
THÈSE

Pour obtenir le diplôme de doctorat
Spécialité INFORMATIQUE

Préparée au sein de l'Université Le Havre Normandie

Adaptatiοn dynamique de la gestiοn de charge
cοmputatiοnnelle par criticalité autο-οrganisée

Présentée et soutenue par
HELEINE PAULIN

Thèse soutenue le 19/09/2025
devant le jury composé de :

M. OLIVIER DAMIEN Professeur des Universités - ULHN - Université Le Havre
Normandie Directeur de thèse

M. LANG CHRISTOPHE Professeur des Universités - Université Bourgogne Franche-
Comté Président du jury

M. JIMENEZ LAREDO JUAN
LUIS

Professeur (dans un établissement à l'étranger) -
UNIVERSIDAD DE GRANADA Co-encadrant

M. MARILLEAU NICOLAS Ing. Rech-HDR. IRD Bondy - UMMISCO Unité de Modélisation
Mathématique et Informatique des Systèmes Complexes Membre du jury

MME JOHNEN COLETTE Professeur des Universités - Université de Bordeaux Rapporteur du jury

Thèse dirigée par OLIVIER DAMIEN (LABORATOIRE D'INFORMATIQUE DE TRAITEMENT DE
L'INFORMATION ET DES SYSTEMES)

Remerciements

Je tiens à exprimer ma profonde gratitude envers toutes les personnes qui, de près ou de loin, ont contribué

à la réalisation de ce travail de thèse.

Je souhaite tout d’abord remercier chaleureusement Damien OLIVIER et Juan Luis JIMÉNEZ LAREDO,

respectivement directeur et co-encadrant de ma thèse. Damien, tu as su m’orienter vers la voie académique

à l’issue de ma licence d’informatique, alors que je m’interrogeais encore sur mon avenir. Cette orientation a

conduit à un stage de recherche, puis à la présente thèse. Malgré les événements inattendus, parfois regrettables,

qui ont jalonné ce parcours, vous avez tous deux maintenu un encadrement attentif et de grande qualité. Je vous

en suis sincèrement reconnaissant et je suis persuadé que vous faites partie des meilleurs encadrants que l’on

puisse avoir.

Je tiens également à exprimer ma gratitude aux membres du jury, et tout particulièrement aux rapporteurs,

Colette JOHNEN et Christophe LANG, pour avoir accepté de lire attentivement ce manuscrit et de l’évaluer.

Vos rapports, d’une grande bienveillance, m’ont profondément touché. J’adresse aussi mes remerciements à

Nicolas MARILLEAU, qui a accepté de se joindre à cette aventure en tant que membre du jury.

Le retour de Juan Luis dans sa patrie m’a offert l’opportunité de séjourner à Grenade, en Espagne, pen-

dant un mois à ses côtés. Ce voyage m’a apporté énormément, tant sur le plan scientifique que personnel. Je

lui en suis de nouveau reconnaissant, et j’adresse également mes remerciements à l’Université de Grenade

pour m’avoir accueilli dans les locaux du CITIC durant ce séjour. J’exprime aussi toute ma gratitude à Éric

SANLAVILLE qui, en tant que co-directeur du LITIS, a assuré le financement de ce voyage.

Je souhaite ensuite remercier toute l’équipe du LITIS du Havre, que j’ai d’abord côtoyée en tant qu’étudiant

au cours de mon parcours universitaire, avant de la rejoindre comme collègue. L’ambiance bienveillante qui y

règne, faite de sérieux mais aussi de nombreux éclats de rire, a rendu ces années de travail particulièrement

agréables.

J’adresse une pensée particulière à Vincent, avec qui j’ai partagé mon bureau pendant quatre années, de

nombreuses discussions et même quelques échanges de coups. . . à la boxe, en toute bienveillance bien sûr ! Je

n’oublie pas non plus les membres de feu la B101 (aujourd’hui B105), avec qui les parties de tarot enflammées

et les jeux de plateau du midi ont rythmé les pauses.

Enfin, je tiens à remercier du fond du cœur mes parents, dont le soutien indéfectible m’a accompagné tout

au long de ces quatre années de thèse.

i

ii

Avertissement

Dans le cadre de la rédaction de ce manuscrit, plusieurs outils ont été utilisés dans le but d’en améliorer la

qualité et de faciliter le processus de travail.

Tout d’abord, la plateforme Overleaf a été utilisée pour la rédaction du document. Overleaf est un éditeur

LATEX en ligne qui facilite grandement la collaboration, en particulier avec les encadrants.

Ensuite, des outils d’intelligence artificielle basés sur des modèles de langage (tels que ChatGPT, Le Chat

ou NotebookLM) ont été employés pour des tâches de relecture, de reformulation linguistique et d’amélioration

stylistique. Leur utilisation a permis de renforcer la clarté et la fluidité de certaines sections du texte. Ils ont

également été sollicités pour la synthèse d’articles scientifiques, dans le but d’optimiser la phase de revue de la

littérature.

Il est important de souligner que ces outils ont été utilisés exclusivement comme aide à la rédaction et à la

productivité. Aucun contenu scientifique original n’a été généré par ces systèmes. Toutes les idées, interpréta-

tions et conclusions présentées dans ce document sont le fruit d’un travail personnel. Le contenu de la revue de

la littérature a été étudié, compris, puis rédigé avant l’intégration dans le document.

Enfin, dans un souci de transparence et de reproductibilité, le code source utilisé pour obtenir les résultats

présentés dans ce manuscrit est mis à disposition en open source sous licence MIT. Il est librement accessible

afin que chacun puisse le consulter, l’utiliser ou le modifier, contribuant ainsi à la vérifiabilité des résultats et à

la poursuite des travaux par la communauté scientifique.

iii

iv

Résumé

De nombreux systèmes, naturels ou artificiels, s’appuient sur des mécanismes d’équilibrage de charge pour

fonctionner efficacement, mécanismes qui dépendent directement de l’organisation de leurs composants. Cette

organisation peut être centralisée, contrôlée par une entité unique, ou émerger à partir de décisions prises loca-

lement, conduisant à une auto-organisation du système. Nous nous intéressons dans cette thèse à la criticalité

auto-organisée, un phénomène où des instabilités locales génèrent spontanément des organisations. Nous explo-

rons ainsi comment ce phénomène peut être exploité pour équilibrer la charge dans des systèmes informatiques

distribués. Dans un premier temps, nous examinons la robustesse des systèmes qui présentent de la criticalité

auto-organisée à l’aide du modèle du tas de sable proposé par Bak, Tang et Wiesenfeld. Nos résultats montrent

que l’introduction d’une quantité minimale d’aléatoire dans la structure du système augmente notablement sa

résistance aux défaillances, repoussant ainsi les seuils critiques d’effondrement. Dans un second temps des

mécanismes d’auto-adaptation, utilisant un modèle dérivé du tas de sable où chaque élément est susceptible de

traiter des tâches, sont développés. Ces mécanismes s’adaptent efficacement aux surcharges tout en présentant

des atouts et des limites propres. Ces travaux ouvrent des perspectives vers des systèmes distribués robustes et

adaptatifs inspirés de l’auto-organisation.

Mots-clé : Système complexe, criticalité auto-organisée, auto-organisation, tas de sable, équilibrage de charge,

robustesse, auto-adaptation.

v

vi

Abstract

Many natural and artificial systems rely on load-balancing mechanisms to operate efficiently, mechanisms

that are directly influenced by the organization of their components. This organization can be either centrali-

zed, governed by a single controlling entity, or it can emerge from local decision-making processes, leading

to self-organization within the system. This dissertation focuses on self-organized criticality, a phenomenon in

which local instabilities spontaneously give rise to organized behavior. We investigate how this phenomenon

can be leveraged to balance load in distributed computing systems. First, we examine the robustness of sys-

tems exhibiting self-organized criticality through the sandpile model introduced by Bak, Tang, and Wiesenfeld.

Our results show that introducing a minimal amount of randomness into the system’s structure significantly

enhances its resilience to failures, thereby increasing the critical thresholds at which collapse occurs. Second,

we develop self-adaptive mechanisms based on a modified sandpile model, in which each component is ca-

pable of processing tasks. These mechanisms adapt efficiently to overload conditions while exhibiting specific

advantages and limitations. This work opens new perspectives for the design of robust and adaptive distributed

systems inspired by self-organization.

Key-words : Complex system, self-organized criticality, self-organization, sandpile, load balancing, robust-

ness, self-adaption.

