Thèse soutenue

Cristallochimie prospective : relaxeurs, ferroïques et SPS basse température

FR  |  
EN
Auteur / Autrice : Thomas Hérisson de Beauvoir
Direction : Michaël Josse
Type : Thèse de doctorat
Discipline(s) : Physico-Chimie de la Matière Condensée
Date : Soutenance le 26/09/2017
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences chimiques (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de chimie de la matière condensée de Bordeaux (Pessac)
Jury : Président / Présidente : Mario Maglione
Examinateurs / Examinatrices : Michaël Josse, Mario Maglione, Claude Estournès, Randall A. Clive, Catherine Elissalde, Jean-André Alary
Rapporteurs / Rapporteuses : Claude Estournès, Randall A. Clive

Résumé

FR  |  
EN

Les travaux présents ici portent sur l’étude et la prospection de matériaux ferroiques. Cette étude consiste en une approche revêtant plusieurs aspects que sont la chimie du solide, la physique du solide et la science des matériaux. Deux parties sont développées, avec deux approches différentes. La première se concentre sur les liens entre composition/structure/propriétés dans des matériaux de la famille des TTB dérives de Ba2NdFeNb4O15 à travers l’étude de solutions solides à base de Li et l’étude de l’impact des différents paramètres de synthèse sur la nature de l’anomalie diélectrique mesurées sur pastilles densifiées. La mise en évidence de modulation structurale dans cette famille de matériaux semble être en lien direct avec l’observation des variations de propriétés diélectriques. L’utilisation de diffraction électronique notamment permet la mise en évidence de ces modulations structurales et leur évolution en température. Dans une seconde partie, l’approche consiste à utiliser le Spark Plasma Sintering (SPS) comme technique de densification pour des matériaux dits “fragiles” mais aussi d’explorer des propriétés diélectriques jusqu’alors inaccessibles, sur matériaux massifs. Le développement de la technique SPS à basse température permet ainsi non seulement de densifier à basse température des matériaux fragiles, mais aussi d’obtenir des phases inaccessibles dans des conditions de températures similaires par traitement thermique conventionnel. De même, l’obtention de céramique moléculaire de très haute densité a pu être réalisée, malgré des températures de décomposition extrêmement faible (100 ˚C).