Thèse soutenue

Algorithmes massivements parallèles pour les simulations PIC réalistes de l’interaction laser plasma à ultra-haute intensité, application à la séparation d’impulsions attosecondes d’harmoniques Doppler

FR  |  
EN
Auteur / Autrice : Haithem Kallala
Direction : Pascal Monot
Type : Thèse de doctorat
Discipline(s) : Physique des plasmas
Date : Soutenance le 21/02/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Interactions, dynamiques et lasers (Gif-sur-Yvette, Essonne ; 2015-....) - Maison de la simulation (Gif-sur-Yvette , Essonne ; 2011-....)
référent : Université Paris-Saclay. Faculté des sciences d’Orsay (Essonne ; 2020-....)
Jury : Président / Présidente : Gilles Maynard
Examinateurs / Examinatrices : Eric Sonnendrücker, Emmanuel d' Humières, Mickael Grech, Caterina Riconda
Rapporteurs / Rapporteuses : Eric Sonnendrücker, Emmanuel d' Humières

Résumé

FR  |  
EN

La complexité des mécanismes physiques mis en jeu lors de l'interaction laser-plasma à ultra-haute intensité nécessite de recourir à des simulations PIC particulièrement lourdes. Au cœur de ces codes de calcul, les solveurs de Maxwell pseudo-spectraux d'ordre élevé présentent de nombreux avantages en termes de précision numérique. Néanmoins, ces solveurs ont un coût élevé en termes de ressources nécessaires. En effet, les techniques de parallélisation existantes pour ces solveurs sont peu performantes au-delà de quelques milliers de coeurs, ou induisent un important usage mémoire, ce qui limite leur scalabilité à large échelle. Dans cette thèse, nous avons développé une toute nouvelle approche de parallélisation qui combine les avantages des méthodes existantes. Cette méthode a été testée à très large échelle et montre un scaling significativement meilleur que les précédentes techniques, tout en garantissant un usage mémoire réduit.En capitalisant sur ce travail numérique, nous avons réalisé une étude numérique/théorique approfondie dans le cadre de la génération d'harmoniques d'ordres élevés sur cible solide. Lorsqu'une impulsion laser ultra-intense (I>10¹⁶W.cm⁻² ) et ultra-courte (de quelques dizaines de femtosecondes) est focalisée sur une cible solide, elle génère un plasma sur-dense, appelé miroir plasma, qui réfléchit non-linéairement le laser incident. La réflexion de l'impulsion laser est accompagnée par l'émission cohérente d'harmoniques d'ordres élevées, sous forme d'impulsions X-UV attosecondes (1 attosecond = 10⁻¹⁸s). Pour des intensités laser relativistes (I>10¹⁹ W.cm⁻²), la surface du plasma est incurvée sous l'effet de la pression de radiation du laser. De ce fait, les harmoniques rayonnées par la surface du plasma sont focalisées. Dans cette thèse, j'ai étudié la possibilité de produire des impulsions attosecondes isolées en régime relativiste sur miroir plasma, grâce au mécanisme de phare attoseconde. Celui-ci consiste à introduire une rotation des fronts d'onde du laser incident de façon à séparer angulairement les différentes impulsions attosecondes produites à chaque cycle optique. En régime relativiste, la courbure du miroir plasma augmente considérablement la divergence du faisceau harmonique, ce qui rend le mécanisme phare attoseconde inefficace. Pour y remédier, j'ai développé deux techniques de réduction de divergence harmonique afin de mitiger l'effet de focalisation induit par la courbure du miroir plasma et permettre de générer des impulsions attosecondes isolées à partir d’harmoniques Doppler. Ces deux techniques sont basées sur la mise en forme en amplitude et en phase du faisceau laser. Par ailleurs, j'ai développé un modèle théorique pour déterminer les régimes optimaux d'interaction afin de maximiser la séparation angulaire des impulsions attosecondes. Ce modèle a été validé par des simulations numériques PIC en géométries 2D et 3D et sur une large gamme de paramètres laser et plasma. Finalement, on montre qu'en ajustant des paramètres laser et plasma réalistes, il est possible de séparer efficacement les impulsions attosecondes en régime relativiste.