vii

viii

Table des matières

1 Introduction 1

1.1 Structure du document . 2

1.2 Accessibilité du code des simulations . 3

2 Équilibrage de charge 5

2.1 Paradigmes des systèmes d’équilibrage . 7

2.1.1 Nature de l’environnement . 7

2.1.1.1 Environnement statique . 7

2.1.1.2 Environnement dynamique . 8

2.1.1.3 Environnement hybride . 9

2.1.2 Architecture de contrôle . 10

2.1.2.1 Centralisation . 10

2.1.2.2 Semi-centralisation . 10

2.1.2.3 Décentralisation . 11

2.1.3 Mode de prise de décision . 12

2.1.3.1 Temporalité de la décision . 13

2.1.3.2 Nature du processus décisionnel . 14

2.1.3.3 Adaptabilité . 15

2.1.3.4 Approche décisionnelle . 16

2.2 Métriques de performance . 18

2.2.1 Métriques classiques . 19

2.2.1.1 Temps de réponse . 19

2.2.1.2 Débit . 20

2.2.1.3 Utilisation des ressources physiques . 20

2.2.1.4 Consommation énergétique . 20

2.2.2 Métriques spécifiques . 22

2.2.2.1 Équité de répartition de la charge . 22

2.2.2.2 Migration de la charge . 23

2.2.2.3 Scalabilité et adaptabilité . 24

ix

x TABLE DES MATIÈRES

2.2.3 La robustesse . 25

2.2.3.1 Définition . 25

2.2.3.2 Évaluation . 26

2.3 Classification algorithmique . 27

2.3.1 Équilibrage en environnement statique . 27

2.3.1.1 Optimalité . 27

2.3.1.2 Sous-optimalité . 28

2.3.2 Équilibrage en environnement dynamique . 34

2.3.2.1 Centralisation . 34

2.3.2.2 Semi-centralisation . 38

2.3.2.3 Décentralisation coopérative . 42

2.3.2.4 Décentralisation non-coopérative . 45

2.4 L’auto-organisation pour de la répartition dynamique . 48

2.5 Discussion des méthodes et des modèles . 49

3 La criticalité auto-organisée 51

3.1 Introduction à la criticalité auto-organisée . 52

3.2 Le tas de sable . 53

3.2.1 Le modèle initial de Bak-Tang-Wiesenfeld . 53

3.2.2 Le tas de sable dissipatif . 56

3.2.3 Autres modèles présentant de la SOC . 57

3.3 Topologies de réseau dans les systèmes SOC . 60

3.4 Robustesse des systèmes SOC . 62

3.4.1 Robustesse structurelle : organisations hiérarchiques et modulaires 62

3.4.2 Robustesse dynamique : auto-adaptation et mécanismes de contrôle 63

3.5 Le tas de sable pour de l’équilibrage dynamique . 63

3.5.1 Le tas de sable ordonnanceur . 64

3.5.2 Un ordonnanceur et équilibreur de charge décentralisé 65

3.5.3 Le tamis . 66

4 Robustesse du tas de sable 69

4.1 Cadre d’étude de la robustesse structurelle . 70

4.1.1 Algorithme de recâblage . 70

4.1.2 Processus de dégradation . 73

4.1.3 Cadre global : construction de graphe avec recâblage et dégradation 74

4.2 Dispositif expérimental . 76

4.2.1 Paramètres des simulations . 76

4.2.2 Outils d’analyse . 76

TABLE DES MATIÈRES xi

4.3 Étude illustrative . 77

4.3.1 Recâblage . 77

4.3.2 Dégradation . 78

4.3.3 Recâblage et dégradation . 79

4.4 Analyse des résultats . 80

4.4.1 Robustesse des différentes structures . 81

4.4.2 Évolution de la dynamique du tas de sable . 81

4.4.3 Discussion . 83

4.5 Conclusion . 85

5 Le tamis auto-adaptatif 87

5.1 Un environnement limité pour le tamis . 88

5.2 Seuil critique dynamique . 89

5.2.1 Modélisation . 89

5.2.2 Cas d’étude . 92

5.2.2.1 Présentation des scénarios . 92

5.2.2.2 Résultats des scénarios . 93

5.3 Modélisation de la capacité de tamisage dynamique . 93

5.4 Adaptation des capacités par entropie locale . 95

5.4.1 L’entropie locale . 96

5.4.2 Méthode naïve . 97

5.4.3 Méthode proportionnelle . 98

5.4.4 Détermination des paramètres de l’entropie locale . 100

5.4.4.1 Cadre d’étude . 101

5.4.4.2 Adaptation naïve . 103

5.4.4.3 Adaptation proportionnelle . 105

5.4.5 Comparaison des méthodes . 109

5.5 Adaptation des capacités par protocole de bavardage . 110

5.5.1 Modélisation . 111

5.5.2 Cadre d’étude . 112

5.5.3 Analyse de l’adaptation . 112

5.6 Comparaison des méthodes . 116

5.6.1 Cadre d’étude . 116

5.6.1.1 Charge fixe et charge fluctuante . 116

5.6.1.2 Charge réelle . 117

5.6.2 Scénarios de charge fixe et fluctuante . 118

5.6.3 Scénario de charge réelle . 120

5.7 Conclusion . 124

xii TABLE DES MATIÈRES

6 Conclusion 125

Bibliographie 131

A Résumé des expériences 143

B Reproductibilité des expériences 145

B.1 Accessibilité du code et des données . 145

B.2 Les traces d’exécution de systèmes réels . 145

B.2.1 Informations générales . 145

B.2.2 Accessibilité des données et leur utilisation . 146

B.3 Structure du code . 146

B.4 Utilisation du code . 147

B.4.1 Préparation de l’environnement . 147

B.4.2 Les programmes et leurs paramètres . 148

B.4.2.1 Programme de simulation du tas de sable canonique 148

B.4.2.2 Paramètres des politiques de taille des grains du tamis 149

B.4.2.3 Programmes de simulation du tamis auto-adaptatif : entropie locale 150

B.4.2.4 Programme de simulation du tamis auto-adaptatif : protocole de bavardage . 151

B.4.2.5 Génération des illustrations du recâblage et de la dégradation 151

Table des figures

2.1 Schématisation d’un environnement statique : la charge entrante, le nombre de ressources et

leurs capacités sont fixes. 8

2.2 Schématisation d’un environnement dynamique : la charge entrante, le nombre de ressources

et leurs capacités fluctuent. 9

2.3 Schématisation de la centralisation. 10

2.4 Schématisation de l’architecture semi-centralisée (hiérarchique) appliquée au web. 11

2.5 Schématisation de la décentralisation. 12

2.6 Classification algorithmique des méthodes d’équilibrage selon le type d’environnement. 27

2.7 Schématisation de l’algorithme du tourniquet. L’équilibreur affecte la tâche entrante à la res-

source Resi, i étant incrémenté à chaque affectation de tâche et remis à 0 lorsque toutes les

ressources ont été parcourues. 30

2.8 Schématisation de l’exemple du tourniquet pondéré, où Res1 reçoit deux fois plus de tâches

que les autres ressources pendant le tour. 31

2.9 Exemple du parcours de quatre ressources par l’algorithme du tourniquet pondéré entrelacé, où

Res1 et Res3 attendent deux fois plus de tâches que Res0 et Res2. 31

2.10 Schématisation d’un système doté d’un module de décision central d’équilibrage de charge. . . 38

2.11 Exemple de migration du serveur virtuel A2 depuis le serveur physique A vers le B par le

module de décision central d’équilibrage de charge en réponse à une latence de A1. 39

2.12 Exemple d’arbre binaire parfait de hauteur 3. 40

3.1 Illustration d’un éboulement dans un tas de sable de taille 3×3. (a) La cellule centrale est ini-

tialement au bord de l’éboulement. (b) Un grain est déposé dessus, provoquant l’instabilité du

système. (c) La cellule s’écroule et redistribue ses grains entre ses voisines. 54

3.2 Exemple d’une avalanche en trois étapes dans un tas de sable BTW de taille 3 × 3. Un grain

est ajouté à la cellule centrale dans la configuration stable initiale (a), ce qui la fait atteindre un

seuil critique de 4 (b) et déclenche le début d’une avalanche. Les 4 grains de la cellule centrale

sont redistribués à ses voisines (c), provoquant une instabilité supplémentaire et éjectant un

grain hors du système (d). L’avalanche se poursuit (e) pour atteindre un nouvel état d’équilibre

(f) après l’éjection de deux grains supplémentaires. 56

xiii

xiv TABLE DES FIGURES

3.3 Exemple d’une partie de Chip-firing game. À chaque étape, un nœud disposant d’au moins au-

tant de jetons que de voisins est sélectionné (nœud rouge). Il “tire” alors un jeton vers chaque

voisin (nœuds bleus). Ce processus est répété jusqu’à ce qu’aucun nœud ne détienne plus d’as-

sez de jetons pour être sélectionné. 59

3.4 Figure 1 des travaux de GOH et al. (2003) illustrant la pente de la distribution des avalanches

dans des réseaux sans échelle de différents exposants de degré γ. Plus γ est faible, plus la

distribution est pentue : γ = ∞ (magenta □), γ = 3 (bleu △), γ = 2,2 (vert ⋄), et γ = 2

(rouge⃝). Lorsque γ →∞, τ → 1,5. La fréquence des avalanches est exprimée en probabilité

de parution par rapport à toutes les avalanche survenues. 61

3.5 Illustration du modèle du tamis. Les grains clairs jouent le même rôle que dans le tas de sable

canonique, tandis que les grains foncés, en train d’être tamisés, n’influent plus sur les ava-

lanches. L’ouverture du système se fait par le tamisage progressif des grains. 67

4.1 Exemple de processus de recâble d’une grille de taille 3 avec m = 4. 71

4.2 Effets du recâblage d’une grille de taille 128 sur la dynamique du tas de sable. 72

4.3 Effet du recâblage d’une grille de taille 128 sur la distance séparant les nœuds d’un bord. La

première courbe (pleine bleue) correspond à la moyenne des distances, tandis que la deuxième

courbe (pointillée orange) présente les distances des nœuds les plus éloignées. 73

4.4 Évolution de la densité de grains dans un tas de sable de taille 128 au fil du recâblage. 73

4.5 Exemple du processus de dégradation sur une grille de 16×16. (a) Structure initiale de la grille,

les carrés représentent les nœuds frontaliers et les cercles représentent les nœuds internes. (b)

Première étape de dégradation, 40% des nœuds sont supprimés, laissant des nœuds déconnectés

d’une bordure (losanges rouges). (c) Deuxième étape de dégradation, les clusters fermés sont

supprimés, laissant la structure restante divisée en plusieurs clusters, chacun marqué par une

couleur. Le plus grand cluster est mis en évidence avec des contours en gras. 75

4.6 Exemple de trois scénarios de dégradation sur une grille de 16 × 16, illustrant l’impact non

linéaire de la deuxième étape de dégradation. La figure met en évidence la manière dont la

suppression des clusters isolés devient plus significative à mesure que le pourcentage de nœuds

supprimés augmente. 75

4.7 Évolution des connexions dans une grille de taille 16 après recâblage pour différents taux. . . . 78

4.8 Carte de chaleur du mouvement des grains dans une grille de taille 16, avec et sans recâblage.

Plus un nœud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge.

L’échelle est indépendante d’une représentation à l’autre. Cela permet de voir que le recâblage

homogénéise le mouvement des grains. 78

TABLE DES FIGURES xv

4.9 Carte de chaleur du mouvement des grains dans une grille de taille 16 après dégradation. Plus

un nœud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge.

L’échelle est indépendante d’une représentation à l’autre. L’éclatement de la structure en de

multiples petits morceaux diminue le nombre de nœuds de bordure pour les clusters les plus

gros, concentrant alors la majorité du mouvement. 79

4.10 Carte de chaleur de l’éjection des grains pour une grille de taille 16 après dégradation. Plus

un nœud éjecte des grains au cours des avalanches, plus il est coloré en rouge. L’échelle est

indépendante d’une représentation à l’autre. 79

4.11 Évolution de la structure d’une grille de taille 16 dont 50% des nœuds sont supprimés, sans

recâble puis avec un recâblage de 10 et 20%. La première ligne illustre l’évolution du nombre

de clusters fermés (identifiés par des losanges rouges pour leurs nœuds), tandis que la seconde

montre les clusters restants une fois le processus de dégradation complet. 80

4.12 Évolution de l’impact de la dégradation sur différentes structures avec un taux de recâblage

allant de 0 à 100% par incréments de 10%. 82

4.13 Évolution de l’impact de la dégradation sur la dynamique du tas de sable pour des structures

avec un taux de recâblage allant de 0 à 100% par incréments de 10%. 83

5.1 Illustration de l’évolution du seuil critique d’éboulement d’une cellule durant une avalanche.

Trois grains arrivent sur la cellule jaune (a), augmentant son seuil critique (Sc) et son nombre

de grains (Gr) et faisant s’ébouler la cellule (b). L’avalanche se poursuit et un nouveau grain

arrive (c), faisant diminuer le seuil (d), puis deux nouveaux grains tombent sur la cellule. Elle

finit par se stabiliser grâce au seuil dynamique (e). 91

5.2 Effet du seuil dynamique sur la dynamique des avalanches dans un tas de sable canonique de

taille 128. Trois scénarios sont proposés : (a) toutes les cellules sont au bord de l’éboulement

et 1 grain est déposé pour créer de l’instabilité ; (b) 2
3 des cellules sont dans un état critique ; (c)

les cellules sont initialisées avec 2 ou 3 grains de manière aléatoire et uniforme, puis six grains

sont ajoutés pour provoquer une avalanche. 94

5.3 Distribution des durée des avalanches dans un tas de sable canonique de taille 128 pour une

simulation de 400 000 cycles. La distribution n’est que légèrement modifiée avec le seuil dy-

namique. 95

5.4 Illustration des différents états du système en fonction du mouvement par rapport à la compa-

raison des entropies locale et de référence. 97

5.5 Exemple de l’adaptation naïve par entropie locale d’une cellule avec une fenêtre d’entropie

de taille 10. Lorsque l’entropie locale (courbe rouge) dépasse la référence de 3 grains (barre

rose ; Eref = 3
10 = 0,3), la capacité de la cellule (courbe bleue) augmente de 1 à chaque cycle

jusqu’à ce que l’entropie locale retourne en dessous de la référence. La capacité diminue alors,

produisant une réaction en “vague”. 99

xvi TABLE DES FIGURES

5.6 Exemple de l’adaptation proportionnelle par entropie locale d’une cellule avec une fenêtre d’en-

tropie de taille 10. Lorsque l’entropie locale (courbe rouge) dépasse la référence de 3 grains

(barre rose ; Eref = 3
10 = 0,3), la capacité de la cellule (courbe bleue) se fixe au nombre de

grains enregistrés à chaque cycle jusqu’à ce que l’entropie locale retourne en dessous de la

référence. La capacité est réinitialisée lorsque la cellule devient vide au cycle 16. 100

5.7 Exemple des tailles de grain générées avec la politique aléatoire sur 10000 cycles. 102

5.8 Résultats de l’adaptation naïve par entropie locale pour chaque couple {Eref ; fenêtre d’entro-

pie} pour une taille de grains à quatre fois la taille du système. 104

5.9 Résultats de l’adaptation naïve par entropie locale avec seuil critique dynamique pour chaque

couple {Eref ; fenêtre d’entropie} pour une taille de grains à quatre fois la taille du système. . 104

5.10 Consommation énergétique du tamis utilisant l’adaptation naïve par entropie locale, avec et

sans seuil dynamique, pour chaque couple {Eref ; fenêtre d’entropie} pour une taille de grains

à quatre fois la taille du système. La consommation est exprimée en pourcentages par rapport

à la consommation optimale. 105

5.11 Résultats de l’adaptation proportionnelle par entropie locale pour chaque couple {Eref ; fenêtre

d’entropie} pour une taille de grains à quatre fois la taille du système. 106

5.12 Capacités maximales atteintes avec l’adaptation proportionnelle par entropie locale pour chaque

couple {Eref ; fenêtre d’entropie} pour une taille de grains de deux et trois fois la taille du sys-

tème. 107

5.13 Résultats de l’adaptation proportionnelle par entropie locale pour chaque couple {Eref ; fenêtre

d’entropie} pour une taille de grains sinusoïdale. 107

5.14 Résultats de l’adaptation proportionnelle par entropie locale avec seuil critique dynamique pour

chaque couple {Eref ; fenêtre d’entropie} pour une taille de grains sinusoïdale. 108

5.15 Consommation énergétique du tamis utilisant l’adaptation proportionnelle par entropie locale,

avec et sans seuil dynamique, pour chaque couple {Eref ; fenêtre d’entropie} pour une taille

de grains sinusoïdale. 108

5.16 Évolution de la capacité de tamisage d’un tamis de taille 32 pour les deux méthodes d’adapta-

tion par entropie locale pour une taille de grain sinusoïdale. Les valeurs sont normalisées par

rapport à la taille du système. Par exemple, une valeur de 3 correspond réellement à 3072. . . . 110

5.17 Évolution de la capacité de tamisage moyenne des cellules d’un tamis de taille 32 pour les

deux méthodes d’adaptation par entropie locale pour une taille de grain aléatoire avec des pics

de grosse surcharge. Les valeurs sont normalisées par rapport à la taille du système. 110

5.18 Taux de présence de l’état “bordure” sur les cellules d’un tamis de taille 32 utilisant l’adaptation

par protocole de bavardage pour différentes tailles de grain. Le taux correspond au ratio entre

le nombre de cycles où chaque cellule est en état “bordure” par rapport à la durée totale de la

simulation. Une valeur à 1 signifie que la cellule a été “bordure” durant toute la simulation.

