Thèse soutenue

Réduction catalytique du dioxygène et des protons par des complexes dinucléaires de Fe(II)

FR  |  
EN
Auteur / Autrice : Lianke Wang
Direction : Carole Duboc
Type : Thèse de doctorat
Discipline(s) : Chimie inorganique et bio inorganique
Date : Soutenance le 05/10/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale chimie et science du vivant (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Département de chimie moléculaire (Grenoble)
Jury : Président / Présidente : Dominique Luneau
Examinateurs / Examinatrices : Carole Duboc, Stéphane Ménage, Marcello Gennari
Rapporteurs / Rapporteuses : Frédéric Banse, Elsje Alessandra Quadrelli

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse a présenté la conception et la synthèse de plusieurs complexes de fer bioinspiré portant des groupes thiolate. Leurs propriétés structurelles, électroniques, magnétiques et leur relation ont également été étudiées en utilisant différentes méthodes spectroscopiques en combinaison avec des méthodes computationnelles.Ce manuscrit portait principalement sur leurs propriétés catalytiques ou électrocatalytiques vis-à-vis de la réduction de l'O2. Un complexe non-hème diiron (II) avec un groupe thiol unique a été synthétisé et caractérisé. Le groupe thiol peut être déprotoné par une base pour dériver un complexe de thiolate de fer (II) neutre. Les deux complexes ont montré une forte réactivité vis-à-vis de l'O2 pour donner des complexes diron (III) pontés μ-hydroxo et μ-oxo. Le complexe de fer avec thiol est un catalyseur ORR efficace avec une sélectivité de 100% pour la production de H2O2 en présence d'un agent réducteur à un électron et de protons. Lorsque la catalyse est électrochimiquement entraînée, H2O est le produit principal pendant l'électrocatalyse (~ 14-20% de H2O2). Sur la base du fait que le peroxyde d'hydrogène est généré dans les deux cas (quantitativement ou en 20% en catalyse chimique et électrochimique, respectivement), on peut proposer qu'un intermédiaire commun, le complexe fer-peroxo calculé, soit généré pendant la catalyse . Le mécanisme a été étudié expérimentalement et théoriquement, révélant que le contrôle de la sélectivité provient de l'efficacité du système donneur d'électrons (réduction du potentiel chimique ou appliqué).Un autre complexe asymétrique de diiron (II) avec une unité FeCOCp a également été synthétisé et bien caractérisé dans ses deux formes dans MeCN. Ce complexe de diiron (II) asymétrique est un électrocatalyseur actif pour la production de H2 dans un mécanisme E (ECEC) avec une étape d'activation. Les intermédiaires possibles dans le cycle catalytique ont été générés et caractérisés par différentes spectroscopies. Il convient de noter que le fragment bipyridine dans le ligand agit comme un réservoir d'électrons dans le cycle catalytique.De plus, le premier système d'interconversion thiolate / disulfure à base de fer a été présenté dans ce manuscrit, qui a enrichi la famille de l'interconversion favorisée par le métal entre le thiolate et le disulfure. Intéressant, le système à base de fer a montré non seulement l'interconversion induite par l'hailde, mais aussi les propriétés dépendantes du solvant.Enfin, les complexes mononucléaires de fer (III) -thiolate présentaient un état fondamental de spin intermédiaire intéressant. Les mesures de susceptibilité, les spectres RPE de la poudre cw X et QR et les spectres de Mössbauer en poudre à champ nul ont montré que tous les complexes présentaient une anisotropie magnétique distincte. L'approche théorique a démontré que le principal facteur responsable de l'anisotropie magnétique est le couplage spin-orbite (SOC).