Microencapsulation par évaporation de solvant

par Ming Li

Thèse de doctorat en Sciences pour l'ingénieur. Génie des procédés

Sous la direction de Denis Poncelet et de Olivier Rouaud.

Soutenue en 2009

à Nantes .


  • Résumé

    The solvent evaporation encapsulation technique is widely used in the pharmaceutical applications for the controlled release of active principle (drug). The organic phase, which comprises solvent, polymer and active principle, is dispersed into an aqueous phase. The solvent diffuses into the latter one and then evaporates, leading consequently to the formation of solid polymer microspheres with active principle trapped inside. Contrary to most studies on the polymer choice and drug release, our study focused on the process-engineering aspects in the production of microspheres in order to optimize the process duration and analyze the influence the properties of obtained microspheres. The evaporation of solvent has been studies with different operating conditions (temperature, pressure, quantity of materials). The reduced pressure (60% of atmospheric pressure) has shown the most significant effect, which reduced the process duration to 1/3. The physical properties of the obtained microspheres (size, surface and inner structure) were examined. The investigation of the inner structure of microspheres by a novel technique X-ray tomography showed the size and location of pores. Microspheres produced under reduced pressure show smaller size, smoother surface and less porous structure. The study was then carried out at a microscopic scale on the solidification of one single drop of the dispersed phase. The mass transfer of the solvent at the interface of two phases was investigated with interferometer, which measured the variations of solvent concentration and the diffusion boundary layer with time. Our work enables to complete the knowledge of this process and propose the directions of future developments on the process

  • Titre traduit

    Microencapsulation by solvent evaporation


  • Résumé

    La technique d’encapsulation par évaporation de solvant est largement utilisée dans des applications pharmaceutiques pour la libération contrôlée du principe actif (médicament). La phase organique constituée de solvant, de polymère et de principe actif est dispersée dans une phase aqueuse. Le solvant diffuse dans cette dernière et puis il s'évapore, ce qui conduit à la formation des microsphères solides de polymère contenant du principe actif à l’intérieur. Contrairement à la plupart des études consacrées au choix des polymères et aux tests de libération, notre étude s’est intéressée aux aspects d'ingénierie afin d’optimiser la durée du procédé et d’analyser l'influence des conditions opératoires sur les propriétés des microsphères. L'évaporation du solvant a été étudiée pour de différentes conditions (température, pression, quantités des matériaux). La durée de procédé a été réduite à 1/3 en appliquant une faible pression (60% de la pression atmosphérique). Les propriétés des microsphères obtenues (taille, surface et structure interne) ont été examinées. L’analyse de la structure interne des microsphères par la nouvelle technique de tomographie à rayons X a montré la taille des pores et de l'emplacement des pores. L’étude a été effectuée ensuite à l’échelle microscopique sur la solidification d’une goutte de la phase dispersée. Le transfert de masse du solvant a été étudié avec l'interféromètre, permettant de mesurer la variation de concentration du solvant et l’épaisseur de la couche limite diffusive. Notre travail a permis de combler les lacunes dans la connaissance de ce procédé et il propose des pistes de développement du procédé

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (179 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 102 réf. bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 2009 NANT 2020
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.