C’est notamment le cas des cellules sources de l’état (1% des cellules) en rouge foncé. 113

TABLE DES FIGURES xvii

5.19 Taux d’utilisation des cellules d’un tamis de taille 32 utilisant l’adaptation par protocole de

bavardage pour différentes tailles de grain. Le taux correspond au ratio entre le nombre de

cycles où chaque cellule traite un grain par rapport à la durée totale de la simulation. Une

valeur à 1 signifie que la cellule a été utilisée durant toute la simulation. 115

5.20 Évolution de la capacité moyenne de tamisage dans un tamis de taille 32 utilisant l’adaptation

par protocole de bavardage. La taille des grains, relative à la taille du système, est sinusoïdale

et aléatoire. 115

5.21 Durée de vie des grains dans un tamis de taille 32 selon chaque méthode d’adaptation des

capacités de tamisage pour la charge sinusoïdale. Chacune présente des valeurs aberrantes non

présentes sur le graphique pour la lisibilité : jusqu’à 35000 pour la première, et jusqu’à 15000

pour la seconde. 120

5.22 Évolution de la capacité de tamisage globale des systèmes pour la trace d’AuverGrid. 121

5.23 Évolution de la capacité de tamisage globale des systèmes pour la trace de NorduGrid. La

capacité de tamisage est affichée en échelle logarithmique. 122

5.24 Évolution de la capacité de tamisage globale des systèmes pour la trace de SHARCNET. La

capacité de tamisage est affichée en échelle logarithmique. 122

xviii TABLE DES FIGURES

Liste des tableaux

2.1 Résumé des caractéristiques des environnements. 7

2.2 Exemples de scénarios de distribution de charge sur 10 ressources. Pour chaque exemple, l’in-

dice de Jain et sa version pondérée sont proposés afin de mettre en évidence l’apport de préci-

sion de la pondération. 24

2.3 Récapitulatif de l’exemple d’application de l’algorithme Weighted Round Robin avec compa-

raison à l’algorithme Round Robin. 30

3.1 Correspondances entre le tas de sable ordonnanceur et un système de traitement de tâches. . . 64

4.1 Paramètres des simulations. 76

5.1 Durée de l’avalanche et seuil critique moyen des cellules d’un tas de sable canonique de taille

128 pour les trois scénarios de la Figure 5.2. Un quatrième scénario est proposé : la structure

est rendue toroïdale (disparition des bords pour éjecter les grains) et les cellules sont remplie

de 4 à 10 grains chacune. 93

5.2 Capacité moyenne atteinte par les couples {Eref ; fenêtre d’entropie} selon la taille des grains

injectés dans le tamis avec adaptation naïve par entropie locale, avec et sans seuil critique

dynamique. Pour chaque taille, les valeurs minimales et maximales des couples sont proposées. 103

5.3 Capacité moyenne atteinte par les couples {Eref ; fenêtre d’entropie} selon la taille des grains

injectés dans le tamis avec adaptation proportionnelle par entropie locale, avec et sans seuil

critique dynamique. Pour chaque taille, les valeurs minimales et maximales des couples sont

proposées. 106

5.4 Comparaison des couples de paramètres sélectionnés pour les méthodes d’adaptation par en-

tropie locale pour les différentes tailles de grain. 109

5.5 Résultats de l’adaptation par protocole de bavardage dans un tamis de taille 32. Chaque ligne

correspond à un scénario de charge. Les trois premiers sont des tailles de grain fixes de 2048,

3072 et 4096. Le dernier est une taille fluctuante qui suit une sinusoïde oscillant entre 2048 et

4096 sur une période de 50000 cycles. 113

xix

xx LISTE DES TABLEAUX

5.6 Densité de grains et taux de cellules ayant l’état “bordure” au moins 50% du temps dans un

tamis de taille 32 utilisant l’adaptation par protocole de bavardage pour différentes tailles de

grain. Une densité de 1 signifie que toutes les cellules sont à 1 grain de s’ébouler, tandis que 0

signifie que le système est vide. 114

5.7 Comparaison des méthodes d’auto-adaptation selon la tailles des grains injectés dans le tamis.

Les résultats concernent les 100 000 cycles de simulation après initialisation, pour lesquels un

grain est injecté dans le tamis à chaque cycle. La capacité de tamisage moyenne doit être au

plus proche de taille des grains
taille du système , soit 2, 3, 4, 3 et 3,55 pour les tailles proposées. Une capacité de

tamisage maximale faible indique une adaptation plus homogène et contrôlée. La consomma-

tion des avalanches représente la quantité d’énergie dépensée par les avalanches par rapport

à la consommation totale (avalanches et tamisage). Plus l’indice de Jain est proche de 1, plus

l’équilibrage des grains sur les cellules est intéressant. 118

5.8 Comparaison des méthodes d’auto-adaptation selon la tailles des grains injectés dans le ta-

mis. Les résultats concernent les simulations complètes : phase d’initialisation (10 000 cycles),

phase opérationnelle avec injection de grains (100 000 cycles), et phase de vidange complète

du système. Une capacité de tamisage maximale faible indique une adaptation plus homogène

et contrôlée. La consommation des avalanches représente la quantité d’énergie dépensée par les

avalanches par rapport à la consommation totale (avalanches et tamisage). Le débit correspond

au nombre moyen de grain tamisé (sortant du système) à chaque cycle. Un débit élevé indique

un tamisage plus rapide. 119

5.9 Résultats des méthodes d’auto-adaptation pour les traces AuverGrid, NorduGrid et SHARCNET.121

5.10 Résultats des méthodes d’auto-adaptation pour les traces NorduGrid et SHARCNET avec une

limitation de capacité de tamisage à 20. 123

A.1 Synthèse des expériences sur la robustesse du tas de sable (Chapitre 4). 143

A.2 Synthèse des expériences sur le tamis auto-adaptatif (Chapitre 5). 144

B.1 Récapitulatifs des programmes mis à disposition. 148

B.2 Paramètres généraux des programmes de simulation. 149

B.3 Paramètres des politiques de taille de grains. 150

B.4 Paramètres spécifique aux méthodes par entropie locale. 151

Chapitre 1

Introduction

L’étude des phénomènes naturels a depuis longtemps inspiré le développement de modèles computationnels

capables de résoudre des problèmes complexes. Qu’ils soient biologiques, physiques ou comportementaux, ces

phénomènes présentent des dynamiques robustes, adaptatives et souvent décentralisées. Cette observation a

conduit à l’émergence de l’informatique bio-inspirée : une discipline interdisciplinaire qui exploite les principes

évolutifs, collectifs et auto-organisés observés dans la nature pour concevoir des algorithmes.

Ces systèmes naturels se distinguent par leur capacité d’auto-organisation, où un comportement global

émerge de simples interactions locales. On peut citer les mouvements synchronisés d’oiseaux et de pois-

sons (REYNOLDS, 1987), l’organisation des colonies de fourmis et d’abeilles pour la recherche de nourriture

(BONABEAU et al., 1997), ainsi que la criticalité auto-organisée illustrée par les avalanches dans les milieux

granulaires (BAK et al., 1987) et les séismes (STEIN & KLOSKO, 2002).

Cette capacité à atteindre un équilibre dynamique sans contrôle centralisé, grâce aux interactions locales et

aux phénomènes critiques, ouvre la voie à l’application de ces principes aux infrastructures numériques. Tout

comme les avalanches de sable redistribuent de l’énergie ou que les comportements collectifs optimisent la

recherche de ressources, on peut envisager des protocoles décentralisés où la charge de travail se régule par des

ajustements locaux.

Dans le contexte numérique actuel, la fourniture de services informatiques fiables, performants et durables

représente un défi majeur. La croissance exponentielle de la demande rend indispensable le développement

de mécanismes d’équilibrage de charge efficaces et décentralisés, capables de s’adapter à des environnements

dynamiques tels que les datacenters, les infrastructures cloud ou les réseaux de capteurs. Le modèle du tas de

sable, introduit par Bak, Tang et Wiesenfeld (BAK et al., 1987) est un exemple paradigmatique de criticalité

auto-organisée appliquée à un système discret simple et ouvert : il montre comment, par l’action locale de

cellules souples à un seuil critique, le système atteint spontanément un état de tension critique ponctué d’ava-

lanches qui le réorganisent. Récemment, plusieurs travaux ont exploré l’application du modèle du tas de sable

pour répartir la charge de manière locale et émergente (GĄSIOR & SEREDYŃSKI, 2017 ; LAREDO et al., 2017 ;

LAREDO et al., 2014). Toutefois, ces études se limitent généralement à des grilles régulières et négligent à

la fois la diversité des topologies et la résilience aux défaillances, tout en se basant sur des hypothèses fortes

1

2 CHAPITRE 1. INTRODUCTION

comme le nombre illimité de ressources.

Cette thèse adopte une approche centrée sur l’analyse et l’extension de modèles bio-inspirés pour l’équili-

brage de charge décentralisé, en s’appuyant sur le principe de criticalité auto-organisée. Le mécanisme d’ava-

lanches critiques, hérité du modèle du tas de sable, est mobilisé pour définir des protocoles locaux où l’injection

ou la redistribution de charge déclenche spontanément des réajustements émergents globaux, assurant ainsi une

adaptation continue et robuste face aux variations de la demande.

Ces différentes observations ont orienté le travail de recherche qui se structure autour de deux contributions

principales :

— Première contribution : une étude approfondie de la robustesse du modèle du tas de sable sur des

structures variées. Un cadre expérimental original intègre un algorithme de recâblage pour générer des

graphes petit-monde et un mécanisme de suppression aléatoire de cellules, afin d’évaluer l’influence de

la topologie et la robustesse aux pannes sur la criticalité du système.

— Deuxième contribution : prolongement d’une extension du modèle du tas de sable qui introduit des

grains avec une taille et des cellules ayant une capacité de traitement quelque soit la situation sur la

grille, simulant ainsi des ressources réparties traitant progressivement les tâches. Plusieurs mécanismes

décentralisés d’ajustement dynamique de la capacité de traitement sont proposés et comparés, dans le

but d’optimiser un compromis entre consommation énergétique et qualité de service dans différents

scénarios avec un nombre borné de ressources.

Au-delà de ces apports, la thèse propose un cadre méthodologique et illustre comment les principes de

criticalité auto-organisée peuvent être exploités pour concevoir des systèmes distribués à la fois adaptatifs,

robustes et efficients.

1.1 Structure du document

Cette thèse est structurée en plusieurs chapitres répartis en deux grandes catégories : les chapitres documen-

taires, qui dressent un état de l’art sur les thématiques étudiées, et les chapitres de contributions, qui présentent

les travaux de recherche menés.

