Thèse soutenue

Etude du comportement mécanique et des évolutions microstructurales de l'acier austénitique Fe-22Mn-0.6C à effet TWIP sous sollicitations complexes : approche expérimentale et modélisation

FR  |  
EN
Auteur / Autrice : David Barbier
Direction : Michel Humbert
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 06/03/2009
Etablissement(s) : Metz
Ecole(s) doctorale(s) : EMMA - Ecole Doctorale Energie - Mécanique - Matériaux
Partenaire(s) de recherche : Laboratoire : LETAM - Laboratoire d'étude des Textures et Application aux Matériaux - FRE 3143
Jury : Président / Présidente : Anne-Françoise Gourgues-Lorenzon
Examinateurs / Examinatrices : Mohammed Cherkaoui, Samuel Forest, Nathalie Gey, Pascal Jacques

Résumé

FR  |  
EN

Les très bonnes propriétés mécaniques de l'acier TWIP (TWinning Induced Plasticity) Fe-22Mn-0.6C résultent de l'activation du glissement des dislocations et du maclage mécanique. L'augmentation de la fraction de macles avec la déformation conduit à la réduction du libre parcours moyen des dislocations (effet Hall-Petch dynamique). L'objectif de ce travail était de fournir une analyse et une compréhension plus approfondies du comportement mécanique de cet acier pour différents modes de sollicitation. Nous avons étudié le comportement mécanique lors de différents trajets de déformation (traction, cisaillement simple et réversible, changements de trajets) et plus particulièrement l'évolution de l'écrouissage en relation avec les évolutions microstructurales analysées par diffraction de rayons X, MEB FEG EBSD et MET. En combinant les données obtenues par EBSD et par DRX, nous proposons une approche qui permet d’évaluer la fraction de macles. Le croisement des observations mécaniques et microstructurales nous a permis de montrer que les différents stades d’écrouissage sont liés à des caractéristiques particulières de la microstructure et de la texture, l'interaction entre macles et dislocations conduisant à une augmentation de l'écrouissage. Le maintien de l'écrouissage à un niveau élevé est favorisé par l'activation de deux systèmes de maclage et par l'évolution de texture permettant ce mode de déformation au sein du polycristal. Nous avons observé que la manifestation des différents stades d’écrouissage et de l'effet TWIP varie suivant le type de sollicitation. Les essais en cisaillement réversible ont mis en évidence un effet Bauschinger très prononcé relié à l’effet Hall-Petch dynamique. L'empilement des dislocations aux joints de grains et de macles crée des champs de contraintes locaux qui influencent le comportement au trajet retour. Ces résultats expérimentaux nous ont permis de tester les capacités prédictives d'un modèle micromécanique élasto-viscoplastique à transition d'échelles incorporant l'effet TWIP. Les simulations des trajets monotones de déformation sont en bon accord avec les résultats expérimentaux. Pour améliorer les prévisions des essais de cisaillement réversible et de changement de trajet, des perfectionnements sont proposés