Thèse soutenue

La décharge luminescente comme outil analytique : influence du taux d'émission d'électrons secondaires sur ses caractéristiques

FR  |  
EN
Auteur / Autrice : Elisa Barisone
Direction : Patrice RaynaudThomas Nelis
Type : Thèse de doctorat
Discipline(s) : Physique et ingénierie des plasmas de décharge
Date : Soutenance en 2011
Etablissement(s) : Toulouse 3

Résumé

FR  |  
EN

La Spectrométrie à Décharge Luminescente est couramment utilisée pour l'analyse spectrochimique des matériaux et est devenue un outil standard pour l'analyse de la composition en profondeur de matériaux multi-couches. Cette technique permet aussi la quantification en se basant sur le nombre de photons émis par atome pulvérisé et ne dépend que de Z, l'impédance de la décharge employée pour l'analyse. Cette approche est basée sur l'analyse des métaux, sans fondement théorique, et son extension vers l'analyse des matériaux non-conducteurs n'est pas validée. Pour une géométrie fixée, Z dépend essentiellement de la pression du gaz plasmagène et de gamma, le taux d'émission d'électrons secondaires du matériau de la cathode. Ainsi, pour valider la quantification, il est nécessaire de connaître le gamma des différents matériaux et d'établir un classement. Un " effectif gamma " a été déterminé à partir des courbes de Paschen pour différents matériaux conducteurs et non-conducteurs. L'étude a montré que ce coefficient dépend sensiblement de l'état physico-chimique de la surface des électrodes, ces variations (jusqu'à 50%) rendent le résultat difficilement exploitable. En revanche, la détermination de la variation de Z avec la pression, a permis un classement des différents matériaux en fonction de leur gamma : une forte Z correspond à un faible gamma. De plus ces travaux ont montré qu'une variation de la pression du gaz plasmagène peut compenser l'effet de gamma sur l'impédance de la décharge ce qui est primordial pour la procédure de quantification. Afin de valider le procédé, nous avons analysé une couche mince organo-metallique (LiPON) et ainsi montré que la quantification est applicable aux matériaux complexes en couche mince.