Thèse soutenue

Approche multi-échelle de l'agrégation dans le procédé de précipitation de boehmite.

FR  |  
EN
Auteur / Autrice : Sara Kirchner
Direction : Béatrice BiscansChristine Frances
Type : Thèse de doctorat
Discipline(s) : Génie des Procédés et de l'Environnement
Date : Soutenance le 06/11/2015
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie chimique (Toulouse ; 1992-....)
Jury : Président / Présidente : Fabienne Espitalier
Examinateurs / Examinatrices : Béatrice Biscans, Malika Boualleg, Anne-Caroline Genix
Rapporteurs / Rapporteuses : Frédéric Gruy, Denis Mangin

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Ces travaux portent sur la précipitation de boehmite AlOOH, qui est le précurseur de l’alumine γ – Al2O3, support catalytique utilisé dans de nombreux procédés de raffinage. Le contrôle de la porosité de ces particules est crucial afin de minimiser les limitations par transfert de matière et de chaleur et d’améliorer la performance des catalyseurs. La porosité de l’alumine provient en partie de l’étape de précipitation de boehmite. Elle est conservée du fait de la topotacticité de la transformation boehmite - alumine. La boehmite est obtenue par précipitation de sels d’aluminium. L’effet des paramètres physico-chimiques, tels que la température et le pH, sur les propriétés du matériau a été largement étudié dans la littérature. Cependant, peu d’études ont permis la mise en évidence des phénomènes régissant l’agrégation durant le procédé de précipitation. L’objectif de cette étude est de comprendre et de quantifier les paramètres de précipitation influençant l’agrégation de la boehmite au cours de sa synthèse. La précipitation de la boehmite a été réalisée dans deux types de dispositifs de précipitation. Le dispositif double-jets, utilisé à l’échelle industrielle, induit des conditions non-homogènes de sursaturation et de fraction volumique en particules, tant temporellement que spatialement. La deuxième méthode de précipitation de boehmite utilise des pré-mélangeurs (Hartridge-Roughton et Y), dans lequel le micro-mélange et la sursaturation initiale sont finement contrôlés. La sursaturation a été calculée au cours de la précipitation sur la base du modèle thermodynamique de Pitzer. Celle-ci est significativement plus importante dans le dispositif pré-mélangeur. L’effet des paramètres opératoires a été mis en évidence sur les propriétés texturales de la boehmite via des caractérisations ex situ (DRX, adsorption-désorption d’azote par méthode BET, cryo-MET). Les matériaux issus du dispositif double-jets présentent une porosité d’autant plus aérée que la sursaturation est faible, et il existe une valeur seuil de sursaturation au-delà de laquelle la porosité n’est plus impactée par ce paramètre, comme c’est le cas dans le dispositif pré-mélangeur. Dans ce cas, aucun autre paramètre opératoire n’affecte la texture du matériau. Ces résultats mettent en évidence des mécanismes d’agrégation dépendant directement de la sursaturation. Des techniques de caractérisation originales ont par ailleurs été mises en place afin de suivre la dynamique de l’agrégation. L’analyse par diffusion multiple de la lumière a permis de mettre en évidence des cinétiques d’agrégation différentes, directement corrélées à la porosité, et ce avant les étapes de filtration-lavage-séchage. Une analyse fine des états d’agrégation a été réalisée in situ par SAXS à rayonnement synchrotron. Cette étude a permis de proposer différents scénarii des mécanismes d’agrégation. Il apparaît que les fibres de boehmite s’agrègent de manière beaucoup plus aérée à faible sursaturation. Une porosité visée pourrait ainsi être obtenue par un contrôle fin de la sursaturation. Enfin, une première approche de modélisation par bilan de population a été développée afin de décrire les processus de formation des fibres et d’agrégation secondaire.