Thèse soutenue

Effet d'un biopolymère sur le comportement mécanique et microstructurel du ciment de puits pétroliers pour le stockage géologique du CO²

FR  |  
EN
Auteur / Autrice : Juan Barría
Direction : Jean-Michel PereiraGhabezloo SiavashDiego Manzanal
Type : Thèse de doctorat
Discipline(s) : Génie Civil
Date : Soutenance le 20/12/2021
Etablissement(s) : Marne-la-vallée, ENPC en cotutelle avec Universidad Nacional de la Patagonia San Juan Bosco
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement
Partenaire(s) de recherche : Equipe de recherche : Géotechnique
Laboratoire : Laboratoire Navier (Paris-Est)
Jury : Président / Présidente : Juan Carlos Santamarina
Examinateurs / Examinatrices : Jean-Michel Pereira, Ghabezloo Siavash, Diego Manzanal, Antonin Fabbri, Celina Raquel Bernal, Martín Sánchez, Diego Guillermo Manzanal, Teresa Pique
Rapporteurs / Rapporteuses : Antonin Fabbri, Celina Raquel Bernal, Martín Sánchez

Résumé

FR  |  
EN

Le stockage du CO2 dans des réservoirs géologiques profonds est essentiel pour réduire les émissions dans l'atmosphère et lutter contre le changement climatique. Toutefois, le risque de fuite de CO2 des réservoirs géologiques vers d'autres formations rocheuses implique une analyse minutieuse du système à long terme. Principalement, le ciment des puits de pétrole utilisé pour l'opération doit résister au processus de carbonatation qui modifie son comportement poromécanique au fil du temps, ce qui peut affecter l'intégrité du système. L'utilisation de nanoadditifs pour le ciment, comme la nanocellulose bactérienne (BNC), a augmenté ces dernières années. Ce biopolymère possède des propriétés particulières qui peuvent améliorer les performances du ciment, comme des propriétés mécaniques élevées et une résistance thermique. Pour cette raison, et à la lumière des problèmes que la carbonatation peut poser à long terme dans le contexte du stockage géologique du CO2, des études ont été menées dans des conditions de CO2 supercritique pour analyser le comportement du ciment avec des ajouts de nanocellulose. Des essais rhéologiques, mécaniques, thermiques et microstructuraux ont été réalisés sur des échantillons contenant différents pourcentages de BNC. Ensuite, des échantillons cylindriques ont été soumis à des conditions de CO2 supercritique avec différents pourcentages de nanocellulose en utilisant deux méthodes de durcissement, un durcissement à long terme à basse température et un durcissement à court terme à haute température. Ces résultats montrent que le BNC produit une augmentation de la viscosité de la boue mais retient une plus grande quantité d'eau, ce qui facilite son hydratation ultérieure. Cela a pu être observé dans sa microstructure, où une plus grande quantité de produits d'hydratation, un degré d'hydratation plus élevé et une diminution de la porosité ont été observés. Il est probable que cette augmentation de l'hydratation soit la raison pour laquelle les ciments contenant de la nanocellulose ont une résistance à la compression uniaxiale jusqu'à 20% supérieure à celle du ciment ordinaire. Il a également été observé que des teneurs plus élevées en BNC améliorent le comportement thermo-mécanique sous une contrainte de flexion oscillante. Après carbonatation, la microstructure montre que la porosité capillaire diminue jusqu'à des valeurs de 5%, ce qui réduit la pénétration de l'acide carbonique dans l'échantillon. Tous les ciments ont montré une réduction de la résistance mécanique, mais les ciments avec BNC ont eu un degré de carbonatation plus bas et un meilleur comportement mécanique, en raison de la porosité capillaire plus basse avant la carbonatation. Cependant, ces effets n'ont pas été observés lorsque le ciment a été soumis à un processus de durcissement dans des conditions défavorables à haute température. Dans ce cas, la augmentation de la porosité atténue les effets de l'hydratation à court terme et la résistance des ciments avec nanocellulose est plus faible avant le processus de carbonatation. Après la carbonatation, une augmentation relative de la résistance des échantillons avec BNC est plus élevée, cependant, elle reste inférieure à la résistance du ciment ordinaire. Ces études expérimentales ont été simulées à l'aide d'un modèle chimio-hydro-mécanique couplé. Le modèle simule l'avancée du front de carbonatation dans le ciment soumis au CO2 supercritique et les changements générés par les réactions chimiques en utilisant les équations d'équilibre classiques de la mécanique des milieux continus relatives à la masse, à la quantité de mouvement, à l'entropie et à l'énergie. La dissolution simultanée de la portlandite et du C-S-H, la dissolution de la calcite et un modèle d'endommagement ont été considérés. La progression de la carbonatation des échantillons a été représentée et une extrapolation a été faite à un puits de pétrole sur la base des paramètres obtenus à partir des expériences et des simulations.