Thèse soutenue

Etude et optimisation de revêtements de collecteurs de courant en aluminium pour électrode positive, en vue d’augmenter les densités d’énergie et de puissance, et la durabilité de batteries lithium-ion

FR  |  
EN
Auteur / Autrice : Christophe Busson
Direction : Bernard LestriezOlivier Crosnier
Type : Thèse de doctorat
Discipline(s) : Chimie des matériaux
Date : Soutenance le 23/10/2017
Etablissement(s) : Nantes
Ecole(s) doctorale(s) : École doctorale Matière, Molécules Matériaux et Géosciences (Le Mans)
Partenaire(s) de recherche : COMUE : Université Bretagne Loire (2016-2019)
Laboratoire : Institut des Matériaux Jean Rouxel (Nantes)
Jury : Président / Présidente : Dominique Guyomard
Examinateurs / Examinatrices : Willy Porcher
Rapporteurs / Rapporteuses : Sylvain Franger, Laure Monconduit

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

La recherche de batteries lithium-ion de hautes performances est nécessaire pour assurer nos besoins croissants en mobilité électrique. L’optimisation des matériaux d’électrodes et des électrolytes sont des voies très explorées. Par ailleurs, les collecteurs de courant jouent un rôle clé vis-à-vis des performances et de leur maintien au cours du cyclage en raison des problématiques d’adhésion, de résistance de contact électrique, et de corrosion, à l’interface électrode/collecteur. Dans ce but, des revêtements conducteurs et protecteurs pour collecteurs de courant en aluminium d’électrode positive ont été développés. Les phénomènes à l’interface entre l’électrode, de type LiFePO4 – PVdF, et le collecteur de courant ont été étudiés. Le mouillage de cette interface par l’électrolyte est apparu comme une origine majeure de la résistance de contact, probablement par la formation d’une double couche électrochimique. La sélection des matériaux utilisés dans la formulation des revêtements a permis de protéger la surface d’aluminium de ce contact avec l’électrolyte. Les conséquences sont très bénéfiques : diminution de la résistance de contact, augmentation des densités de puissance et d’énergie à hauts régimes, et protection de l’aluminium contre la corrosion dans un électrolyte de type LiTFSI. Il a notamment été montré qu’une des principales limitations d’une électrode de type LiFePO4 est sa résistance de contact avec le collecteur de courant, et qu’un revêtement performant permet d’éliminer totalement la part de carbone conducteur dans cette électrode tout en conservant de très bonnes performances.