Thèse soutenue

Commande sous contraintes de systèmes dynamiques multi-agents

FR  |  
EN
Auteur / Autrice : Ionela Prodan
Direction : Sorin Olaru
Type : Thèse de doctorat
Discipline(s) : Automatique (STIC)
Date : Soutenance le 03/12/2012
Etablissement(s) : Supélec
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Jury : Président / Présidente : Patrick Boucher
Examinateurs / Examinatrices : Eva Crück, Rudy R. Negenborn, Silviu-Iulian Niculescu, Cristina Nicoleta Stoica
Rapporteurs / Rapporteuses : Morten Hovd, Fernando Lobo Pereira

Résumé

FR  |  
EN

L'objectif de cette thèse est de proposer des solutions aux problèmes liés à la commande optimale de systèmes dynamiques multi-agents en présence de contraintes. Des éléments de la théorie de commande et d'optimisation sont appliqués à différents problèmes impliquant des formations de systèmes multi-agents. La thèse examine le cas d'agents soumis à des contraintes dynamiques. Pour faire face à ces problèmes, les concepts bien établis tels que la théorie des ensembles, la platitude différentielle, la commande prédictive (Model Predictive Control - MPC), la programmation mixte en nombres entiers (Mixed-Integer Programming - MIP) sont adaptés et améliorés. En utilisant ces notions théoriques, ce travail de thèse a porté sur les propriétés géométriques de la formation d'un groupe multi-agents et propose un cadre de synthèse original qui exploite cette structure. En particulier, le problème de conception de formation et les conditions d'évitement des collisions sont formulés comme des problèmes géométriques et d'optimisation pour lesquels il existe des procédures de résolution. En outre, des progrès considérables dans ce sens ont été obtenus en utilisant de façon efficace les techniques MIP (dans le but d'en déduire une description efficace des propriétés de non convexité et de non connexion d'une région de faisabilité résultant d'une collision de type multi-agents avec des contraintes d'évitement d'obstacles) et des propriétés de stabilité (afin d'analyser l'unicité et l'existence de configurations de formation de systèmes multi-agents). Enfin, certains résultats théoriques obtenus ont été appliqués dans un cas pratique très intéressant. On utilise une nouvelle combinaison de la commande prédictive et de platitude différentielle (pour la génération de référence) dans la commande et la navigation de véhicules aériens sans pilote (UAVs).