Thèse soutenue

Un calcul des zonotopes complexes pour l'invariance et la vérification de la stabilité des systèmes hybrides

FR  |  
EN
Auteur / Autrice : Santosh Arvind Adimoolam
Direction : Thao Dang
Type : Thèse de doctorat
Discipline(s) : Mathématiques et Informatique
Date : Soutenance le 16/05/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Verimag (Grenoble)
Jury : Président / Présidente : Laurent Fribourg
Examinateurs / Examinatrices : Luc Jaulin
Rapporteurs / Rapporteuses : Sylvie Putot, Mahesh Viswanathan

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Le calcul des ensembles atteignables est une approche de facto utilisée dans de nombreuses méthodes de vérification formelles pour les systèmes hybrides. Mais le calcul exact de l'ensemble atteignable est un problème insurmontable pour de nombreux types de systèmes hybrides, soit en raison de l'indécidabilité ou de la complexité de calcul élevée. Alternativement, beaucoup de recherches ont été axées sur l'utilisation de représentations d'ensembles qui peuvent être manipulées efficacement pour calculer une surestimation suffisamment précise de l'ensemble atteignable. Les zonotopes sont une représentation utile de l'ensemble dans l'analyse de l'accessibilité en raison de leur fermeture et de leur faible complexité pour le calcul de la transformation linéaire et des opérations sommaires de Minkowski. Mais pour approximer les ensembles de temps non bornés atteignables par des invariants positifs, les zonotopes ont l'inconvénient suivant. L'efficacité d'une représentation d'ensemble pour calculer un invariant positif dépend de l'encodage efficace des directions de convergence des états vers un équilibre. Dans un système hybride affine, certaines des directions de convergence peuvent être codées par les vecteurs propres à valeur complexe des matrices de transformation. Mais la représentation zonotopique ne peut pas exploiter la structure propre complexe des matrices de transformation car elle n'a que des générateurs à valeur réelle.Par conséquent, nous étendons les zonotopes réels au domaine de valeur complexe d'une manière qui peut capturer la contraction le long de vecteurs évalués complexes. Cela donne une nouvelle représentation d'ensemble appelée zonotope complexe. Géométriquement, les zonotopes complexes représentent une classe plus large d'ensembles qui comprennent des ensembles non polytopiques ainsi que des zonotopes polytopiques. Ils conservent le mérite des zonotopes réels que nous pouvons effectuer efficacement la transformation linéaire et les opérations sommaires de Minkowski et calculer la fonction de support. De plus, nous montrons qu'ils peuvent capturer la contraction le long de vecteurs propres complexes. De plus, nous développons des approximations traitables par calcul pour la vérification d'inclusion et l'intersection avec des demi-espaces. En utilisant ces opérations sur des zonotopes complexes, nous développons des programmes convexes pour vérifier les propriétés d'invariance linéaire des systèmes hybrides affines à temps discret et la stabilité exponentielle des systèmes impulsifs linéaires. Nos expériences sur certains exemples de benchmarks démontrent l'efficacité des techniques de vérification basées sur des zonotopes complexes.