Le chapitre introductif, correspondant au présent chapitre, propose une entrée en matière aux thématiques

abordées dans ce mémoire. Il fournit également des informations pratiques telles que la structure globale du

document et l’accessibilité du code source développé pour les simulations.

Le deuxième chapitre constitue un état de l’art des mécanismes d’équilibrage de charge. Il explore les pa-

radigmes qui caractérisent les systèmes d’équilibrage, notamment la nature de l’environnement dans lequel ils

opèrent, leur architecture de contrôle, ainsi que leur mode de prise de décision. Ce chapitre introduit également

un ensemble de métriques permettant d’évaluer les performances de ces mécanismes. Une taxonomie des al-

gorithmes d’équilibrage est proposée, accompagnée d’exemples représentatifs pour chaque classe. L’attention

se porte ensuite plus spécifiquement sur les mécanismes d’auto-organisation, qui apparaissent particulièrement

pertinents dans le cadre de l’équilibrage de charge décentralisé.

1.2. ACCESSIBILITÉ DU CODE DES SIMULATIONS 3

Le troisième chapitre est consacré au concept de criticalité auto-organisée, largement observé dans les

systèmes naturels. Pour l’étudier, nous nous intéressons aux modèles qui permettent de la reproduire, en parti-

culier le modèle du tas de sable de Bak, Tang et Wiesenfeld, qui constitue la base de nos travaux. Ce second

chapitre documentaire explore également l’influence de la topologie sur la criticalité auto-organisée et la ro-

bustesse qu’elle confère aux systèmes. Enfin, il examine son application à l’équilibrage de charge dynamique

à travers le prisme du modèle du tas de sable.

Le quatrième chapitre présente notre première contribution : une étude de la robustesse du modèle du

tas de sable. Nous y introduisons un cadre d’expérimentation original permettant d’observer l’évolution, à la

fois structurelle et dynamique, du modèle dans des environnements variés (grille régulière, graphe petit-monde,

structure aléatoire) et dégradés. L’introduction de perturbations dans la structure initiale se révèle capable de

repousser significativement le seuil d’effondrement du système.

Le cinquième chapitre, correspondant à notre seconde contribution, introduit une contrainte sur l’environ-

nement d’exécution du modèle du tamis, une extension du tas de sable adaptée à la modélisation de systèmes

de traitement de tâches. Après avoir posé les problématiques et les leviers d’action envisageables, nous présen-

tons plusieurs approches permettant de rendre le modèle auto-adaptatif face aux surcharges induites par cette

limitation. Ces approches sont d’abord étudiées individuellement, puis comparées dans différents scénarios, à

la fois artificiels et réalistes. Toutes sont fonctionnelles, chacune présentant des avantages et des limites.

Enfin, le dernier chapitre propose une conclusion générale. Il récapitule et discute les principaux apports

du travail effectué, et ouvre des perspectives pour de futures recherches.

Une annexe est également fournie, regroupant sous forme de tableaux les différentes simulations réalisées

et les résultats obtenus.

1.2 Accessibilité du code des simulations

Le code développé dans le cadre de cette thèse pour produire les résultats présentés est mis à disposition en

open source sous licence MIT sur le dépôt Git suivant : https://git.litislab.fr/pheleine/self-adaptive-sand-sieve.

Les données externes libres utilisées lors des expérimentations, notamment les traces d’exécution issues de

certains systèmes du projet libre d’accès Grid Workload Archive (IOSUP et al., 2008a) (https://www.atlarge-

research.com/gwa.html), sont également incluses dans le dépôt. La structure du code, ainsi que les modalités

d’utilisation du code et des données, sont détaillées en Annexe B.

https://git.litislab.fr/pheleine/self-adaptive-sand-sieve
https://www.atlarge-research.com/gwa.html
https://www.atlarge-research.com/gwa.html

4 CHAPITRE 1. INTRODUCTION

Chapitre 2

Équilibrage de charge

Table des matières du chapitre
2.1 Paradigmes des systèmes d’équilibrage . 7

2.1.1 Nature de l’environnement . 7

2.1.1.1 Environnement statique . 7

2.1.1.2 Environnement dynamique . 8

2.1.1.3 Environnement hybride . 9

2.1.2 Architecture de contrôle . 10

2.1.2.1 Centralisation . 10

2.1.2.2 Semi-centralisation . 10

2.1.2.3 Décentralisation . 11

2.1.3 Mode de prise de décision . 12

2.1.3.1 Temporalité de la décision . 13

2.1.3.2 Nature du processus décisionnel . 14

2.1.3.3 Adaptabilité . 15

2.1.3.4 Approche décisionnelle . 16

2.2 Métriques de performance . 18

2.2.1 Métriques classiques . 19

2.2.1.1 Temps de réponse . 19

2.2.1.2 Débit . 20

2.2.1.3 Utilisation des ressources physiques . 20

2.2.1.4 Consommation énergétique . 20

2.2.2 Métriques spécifiques . 22

2.2.2.1 Équité de répartition de la charge . 22

2.2.2.2 Migration de la charge . 23

2.2.2.3 Scalabilité et adaptabilité . 24

5

6 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

2.2.3 La robustesse . 25

2.2.3.1 Définition . 25

2.2.3.2 Évaluation . 26

2.3 Classification algorithmique . 27

2.3.1 Équilibrage en environnement statique . 27

2.3.1.1 Optimalité . 27

2.3.1.2 Sous-optimalité . 28

2.3.2 Équilibrage en environnement dynamique . 34

2.3.2.1 Centralisation . 34

2.3.2.2 Semi-centralisation . 38

2.3.2.3 Décentralisation coopérative . 42

2.3.2.4 Décentralisation non-coopérative . 45

2.4 L’auto-organisation pour de la répartition dynamique 48

2.5 Discussion des méthodes et des modèles . 49

L’équilibrage de charge est une stratégie visant à répartir la charge de travail au sein d’un système afin

d’en utiliser au mieux ses ressources limitées. Il existe de nombreuses situations nécessitant de l’équilibrage

de charge autour de nous. Prenons l’exemple de l’encaissement dans un supermarché. Les clients (charge de

travail) vont se répartir sur les différentes caisses (ressources) pour payer leurs futurs achats. Le personnel de

caisse est d’une efficacité variable pour encaisser les articles, tandis que les clients ont un panier plus ou moins

rempli. Ces deux caractéristiques correspondent respectivement à la capacité des ressources et à la quantité de

charge entrante dans le système. Les clients vont naturellement se diriger vers les caisses les moins chargées,

puis, si leur file d’attente progresse lentement, changeront de caisse pour une plus rapide dans l’espoir que

leur tour vienne plus tôt. En outre, les caisses peuvent ouvrir ou fermer selon le nombre de clients. Nous

avons ici l’exemple d’un système complexe dont l’environnement est dynamique (nombre de caisses, vitesse

d’encaissement, nombre de clients et taille des paniers) et dont la charge s’auto-équilibre (arrivée des clients sur

les caisses les moins chargées et changement de caisse). Par cet exemple, nous touchons du doigt la richesse,

mais également la complexité, du monde de l’équilibrage de charge. Le choix d’un algorithme d’équilibrage

n’est donc pas anodin et est, le plus souvent, multi-critères par rapport aux spécificités du système.

Dans ce chapitre, nous commencerons par aborder les paradigmes des systèmes d’équilibrage en Sec-

tion 2.1, afin de présenter les concepts fondamentaux des algorithmes sous-jacents. Chaque système dispose de

ses propres spécificités et contraintes. Nous continuerons donc en Section 2.2 avec les métriques utilisées pour

mesurer les performances des différentes solutions d’équilibrage. Puis, nous nous attarderons sur une classi-

fication des stratégies de répartition d’un point de vue algorithmique en Section 2.3. Nous nous focaliserons

ensuite, en Section 2.4, sur l’auto-organisation et son utilisation pour équilibrer la charge dynamiquement. Pour

terminer, en Section 2.5, nous discuterons des points forts et des points faibles des méthodes présentées.

2.1. PARADIGMES DES SYSTÈMES D’ÉQUILIBRAGE 7

2.1 Paradigmes des systèmes d’équilibrage

Les caractéristiques d’un système déterminent le choix de la stratégie de répartition de charge pouvant être

mise en œuvre. Par ailleurs, les orientations conceptuelles des systèmes permettent de classifier les algorithmes

selon différents paradigmes, bien que ces derniers coexistent simultanément. Nous commencerons par diffé-

rencier la nature de l’environnement du système : statique ou dynamique. Puis, nous nous intéresserons aux

différentes architectures de contrôle de la charge : centralisée, semi-centralisée et décentralisée. Nous termine-

rons en abordant le mode de prise de décision de l’algorithme.

2.1.1 Nature de l’environnement

Le paradigme de la nature de l’environnement concerne la manière dont les algorithmes sont conçus en

fonction des caractéristiques du système dans lequel ils opèrent. L’environnement d’exécution impacte forte-

ment le choix de la stratégie d’équilibrage puisque les contraintes et les objectifs sont directement corrélés à

la stabilité et l’évolutivité du système. Il existe deux catégories d’environnements (ALAKEEL, 2009 ; DEEPA

& CHEELU, 2017) : les statiques et les dynamiques. La catégorisation est effectuée en fonction des variations

de la charge entrante et des ressources. Nous étudierons en premier les caractéristiques des environnements

statiques, puis celles des environnements dynamiques. Nous verrons également, pour finir, un dérivé d’envi-

ronnement dynamique à mi-chemin entre les deux. Le Tableau 2.1 résume les caractéristiques de ces trois

catégories.

Environnement Ressources (nombre et capacités) Charge entrante
Statique Fixes Fixe ou connue à l’avance
Dynamique Fluctuantes Fluctuante
Hybride Initialement fixes, fluctuantes au besoin Attendue, mais peut fluctuer

TABLE 2.1 – Résumé des caractéristiques des environnements.

2.1.1.1 Environnement statique

Dans un environnement statique, les ressources et la charge à équilibrer sont fixes. Il n’y a pas ou peu

de variations dans le temps. Les décisions d’équilibrage peuvent donc être adaptées en amont directement au

nombre de ressources disponibles, à leur capacité, ainsi qu’à la charge attendue. La Figure 2.1 présente une

schématisation de l’environnement statique.

Les stratégies d’équilibrage pour ce type d’environnement sont très souvent déterministes et de faible com-

plexité. Les algorithmes varient cependant dans leurs approches. On trouve de la répartition approximative

avec des méthodes naïves (distribution égale ou équitable par exemple), des heuristiques (règles empiriques

pour guider la répartition) ou encore l’optimalité (optimisation complète pré-fonctionnement). Nous nous pen-

cherons en détails sur ces approches en Section 2.3.1.

Un bon exemple d’environnement statique est une usine. Toute la chaîne de production est préparée et

optimisée en amont durant la conception du système (optimalité). Chaque poste de travail au sein de l’usine

8 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

Environnement statique

RessourcesCharge

FIGURE 2.1 – Schématisation d’un environnement statique : la charge entrante, le nombre de ressources et
leurs capacités sont fixes.

exécute une tâche spécifique à une cadence prédéfinie afin qu’aucun temps mort ne survienne. Tout le système

est figé et un changement dans celui-ci, tel que l’ajout d’un poste de travail, nécessite de recalculer la solution

optimale.

2.1.1.2 Environnement dynamique

Dans un environnement dynamique, que ce soit le nombre de ressources, leurs capacités, ou bien la charge,

tout peut fluctuer. L’évolutivité de l’environnement rend l’équilibrage bien plus complexe puisqu’il nécessite

une adaptation continue au changement de situation. Pour simplifier, à l’inverse d’un environnement statique,

les algorithmes doivent fonctionner efficacement peut importe la charge de travail et les ressources. La Fi-

gure 2.2 présente une schématisation de l’environnement dynamique.

Le problème de l’équilibrage de charge se complexifie à cause de la nature évolutive de l’environnement.

Les stratégies sont donc plus nombreuses et varient d’autant plus dans leurs approches. Les algorithmes se

divisent généralement en trois catégories d’après leur architecture de contrôle : algorithmes centralisés, semi-

centralisés et décentralisés. Nous nous intéresserons à ce paradigme en Section 2.1.2, tandis que nous étudierons

différents algorithmes selon leur type de stratégie en Section 2.3.2.

