Thèse soutenue

Identification et caractérisation d'un canal chlorure, AtCLCg, impliqué dans la réponse au stress salin chez Arabidopsis thaliana

FR  |  
EN
Auteur / Autrice : Chi Tam Nguyen
Direction : Sophie Filleur
Type : Thèse de doctorat
Discipline(s) : Sciences du végétal
Date : Soutenance le 19/10/2012
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences du Végétal (1992-2015 ; Orsay, Essonne)
Partenaire(s) de recherche : Laboratoire : Institut des Sciences du Végétal (Gif-sur-Yvette, Essonne ; 2001-2014) - Institut des sciences du végétal
Jury : Président / Présidente : Michel Dron
Examinateurs / Examinatrices : Sophie Filleur, Michel Dron, Nathalie Leonhardt, Anne-Aliénor Very, Hoang Ha Chu, Pascal Gantet
Rapporteurs / Rapporteuses : Nathalie Leonhardt, Anne-Aliénor Very

Résumé

FR  |  
EN

Dans les cellules végétales, les canaux et les transporteurs anioniques sont essentiels pour les fonctions clés telles que la nutrition, l'homéostasie ionique et la tolérance aux stress biotiques ou abiotiques. Chez Arabidopsis thaliana, les membres de la famille CLC (pour ChLoride Channel), situés sur le tonoplaste, sont requis pour l'homéostasie du nitrate (AtCLCa et AtCLCb) ou impliqués dans la tolérance au sel (AtCLCc).Dans mon travail de thèse, j’ai identifié et caractérisé un canal chlorure, AtCLCg, chez A. thaliana. L'étude de la protéine fusion AtCLCg::GFP a révélé que cette protéine est localisée sur le tonoplaste. Deux lignés mutants indépendants d’insertion ADN-T, atclcg ont été sélectionnés. Les études physiologiques sur ces deux lignés ont démontré qu’AtCLCg joue un rôle dans le passage de chlorure mais pas dans l'homéostasie du nitrate au travers du tonoplaste. En effet, aucune différence de contenu en nitrate (NO3-) racinaire et foliaire n’a été observée entre le sauvage et les mutants dans nos conditions. Par contre, les plantes mutantes présentent un phénotype par rapport au sauvage lorsqu'elles se développent sur milieu de croissance contenant 75 mM NaCl: (i) une diminution de 20% de la masse fraîche ; (ii) une diminution de 16% de la longueur de racines primaires et une réduction de 19% du nombre de racines secondaires ; (iii) une sur-accumulation de 21% et 26% de chlorure et sulfate foliaire, respectivement. Ces phénotypes sont abolis chez les lignés complétées avec 35S::AtCLCg. De plus, les mutants atclcg présentent un phénotype similaire à la présence de 75 mM KCl, mais aucune différence n'est détectée en réponse à 140 mM mannitol. Ce résultat suggère que le phénotype d'hypersensibilité des mutants atclcg dépend du chlorure et non du l'effet osmotique du stress salin.Sachant qu’AtCLCg et AtCLCc partagent un haut degré d'homologie, environ 75% d'identité au niveau des protéines, et que les deux sont impliquées dans la réponse au stress salin de la plante, nous avons généré le double mutant atclcc/atclcg. L’analyse phénotypique a montré que le double mutant ne présente pas un phénotype additif sur milieu de stress 75 mM NaCl. En parallèle, l'analyse de l'expression des gènes a montré qu’AtCLCg est réprimé dans le fond mutant atclcc, et inversement. Par ailleurs, l'analyse de l'expression de gène rapporteur démontre que PAtCLCg::GUS est fortement exprimé dans les cellules du mésophylle alors qu’une forte expression de PAtCLCc::GUS dans les cellules de garde et le pollen est observé. Ainsi, l’ensemble de ces résultats montrent que ces deux protéines AtCLCc et AtCLCg sont impliquées dans la réponse au stress salin de la plante, mais elles n’ont pas de fonction redondante.