Thèse soutenue

Comportement mécanique haute température du superalliage monocristallin AM1 : étude in situ par une nouvelle technique de diffraction en rayonnement synchrotron

FR  |  
EN
Auteur / Autrice : Roxane Tréhorel
Direction : Alain Jacques
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 19/02/2018
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : EMMA - Ecole Doctorale Energie - Mécanique - Matériaux
Partenaire(s) de recherche : Laboratoire : Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz)
Jury : Président / Présidente : Muriel Véron
Examinateurs / Examinatrices : Bernard Viguier, Florence Pettinari-Sturmel, Thomas Schenk
Rapporteurs / Rapporteuses : Bernard Viguier, Florence Pettinari-Sturmel

Résumé

FR  |  
EN

Les superalliages monocristallins base nickel sont largement utilisés dans les parties chaudes (aux alentours de 1000°C) des turbines aéronautiques au vu de leur bonne résistance thermomécanique. Pendant le stade II du fluage leur microstructure est formée d’une matrice/couloirs γ (CFC) et de précipités en radeaux γ’ (L12). Le but de cette étude est de mieux comprendre la plasticité de ces matériaux, en particulier celle de l’alliage de 1ère génération AM1. Afin de suivre son comportement mécanique durant des transitions rapides, une nouvelle technique expérimentale par diffraction en transmission des rayons X (synchrotron) a été développée. L’utilisation d’une caméra en champ lointain permet d’enregistrer (une acquisition prend 7 secondes) la tache de diffraction (200) de chacune des deux phases, et donc l’évolution en temps réel du désaccord paramétrique entre les deux phases. En utilisant un modèle mécanique simplifié, il est possible d’en déduire les contraintes internes et la déformation plastique de chaque phase. Une campagne d’essai sur la ligne ID11 de l’ESRF a été réalisée avec cette technique. Deux types d’échantillons présentant une microstructure initiale différente, obtenues par des traitements thermiques adaptés, ont été testés. Ils ont été soumis in situ à des essais de fluage à température constante avec des sauts de contrainte. Après essai, les échantillons ont été caractérisés par MET et MEB afin de déterminer leur microstructure, vérifier les désorientations des échantillons, cartographier la concentration de certains éléments et évaluer la densité de dislocations au sein des radeaux γ’. Dans les couloirs γ, la propagation des dislocations nécessite une contrainte de Von Mises supérieure à la contrainte d’Orowan, et la densité de dislocations mobiles augmente avec la déformation plastique. Le mécanisme limitant la déformation plastique par montée de la phase γ’ est vraisemblablement l’entrée des dislocations dans les radeaux. Les conséquences déduites de cette hypothèse sont détaillées ainsi que le comportement mécanique du matériau résultant