Thèse soutenue

Etude de la structure de la petite protéine d'enveloppe du virus de l'hépatite B

FR  |  
EN
Auteur / Autrice : Alexandra Desrames
Direction : Camille Sureau
Type : Thèse de doctorat
Discipline(s) : Virologie
Date : Soutenance en 2014
Etablissement(s) : Paris 7

Résumé

FR  |  
EN

Chronic infection with the hepatitis B virus (HBV) represents a major public health concern worldwide because an estimated 300 million individuals are affected. HBV is the prototype of the Hepadnaviridae family, a DNA virus with an envelope consisting of cell derived lipids associated to three types of transmembrane glycoproteins: S-, M- et L-HBsAg. S-HBsAg, the most abundant in the viral envelope, is the driving force of viral particle assembly, but it also bears in its ectodomain, an immunodominant determinant, referred to as the a-determinant, against which most of the neutralizing antibodies are directed. This antigenic determinant is also closely associated to an infectivity determinant responsible for interacting with cell surface heparan sulfate at the initial step of viral entry. As of today, we have little information on the structure of the antigenic loop (AGL) of the S-HBsAg protein that underlies the antigenic and function at viral entry. The aim of this thesis project was to gather information on the three dimensional organization of the AGL polypeptide, for a better understanding of its function at viral entry. The first step of the study was to identify the minimum subunit of the viral envelope, which bears the a-determinant. This was achieved using a panel of monoclonal antibodies that are specific for the a-determinant. We have shown most of the antibodies were: i) directed to conformational epitopes, ii) neutralizing, and iii) reactive with the dimeric forms of S-HBsAg. We concluded that most of a-determinant epitopes are conserved on the soluble dimeric forms of S-HBsAg. Furthermore, we demonstrate the presence in the HBV envelope, of two isomers of S- HBsAg dimers, which can be separated by SDS-PAGE and identified by isomer-specific antibodies. We propose that the two isomers correspond to two distinct networks of disulfide bonds between the numerous AGL cystein residues. In an effort to obtain pure and homogenous preparations of S-HBsAg dimers, as substrate for crystallization, we adopted several strategies: i) production of S-HBsAg by in vitro translation, ii) production in E. Coli, and iii) the purification of viral particles from transfected Huh-7 cell culture medium or from infectious plasmas. The purification of S-HBsAg dimers from cell culture-derived particles clearly appeared as the strategy of choice, in terms quality and yield, and flexibility of the approach in case of S- HBsAg mutants analysis.