Thèse soutenue

Apprentissage profond en santé publique, et contributions en apprentissage statistique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Yiyang Yu
Direction : Stéphane GaïffasEmmanuel Bacry
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 06/04/2022
Etablissement(s) : Université Paris Cité
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de probabilités, statistique et modélisation (Paris ; 2018-....)
Jury : Président / Présidente : Gilles Stoltz
Examinateurs / Examinatrices : Stéphane Gaïffas, Emmanuel Bacry, Gilles Stoltz, Alexandre Gramfort, Tim Van Erven, Chloé-Agathe Azencott
Rapporteurs / Rapporteuses : Alexandre Gramfort, Tim Van Erven

Résumé

FR  |  
EN

Dans cette thèse, nous apportons quelques contributions à l'étude théorique et numérique de certains problèmes de l'apprentissage statistique, ainsi que l'application de l'apprentissage profond aux données de la santé publique. La première contribution consiste à introduire un nouveau modèle appelé ZiMM (Zero-inflated Mixture of Multinomial distributions), et une architecture Encodeur-Décodeur (ED) de réseaux de neurones profonds entraînés de-bout-en-bout, modélisant les parcours de soins pour la prédiction des complications post-chirurgicales. ZiMM-ED est appliqué aux données de santé de remboursement de soins provenant du Système National des Données de Santé (SNDS) en France, qui est une base de données non-clinique, contenant seulement les codes de remboursement datés d'achats de médicaments et des diagnostics hospitaliers. En particulier, nous considérons les complications jusqu'au 18e mois après la chirurgie, ce qui correspond à des observations "floues" car seulement observées à partir des achats de médicaments d'une famille spécifique. Nos expériences montrent les améliorations en termes de performance prédictive de ZiMM-ED par rapport à plusieurs modèles de référence. ZiMM-ED ouvre la voie de l'exploitation d'un tel jeu de données avec peu de pré-traitement à grâce aux réseaux de neurones profonds. La deuxième contribution porte sur l'étude théorique de l'apprentissage contrastif de représentation. En se basant sur quelques résultats proposant des cadres d'étude théoriques, nous étendons la garantie pour la qualité des représentations apprises dans la phase pré-entrainement non-supervisé avec une perte contrastive et de multiples échantillons négatifs, la qualité étant mesurée en termes de performance prédictive pour les tâches supervisées en aval. En outre, nous fournissons une garantie de convergence quant à la minimisation de la perte contrastive avec la descente de gradient pour un encodeur de réseaux de neurones sur-paramétré. Ces résultats théoriques, combinant des expériences numériques, ouvrent des portes pour une meilleure compréhension des pratiques de pré-entrainement - affinement très utilisées aujourd'hui en apprentissage profond. La troisième contribution consiste à introduire un nouvel algorithme de type forêt aléatoire, que nous nommons WildWood. WildWood utilise les échantillons out-of-bag pour améliorer les prédictions en calculant l'agrégation de tous les sous-arbres possibles de chaque arbre dans la forêt : ce calcul est exact et efficace grâce à l'algorithme de context tree weighting. Nous montrons que théoriquement, la perte induite par une telle agrégation est comparable à celle du meilleur sous-arbre possible. Nous proposons une implémentation Python open-source de WildWood avec une stratégie d'histogramme qui permet d'accélérer la recherche des coupures impliquées dans la construction des arbres. Notre implémentation est rapide et compétitive en comparaison avec d'autres algorithmes ensemblistes bien connus. Enfin, le dernier chapitre de cette thèse est consacré à la régression logistique en ligne et considère le regret par rapport à la boule l2 de rayon B. Alors qu'il est connu que les algorithmes propres avec regret logarithmique en le nombre d'itérations n subissent nécessairement un facteur exponentiel en B dans leur borne de regret, quelques algorithmes impropres, bayésiens et non-bayésiens, ont été introduits récemment avec des meilleures garanties. Dans le but d'obtenir une garantie de regret optimale, nous proposons deux algorithmes impropres et non-bayésiens, OSMP et AOSMP, reposant sur une stratégie "minmax à une étape", avec la fonction de perte exacte pour OSMP, et une fonction de perte approchée pour AOSMP. Pour OSMP, malgré une borne supérieure obtenue pour les regrets instantanés, nous expliquons en quoi l'amélioration des bornes de regret est une question difficile, à laquelle AOSMP apporte une réponse comparable à l'état de l'art de la garantie de regret.