Thèse soutenue

Influence des modèles aérodynamiques instationnaires avancés sur la réponse aéro-élastique d'une éolienne offshore

FR  |  
EN
Auteur / Autrice : Félix Barnaud
Direction : Luminita Danaila
Type : Thèse de doctorat
Discipline(s) : Energétique
Date : Soutenance le 18/12/2019
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : Etablissement de préparation : Institut national des sciences appliquées Rouen Normandie (Saint-Etienne-du-Rouvray ; 1985-....)
Laboratoire : Complexe de recherche interprofessionnel en aérothermochimie (Saint-Etienne-du-Rouvray, Seine-Maritime ; 1967-....)
Jury : Président / Présidente : Niels N. Sørensen
Examinateurs / Examinatrices : Luminita Danaila, Carlos Ferreira Simão, Vincent Moureau, Laurent David, Guillaume Balarac
Rapporteurs / Rapporteuses : Niels N. Sørensen, Carlos Ferreira Simão

Résumé

FR  |  
EN

Les éoliennes offshore modernes ont atteint ces dernières années de très grandes dimensions, qui ne cessent d’augmenter en vue de diminuer les coûts de production de l’électricité. Des designs innovants sont alors nécessaires afin d’améliorer les performances aérodynamiques et de réduire les charges structurelles. Les outils de l’état de l’art tels que la théorie de l’élément de pale couplée à la méthode de la quantité de mouvement (BEMT en anglais), utilisés pour la prédiction des charges et performances des rotors, ont été conçus pour des rotors de plus faibles dimensions et dans des conditions standards d’utilisation. Des conditions particulières comme les cas de désalignement du rotor par rapport à l’axe du vent sont a priori hors du domaine de validité des outils de l'état de l'art. Le but de cette thèse est d'étudier des modèles aérodynamiques plus poussés et de les comparer avec les outils de l'état de l'art sur des cas spécifiques. Les écoulements instationnaires sont particulièrement intéressants puisque difficiles à simuler avec les méthodes standards. Ainsi, un code de méthode des panneaux prenant en compte les phénomènes visqueux tels que le décrochage dynamique est comparé à un code BEMT dans des conditions de vent réalistes et avec un fort désalignement du rotor. Les calculs sont réalisés dans le cadre d'un couplage aéro-servo-élastique de manière à être le plus représentatif possible des calculs de chargement effectués dans l'industrie et nécessaires pour la certification des machines. L'impact du modèle de décrochage dynamique est étudié avec les deux méthodes, pour des cas de chargement extrêmes et en fatigue avec désalignement du rotor. Des différences ont été observées entre les deux méthodes et avec plusieurs paramétrisations du modèle de décrochage dynamique. De plus, la prise en compte du couplage servo-élastique modifie les observations faites sur les comparaisons aérodynamiques. De plus, les angles d'attaque observés sur les pales en cas de fort désalignement sont très élevés. L'écoulement autour de profils dans ces conditions est dominé par des effets visqueux non capturés par les méthodes des panneaux ou de BEMT mais modélisés via des modèles semi-empiriques. Des modèles alternatifs doivent donc être utilisés pour mieux prédire de tels phénomènes. Dans la seconde partie de cette thèse l'écoulement autour de profils aérodynamiques d'éoliennes, plus épais que dans l'aéronautique, est étudié à l'aide de Simulation aux Grandes Échelles avec loi de paroi. Plusieurs cas d'écoulement attachés et détachés sont simulés, pour des profils fixes et oscillants. De très grands angles d'attaque sont également simulés, jusqu'à 90°, à un nombre de Reynolds réaliste. Dans les cas attachés et très fortement détachés, la Simulation aux Grandes Échelles avec loi de paroi est capable de capturer correctement l'écoulement avec des maillages peu raffinés. Cependant les cas proches du décrochage se sont révélés plus difficiles à obtenir, et nécessitent des maillages très fins même en utilisant des lois de paroi adéquates. Enfin, des cas oscillants avec fréquence réduite élevée sont également étudiés et comparés avec d'autres modèles. La Simulation aux Grandes Échelles est alors particulièrement adaptée et donne des résultats prometteurs.