Thèse soutenue

Algorithmes de géolocalisation à l’intérieur d’un bâtiment en temps différé

FR  |  
EN
Auteur / Autrice : Kersane Zoubert-Ousseni
Direction : François Le GlandChristophe Villien
Type : Thèse de doctorat
Discipline(s) : Signal, Image, Vision
Date : Soutenance le 10/04/2018
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : ComuE : Université Bretagne Loire (2016-2019)
Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes) - IRISA - ASPI

Résumé

FR  |  
EN

La géolocalisation indoor en temps réel a largement été étudiée ces dernières années, et de nombreuses applications y sont associées. Une estimation en temps différé de la trajectoire présente également un certain intérêt. La géolocalisation indoor en temps différé permet par exemple de développer des approches de type crowdsourcing qui tirent profit d'un grand nombre d'utilisateurs afin de récolter un grand nombre de mesures : la connaissance du trajet d'un utilisateur muni d'un smartphone permet par exemple d'alimenter une carte de fréquentation du bâtiment. Estimer la trajectoire de cet utilisateur ne nécessite pas de traitement en temps réel et peut s'effectuer en temps différé ce qui offre deux avantages. D'abord, l'approche temps réel estime une position courante uniquement avec les mesures présentes et passées, alors que l'approche temps différé permet d'avoir accès à l'ensemble des mesures et permet d'obtenir une trajectoire estimée plus régulière et plus précise qu'en temps réel. Par ailleurs, cette estimation peut se faire sur un serveur et n'a pas besoin d'être portée par un smartphone comme c'est le cas en temps réel, ce qui permet d'utiliser une puissance de calcul et un volume mémoire plus importants. L'objet de ces travaux de thèse est de proposer une estimation de la trajectoire d'un individu se déplaçant avec un smartphone recevant des mesures de puissance wifi ou bluetooth (RSS) et enregistrant des mesures inertielles (IMU). En premier lieu, sans la connaissance de la position des murs de la carte, un modèle paramétrique est proposé, basé sur un modèle de propagation d'onde adaptatif pour les mesures RSS ainsi que sur une modélisation par morceaux de la trajectoire inertielle, issue des mesures IMU. Les résultats obtenus en temps différé ont une moyenne d'erreur de 6.2m contre 12.5men temps réel. En second lieu, l'information des contraintes de déplacement induites par la présence des murs du bâtiment est ajoutée et permet d'affiner l'estimation de la trajectoire avec une technique particulaire, comme il est couramment utilisé dans la littérature. Cette seconde approche a permis de développer un lisseur particulaire ainsi qu'un estimateur du maximum a posteriori par l'algorithme de Viterbi. D'autres heuristiques numériques ont été présentées. Une première heuristique ajuste le modèle d'état de l'utilisateur, qui est initialement uniquement basé sur les mesures IMU, à partir du modèle paramétrique développé sans les murs. Une seconde heuristique met en œuvre plusieurs réalisations d'un filtre particulaire et définit deux scores basés sur les mesures RSS et sur la continuité de la trajectoire. Les scores permettent de sélectionner la meilleure réalisation du filtre. Un algorithme global, regroupant l'ensemble de ces approche permet d'obtenir une erreur moyenne de 3.6m contre 5.8m en temps réel. Enfin, un modèle d'apprentissage statistique basé sur des forêts aléatoires a permis de distinguer les trajectoires qui ont été correctement estimées en fonction d'un faible nombre de variables, en prévision d'une application au crowdsourcing.