Thèse soutenue

Détection d'anomalies fonctionnelles et estimation robuste
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Guillaume Staerman
Direction : Florence d' Alché-BucPavlo Mozharovskyi
Type : Thèse de doctorat
Discipline(s) : Mathématiques et Informatique
Date : Soutenance le 12/04/2022
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Etablissement opérateur d'inscription : Télécom Paris (Palaiseau ; 1977-....)
Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....)
Jury : Président / Présidente : Nicolas Vayatis
Examinateurs / Examinatrices : Florence d' Alché-Buc, Pavlo Mozharovskyi, Nicolas Vayatis, Zhi-Hua Zhou, Zoltán Szabó, Rémi Flamary, Sara Lopez-Pintado
Rapporteurs / Rapporteuses : Zhi-Hua Zhou, Zoltán Szabó

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L’engouement pour l’apprentissage automatique s’étend à presque tous les domaines comme l’énergie, la médecine ou la finance. L’omniprésence des capteurs met à disposition de plus en plus de données avec une granularité toujours plus fine. Une abondance de nouvelles applications telles que la surveillance d’infrastructures complexes comme les avions ou les réseaux d’énergie, ainsi que la disponibilité d’échantillons de données massives, potentiellement corrompues, ont mis la pression sur la communauté scientifique pour développer de nouvelles méthodes et algorithmes d’apprentissage automatique fiables. Le travail présenté dans cette thèse s’inscrit dans cette ligne de recherche et se concentre autour de deux axes : la détection non-supervisée d’anomalies fonctionnelles et l’apprentissage robuste, tant du point de vue pratique que théorique.La première partie de cette thèse est consacrée au développement d’algorithmes efficaces de détection d’anomalies dans le cadre fonctionnel. Plus précisément, nous introduisons Functional Isolation Forest (FIF), un algorithme basé sur le partitionnement aléatoire de l’espace fonctionnel de manière flexible afin d’isoler progressivement les fonctions les unes des autres. Nous proposons également une nouvelle notion de profondeur fonctionnelle basée sur l’aire de l’enveloppe convexe des courbes échantillonnées, capturant de manière naturelle les écarts graduels de centralité. Les problèmes d’estimation et de calcul sont abordés et diverses expériences numériques fournissent des preuves empiriques de la pertinence des approches proposées. Enfin, afin de fournir des recommandations pratiques, la performance des récentes techniques de détection d’anomalies fonctionnelles est évaluée sur deux ensembles de données réelles liés à la surveillance des hélicoptères en vol et à la spectrométrie des matériaux de construction.La deuxième partie est consacrée à la conception et à l’analyse de plusieurs approches statistiques, potentiellement robustes, mêlant la profondeur de données et les estimateurs robustes de la moyenne. La distance de Wasserstein est une métrique populaire résultant d’un coût de transport entre deux distributions de probabilité et permettant de mesurer la similitude de ces dernières. Bien que cette dernière ait montré des résultats prometteurs dans de nombreuses applications d’apprentissage automatique, elle souffre d’une grande sensibilité aux valeurs aberrantes. Nous étudions donc comment tirer partie des estimateurs de la médiane des moyennes (MoM) pour renforcer l’estimation de la distance de Wasserstein avec des garanties théoriques. Par la suite, nous introduisons une nouvelle fonction de profondeur statistique dénommée Affine-Invariante Integrated Rank-Weighted (AI-IRW). Au-delà de l’analyse théorique effectuée, des résultats numériques sont présentés, confirmant la pertinence de cette profondeur. Les sur-ensembles de niveau des profondeurs statistiques donnent lieu à une extension possible des fonctions quantiles aux espaces multivariés. Nous proposons une nouvelle mesure de similarité entre deux distributions de probabilité. Elle repose sur la moyenne de la distance de Hausdorff entre les régions quantiles, induites par les profondeur de données, de chaque distribution. Nous montrons qu’elle hérite des propriétés intéressantes des profondeurs de données telles que la robustesse ou l’interprétabilité. Tous les algorithmes développés dans cette thèse sont accessible en ligne.