Thèse soutenue

Effets des inhomogénéités locales et des contraintes extérieures sur les propriétés diélectriques et structurales des monocristaux PZN-x%PT

FR  |  
EN
Auteur / Autrice : Mouhamed Amin Hentati
Direction : Hichem Dammak
Type : Thèse de doctorat
Discipline(s) : Science des matériaux
Date : Soutenance le 15/06/2013
Etablissement(s) : Châtenay-Malabry, Ecole centrale de Paris en cotutelle avec Université de Sfax. Faculté des sciences
Ecole(s) doctorale(s) : École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine)
Partenaire(s) de recherche : Laboratoire : Laboratoire de structures, propriétés et modélisation des solides (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Ahmed Maalej
Examinateurs / Examinatrices : Hichem Dammak, Kamel Khirouni, Laurent Lebrun, Jérôme Rouquette, Hamadi Khemakhem

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Dans ce travail, nous avons étudié l’effet des contraintes extérieures et des inhomogénéités locales sur les propriétés diélectriques et structurales des cristaux ferroélectriques- relaxeurs à base de plomb PZN-x%PT avec 0%≤x≤12%. Dans une première partie, nous avons déterminé les propriétés diélectriques et structurales du système PZN-6%PT. Pour l’état vierge, ce composé subit la séquence de transition de phase C  T  R, où C, T et R sont, respectivement, les phases cubique, quadratique et rhomboédrique. En appliquant un champ électrique statique, une phase orthorhombique est induite entre les phases T et R. Dans la deuxième partie, nous avons montré la présence d’une anomalie diélectrique à basse température observée sur le PZN-x%PT avec 0%≤x≤12%. Dans ce domaine de température, l’étude structurale ne montre aucune transition de phase. L’ensemble de ces résultats sont interprétés moyennant un modèle basé sur la présence des nano-régions polaires. En troisième partie nous avons déterminé les propriétés diélectriques et piézoélectrique du PZN-12%PT dopé au manganèse dans son état monodomaine. Le dopage affecte, principalement, la permittivité transverse et le coefficient piézoélectrique de cisaillement. Le dopage induit aussi la stabilité de la structure monodomaine et l’effet de mémoire de la microstructure. Ces résultats sont expliqués en utilisant le modèle de symétrie des défauts. Dans la dernière partie, nous nous sommes intéressés à la simulation de l’effet de la présence des dipôles-défaut (dopage) sur les propriétés physiques de BaTiO3. Nous avons mis en évidence l’induction d’un champ électrique interne responsable du décalage du cycle d’hystérésis vers les champs électriques négatifs.