Thèse soutenue

Tomographie par rayons X haute résolution : application à l'intégration 3D pour la microélectronique

FR  |  
EN
Auteur / Autrice : David Laloum
Direction : Pierre Bleuet
Type : Thèse de doctorat
Discipline(s) : Physique appliquée
Date : Soutenance le 29/09/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'électronique et de technologie de l'information (Grenoble ; 1967-....)
Jury : Président / Présidente : Françoise Peyrin
Examinateurs / Examinatrices : Frédéric Lorut, Laurent Desbat
Rapporteurs / Rapporteuses : Philippe Walter, Jean-Yves Buffière

Résumé

FR  |  
EN

Les travaux de ce doctorat concernent le développement d'une technique de caractérisation non destructive encore peu utilisée dans le domaine de la microélectronique : la tomographie par rayons X dans un microscope électronique à balayage. Cet instrument a été utilisé pour l'analyse haute résolution d'interconnexions métalliques, telles que les piliers de cuivre ainsi que les vias traversants, utilisées dans le cadre de l'intégration 3D pour connecter verticalement plusieurs puces entre elles. Les contributions les plus significatives de ces travaux sont : (1) l'amélioration des capacités d'analyse offertes par l'instrument. De nombreuses études – simulations et expériences – ont été menées afin de déterminer et améliorer les résolutions 2D et 3D de ce système d'imagerie. Il a été montré que la résolution 2D de ce système d'imagerie pouvait atteindre 60 nanomètres. La qualité des images acquises et reconstruites a également été améliorée à travers l'implémentation d'algorithmes de reconstruction itératifs et de nombreuses méthodes d'alignement des radiographies. (2) La réduction du temps d'analyse d'un facteur 3 à travers l'implémentation d'algorithmes de reconstruction contraints tels que la méthode de reconstruction basée sur la minimisation de la variation totale. (3) La mise en place d'algorithmes de correction efficaces pour l'élimination d'artéfacts de reconstruction liés à la polychromaticité du faisceau de rayons X utilisé. (4) La mise en application de l'ensemble de ces algorithmes sur des cas réels, rencontrés par des technologues.