Thèse soutenue

Simulation et optimisation des procédés de craquage thermique

FR  |  
EN
Auteur / Autrice : Robin Campet
Direction : Bénédicte CuenotEleonore Riber
Type : Thèse de doctorat
Discipline(s) : Mecanique des fluides, energetique, thermique, combustion, acoustique
Date : Soutenance le 17/01/2019
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (Toulouse)
Jury : Président / Présidente : Laurent Joly
Examinateurs / Examinatrices : Bénédicte Cuenot, Eleonore Riber, Tom Alderweireldt, Franck Nicoud
Rapporteurs / Rapporteuses : Angelo Iollo, Kevin Van Geem

Résumé

FR  |  
EN

Le procédé de craquage thermique est un procédé industriel sensible aux conditions de température et de pression. L’utilisation de réacteurs aux parois nervurées est une méthode permettant d’améliorer la sélectivité chimique du procédé en augmentant considérablement les transferts de chaleur. Cependant, cette méthode induit une augmentation des pertes de charge dans le réacteur, ce qui est dommageable pour le rendement chimique et doit être quantifié. En raison de la complexité de l’écoulement turbulent et de la cinétique chimique, le gain réel offert par ces géométries en termes de sélectivité chimique est toutefois mal connu et difficile à estimer, d’autant plus que des mesures expérimentales détaillées sont très rares et difficiles à mener. L’objectif de ce travail est double: d’une part évaluer le gain réel des parois nervurées sur le rendement chimique; d’autre part proposer de nouveaux designs de réacteurs offrant une sélectivité chimique optimale. Ceci est rendu possible par l’approche de simulation numérique aux grandes échelles (LES), qui est utilisée pour étudier l’écoulement réactif à l’intérieur de diverses géométries de réacteurs. Le code AVBP, qui résout les équations de Navier Stokes compressibles pour les écoulements turbulents, est utilisé pour simuler le procédé grâce à une méthodologie numérique adaptée. En particulier, les effets des pertes de charge et du transfert thermique sur la conversion chimique sont comparés pour un réacteur lisse et un réacteur nervuré afin de quantifier l’impact de la rugosité de paroi dans des conditions d’utilisation industrielles. Une méthodologie d’optimisation du design des réacteurs, basée sur plusieurs simulations numériques et les processus Gaussiens, est finalement mise au point et utilisée pour aboutir à un design de réacteur de craquage thermique innovant, maximisant le rendement chimique