Thèse soutenue

Simulation numérique du procédé de fabrication additive DED : résolution thermomécanique incrémentale complète et modèles réduits de type "inherent strain"
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Joël Keumo Tematio
Direction : Michel Bellet
Type : Thèse de doctorat
Discipline(s) : Mécanique numérique et Matériaux
Date : Soutenance le 27/10/2022
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Centre de mise en forme des matériaux (Sophia Antipolis, Alpes-Maritimes)
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....)
Jury : Président / Présidente : Anthony Gravouil
Examinateurs / Examinatrices : Michel Bellet, Pierre Joyot, Anne-Marie Habraken, Yancheng Zhang, Daniel Weisz-Patrault
Rapporteurs / Rapporteuses : Pierre Joyot, Anne-Marie Habraken

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Une simulation thermomécanique par éléments finis est développée pour le procédé de fabrication additive DED (directed energy deposition). La simulation est conduite à l'échelle de la pièce, en modélisant le dépôt progressif de matière et la source d'énergie. Une expression générale du module tangent consistent est dérivée et implémentée dans la résolution par éléments finis, dans le cas d'un comportement élasto-viscoplastique avec des écrouissages de type isotrope et cinématique non linéaire. Pour calculer incrémentalement les champs de déplacement, de déformation et de contrainte, une formulation théorique du problème cinématique de positionnement est proposée pour minimiser la distorsion de la fraction non construite en considérant les informations de déplacement et de déformation actuelles. L'analyse de convergence de la simulation développée est effectuée à la fois d'un point de vue temporel et spatial. La validation est effectuée par comparaison avec des résultats expérimentaux de la littérature pour les cas d'un mur rectiligne et d'une aube de turbine présentant une forte courbure. Pour réduire le temps de calcul, une méthode de type "inherent strain" est d'abord proposée, dans laquelle l'inherent strain est déterminée sur quelques cordons, de manière exacte, par une méthode inverse basée sur les résultats de simulation du calcul élasto-visco-plastique standard. Cependant, lorsqu'on applique cette inherent strain dans une simulation couche par couche de la pièce entière, les résultats sont significativement dégradés par rapport à la solution de référence donnée par le calcul standard. Ceci est confirmé, quel que soit le mode d'application de l'inherent strain : uniforme, ou distribution spatiale dans chaque couche. En particulier les écarts à la référence augmentent dans le cas courbe de l'aube de turbine. Pour résoudre ces problèmes, une nouvelle méthode dite "inherent strain rate" est proposée, consistant à linéariser le calcul de dépôt progressif. Pour ce faire, le scalaire vitesse de déformation plastique équivalente est considéré comme étant l'inherent strain rate. Au cours de la simulation du processus, le calcul basé sur la méthode inherent strain rate est combiné avec le calcul standard, conservé pour simuler les extrémités de chacun des cordons. Grâce à cette combinaison et à une mise à jour en ligne de l'inherent strain rate, des résultats parfaits sur les déformations et contraintes sont obtenus pour le mur et l'aube de turbine. Dans cette première version de recherche, la simulation est accélérée d'un facteur 5, ce qui rend la méthode inherent strain rate proposée très prometteuse pour la simulation des procédés de fabrication additive.