Thèse soutenue

Réseaux de neurones convolutifs pour la prédiction de flux constant autour d'obstacles
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Junfeng Chen
Direction : Elie HachemFrédéric Heymes
Type : Thèse de doctorat
Discipline(s) : Mathématiques numériques, Calcul intensif et Données
Date : Soutenance le 27/01/2022
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Centre de mise en forme des matériaux (Sophia Antipolis, Alpes-Maritimes)
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....)
Jury : Président / Présidente : Emmanuelle Abisset
Examinateurs / Examinatrices : Elie Hachem, Frédéric Heymes, Jonathan Viquerat
Rapporteurs / Rapporteuses : Anne Johannet, Jean-Luc Harion

Résumé

FR  |  
EN

Au cours des dernières années, les réseaux de neurones ont suscité un grand intérêt dans la communauté de la dynamique des fluides computationnelle, en particulier lorsqu'ils sont utilisés comme modèles subrogés, que ce soit pour la reconstruction de l'écoulement, la modélisation de la turbulence ou pour la prédiction des coefficients aérodynamiques. Cette thèse considère l'utilisation de réseaux de neurones convolutifs, une catégorie spéciale de réseaux de neurones conçus pour les images, comme modèles subrogés pour la prédiction de l’écoulement stationnaire autour d'obstacles 2D. Les modèles subrogés sont calibrés dans le cadre de l'ajustement des données, avec l'ensemble de données préparé par des solveurs qualifiés aux équations de Navier-Stokes et projeté sur des grilles cartésiennes. Une fois calibrés, les modèles montrent une grande précision en termes de prédiction de vitesse et de pression, même autour d'obstacles non vus lors de la calibration. Dans l'étape suivante, une nouvelle architecture de réseaux de neurones convolutifs est proposée pour la détection d’anomalies et la quantification de l’incertitude, permettant au modèle subrogé de savoir s'il effectue une interpolation ou une extrapolation tout en faisant la prédiction. Avec ces méthodes, l'utilisateur d'un réseau de neurones calibré peut soit décider d'accepter ou non une prédiction, soit avoir une estimation quantifiée de l'erreur de prédiction. La troisième contribution consiste à utiliser des réseaux de neurones convolutifs sur graphes comme modèles subrogés pour prédire la vitesse et la pression sur des maillages triangulaires, qui présentent des avantages significatifs dans la représentation géométrique par rapport aux grilles cartésiennes. Grâce au raffinement du maillage proche des interfaces solides, le modèle basé sur des graphes peut donner une prédiction de couche limite plus précise que les réseaux de neurones convolutifs traditionnels. La dernière partie de cette thèse considère l'intégration des connaissances physiques dans la calibration d'un réseau de neurones convolutifs sur graphe, qui est calibré en minimisant le résidu des équations de Navier-Stokes sur un maillage triangulaire. La vitesse et la pression prédites autour d'un cylindre sont de très haute qualité par rapport aux résultats des solveurs numériques qualifiés. N'étant pas dans le cadre de l'ajustement des données, cette approche fournit un nouveau solveur d'équations aux dérivées partielles, et mérite plus de travail sur sa convergence et son coût de calcul.