Thèse soutenue

Etude de la décomposition de matière organique dans des conditions géologiques par simulations numériques de replica exchange molecular dynamics

FR  |  
EN
Auteur / Autrice : Léa Atmani
Direction : Roland Jean-Marc PellenqChristophe Bichara
Type : Thèse de doctorat
Discipline(s) : Matière condensée et Nanosciences
Date : Soutenance le 15/05/2017
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Partenaire(s) de recherche : Laboratoire : Centre Interdisciplinaire de Nanoscience de Marseille (CINAM)
Jury : Président / Présidente : Philippe Dumas
Examinateurs / Examinatrices : Jean-Marc Leyssale, Edo Boek
Rapporteurs / Rapporteuses : Marc Monthioux, Virginie Marry

Résumé

FR  |  
EN

Pétrole et gaz proviennent de la décomposition de la matière organique dans la croûte terrestre. En s’enfouissant, les résidus organiques se décomposent en un solide poreux et carboné, appelé kérogène et en un fluide composé d’hydrocarbures et de petites molécules telles que de l’eau. Le processus de formation du kérogène n’est pas totalement élucidé et une modélisation aiderait à une meilleure compréhension à la fois de sa structure et de sa composition et serait utile à l’industrie pétrolière.Dans le présent travail, nous adoptons une approche thermodynamique ayant pour but, à l’aide de simulations numériques, de d’étudier la décomposition de précurseurs de kérogène d’un type donné –ici le type III- dans les conditions d’un réservoir géologique. La méthode dite de Replica Exchange Molecular Dynamics (REMD) est appliquée pour étudier la décomposition de cristaux de cellulose et de lignine. Le potentiel d’interaction ReaxFF et le code LAMMPS sont utilisés. La REMD est une façon de surmonter de larges barrières d’énergie libre, en améliorant l’échantillonnage de configurations d’une dynamique moléculaire conventionnelle à température constante, en utilisant des états générés à températures supérieures.En fin de simulation, les systèmes ont atteint un état d’équilibre entre deux phases : une phase riche en carbone, composée d’amas de macromolécules, que nous appelons « solide » et d’une phase riche en oxygène et en hydrogène, composée de petites molécules, que nous dénommons « fluide ». L’évolution des parties solides de nos systèmes coïncide avec celle d’échantillons naturels de kérogènes de type III.