Thèse soutenue

Intégration de la mesure d'impédance dans un système de stimulation électrique implantable multi-applications : proposition d'une nouvelle stratégie de stimulation

FR  |  
EN
Auteur / Autrice : Florent Dupont
Direction : Marc Belleville
Type : Thèse de doctorat
Discipline(s) : Nanoélectronique et nanotechnologie
Date : Soutenance le 19/06/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'électronique et de technologie de l'information (Grenoble ; 1967-....)
Jury : Président / Présidente : Skandar Basrour
Examinateurs / Examinatrices : Marc Belleville, Ian O'connor, Frédéric Chavane, Cyril Condemine, Jean-François Beche
Rapporteurs / Rapporteuses : Eric McAdams, Sylvie Renaud

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse traite de l’architecture d’un stimulateur électrique multi applications implantable intégrant la mesure d’impédance du système électrode/tissu. Une large part du travail a concerné l’optimisation de la forme des stimuli générés par le circuit pour minimiser la consommation énergétique, garantir la forme d’onde des stimuli vue par les tissus et améliorer les analyses d’expériences fonctionnelles. En effet, l’interfaçage du stimulateur et des électrodes avec le milieu in vivo génère des contraintes sur la délivrance des stimuli électriques. Les stimuli délivrés par le générateur s’ils sont non adaptés à l’impédance du système électrode milieu environnant sont déformés par filtrage ou saturation.Une modélisation numérique du système électrode-milieu environnant a permis de mettre en évidence que ces différentes contraintes sont adressables si l’on utilise les informations données par la spectroscopie d’impédance. Une méthode basée sur une mesure d’impédance,suivie d’une identification sur un circuit électrique équivalent a été proposée ; elle permet d’estimer les contributions de l’interface électrode/milieu et du milieu. Ces fonctions de transfert sont ensuite utilisées pour la génération des stimuli électriques afin de garantir la forme d’onde définie par l’expérimentateur, au niveau des cibles de la stimulation. La preuve de concept de cette méthode a été faite en trois étapes : avec des composants électroniques équivalents, en milieu salin, puis en milieu in-vivo allant jusqu’à des tests fonctionnels permettant de démontrer l’intérêt d’une telle méthode.Ce travail s’est terminé par la proposition, la spécification haut-niveau et la simulation d’une architecture intégrée multi-applications innovante, basée sur le traitement des données d’impédance afin d’adapter la stimulation.