Thèse soutenue

Chimie des océans au Paléoprotérozoïque

FR  |  
EN
Auteur / Autrice : Fanny Thibon
Direction : Janne Blichert-Toft
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre
Date : Soutenance le 03/05/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (1991-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...)
Laboratoire : Laboratoire de géologie de Lyon : Terre, planètes et environnement (Lyon ; 2011-....)
Jury : Président / Présidente : Guillemette Menot
Examinateurs / Examinatrices : Janne Blichert-Toft, Guillemette Menot, Stefan Lalonde, Klaus Mezger, Francis Albarède, Nicolas Coltice, Sylvie Derenne
Rapporteurs / Rapporteuses : Stefan Lalonde, Klaus Mezger

Résumé

FR  |  
EN

Les conditions oxydantes de la surface terrestre actuelle sont dues à la teneur élevée en dioxygène de l’atmosphère. Au début de l’histoire de la Terre il y a 4.54 milliards d'années (Ga), l’oxygène n’était pas stable dans l’atmosphère. Il a fallu deux épisodes d’augmentation brutale de ce gaz atmosphérique pour qu’il atteigne son niveau actuel : l’un vers 2.4 Ga, nommé le Grand Evènement Oxydant (GOE) qui fait l’objet de ce projet, l’autre 2 milliards d’années plus tard, nommé l’Evènement Oxydant Néo-protérozoïque (NOE). Le GOE est vraisemblablement le résultat de l’émersion généralisée de larges continents dont l’érosion libère le phosphate dans l’océan, un nutriment nécessaire à la production biologique, qui a donc permis l’explosion de la photosynthèse oxygénée. Ces deux hausses d’oxygène atmosphérique coïncident avec deux évolutions majeures dans l’histoire de la vie : (i) peu après le GOE, les eucaryotes sont apparus, alors que (ii) le NOE correspond à l’apparition des métazoaires et à l’explosion cambrienne. L’étude de ces phénomènes atmosphériques primitifs peut avoir d’importantes répercussions sur notre compréhension de l’origine et de l’évolution de la vie, qu’on estime principalement marine à cet âge. Les seules archives de ces temps primitifs sur Terre sont les roches sédimentaires. Pour savoir comment l’oxygénation de l’atmosphère a pu être reliée à cette vie marine, il faut tout d’abord comprendre comment l’océan a interagi avec l’atmosphère lors de cet évènement d’oxygénation. Cette question est au coeur de ce projet : comment le GOE a-t-il affecté les cycles biogéochimiques océaniques dont la vie est dépendante ? Nous nous sommes intéressés aux formations ferrifères litées ou BIFs (Banded Iron Formations). La chimie de ces roches marines fait écho à celle de l’océan contemporain à leur formation. Déterminer quantitativement la composition de l’océan à partir de celles des sédiments, même chimiques, est un défi quasiment impossible à relever y compris dans l’océan moderne. C’est pourquoi nous avons proposé de déterminer le temps de résidence d’éléments sensibles aux conditions redox de la surface, le soufre, le fer et le cuivre dans l’océan pré-GOE. Nous avons obtenu, par des séries temporelles, le spectre des fluctuations isotopiques de ces éléments enregistrées dans des carottes de formations ferrifères litées. La limite inférieure du spectre donne le temps de résidence de ces éléments dans l’eau de mer et fournit donc une indication solide sur la teneur de ces éléments dans l’océan à cette période. Nous avons analysé des échantillons protérozoïques proches de la limite Archéen-Protérozoïque du Transvaal (Afrique du Sud) et d’Hamersley (Australie). Des échantillons eoarchéens de Nuvvuagittuq (Canada) ont été récoltés mais n'ont pas pu être analysés faute de temps.