Thèse soutenue

Application de la spectroscopie d’impédance électrochimique à la caractérisation et au diagnostic de microbatteries tout solide

FR  |  
EN
Auteur / Autrice : Séverin Larfaillou
Direction : Sylvain Franger
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 03/03/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Chimie de Paris-Sud (Orsay, Essonne ; 2006-2015)
Partenaire(s) de recherche : Laboratoire : Institut de chimie moléculaire et des matériaux d’Orsay (Orsay, Essonne ; 2006-....)
Jury : Président / Présidente : Philippe Lecoeur
Examinateurs / Examinatrices : Sylvain Franger, Philippe Lecoeur, Jean-Pierre Pereira-Ramos, Renaud Bouchet, Delphine Guy, Frédéric Le Cras
Rapporteurs / Rapporteuses : Jean-Pierre Pereira-Ramos, Renaud Bouchet

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L’objectif de cette thèse est de développer la caractérisation et le diagnostic non destructif de microbatteries « tout solide » par spectroscopie d’impédance électrochimique. Ces travaux s’appuient sur des microbatteries commerciales EnFilmTM EFL700A39, basées sur une architecture lithium métal Li/LiPON/LiCoO2. La caractérisation unitaire des couches actives, constituant ces microbatteries, a permis d’une part, d’identifier les principales propriétés de transport des ions Li+ dans l’électrolyte solide, et d’autre part, a permis de mettre en avant la présence de zones plus ou moins conductrices dans la couche active LiCoO2, pouvant engendrer des limitations électroniques et/ou ioniques lors du fonctionnement de la microbatterie. L’étude des microsystèmes complets par spectroscopie d’impédance électrochimique a ensuite été effectuée en fonction du taux de lithiation de l’électrode positive, du nombre de cycles, et du vieillissement calendaire de la microbatterie. Les résultats obtenus ont donné naissance à un circuit électrique équivalent permettant de modéliser le comportement (souvent indépendant) des différentes couches actives durant l’utilisation d’une microbatterie. Cette modélisation permet en outre de cibler les origines éventuelles de défaillances, soit après la fabrication, soit au cours du vieillissement d’une microbatterie. Les travaux additionnels effectués sur des systèmes lithium free (LiCoO2/LiPON/Cu) révèlent, quant à eux, une forte interaction électrochimique entre le lithium et le collecteur de cuivre (partiellement oxydé) et mettent en évidence l’importance capitale des premiers cycles de la cellule pour ses performances ultérieures