Thèse soutenue

Stratégie de couplage expérimentation/modélisation dans les matériaux hétérogènes. Identification de propriétés mécaniques locales

FR  |  
EN
Auteur / Autrice : Louis Pétureau
Direction : Fabrice BrémandPascal Doumalin
Type : Thèse de doctorat
Discipline(s) : Mécanique des Solides, des Matériaux, des Structures et des Surfaces
Date : Soutenance le 07/12/2018
Etablissement(s) : Poitiers
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie des matériaux, mécanique, énergétique et aéronautique (Poitiers ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : Pôle poitevin de recherche pour l'ingénieur en mécanique, matériaux et énergétique - PPRIMME (Poitiers) - Institut Pprime / PPRIME
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Bertrand Wattrisse
Examinateurs / Examinatrices : Fabrice Brémand, Pascal Doumalin
Rapporteurs / Rapporteuses : Jean-Noël Périé, Evelyne Toussaint

Résumé

FR  |  
EN

Le développement de méthodes d’identification de paramètres de lois de comportement de matériaux est devenu primordial pour avoir accès à la connaissance complète du comportement. En effet, les méthodes de mesure optiques, comme la Corrélation d’Images Numériques, permettent d’obtenir les quantités cinématiques de la relation de comportement sous forme de champs de vecteurs. En revanche, les contraintes ne sont généralement pas mesurables et il est nécessaire d’identifier les paramètres de la loi de comportement du matériau considéré pour y avoir accès. Plusieurs méthodes ont vu le jour et permettent de répondre à cette problématique mais la plupart d’entre elles supposent une homogénéité du matériau. Ce mémoire traite de l’application de certaines de ces méthodes, notamment la méthode de l’écart à l’équilibre (MEQ) et la méthode de recalage de modèle éléments finis (MREF), dans des matériaux hétérogènes à microstructure complexe où les propriétés mécaniques évoluent spatialement dans le volume. L’objectif est d’identifier ces propriétés mécaniques locales qui régissent la cinématique mesurée de tels matériaux dans le cadre de l’élasticité linéaire isotrope. Dans un premier temps, les deux méthodes citées sont décrites, implémentées et comparées sur des cas simulés en 2D. La MREF est préférée à la MEQ car plus robuste vis-à-vis des incertitudes de mesure. Basée sur un formalisme itératif, une parallélisation de l’algorithme a été opérée pour diminuer le coût en temps de la méthode. Des expérimentations dans le plan sur des éprouvettes en polyuréthane où les hétérogénéités sont maîtrisées ont permis de valider la méthode. Enfin, deux applications en 3D sur un matériau en mousse polyuréthane et un composite à base de fibres de bois démontrent l’intérêt d’une telle méthode pour l’identification de propriétés mécaniques locales. La mise en évidence d’une relation entre les propriétés locales identifiées et les propriétés locales de la microstructure de ces matériaux est effectuée.