Thèse soutenue

Élaboration d’électrodes à base de films d’or nanoporeux et conception de micro-supercondensateurs intégrés

FR  |  
EN
Auteur / Autrice : Aymeric Pastre
Direction : Nathalie Haese-RollandRémy BernardAlexandre Boé
Type : Thèse de doctorat
Discipline(s) : Électronique, microélectronique, nanoélectronique et micro-ondes
Date : Soutenance le 12/07/2017
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie

Résumé

FR  |  
EN

Le travail de thèse a pour objectif la conception de micro-supercondensateurs tout-solide à base d’or nanoporeux, intégrés sur substrat de silicium. Dans un premier temps nous avons développé un procédé de formation de films d’or par réduction chimique auto-catalytique. Afin d’augmenter l’adhérence du film d’or sur le substrat de silicium, une couche d’accroche originale a été élaborée par procédé sol-gel. Il s’agit d’un film mince d’oxyde de zirconium (ZrO2) dopé par des nanoparticules d’or. La porosité de ces films d’or a été contrôlée par une méthode de templating à partir de microsphères de polystyrène (Ø ≈ 20 nm). Les films d’or nanoporeux peuvent atteindre 1,2 µm d’épaisseur en l’absence de délamination. La porosité est totalement interconnectée et la taille des pores (20 nm) a été choisie afin d’être compatible avec l’électrolyte utilisé. Le procédé fait uniquement intervenir des méthodes chimiques en solution et est totalement compatible avec les procédés classiques de micro-fabrication. Les films d’or nanoporeux constituant le matériau d’électrodes du micro-supercondensateur, ont été structurés par photolithographie sous la forme de peignes interdigités. L’imprégnation d’un électrolyte polymère gélifié (PVA / KOH) a permis de finaliser la fabrication du micro-supercondensateur tout-solide. Les caractérisations électrochimiques montrent que le micro-dispositif atteint une capacité surfacique de 240 µF/cm² à 20 mV/s, et peut endurer plus de 8000 cycles en ne perdant que 5% de sa capacité initiale. Ces performances sont comparables à celles des micro-supercondensateurs intégrés tout-solide reportées dans la littérature.