Thèse soutenue

Etude des propriétés électromécaniques de semi-conducteurs organiques

FR  |  
EN
Auteur / Autrice : Marco Pereira
Direction : Guillaume WantzCédric Ayela
Type : Thèse de doctorat
Discipline(s) : Electronique
Date : Soutenance le 26/11/2018
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'intégration du matériau au système (Talence, Gironde)
Jury : Président / Présidente : Thomas Zimmer
Examinateurs / Examinatrices : Ajay K. Pandey
Rapporteurs / Rapporteuses : Yvan Bonnassieux, Vincent Senez

Résumé

FR  |  
EN

L’opinion publique est consciente que l’électronique qui nous entoure présente un coût de développement et de production important en plus d’un impact environnemental non négligeable. C’est dans le but de résoudre ces inconvénients que l’électronique organique est étudiée et développée. L’électronique organique a été introduite par la découverte de polymères conducteurs, par les prix Nobel de chimie de l’année 2000, Alan J. Heeger, Alan G. MacDiarmid et Hideki Shirakawa. Depuis lors cette technologie c’est grandement développée, on note ainsi de nos jours la commercialisation des écrans OLED (Organic Light Emitting Diode) mais aussi d’autres composants organiques comme les MEMS (Micro ElectroMechanical System), des systèmes liant l’électronique et la mécanique. Ces MEMS organiques sont de plus en plus étudiés et développés dû à une plus grande flexibilité des semi-conducteurs organiques par rapport à leurs homologues inorganiques. Cependant, même si la recherche sur la mécanique des polymères et l'électronique des semi-conducteurs organiques est avancée, l'interaction électromécanique de ces semi-conducteurs n'est que peu étudiée. Néanmoins, il est nécessaire de comprendre cette interaction pour développer l'électronique flexible de demain. L'objectif de ces travaux est donc d'approfondir les connaissances sur l'interaction électromécanique au sein des semi-conducteurs organiques et de développer des outils/méthodes facilement transposables à l'étude de nouvelles molécules. Pour mieux comprendre l'interaction entre la déformation de la structure des semi-conducteurs et leur réponse électrique, ces derniers sont fabriqués sous forme de monocristaux pour étudier un arrangement moléculaire parfait, sans défauts, dans les trois dimensions de l'espace. Ainsi donc dans un premier temps, l'influence de la structure moléculaire sur la mobilité des charges a été étudiée dans le cas du rubrène. Même s'il est majoritairement avancé que la distance intermoléculaire est la raison de la variation de mobilité dans le rubrène, il s'avère que la réponse électrique dépend en réalité d'un réarrangement moléculaire et de la variation d'une multitude de paramètres intra/intermoléculaires modifiant le couplage électronique entre molécules. Dans un deuxième temps, la réponse électromécanique de transistors, à diélectrique d’air, à base de rubrène a été étudiée. Dans ces systèmes plus complexes, plusieurs paramètres sont modifiés lors de la déformation. A l'aide du facteur de jauge, il est possible de mettre en évidence que la réponse électromécanique de ces transistors dépend majoritairement de la modification mécanique et électrique du contact entre le semi-conducteur et les électrodes. La forte amélioration de la réponse électrique des transistors a permis la fabrication de capteurs de forces capables de mesurer des forces de l'ordre de 230 nN. Finalement, les méthodes développées et utilisées lors de ces travaux ont été utilisées pour amorcer la fabrication et caractérisation électrique de transistors à base de pérovskites hybrides, dans le but d'étudier l'interaction électromécanique de ces matériaux émergents.