Etude et optimisation de revêtements de collecteurs de courant en aluminium pour électrode positive, en vue d’augmenter les densités d’énergie et de puissance, et la durabilité de batteries lithium-ion

par Christophe Busson

Thèse de doctorat en Chimie des matériaux

Sous la direction de Bernard Lestriez et de Olivier Crosnier.

Soutenue le 23-10-2017

à Nantes , dans le cadre de École doctorale Matière, Molécules et Matériaux (Le Mans) , en partenariat avec Université Bretagne Loire (COMUE) et de Institut des Matériaux Jean Rouxel (Nantes) (laboratoire) .

Le président du jury était Dominique Guyomard.

Le jury était composé de Willy Porcher.

Les rapporteurs étaient Sylvain Franger, Laure Monconduit.


  • Résumé

    La recherche de batteries lithium-ion de hautes performances est nécessaire pour assurer nos besoins croissants en mobilité électrique. L’optimisation des matériaux d’électrodes et des électrolytes sont des voies très explorées. Par ailleurs, les collecteurs de courant jouent un rôle clé vis-à-vis des performances et de leur maintien au cours du cyclage en raison des problématiques d’adhésion, de résistance de contact électrique, et de corrosion, à l’interface électrode/collecteur. Dans ce but, des revêtements conducteurs et protecteurs pour collecteurs de courant en aluminium d’électrode positive ont été développés. Les phénomènes à l’interface entre l’électrode, de type LiFePO4 – PVdF, et le collecteur de courant ont été étudiés. Le mouillage de cette interface par l’électrolyte est apparu comme une origine majeure de la résistance de contact, probablement par la formation d’une double couche électrochimique. La sélection des matériaux utilisés dans la formulation des revêtements a permis de protéger la surface d’aluminium de ce contact avec l’électrolyte. Les conséquences sont très bénéfiques : diminution de la résistance de contact, augmentation des densités de puissance et d’énergie à hauts régimes, et protection de l’aluminium contre la corrosion dans un électrolyte de type LiTFSI. Il a notamment été montré qu’une des principales limitations d’une électrode de type LiFePO4 est sa résistance de contact avec le collecteur de courant, et qu’un revêtement performant permet d’éliminer totalement la part de carbone conducteur dans cette électrode tout en conservant de très bonnes performances.

  • Titre traduit

    Study and optimization of coated aluminum current collectors for positive electrode, to obtain higher energy and power densities and more durable lithium ion batteries


  • Résumé

    Performance improvement is necessary in order to fulfill our increasing needs in electric mobility. Electrode and electrolyte materials optimization are privileged research directions. Furthermore, current collectors have a key role in the performance and their preservation, associated with electrode delamination, electrical contact resistance and corrosion issues at the current collector/electrode interface. To this end, conductive and protective coatings for aluminum current collectors have been developed. Interactions between a LiFePO4 – PVdF type electrode and current collectors were studied. The electrolyte wettability of this interface appeared to be a major contact resistance contribution, probably due to the formation of the electrochemical double layer. Protection of this interface was achieved through coatings’ material selection. Performance improvements have been observed: contact resistance decrease, higher power and energy densities at high rates and corrosion protection of aluminum substrates in LiTFSI-based electrolyte. It has been demonstrated that the contact resistance with current collectors is one of the major drawback of LiFePO4 electrodes, and an effective coating can allow the suppression of the electrode’s conductive carbon additives whereas performance are preserved.



Le texte intégral de cette thèse sera accessible sur intranet à partir du 23-10-2027

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?