abordée.L’utilisation de séquences de RMN solide tels que la polarisation croisée pour augmenter le contraste et ainsi mettre en évidence des variations physico-chimiques localisées dans des tissus calcifiés biologiques est aussi démontrée. L’utilisation de gradients de champ magnétique pulsés combinés à la rotation à l’angle magique rend aussi possible la spectroscopie RMN de haute résolution localisée spatialement. Cette méthode a été utilisée pour étudier in vivo et dans chacun des segments du corps le métabolome de drosophiles modèles de pathologies neurodégénératives.