L’exemple d’environnement dynamique le plus pertinent de nos jours est certainement les centres de don-

nées (HE et al., 2015 ; ZHANG et al., 2017), souvent qualifiés par leur nom anglais data centers. La charge,

inconnue et fluctuante, doit être efficacement distribuée sur les serveurs d’un centre. La distribution des tâches

doit être optimisée pour augmenter la longévité du matériel en évitant un fonctionnement à plein régime en

permanence, pour réduire la consommation énergétique ou encore pour que le système ait un temps réponse

faible. Si un serveur tombe en panne, il ne doit plus être compté dans la répartition de charge et ses tâches

doivent être redistribuées. À l’inverse, lorsqu’un serveur est ajouté, il doit automatiquement être inclus dans

2.1. PARADIGMES DES SYSTÈMES D’ÉQUILIBRAGE 9

Environnement Dynamique

RessourcesCharge

FIGURE 2.2 – Schématisation d’un environnement dynamique : la charge entrante, le nombre de ressources et
leurs capacités fluctuent.

l’écosystème du centre.

2.1.1.3 Environnement hybride

Un environnement hybride est un dérivé de système dynamique à mi-chemin entre statique et dynamique.

La charge de travail est attendue, bien qu’elle puisse évoluer, et les ressources sont préparées en conséquence.

Lorsqu’une surcharge inattendue survient, de nouvelles ressources sont automatiquement allouées pour y faire

face. À contrario, lorsque la charge diminue, les ressources excédentaires sont automatiquement désallouées

pour retrouver la configuration initiale. Pour résumer, un nombre initial de ressources est alloué par rapport à

la charge attendue et leur nombre (ou capacité) est ajusté au besoin.

Le système de caisses d’un supermarché, utilisé comme exemple en introduction du chapitre, illustre bien

ce type d’environnement. Un nombre minimal de caisses est constamment ouvert afin de garantir un service

de base, ce nombre étant défini selon l’affluence attendue à différents moments de la journée. En cas de forte

affluence, du personnel en réserve est mobilisé pour ouvrir de nouvelles caisses. Les clients se redistribuent

alors spontanément entre les caisses disponibles, ce qui permet de fluidifier le traitement des files. Une fois la

vague passée, les caisses superflues ferment et le personnel retourne en réserve.

Ce type d’environnement est particulièrement représentatif des systèmes cloud, et plus spécifiquement des

services web. L’usage de ces services est en général prévisible, mais le système doit pouvoir s’adapter à des

variations soudaines de trafic. Dans ce cadre, des technologies d’orchestration comme Kubernetes ont été dé-

veloppées. Elles offrent notamment des fonctionnalités de mise à l’échelle automatique, permettant d’ajuster

dynamiquement le nombre de répliques d’un service en fonction de la charge observée (THE KUBERNETES

AUTHORS, 2025). Les réactions du système sont prédéfinies mais paramétrables dynamiquement, offrant ainsi

un compromis efficace entre flexibilité et contrôle.

10 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

2.1.2 Architecture de contrôle

Le paradigme de l’architecture de contrôle définit qui prend les décisions de distribution de la charge dans le

système. Les architectures sont au nombre de trois (AL-RAYIS & KURDI, 2013 ; IVANISENKO & RADIVILOVA,

2015) : centralisée, semi-centralisée et décentralisée. Chacune dispose de forces et de faiblesses et conviennent

à des situations différentes. C’est ce que nous allons étudier dans cette section, dans l’ordre énoncé précédem-

ment.

2.1.2.1 Centralisation

Le principe de l’architecture centralisée est d’avoir un composant unique de contrôle qui prend les décisions

pour tout le système. Ce contrôleur central dispose d’une vue centrale et interagit avec toutes les ressources

disponibles. La structure sous-jacente est typiquement une étoile dont le contrôleur en est le centre et les

ressources ses extrémités. La duplication de bases de données ou le calcul parallèle utilisent cette méthode

désignée par le pattern maître-esclave. Dans le premier cas, le serveur central (maître) va propager les requêtes

d’écriture sur toutes les bases de données dupliquées (esclaves). Dans le deuxième cas, le processeur "maître"

divise les calculs complexes qu’il distribuera aux processeurs "esclaves" avant d’en agréger les résultats. On

notera que dans le cas d’un système centralisé, toutes les ressources doivent être en communication avec le

contrôleur central, ce qui n’est pas le cas desdites ressources entre elles. La Figure 2.3 illustre la centralisation

avec un contrôleur (maître) qui communique avec trois ressources (esclaves). Dans le cadre de l’équilibrage de

charge, tout transite par le contrôleur central qui décide sur quelle ressource envoyer les tâches pour équilibrer

au mieux l’utilisation des ressources. Le web utilise cette architecture à plusieurs niveaux pour répartir le trafic

entre les services d’un serveur web, mais également entre différentes instances de celui-ci.

Contrôleur
central

R1

R2

R3

FIGURE 2.3 – Schématisation de la centralisation.

2.1.2.2 Semi-centralisation

La semi-centralisation, aussi qualifiée d’architecture hiérarchique, consiste généralement en de la centrali-

sation mise en arborescence. Chaque nœud de l’arbre correspond à un contrôleur qui répartit la charge envoyée

par son parent entre ses fils, tandis que les feuilles correspondent aux ressources. Un contrôleur au niveau n

connaît donc l’état de ses ressources (sous-contrôleurs ou ressources directes) au niveau n+ 1 et remonte l’in-

formation de son état à son contrôleur parent du niveau n−1 s’il existe. Par conséquent, un contrôleur prend les

2.1. PARADIGMES DES SYSTÈMES D’ÉQUILIBRAGE 11

décisions pour un nombre restreint de sous-contrôleurs, qui eux-mêmes contrôlent une sous-partie du système,

et ainsi de suite. Au final, la répartition de la charge s’effectue de concert au travers de tous les niveaux de la

hiérarchie. Cette architecture est qualifiée de semi-centralisée puisque la prise de décision de chaque branche et

sous-branche de l’arbre est centralisée, mais les décisions sont toutefois indépendantes d’une branche à l’autre.

Le web et les services cloud de manière générale reposent sur cette architecture (AFZAL & KAVITHA,

2019). La Figure 2.4 schématise son utilisation appliquée au web. Le niveau 1 correspond aux services tels

qu’Amazon Web Services, Google Cloud Platform ou encore Microsoft Azure, qui permettent de dupliquer

dynamiquement tout un serveur web selon le trafic pour en répartir la charge. Puis vient le niveau 2 qui cor-

respond aux instances du serveur web dupliqué. Le serveur web, Nginx pour ne citer que le plus utilisé depuis

2020, fait de la répartition de charge entre ses services du niveau 3, préalablement dupliqués si besoin, pour y

distribuer les requêtes entrantes.

Instance initiale Duplication 1 Duplication n

Service
cloud

Serveur
web

Serveur
web

Serveur
web

Service 1 Service 2 Service 1 Service 2 Service 1 Service 2

Requêtes

Niveau 1

Niveau 2

Niveau 3

FIGURE 2.4 – Schématisation de l’architecture semi-centralisée (hiérarchique) appliquée au web.

Cette architecture est généralement paramétrée en amont (profondeur de l’arbre, nombre de nœuds contrô-

leurs, etc.). Cependant, il existe tout de même des algorithmes pour maintenir la structure de l’arbre de manière

décentralisée et dynamique tels que les modèles D²-Tree (BRODAL et al., 2015) et D³-Tree (SIOUTAS et al.,

2022).

2.1.2.3 Décentralisation

À l’opposé de l’architecture centralisée, l’approche décentralisée se caractérise par l’absence d’un nœud de

contrôle unique. Chaque ressource du système fonctionne de manière autonome, prenant ses décisions sur la

base de son propre état et, le cas échéant, d’une connaissance partielle ou complète de l’environnement global.

Cette organisation permet l’émergence de comportements coopératifs et/ou autonomes, selon les modalités

12 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

d’interaction entre les entités.

Cette méthode se base sur l’échange d’information au sein du système par divers algorithmes et protocoles

de communication. Par conséquent, les ressources doivent être suffisamment connectées les unes aux autres

pour faciliter les interactions. La structure sous-jacente est généralement un graphe fortement connexe dont

les distances inter-sommets sont faibles (peu de sommets intermédiaires). Les systèmes peer-to-peer tels que

BitTorrent fonctionnent par exemple de cette manière. Les machines du réseau partagent les données déjà

téléchargées pour que d’autres les récupèrent et les partagent à leur tour ; chaque machine est à la fois émétrice

et réceptrice de l’information.

La Figure 2.5 illustre la décentralisation avec cinq ressources communiquant plus ou moins entre elles.

Appliquée à la répartition de charge, cette architecture dite distribuée permet d’équilibrer le travail entre les

ressources sans contrôle externe.

R1

R2

R3

R4R5

FIGURE 2.5 – Schématisation de la décentralisation.

2.1.3 Mode de prise de décision

Après avoir examiné les différentes architectures de contrôle afin de déterminer l’entité responsable de la

prise de décision, il convient désormais d’examiner les mécanismes selon lesquels ces décisions sont élaborées,

à travers le prisme des modes décisionnels. Ce paradigme repose sur un ensemble de choix issus de différents

critères dont la combinaison détermine la forme finale du processus décisionnel. Nous débuterons cette analyse

par la temporalité de la décision, qui peut être prise de manière proactive ou réactive. Nous examinerons ensuite

la nature du processus décisionnel, qui peut être déterministe ou stochastique. Nous poursuivrons par l’adap-

tabilité des algorithmes. Enfin, nous nous intéresserons à la méthodologie de prise de décision, qui repose soit

sur des règles préétablies, soit sur des approches d’apprentissage.

2.1. PARADIGMES DES SYSTÈMES D’ÉQUILIBRAGE 13

2.1.3.1 Temporalité de la décision

Le critère de la temporalité de la décision est crucial dans l’équilibrage de charge, car il définit l’optique

dans laquelle une décision est prise : la distribution des tâches peut être soit anticipée soit faite en direct à leur

arrivée. On peut qualifier ce critère de réactivité. Les algorithmes se découpent donc en deux approches qui

seront détaillées dans cette section : les proactifs et les réactifs.

Algorithmes proactifs Les algorithmes proactifs visent à anticiper les besoins futurs du système en s’ap-

puyant sur des modèles prédictifs issus d’analyses de données historiques. Ces modèles peuvent être fondés

sur des méthodes statistiques traditionnelles, telles que les séries temporelles ou les modèles de Markov, ou

sur des techniques d’apprentissage automatique, comme les réseaux de neurones ou les machines à vecteurs

de support. Par exemple, le modèle proposé dans (YADAV et al., 2021) se base sur de l’apprentissage profond

(Long Short-term Memory (HOCHREITER, 1997)) pour prédire la charge future des serveurs à partir de séries

temporelles.

Dans certains cas, ces modèles prédictifs sont couplés à des algorithmes d’optimisation, tels que la program-

mation linéaire ou des algorithmes évolutionnaires, afin d’optimiser la répartition des tâches sur les ressources

disponibles. Les auteurs de (BOULMIER et al., 2022) proposent notamment un critère d’équilibrage de charge

optimal et automatisé. Celui-ci anticipe le moment optimal pour équilibrer la charge, afin de maximiser la

performance de l’algorithme d’équilibrage sous-jacent tout en évitant des opérations inutiles.

Toutefois, tous les algorithmes proactifs ne nécessitent pas une optimisation complexe ; certains reposent

sur des heuristiques prédéfinies. Le seuil auto-apprenant proposé par GOLDSZTAJN et al. (2022) et le modèle

ULBA (BOULMIER et al., 2019) (Underloading Load Balancing Approach) en sont deux exemples. Le pre-

mier ajuste dynamiquement un seuil de répartition de charge (qui anticipe le choix des ressources) selon la

charge actuelle des ressources, tandis que le deuxième redistribue la charge des ressources presque surchargées

(sélectionnées d’après un score heuristique) pour anticiper leur surcharge.

Enfin, ces systèmes prédictifs sont souvent surveillés en continu via des métriques de performance, et

peuvent intégrer des mécanismes d’apprentissage en temps réel pour ajuster leurs décisions en fonction des

évolutions du système. C’est notamment le cas du seuil auto-apprenant, du modèle ULBA, ou encore les mé-

thodes à base d’apprentissage par renforcement comme le modèle introduit par MUTHUSAMY et DHANARAJ

(2023), basé sur du Q-learning (WATKINS & DAYAN, 1992).

