Thèse soutenue

Identification des déterminants génétiques de la tolérance à la sècheresse chez le maïs par l'étude de l'évolution de l'indice foliaire vert au cours du cycle de la plante et le développement d'une méthode de phénotypage innovant

FR  |  
EN
Auteur / Autrice : Justin Blancon
Direction : Sébastien Praud
Type : Thèse de doctorat
Discipline(s) : Biologie Végétale
Date : Soutenance le 28/06/2019
Etablissement(s) : Université Clermont Auvergne‎ (2017-2020)
Ecole(s) doctorale(s) : École doctorale des sciences de la vie, santé, agronomie, environnement (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : Biogemma
Jury : Président / Présidente : Jacques Le Gouis
Examinateurs / Examinatrices : Agnès Bégué, Evelyne Costes
Rapporteurs / Rapporteuses : Xavier Draye, Laurence Moreau

Résumé

FR  |  
EN

D’ici la fin du siècle, les prévisions climatiques prévoient une diminution de la quantité et de la régularité des pluies s’accompagnant d’une augmentation du risque de sècheresse en Europe et dans de nombreuses régions du monde. La création de nouvelles variétés de maïs plus tolérantes au stress hydrique est un levier indispensable pour faire face à ces contraintes futures. L’objectif principal de cette thèse est d’approfondir les connaissances des déterminismes génétiques de la tolérance à la sècheresse chez le maïs. Pour ce faire, il est proposé de disséquer ce caractère complexe en caractères physiologiques sous-jacents dont le déterminisme génétique est a priori plus simple. L’évolution de l’indice foliaire vert (GLAI : Green Leaf Area Index) au cours du cycle de la plante, par son rôle majeur dans l’interception lumineuse, la transpiration et les échanges de CO2, est un caractère secondaire prometteur pour identifier les bases génétiques de la tolérance à la sècheresse et en améliorer la compréhension. Au cours de cette thèse, nous avons développé une méthode de phénotypage haut débit permettant d’estimer la cinétique du GLAI au champ. Cette méthode combine la caractérisation multispectrale par drone et l’utilisation d’un modèle physiologique simple de GLAI. Elle permet d’estimer la cinétique du GLAI de manière continue sur l’ensemble du cycle de la plante avec une bonne précision, tout en divisant par vingt le temps nécessaire au phénotypage. Nous avons utilisé cette méthode lors de deux essais en conditions optimales et deux essais en conditions de stress hydrique pour mesurer l’évolution du GLAI au sein d’un panel de 324 lignées issues d’une population MAGIC (Multi-parent Advanced Generation Inter-Cross). Les cinétiques estimées présentent une forte héritabilité et expliquent une part significative du rendement en conditions optimales et stressées. Afin d’identifier les bases génétiques de la cinétique du GLAI, trois approches de génétique d’association longitudinales ont été comparées : une approche univariée en deux étapes, une approche multivariée en deux étapes et une approche de régression aléatoire en une étape. Ces trois approches, couplées à la forte densité des données de génotypage disponibles (près de 8 millions de marqueurs), ont permis de révéler de nombreux QTL (Quantitative Trait Loci), dont certains colocalisent avec des QTL de rendement. Enfin, nous avons démontré que les QTL de GLAI identifiés lors de cette étude pouvaient expliquer près de 20 % de la variabilité du rendement observée dans un large réseau d’expérimentations sous stress hydrique. Ce travail fournit des méthodes qui permettront une meilleure caractérisation et une meilleure compréhension des déterminismes génétiques de la cinétique du GLAI, un caractère jusqu’ici inaccessible pour les populations de taille importante. Ce caractère présente toutes les caractéristiques requises pour améliorer l’efficacité des programmes de sélection en conditions de stress hydrique.