Thèse soutenue

Développement d'une méthode de mesure de la masse volumique par diffusion Rayleigh appliquée à l'étude du bruit de jets, et contribution à l'étude du screech dans les jets supersoniques sous détendus

FR  |  
EN
Auteur / Autrice : Bertrand Mercier
Direction : Christophe BaillyThomas Castelain
Type : Thèse de doctorat
Discipline(s) : Acoustique
Date : Soutenance le 06/12/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Laboratoire : Laboratoire de mécanique des fluides et acoustique (Rhône) - Laboratoire de Mecanique des Fluides et d'Acoustique
Jury : Président / Présidente : Yves Gervais
Examinateurs / Examinatrices : Christophe Bailly, Thomas Castelain, Estelle Piot
Rapporteurs / Rapporteuses : Jayanta Panda, Daniel Edgington-Mitchell

Mots clés

FR  |  
EN

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Dans ce travail de recherche, on présente des développements spécifiques de diagnostiques optiques et leur application à l’étude aéroacoustique des jets rapides à haut nombre de Reynolds. Les résultats expérimentaux présentés ici résultent de visualisation par strioscopie et, de manière prépondérante dans ce manuscrit, de mesure de masse volumique par diffusion Rayleigh. Ces méthodes de caractérisation d’écoulement, appliquées aux jets subsoniques ou supersoniques, ont été associées à des mesures de bruit en champ lointain. La mesure par diffusion Rayleigh, qui repose sur la lumière diffusée par les molécules constituantes du gaz, et n’est donc pas intrusive. Des difficultés apparaissent néanmoins pour exploiter les résultats lorsque le milieu diffusant contient des poussières. Bien que l’air des écoulements obtenu en soufflerie soit filtré, la quantité résiduelle de poussières a rendu nécessaire le développement d’une méthode de nettoyage du signal en post-traitement. Le niveau des signaux obtenus par diffusion Rayleigh est très faible, et dominé par du bruit appelé shot noise. Un gain significatif sur le niveau de ce bruit a été obtenu en optimisant la chaîne d’acquisition après analyse des systèmes existants. De plus une méthode de traitement du signal dérivée d’une méthode existante a permis de calculer des spectres de masse volumique malgré le shot noise avec un seul capteur, là où il en fallait deux auparavant. Les profils de p obtenus par cette technique ont montré qu’il existe une loi de similarité permettant de superposer les profils mesurés à différentes positions axiales. Cette loi est identique pour les jets issus de trois tuyères aux géométries différentes, et à des nombres de Mach de 0.7 et 0.9. Une loi de similarité est également observée pour p’rms si les profils sont mesurés suffisamment loin de la tuyère. L’étude des spectres dans la couche de mélange a mis en évidence un maximum faiblement marqué autour d’une fréquence centrale comprise entre St = 0:2 et St = 2 dans les régions mesurées, plus marqué que dans les spectres de vitesse, et dont le comportement diffère selon l’état initialement laminaire ou turbulent du jet. L’évolution de la forme des spectres en fonction de la différence de masse volumique entre le jet et le milieu ambiant, ainsi qu’en fonction du nombre de Mach, a également été étudiée. Une loi permettant de superposer les spectres a été définie empiriquement sur la plage de variation des différents paramètres. Des mesures simultanées entre l’acoustique en champ lointain et la masse volumique dans l’écoulement ont été réalisées pour un jet à Mj = 0:9 et un jet à Mj = 1:32. Ces résultats ont permis l’estimation de cohérences spectrales et de moyennes conditionnelles. Les résultats obtenus mettent en évidence la présence de structures liées au rayonnement acoustique dans une région située proche de l’axe du jet en aval du cône potentiel. Pour finir, une étude a été réalisée sur le screech dans les jets supersoniques sous-détendus. Elle a permis d’identifier la position de la source de la rétroaction acoustique pour les modes A1, A2, et B, ainsi que la structure du cycle de la boucle qui détermine les changements de fréquences observés aux sauts de modes.