Thèse soutenue

Propriétés de treillis des arrangements de tuyaux acycliques

FR  |  
EN
Auteur / Autrice : Noémie Cartier
Direction : Florent HivertVincent Pilaud
Type : Thèse de doctorat
Discipline(s) : Informatique mathématique
Date : Soutenance le 18/10/2023
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire interdisciplinaire des sciences du numérique (Orsay, Essonne ; 2021-....)
Référent : Université Paris-Saclay. Faculté des sciences d’Orsay (Essonne ; 2020-....)
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-….)
Jury : Président / Présidente : Pierre-Guy Plamondon
Examinateurs / Examinatrices : Jean Fromentin, Christian Stump, Emily Barnard, Matthieu Josuat-Vergès, Viviane Pons
Rapporteurs / Rapporteuses : Jean Fromentin, Christian Stump

Résumé

FR  |  
EN

Cette thèse s'inscrit dans le domaine de la combinatoire algébrique. Certains algorithmes de tri peuvent être décrits par des diagrammes appelés réseaux de tri, et l'exécution de ces algorithmes sur des permutations se traduit alors par des arrangements de courbes sur ces réseaux. Ces arrangements donnent des modèles pour des structures combinatoires classiques : par exemple, le treillis de Tamari, dont les relations de couverture sont les rotations sur les arbres binaires, et qui est un quotient bien connu de l'ordre faible sur les permutations. Les complexes de sous-mots généralisent les réseaux de tris et les arrangements de courbes aux groupes de Coxeter. Ils ont des liens profonds en algèbre et géométrie, notamment dans le calcul de Schubert, l'étude des variétés grassmanniennes et la théorie des algèbres amassées. Cette thèse s'intéresse aux structures de treillis sur certains complexes de sous-mots, généralisant les treillis de Tamari. Plus précisément, elle étudie la relation définie par les extensions linéaires des facettes d'un complexe de sous-mot. Dans un premier lieu, nous nous intéressons aux complexes de sous-mots définis sur un mot triangulaire du groupe symétrique, que nous représentons par des arrangements de tuyaux triangulaires. Nous prouvons alors que cette relation définit un quotient de treillis d'un intervalle de l'ordre faible ; par ailleurs, nous pouvons également utiliser cette relation pour définir un morphisme de treillis de cet intervalle au graphe des flips du complexe de sous-mots restreint à certaines de ses facettes. Dans un second lieu, nous étendons notre étude aux complexes de sous-mots définis sur les mots alternants du groupe symétrique. Nous montrons que cette même relation définit également un quotient de treillis ; en revanche, le morphisme associé n'a plus pour image le graphe des flips, mais le squelette du polyhèdre de brique, un objet défini sur les complexes de sous-mots pour étudier des réalisations du multi-associahèdre. Enfin, nous discutons des possibles extensions de ces résultats aux groupes de Coxeter finis, ainsi que de leurs applications pour généraliser certains objets définis en type A comme les treillis de nu-Tamari.