Thèse soutenue

Filtres de Kalman étendus reposant sur une variable d'erreur non linéaire avec applications à la navigation

FR  |  
EN
Auteur / Autrice : Axel Barrau
Direction : Silvère Bonnabel
Type : Thèse de doctorat
Discipline(s) : Informatique temps réel, robotique et automatique
Date : Soutenance le 15/09/2015
Etablissement(s) : Paris, ENMP
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Centre de robotique (Paris)
Jury : Président / Présidente : Pierre Rouchon
Examinateurs / Examinatrices : Silvère Bonnabel, Brigitte D'Andrea-Novel, Xavier Bissuel, Jay Farrell
Rapporteurs / Rapporteuses : Pascal Morin, Christophe Prieur

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse étudie l'utilisation de variables d'erreurs non linéaires dans la conception de filtres de Kalman étendus (EKF). La théorie des observateurs invariants sur les groupes de Lie sert de point de départ au développement d'un cadre plus général mais aussi plus simple, fournissant des variables d'erreur non linéaires assurant la propriété nouvelle et surprenante de suivre une équation différentielle (partiellement) linéaire. Ce résultat est mis à profit pour prouver, sous des hypothèses naturelles d'observabilité, la stabilité de l'EKF invariant (IEKF) une fois adapapté à la classe de systèmes (non-invariants) introduite. Le gain de performance remarquable par rapport à l'EKF classique est illustré par des applications à des problèmes industriels réels, réalisées en partenariat avec l'entreprise SAGEM.Dans une seconde approche, les variables d'erreurs sont étudiées en tant que processus stochastiques. Pour les observateurs convergeant globalement si les bruits sont ignorés, on montre que les ajouter conduit la variable d'erreur à converger en loi vers une distribution limite indépendante de l'initialisation. Ceci permet de choisir des gains à l'avance en optimisant la densité asymptotique. La dernière approche adoptée consiste à prendre un peu de recul vis-à-vis des groupes de Lie, et à étudier les EKF utilisant des variables d'erreur non linéaires de façon générale. Des propriété globales nouvelles sont obtenues. En particulier, on montre que ces méthodes permettent de résoudre le célèbre problème de fausse observabilité créé par l'EKF s'il est appliqué aux questions de localisation et cartographie simultanées (SLAM).