Algorithmes réactifs Les algorithmes réactifs ajustent la répartition des charges en fonction des événements

observés dans le système, tels que l’arrivée de nouvelles tâches, la fin de traitement d’une ressource ou une

défaillance matérielle. Contrairement aux algorithmes proactifs, ils ne cherchent pas à anticiper les besoins

futurs, mais réagissent en temps réel en fonction de l’état du système. Leur simplicité d’implémentation les

rend particulièrement adaptés aux environnements où la charge évolue de manière imprévisible.

Certains algorithmes réactifs prennent explicitement en compte la charge du système : par exemple, l’algo-

rithme de moindre connexion (Least-Connection) (MUSTAFA, 2017) assigne systématiquement les nouvelles

tâches à la ressource la moins sollicitée. C’est également le cas des stratégies à seuils, pour lesquelles une

14 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

action résulte du dépassement d’un seuil de charge, telle que la réaffectation des tâches d’une ressource, ou

encore le changement de la ressource cible comme pour la distribution de requêtes tenant compte de la localité

(Locality-Aware Request Distribution) (PAI et al., 1998) ou la politique de déchargement distribuée propo-

sée par QIN et al. (2021, 2023a, 2023b). À l’inverse, d’autres approches appliquent des règles de répartition

sans considération de l’état du système. C’est notamment le cas de l’algorithme du tourniquet (Round Robin)

(HIDAYAT et al., 2020) et de sa variante pondérée (Weighted Round Robin) (DEVI & UTHARIARAJ, 2016), qui

distribuent les tâches de manière cyclique entre les ressources.

D’autres techniques issues des modèles multi-agents, plus élaborées, reposent sur une prise de décision

décentralisée. Chaque agent alloue des tâches localement en fonction de son voisinage, ce qui peut conduire à

une auto-organisation émergente du système, et donc à son équilibrage. L’algorithme d’échantillonnage aléa-

toire biaisé (Biased Random Sampling) (RAHMEH et al., 2008) illustre bien ce principe : une tâche n’est pas

directement affectée à une ressource, mais suit une marche aléatoire contrôlée explorant le voisinage, avant

d’être assignée à la ressource dont la charge est la plus faible.

Enfin, bien que les algorithmes évolutionnaires soient souvent utilisés dans les stratégies proactives, cer-

taines adaptations leur permettent de fonctionner en mode réactif, notamment dans des environnements dé-

centralisés et dynamiques. Ces méthodes inspirées de l’intelligence en essaim, comme les colonies de fourmis

(Ant Colony Optimization) (LI et al., 2011 ; LIU et al., 2006) ou encore le comportement de recherche de nec-

tar par les abeilles (Honeybee Foraging Behavior) (RANDLES et al., 2010 ; SESUM-CAVIC & KÜHN, 2010a,

2010b), permettent un équilibrage émergent basé sur des heuristiques locales et des interactions entre entités

autonomes. Ces méthodes réactives ne planifient pas à l’avance, mais ajustent leur comportement en fonction

des variations de charge détectées dans leur environnement immédiat.

2.1.3.2 Nature du processus décisionnel

Une autre manière de qualifier la prise de décision d’un algorithme d’équilibrage de charge réside dans

la nature de son processus décisionnel. Le choix entre un modèle déterministe ou stochastique dépend des

contraintes du système à équilibrer. Alors que les solutions déterministes offrent stabilité et robustesse dans

des environnements bien maîtrisés, les stratégies stochastiques sont souvent privilégiées dans des contextes

dynamiques et incertains, où une approche plus flexible et adaptative est nécessaire. Cette section explore ces

deux paradigmes, leurs principes, leurs avantages et leurs limites dans le cadre de l’équilibrage de charge.

Processus déterministe Les stratégies déterministes reposent généralement sur des règles fixes, des heuris-

tiques explicites ou des modèles mathématiques prédéfinis pour attribuer une tâche à une ressource donnée.

Elles garantissent une prise de décision entièrement prévisible et reproductible : pour un même état du sys-

tème, la solution d’équilibrage obtenue sera identique. Les critères de sélection des ressources peuvent être soit

statiques, soit dynamiques. Dans le premier cas, les choix sont définis à l’avance, indépendamment de l’état

courant du système, aboutissant ainsi à une répartition souvent fixe et uniforme des tâches. À l’inverse, dans

le second cas, les décisions s’adaptent en fonction d’heuristiques explicites, telles que la charge du processeur

ou la latence de connexion. Néanmoins, quelle que soit l’approche adoptée, l’absence d’éléments aléatoires

2.1. PARADIGMES DES SYSTÈMES D’ÉQUILIBRAGE 15

garantit une réponse systématique et reproductible pour un même ensemble d’entrées. Parmi les algorithmes

déterministes statiques, on retrouve notamment le tourniquet (HIDAYAT et al., 2020) et sa variante pondérée

(DEVI & UTHARIARAJ, 2016), déjà évoqués dans la section précédente. En ce qui concerne les algorithmes

déterministes dynamiques, des stratégies telles que la moindre connexion (MUSTAFA, 2017) ou les approches à

seuils (PAI et al., 1998 ; QIN et al., 2021, 2023a, 2023b), également mentionnées auparavant, illustrent cette ca-

tégorie. Les algorithmes déterministes constituent une solution simple et efficace pour l’équilibrage de charge

dans des environnements maîtrisés, qu’ils soient statiques ou dynamiques mais prévisibles. Cependant, leur

rigidité peut s’avérer limitante lorsque la charge varie de manière imprévisible. Afin de mieux s’adapter aux

fluctuations dynamiques du système, il existe ainsi des approches intégrant une composante aléatoire, offrant

une plus grande flexibilité.

Processus stochastique Contrairement aux algorithmes déterministes, les algorithmes stochastiques intègrent

une composante aléatoire dans le processus de prise de décision. Cette approche permet de mieux gérer les sys-

tèmes soumis à des charges imprévisibles ou fortement fluctuantes, où une stratégie rigide pourrait conduire à

un déséquilibre. L’aléatoire peut être exploité de différentes manières : certains algorithmes sélectionnent une

ressource au hasard parmi un sous-ensemble de candidats (comme l’algorithme d’équilibrage aléatoire (AZAR

et al., 1994)), tandis que d’autres ajustent dynamiquement leurs choix en fonction de probabilités influen-

cées par l’état du système. Par exemple, l’algorithme d’échantillonnage aléatoire biaisé (RAHMEH et al.,

2008) réalise une marche aléatoire sur un graphe représentant les ressources, tout en favorisant celles qui sont

sous-utilisées pour l’affectation des tâches. De plus, certaines approches plus avancées utilisent des méthodes

bio-inspirées adaptées à l’équilibrage de charge, comme l’optimisation par colonies de fourmis (KATYAL &

MISHRA, 2013 ; LI et al., 2011 ; LIU et al., 2006) ou par comportement de recherche de nectar des abeilles

(KATYAL & MISHRA, 2013 ; RANDLES et al., 2010 ; SESUM-CAVIC & KÜHN, 2010a, 2010b). Le premier al-

gorithme utilise des agents artificiels qui laissent des traces numériques pour influencer les décisions des agents

suivants, tandis que le deuxième biaise l’exploration de l’environnement par un partage des chemins explorés

par les agents prédécesseurs pour les recherches futures. Bien que ces méthodes offrent une adaptabilité accrue,

elles présentent un coût computationnel potentiellement plus élevé et peuvent nécessiter un ajustement précis

des paramètres pour garantir une convergence efficace vers une solution optimale.

2.1.3.3 Adaptabilité

L’adaptabilité désigne la capacité d’un algorithme d’équilibrage de charge à ajuster ses décisions en fonc-

tion des variations dynamiques de l’environnement. Un algorithme est considéré comme adaptatif lorsqu’il

modifie son comportement en réponse aux fluctuations de charge entrante, aux variations de performance des

ressources ou aux événements imprévus tels que des pannes ou des pics de trafic. Cette capacité d’adaptation

est souvent liée à la scalabilité, qui désigne la manière dont l’algorithme maintient ses performances lorsqu’il

est confronté à une augmentation du nombre de ressources ou de tâches à traiter.

Les méthodes d’adaptation reposent sur différentes approches. Certaines stratégies, comme la moindre

connexion (MUSTAFA, 2017) ou les stratégies à seuils (PAI et al., 1998 ; QIN et al., 2021, 2023a, 2023b),

16 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

réagissent directement à l’état instantané du système en ajustant la répartition des tâches de manière réactive.

D’autres algorithmes exploitent des techniques d’apprentissage automatique, où une rétroaction en temps réel

permet d’améliorer progressivement la prise de décision. Enfin, des approches inspirées de la biologie et des

systèmes multi-agents, comme l’optimisation par colonies de fourmis (KATYAL & MISHRA, 2013 ; LI et al.,

2011 ; LIU et al., 2006), l’optimisation par essaims de particules (Particle Swarm Optimization) (KENNEDY &

EBERHART, 1995 ; RAHMEH et al., 2008) ou le comportement de recherche de nectar par les abeilles (KATYAL

& MISHRA, 2013 ; RANDLES et al., 2010 ; SESUM-CAVIC & KÜHN, 2010a, 2010b), utilisent des mécanismes

d’auto-organisation pour répartir dynamiquement la charge.

L’objectif principal de l’adaptabilité est d’assurer un bon niveau de performance face aux imprévus, ce qui

est directement lié à la robustesse de l’algorithme, un concept approfondi en Section 2.2.3. Toutefois, certains

algorithmes restent statiques et n’intègrent aucune forme d’adaptation. C’est notamment le cas du tourniquet

(HIDAYAT et al., 2020), qui applique une règle fixe en assignant les tâches en séquence, sans prise en compte de

l’état du système. Dans des environnements hautement prévisibles et stables, ces algorithmes peuvent s’avérer

suffisants, voire préférables, car ils offrent une simplicité de mise en œuvre et un faible coût computationnel,

là où l’introduction d’une adaptabilité complexe ne serait pas nécessaire. Cependant, leur manque de flexibilité

peut poser problème lorsqu’une scalabilité efficace est requise pour gérer une augmentation de la taille du

système. Les stratégies décentralisés offrent notamment de meilleurs résultats dans ce genre de situation.

2.1.3.4 Approche décisionnelle

L’approche décisionnelle d’un algorithme d’équilibrage de charge désigne la manière dont les décisions

sont prises et justifiées. Ce critère repose sur la méthodologie employée pour sélectionner la ressource cible

lors de la répartition des charges. On distingue principalement deux grandes familles : les approches basées sur

des règles explicites et celles qui reposent sur l’apprentissage et l’adaptation dynamique.

À base de règles Les approches basées sur des règles reposent sur des décisions prises à partir de critères

prédéfinis, qui peuvent être statiques ou dynamiques, selon qu’elles prennent ou non en compte l’état courant

du système. Elles offrent l’avantage d’être simples à implémenter et de nécessiter peu de ressources computa-

tionnelles, mais leur rigidité peut les rendre moins efficaces dans des environnements à forte variabilité.

Les règles statiques définissent un comportement immuable, où les décisions sont prises selon des règles

fixées à l’avance, indépendamment de l’évolution de la charge ou des ressources disponibles. Elles conviennent

particulièrement aux environnements stables et prévisibles, où les variations sont limitées. Un exemple typique

est l’algorithme du tourniquet (HIDAYAT et al., 2020), qui distribue les tâches de manière cyclique entre les

ressources, garantissant une répartition équitable mais sans tenir compte de la charge réelle. Sa variante, le

tourniquet pondéré (DEVI & UTHARIARAJ, 2016), ajuste la distribution en fonction de poids attribués aux

ressources, mais sans adaptation en temps réel.

