Thèse soutenue

Structure et dynamique des fagots de microtubules : implication de la protéine Tau

FR  |  
EN
Auteur / Autrice : Alix Méphon-Gaspard
Direction : Loïc HamonDavid Pastre
Type : Thèse de doctorat
Discipline(s) : Sciences de la vie et de la santé
Date : Soutenance le 07/11/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Structure et dynamique des systèmes vivants (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Structure et activité des biomolécules normales et pathologiques (Evry, Essonne ; 2007-....)
établissement opérateur d'inscription : Université d'Évry-Val-d'Essonne (1991-....)
Jury : Président / Présidente : Philippe Savarin
Examinateurs / Examinatrices : Carsten Janke
Rapporteurs / Rapporteuses : Luc Buée, Marie-Laure Parmentier

Mots clés

FR

Résumé

FR  |  
EN

Le long de l’axone d’un neurone mature, les microtubules (MTs) sont organisés en faisceaux parallèles et orientés. Cette géométrie devrait en théorie favoriser la formation de fagots serrés de MTs par encombrement macromoléculaire au sein de l’axoplasme (distance interMT < 5 nm). Or, des images de coupes d’axones obtenues par microscopie électronique ont révélé qu’ils y étaient bien séparés (distance interMT ≈ 75 nm). Dans la littérature, cette singularité pourrait s’expliquer par la présence de Tau, une protéine associée aux MTs. Cependant, l’effet de Tau sur l’organisation de MTs est encore sujet à controverse et deux modèles antagonistes ont été proposés. Le premier modèle avance que le domaine de projection de Tau connecte les MTs tout en les maintenant espacés en formant des ponts d’origine électrostatiques, à l’inverse du second qui explique l’espacement des MTs par un effet de « polymer brush » dû à la présence de Tau à la surface du MT. Afin d’éclairer la fonction de Tau dans l’organisation des MTs, nous avons combiné des approches expérimentales à différentes échelles, in vitro et in cellulo, avec des données issues de la modélisation analytique et numérique. Les résultats obtenus nous ont permis de proposer un modèle alternatif où la protéine Tau formerait des ponts transitoires. Ces derniers permettraient de maintenir les MTs suffisamment éloignés les uns des autres afin d’éviter l’effet de forces attractives à courte portée qui déclencheraient une mise en fagot irréversible des MTs. Enfin, notre modèle tient compte de la faible densité de Tau sur la surface des MTs axonaux. En effet, même à un bas ratio molaire Tau : Tubuline, Tau permet de garder les MTs éloignés les uns des autres grâce à la mobilité relative de Tau sur les MTs.