Thèse soutenue

Modélisation de l’hystérésis hydrique dans les matériaux cimentaires et de son effet sur les transferts d'humidité

FR  |  
EN
Auteur / Autrice : Zhidong Zhang
Direction : Véronique Baroghel-Bouny
Type : Thèse de doctorat
Discipline(s) : Structures et Matériaux
Date : Soutenance le 13/05/2014
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Département Matériaux - MAT (Paris) - IFSTTAR/MAST
Jury : Président / Présidente : Lars-Olof Nilsson
Examinateurs / Examinatrices : Véronique Baroghel-Bouny, Mickaël Thiery, Peter McDonald, Bruno Huet, Jean-Michel Torrenti
Rapporteurs / Rapporteuses : Alain Sellier, Jan Carmeliet

Résumé

FR  |  
EN

La durabilité des structures en béton armé ainsi que leur durée de vie sont étroitement liées à la mise en œuvre simultanée de nombreux phénomènes physiques et chimiques. Ceux-ci sont de diverses natures mais restent, en général, fonction des propriétés hydriques des matériaux étudiés. Ainsi, la prédiction des dégradations potentielles d'un matériau cimentaire requiert l'étude du transport de l'eau liquide et des phases gazeuses à travers ce dernier, considéré comme un milieu poreux. En milieu naturel, les structures subissent des variations périodiques de l'humidité relative extérieure (HR). Cependant, la plupart des modèles de transfert hydrique préexistants dans la littérature, s'intéresse uniquement au processus de séchage. Il existe peu de modèles décrivant à la fois l'humidification et le séchage du matériau (ces deux phénomènes se produisent dans le matériau en condition naturelle d'humidité relative (HR)). Tenir compte des phénomènes d'hystérésis dans les transferts hydriques réduit à nouveau le nombre de modèles à disposition. Ainsi, cette thèse s'attache à proposer une meilleure compréhension de l'état hydrique du béton en fonction des variations d'humidité relative extérieure, sur la base d'une nouvelle campagne expérimentale et de modélisations numériques. Un soin sera apporté afin de tenir compte dans les modèles numériques des effets d'hystérésis. Dans ce travail, nous détaillerons, tout d'abord, un modèle multi-phasiques complet. Un modèle simplifié est obtenu, sur la base de considérations théoriques et de vérifications expérimentales dans le cas où la perméabilité intrinsèque à l'eau liquide reste très inférieure à la perméabilité intrinsèque au gaz. Une étude comparative des modèles d'hystérésis couramment utilisés permet d'obtenir un jeu de modèles proposant les meilleures prédictions d'isothermes de sorption d'eau et de leurs hystérésis. Par la suite, le modèle de transport simplifié est couplé avec les modèles d'hystérésis sélectionnés afin de simuler les transferts hydriques dans des bétons soumis à des cycles d'humidification-séchage. La comparaison avec des données expérimentales révèle que la prise en compte de l'hystérésis de l'isotherme de sorption d'eau ne peut pas être négligé. De plus, il est montré que les prédictions obtenues avec des modèles d'hystérésis théoriques, sont les plus cohérentes avec les résultats expérimentaux, en particulier, pour des chemins secondaires d'hystérésis. Plusieurs scénarios (conditions environnementales, bétons différents) sont également simulés. Les résultats obtenus pointent à nouveau la nécessité de tenir compte de l'hystérésis lors de la modélisation des transferts hydriques à travers des matériaux cimentaires soumis à des variations d'humidité relative. La définition d'une profondeur pour laquelle le profil hydrique du béton est modifié par les variations périodiques d'humidité relative permet de mieux comprendre comment la modélisation de la pénétration des espèces ioniques est influencée par les cycles d'humidification-séchage. Par ailleurs, notre analyse révèle qu'il est pertinent de considérer l'effet de Knudsen pour la diffusion de la vapeur afin d'améliorer la prédiction de la diffusivité apparente