À l’inverse, les règles dynamiques adaptent les décisions en fonction de l’état courant du système, bien

qu’elles ne modifient pas leurs propres critères d’évaluation au fil du temps. Elles se basent généralement

sur des heuristiques locales, exploitant des métriques telles que la charge des ressources ou leur capacité de

2.1. PARADIGMES DES SYSTÈMES D’ÉQUILIBRAGE 17

traitement. Par exemple, l’algorithme de la moindre connexion (MUSTAFA, 2017) attribue systématiquement

les nouvelles tâches à la ressource la moins sollicitée au moment de la décision. De même, les stratégies à

seuils (PAI et al., 1998 ; QIN et al., 2021, 2023a, 2023b) redistribuent la charge lorsque certaines ressources

atteignent un niveau d’utilisation critique, permettant un équilibrage réactif. Une autre approche de ce type

est l’échantillonnage aléatoire biaisé (RAHMEH et al., 2008), qui utilise un processus aléatoire pour explorer

plusieurs ressources voisines avant d’attribuer une tâche. Bien que l’exploration repose sur de l’aléatoire, la

décision finale est guidée par une règle heuristique : la tâche est affectée à la ressource rencontrée ayant la plus

faible charge. D’autres approches comme First-Fit et Best-Fit appliquent des règles spécifiques : le premier

affecte la tâche à la première ressource disponible, tandis que le second sélectionne celle qui offre l’ajustement

optimal en fonction de critères définis.

Bien que ces stratégies dynamiques offrent une meilleure réactivité que les méthodes statiques, elles restent

limitées par l’absence d’apprentissage : elles s’adaptent instantanément aux changements mais ne réévaluent

pas leur propre logique au fil du temps. Cette distinction sera essentielle pour différencier ces approches des

méthodes apprenantes, plus flexibles mais également plus coûteuses en ressources computationnelles.

Apprentissage et adaptation dynamique Contrairement aux méthodes reposant sur des règles fixes, les ap-

proches basées sur l’apprentissage et l’adaptation dynamique ajustent leurs décisions en fonction des données

collectées au fil du temps. Ces méthodes ne se limitent pas à des heuristiques prédéfinies mais modifient pro-

gressivement leur comportement en réponse aux évolutions de l’environnement. Elles sont particulièrement

adaptées aux systèmes complexes et dynamiques, où la variabilité des charges et des ressources rend inefficace

l’usage de règles rigides.

L’apprentissage peut être réalisé selon différentes stratégies. Les modèles d’apprentissage supervisé uti-

lisent des données historiques pour entraîner un modèle capable de prédire la meilleure allocation des tâches

(GURES et al., 2022). Les approches par apprentissage par renforcement permettent quant à elles aux algo-

rithmes d’ajuster leurs décisions via un processus d’essais et d’erreurs, en maximisant une récompense définie,

comme l’optimisation du temps de réponse ou l’équilibrage des charges entre ressources (MUTHUSAMY &

DHANARAJ, 2023). Des techniques comme les réseaux de neurones profonds (Deep Learning) (KAUR et al.,

2020 ; YADAV et al., 2021) et les machines à vecteurs de support (Support Vector Machines) (RADHIKA &

DURAIPANDIAN, 2021) sont souvent employées pour détecter des tendances complexes dans la charge du sys-

tème. La mise en place de tels modèles nécessite un entraînement préalable généralement très coûteux en temps

et en ressources, mais il peut toutefois être poursuivit en ligne afin de faire évoluer le modèle en fonction du

système.

Par ailleurs, des stratégies qui reposent sur des modèles d’intelligence collective et d’auto-organisation,

s’inspirent des dynamiques naturelles. Ces approches bio-inspirées adaptées à l’équilibrage de charge décen-

tralisé, comme l’optimisation par essaims de particules (KENNEDY & EBERHART, 1995 ; RAMEZANI et al.,

2014), les algorithmes basés sur le comportement des colonies de fourmis (KATYAL & MISHRA, 2013 ; LI et

al., 2011 ; LIU et al., 2006) ou celui des abeilles butineuses (KATYAL & MISHRA, 2013 ; RANDLES et al., 2010 ;

SESUM-CAVIC & KÜHN, 2010a, 2010b), permettent aux ressources de prendre des décisions localement, tout

18 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

en contribuant à un équilibrage émergent du système. Les stratégies multi-agents, où chaque ressource agit en

fonction de son propre apprentissage et de son interaction avec ses voisines, offrent notamment une prise de

décision adaptative et dynamique.

L’avantage principal de ces méthodes réside dans leur capacité d’adaptation aux variations imprévues du

système, permettant un équilibrage efficace même en conditions incertaines. Cependant, elles impliquent un

coût computationnel plus élevé que les méthodes basées sur des règles, et nécessitent parfois une phase d’entraî-

nement avant d’atteindre une performance optimale. En outre, les différentes approches décisionnelles peuvent

être mélangées : une méthode basée sur des règles peut être couplée à de l’apprentissage pour modifier ses

paramètres d’exécution selon l’état du système par exemple (seuils, critères d’optimalité des ressources, etc.).

2.2 Métriques de performance

L’équilibrage de charge joue un rôle fondamental dans l’optimisation des performances des systèmes in-

formatiques. Qu’il s’agisse de serveurs, d’architectures cloud, de systèmes embarqués ou de composants élec-

troniques, l’efficacité d’un mécanisme d’équilibrage repose sur sa capacité à répartir la charge de manière op-

timale, en tenant compte de divers critères de performance. Chaque stratégie d’équilibrage de charge possède

des objectifs spécifiques qui influencent son adoption dans les systèmes nécessitant un tel mécanisme.

Pour évaluer la pertinence et l’efficacité d’une stratégie d’équilibrage, plusieurs métriques de performance

sont utilisées. Ces métriques permettent de mesurer la rapidité d’exécution des requêtes, la charge des res-

sources, l’équité de répartition ou encore la robustesse du système face aux variations de charge. À ces aspects

classiques s’ajoute aujourd’hui une préoccupation croissante pour l’efficacité énergétique, notamment dans le

contexte des centres de données et des systèmes à grande échelle.

Cette section présente les principales métriques utilisées pour évaluer les systèmes d’équilibrage de charge

(BELGAUM et al., 2020 ; JADER et al., 2019 ; MISHRA et al., 2020 ; ROY et al., 2019), que l’on peut regrou-

per en deux catégories complémentaires : métriques classiques et spécifiques à l’équilibrage de charge. Nous

examinerons d’abord les métriques classiques, telles que le temps de réponse, le débit et l’utilisation des res-

sources. Ces indicateurs, couramment employés pour évaluer la performance de tout système informatique,

permettent de mesurer son efficacité globale, indépendamment de l’intégration d’un mécanisme d’équilibrage

de charge. Nous aborderons ensuite les métriques spécifiques à l’équilibrage, comme l’équité de répartition, le

taux de migration de charge et la scalabilité. Celles-ci sont conçues pour analyser la manière dont une solution

d’équilibrage influence la distribution de la charge et l’adaptabilité du système face aux variations de demande.

Un bon mécanisme d’équilibrage doit non seulement améliorer les métriques classiques (en réduisant le temps

de réponse et en optimisant l’utilisation des ressources), mais aussi limiter les effets négatifs mesurés par les

métriques spécifiques, tels qu’un nombre excessif de migrations de charge ou la surcharge de certains nœuds.

Enfin, nous nous intéresserons aux métriques de robustesse, qui occupent une place privilégiée dans nos tra-

vaux. Ces indicateurs permettent d’évaluer la capacité d’un système à faire face aux pannes et aux pics de

charge, des enjeux cruciaux pour les infrastructures modernes, où la continuité de service et la stabilité sont

primordiales.

2.2. MÉTRIQUES DE PERFORMANCE 19

2.2.1 Métriques classiques

L’évaluation des performances d’un système informatique repose sur des mesures fondamentales permet-

tant d’analyser son efficacité globale. Ces métriques classiques sont indépendantes des mécanismes d’équi-

librage de charge et sont utilisées pour mesurer la réactivité, la capacité de traitement et l’exploitation des

ressources d’un système, qu’il soit centralisé ou distribué.

Dans le contexte de l’équilibrage de charge, ces indicateurs restent essentiels, car un bon mécanisme d’équi-

librage doit non seulement répartir efficacement la charge, mais aussi améliorer les performances globales du

système. Un temps de réponse réduit, un débit élevé et une utilisation optimale des ressources sont autant de cri-

tères qui garantissent un fonctionnement fluide et performant. Ces aspects influencent directement l’expérience

utilisateur et les temps de calcul, en assurant des interactions rapides, une latence minimale et une stabilité

accrue du service.

Cette section examine les principales métriques classiques. Nous commencerons par le temps de réponse,

qui reflète la rapidité du système à traiter les requêtes, avant d’aborder le débit, indicateur clé de sa capacité

de traitement. Nous nous pencherons ensuite sur l’utilisation des ressources, qui permet d’évaluer l’efficacité

d’exploitation des composants matériels. Enfin, nous étudierons la consommation énergétique, un critère direc-

tement lié à l’utilisation des ressources, qui est de plus en plus crucial dans l’optimisation des infrastructures

modernes.

2.2.1.1 Temps de réponse

Le temps de réponse, aussi qualifié de latence du système ou de qualité de service (QoS), correspond au

temps total que met le système à fournir un résultat lors d’une requête. Cette métrique est particulièrement

importante pour le web. Jakob Nielsen a partagé dans le chapitre 3 de son livre Usability engineering (1993)

trois limites principales de temps de réponse (tr) pour les interfaces utilisateur (NIELSEN, 1993) :

— tr ≤ 0,1 seconde : réponse perçue comme instantanée ;

— 0,1 < tr ≤ 1 seconde : perte de la sensation d’instantanéité, mais le flux de pensée de l’utilisateur reste

ininterrompu ;

— 1 < tr ≤ 10 secondes : attente encore acceptable, mais nécessite un indicateur visuel ; perte de l’atten-

tion de l’utilisateur au-delà.

De nos jours, les utilisateurs ont tendance à abandonner la navigation d’un site web présentant un temps de

réponse de plus de 3 secondes pour afficher une page. Google conseille un temps de réponse maximum de

2,5 secondes pour l’affichage du contenu principal, peu importe l’appareil utilisé (« Largest Contentful Paint

| Lighthouse », 2020), sans quoi la perte d’utilisateurs due à l’attente augmente fortement. Cette limite de

rétention tend à diminuer avec le temps, en adéquation avec la recherche d’instantanéité par la société et la

réduction du niveau de concentration des nouvelles générations.

Le temps de réponse englobe plusieurs métriques plus précises qui interviennent de manière successive tout

au long du processus d’interaction avec le système. En premier lieu, le temps de transmission de la requête,

qui comprend la latence du réseau, le processus de sélection du serveur par le système d’équilibrage de charge

20 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

(dont l’efficacité dépend de la stratégie adoptée) ainsi que le délai d’attente avant traitement, lequel est influencé

par la charge et la capacité du serveur choisi. Cette première métrique souligne l’importance d’un système

d’équilibrage de charge performant, car celui-ci influence directement le temps de réponse global du système.

Ensuite, le temps consacré au traitement de la requête par le serveur, qui inclut le temps de lecture des données,

est pris en compte. Enfin, la latence associée à la communication de la réponse est également intégrée.

2.2.1.2 Débit

Le débit est une mesure clé de la performance d’un système, représentant la quantité de travail achevé par

unité de temps. Exprimé sous la forme D = N
T , où N est la quantité de travail achevé (exprimé en nombre de

tâches, requêtes, opérations, etc.) et T la période d’observation (généralement en secondes), le débit reflète la

capacité du système à absorber une charge de travail donnée.

Le débit et le temps de réponse sont étroitement liés, puisque le second influence directement le premier.

Une réponse rapide permet de pouvoir traiter plus de tâches dans un laps de temps donné. Toutefois, un débit

élevé n’implique pas nécessairement un temps de réponse faible. Un système peut traiter un grand nombre de

tâches tout en ayant des temps de réponse longs si celles-ci sont mises en attente ou s’il y a de la latence de

communication par exemple. Un bon mécanisme d’équilibrage de charge vise donc à maximiser le débit tout

en maintenant un temps de réponse faible en exploitant pleinement la capacité disponible du système par une

répartition efficace de la charge.

2.2.1.3 Utilisation des ressources physiques

L’utilisation des ressources, au centre des performances des systèmes informatiques, correspond à la pro-

portion (généralement exprimée en pourcentage) dans laquelle un système exploite ses ressources matérielles

et logicielles (processeur, mémoire, réseau, stockage, etc.). Cette métrique permet d’évaluer l’efficacité de l’al-

location des ressources et d’identifier les éventuels goulets d’étranglement pour limiter leur impact sur les

performances du système.

