Thèse soutenue

Captage du CO2 par des solvants physiques confinés dans des materiaux poreux

FR
Auteur / Autrice : Ngoc linh Ho
Direction : Roland Jean-Marc Pellenq
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux, physique, chimie et nanosciences
Date : Soutenance le 27/10/2011
Etablissement(s) : Aix-Marseille 2
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Partenaire(s) de recherche : Laboratoire : Centre Interdisciplinaire de Nanoscience de Marseille (CINAM)
Jury : Président / Présidente : Renaud Denoyel
Examinateurs / Examinatrices : Roland Jean-Marc Pellenq, Renaud Denoyel, Philippe Trens, Eric Favre, Bernard Rousseau, Fabien Porcheron
Rapporteurs / Rapporteuses : Philippe Trens, Eric Favre

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans ce travail, l’existence et les mécanismes fondamentaux sous-jacents à l’augmentation de la solubilité du CO2 dans les matériaux hybrides. De nombreux supports solide et solvants physiques sont testés. Les adsorbants hybrides synthétisés sont par la suite évalués en mesurant les isothermes d’adsorption du CO2. Généralement, tous les adsorbants hybrides montrent une augmentation de la solubilité du CO2 en comparaison avec le solvant physique. Les résultats obtenus mettent en évidence, certaines conditions à remplir pour l'obtention d'un adsorbant hybride efficace. On montre notamment que le support solide doit posséder une structure mésoporeuse avec une forte surface spécifique. De plus, on identifie une taille optimale du solvant permettant d'obtenir une solubilité améliorée. Parmi tous les candidats testés, le N-méthyl-2-pyrrolidone confiné dans un support mésoporeux de MCM-41 s’est avéré être l’adsorbant hybride dont les performances d'adsorption sont les plus importantes. Des simulations de Monte Carlo dans l'ensemble grand canonique sont ensuite effectuées, afin d'interpréter le comportement de la solubilité du CO2 dans un système modèle d’adsorbant hybride à base de MCM-41. Les mécanismes microscopiques sous-jacents à l’augmentation de la solubilité sont notamment clairement identifiés. La présence des molécules de solvant favorise l'adsorption des molécules de CO2 dans le pore, engendrant une augmentation de la solubilité dans l’adsorbant hybride par rapport à celle de l’adsorbant natif ainsi qu’à celle du solvant macroscopique. De plus, pour évaluer l’efficacité de captage du CO2 de ces adsorbants hybrides, l'effet des interactions entre les adsorbats et le solide ainsi que l’impact de la taille de la molécule du solvant sur la solubilité du CO2 sont étudiés. Nous avons constaté qu’un système hybride idéal doit présenter une faible interaction entre le solvant et le solide et une forte affinité entre le solvant et le CO2. De plus, on identifie l'existence d'une taille optimale de solvant permettant de maximiser la solubilité du CO2 dans le système hybride. D’après les résultats de la simulation, la couche de solvant crée des pseudo-micropores dans le solide mésoporeux MCM-41, et permet à plus de molécules de CO2 d’être absorbés sous l'influence d'un confinement et d'une interaction surfacique plus importants.