Une utilisation optimale des ressources signifie qu’elles sont exploitées efficacement sans être sous-utilisées

(potentiel gaspillé, inefficacité énergétique) ni surchargées (dégradation des performances, augmentation du

temps de réponse). Dans un système bien équilibré, l’utilisation des ressources doit être homogène pour éviter

qu’un goulet d’étranglement n’affecte ses performances, et donc la qualité de service.

2.2.1.4 Consommation énergétique

La consommation énergétique des infrastructures et services cloud constitue un enjeu majeur du monde

numérique moderne. Avec la multiplication des services et la demande croissante en puissance de calcul, la

consommation énergétique des centres de données et systèmes distribués augmente chaque année, entraînant

une hausse des coûts d’exploitation et une empreinte carbone accrue. Cette tendance soulève des défis à la fois

économiques et environnementaux, nécessitant des solutions efficaces pour limiter l’impact énergétique des

systèmes informatiques.

2.2. MÉTRIQUES DE PERFORMANCE 21

La consommation d’énergie est généralement exprimée en joules (J) ou en watts-heures (Wh). Une autre

métrique couramment utilisée est la puissance moyenne consommée (W) sur une période donnée. Dans le

contexte des centres de données et systèmes distribués, la consommation d’énergie est souvent évaluée via des

indicateurs comme l’efficacité d’utilisation de l’énergie (MALONE & BELADY, 2006) (Power Usage Effective-

ness, PUE), qui mesure l’efficacité énergétique globale d’un centre de données. La mesure est un ratio entre la

consommation totale de l’infrastructure informatique du centre (serveurs, stockage et conversion de l’énergie,

systèmes de refroidissement) et uniquement celle utilisée par ses serveurs : PUE = énergie totale
énergie serveurs . Une valeur

proche de 1 signifie une utilisation efficace de l’énergie.

Une autre métrique couramment utilisée pour évaluer l’efficacité énergétique des systèmes est le produit

énergie-délai (Energy-Delay Product, EDP) (GONZALEZ & HOROWITZ, 1996). Celui-ci établit un compromis

entre la consommation énergétique et le temps de réponse, permettant ainsi d’évaluer l’impact des optimisations

sur ces deux aspects. Le produit énergie-délai est défini comme suit : EDP (J · s) = E(J) ×D(s), où E(J)

est la consommation d’énergie en joules et D(s) le temps de réponse en secondes. Une valeur faible du produit

est souhaitable, car elle indique un compromis optimal entre efficacité énergétique et temps de réponse. Une

diminution de la valeur indique une amélioration du système, soit en réduisant sa consommation d’énergie à

délai constant, soit en accélérant l’exécution sans surcoût énergétique, soit en améliorant les deux facteurs à

la fois. À l’inverse, une augmentation de la valeur traduit une détérioration des performances, impliquant soit

une consommation excessive, soit un allongement du temps de réponse, soit les deux. Lorsque le produit reste

constant malgré des ajustements, cela signifie que les gains réalisés sur un facteur sont compensés par une

dégradation équivalente de l’autre.

De nombreux travaux de recherche, tels que HASAN et al. (2017), KATAL et al. (2023), LEE et ZOMAYA

(2012), LIN et al. (2018) et UCHECHUKWU et al. (2014), se focalisent sur la modélisation de la consommation

énergétique des infrastructures cloud afin d’identifier les principaux leviers d’optimisation. Étant étroitement

liée à l’utilisation des ressources, la consommation énergétique peut être réduite grâce à des améliorations à

la fois matérielles et logicielles. Les optimisations matérielles visent à améliorer l’efficacité énergétique des

composants en ajustant dynamiquement la tension et la fréquence des processeurs (Dynamic Voltage and Fre-

quency Scaling), à optimiser la gestion de la mémoire et du stockage (réduction des accès en lecture/écriture),

et à adopter des systèmes de refroidissement plus efficients pour limiter la dissipation thermique. Les optimi-

sations logicielles, quant à elles, interviennent à plusieurs niveaux, notamment à travers la virtualisation des

serveurs, qui permet une meilleure mutualisation des ressources, l’optimisation des programmes pour réduire

leur demande en calcul et en mémoire, ainsi que l’intégration d’algorithmes d’équilibrage de charge visant à

répartir intelligemment la charge tout en minimisant la consommation énergétique. L’objectif est de trouver un

compromis entre performance, qualité de service et efficacité énergétique. Par ailleurs, l’utilisation d’énergies

renouvelables constitue un levier supplémentaire dans cette démarche. Des entreprises comme Google se sont

engagées dans cette voie, avec l’ambition d’alimenter leurs centres de données exclusivement en énergie verte

d’ici 2030 (« Un fonctionnement écoresponsable - Centres de données Google », s. d.).

Dans ce contexte, les mécanismes d’équilibrage de charge jouent un rôle clé en répartissant intelligemment

22 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

la charge de travail pour éviter la surcharge de certains nœuds, réduire la consommation énergétique globale

et améliorer l’efficacité des infrastructures. Une approche bien conçue permet ainsi de trouver un compromis

entre performance, coûts et impact environnemental.

2.2.2 Métriques spécifiques

Si les métriques classiques (temps de réponse, débit, utilisation des ressources, etc.) permettent d’évaluer la

performance globale d’un système, elles ne suffisent pas à mesurer l’efficacité des mécanismes d’équilibrage de

charge. En effet, un bon équilibrage ne se limite pas à garantir de bonnes performances en termes de rapidité et

d’efficacité, mais il doit aussi assurer une répartition optimale de la charge, une gestion efficace des migrations

de tâches et une scalabilité performante.

Dans cette section, nous introduisons des métriques spécifiques à l’équilibrage de charge, conçues pour

évaluer les performances des algorithmes et stratégies de répartition. Nous commencerons par l’équité de ré-

partition de la charge, qui correspond au degré d’uniformité dans la distribution des tâches entre les ressources.

Nous continuerons avec le taux de migration de charge, qui quantifie la fréquence et le coût des transferts de

charge entre les ressources. Enfin, nous nous intéresserons à la scalabilité, qui évalue la capacité du système à

s’adapter efficacement à l’augmentation de la charge, ou à l’ajout de nouvelles ressources sans dégradation des

performances.

2.2.2.1 Équité de répartition de la charge

L’équité de répartition de la charge est une métrique qui sert à mesurer le degré d’uniformité dans la distri-

bution du travail entre les différentes ressources du système. L’objectif derrière l’utilisation de cette métrique

est de détecter un déséquilibre dans l’utilisation des ressources pour identifier une surcharge (dégradation des

performances et allongement du temps de réponse) ou une sous-utilisation (gaspillage des capacités dispo-

nibles) de certaines ressources. Un système d’équilibrage de charge efficace doit tendre vers une distribution

équitable afin d’optimiser à la fois les performances et l’utilisation des ressources.

La méthode de mesure d’équité la plus courante est l’indice de Jain (JAIN et al., 1984), qui propose une

mesure répondant mieux à l’objectif (évaluer l’équité de distribution) que des mesures plus classiques comme

la variance ou le coefficient de variation (variance
moyenne). L’indice propose une valeur allant de 0 à 1 et se calcule de

la manière suivante :

J =

(

N∑
i=1

Li)
2

N

N∑
i=1

L2
i

(2.1)

où N est le nombre de ressources et Li la charge (Load) de la ressource i et J ∈ [1N , 1]. Lorsque J est proche

de 0, la distribution de la charge est fortement déséquilibrée, tandis que lorsque J = 1, la charge est répartie

de manière parfaitement équitable. Cependant, l’indice a pour but d’être utilisé en environnement homogène

(ressources uniformes) ; il ne prend pas en compte les potentielles variances de capacités entre les ressources.

2.2. MÉTRIQUES DE PERFORMANCE 23

Prenons l’exemple de deux ressources A et B pour lesquelles CA = 4, CB = 2 et LA = LB = 3 : l’indice de

Jain aurait une valeur de 1 (égalité parfaite du nombre de tâches entre les ressources), bien que la ressource B

soit chargée à 150% de sa capacité et la ressource A ne soit qu’à 75%.

L’indice peut toutefois être adapté en pondérant la charge des ressources par leur capacité comme suit :

Jp =

(

N∑
i=1

Li

Ci
)2

N

N∑
i=1

(
Li

Ci
)2

(2.2)

où Ci est la capacité de la ressource i. L’indice indique alors une équité parfaite lorsque la proportion de charge

par rapport à la capacité est identique pour toutes les ressources. On peut différencier les deux indices : la

forme initiale mesure l’égalité de la répartition (charge identique sur toutes les ressources), tandis que la forme

pondérée en mesure réellement l’équité (charge proportionnelle à la capacité des ressources). Si l’on reprend

l’exemple précédent, l’indice est alors Jp = 0,9.

Le Tableau 2.2 propose une série de scénarios de répartitions de charge avec les deux indices (d’égalité

et d’équité) calculés. On peut voir que même si l’indice de Jain initial indique une équité parfaite, sa forme

pondérée en est très éloignée dans certains cas (scénario 3). À l’inverse, lorsque l’équité est parfaite propor-

tionnellement aux capacités, l’indice non pondéré ne l’indique pas forcément (scénario 5).

2.2.2.2 Migration de la charge

La migration de la charge correspond à la redistribution dynamique des tâches entre les ressources d’un

système. Elle ne concerne que les systèmes présentant de l’adaptabilité ; les algorithmes tels que le Round

Robin en sont complètement dépourvus par exemple. Plusieurs métriques permettent d’évaluer l’efficacité de

cette migration : le nombre de migrations, et le temps et le coût d’une migration. Cet ensemble de métriques

permet de mesurer l’efficacité du système à répartir efficacement les tâches pour s’adapter à la charge.

Le nombre de migrations correspond à la longueur du trajet des tâches (nombre de sauts d’une ressource

à une autre) dans le système pour trouver leur ressource de traitement. Un trajet long indique que le système

peine à trouver une destination pour la tâche, impliquant une dépense énergétique plus élevée et un temps de

réponse allongé.

Le temps de migration quantifie la durée nécessaire pour transférer une tâche d’une ressource à une autre.

Dans certaines études il correspond à une étape de migration, tandis pour d’autres la métrique correspond au

temps total de transfert d’une tâche vers une ressource adéquat (possibles migrations multiples). Les migrations

pouvant survenir au niveau des instances virtuelles (grâce à la virtualisation des serveurs) mais également au

niveau physique (entre machines), le temps de migration dépend de plusieurs facteurs, tels que la taille des

données à transférer et la latence réseau. Un temps de migration trop long peut retarder l’exécution des tâches

et impacter les performances globales du système, notamment son temps de réponse.

Le coût de migration mesure les coûts computationnels et communicationnels d’une migration entre deux

24 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

Scénario 1 : charge = capacité = 1
Ressource 1 2 3 4 5 6 7 8 9 10 Indice Indice pondéré

Charge 1 1 1 1 1 1 1 1 1 1 1 1
Capacité 1 1 1 1 1 1 1 1 1 1

Scénario 2 : charge fixe faible, capacité simple et double
Ressource 1 2 3 4 5 6 7 8 9 10 Indice Indice pondéré

Charge 1 1 1 1 1 1 1 1 1 1 1 0,9
Capacité 1 1 1 1 1 2 2 2 2 2

Scénario 3 : charge fixe élevée, capacité simple et quintuple
Ressource 1 2 3 4 5 6 7 8 9 10 Indice Indice pondéré

Charge 5 5 5 5 5 5 5 5 5 5 1 ≃ 0,69
Capacité 1 1 1 1 1 5 5 5 5 5

Scénario 4 : charge et capacité inversées
Ressource 1 2 3 4 5 6 7 8 9 10 Indice Indice pondéré

Charge 3 3 3 2 2 2 1 1 1 0 ≃ 0,77 ≃ 0,56
Capacité 1 1 1 2 2 2 3 3 3 4

Scénario 5 : charge = capacité
Ressource 1 2 3 4 5 6 7 8 9 10 Indice Indice pondéré

Charge 1 2 3 4 5 6 7 8 9 10 ≃ 0,79 1
Capacité 1 2 3 4 5 6 7 8 9 10

TABLE 2.2 – Exemples de scénarios de distribution de charge sur 10 ressources. Pour chaque exemple, l’indice
de Jain et sa version pondérée sont proposés afin de mettre en évidence l’apport de précision de la pondération.

ressources du système. Les coûts sont généralement quantifiés en termes de temps, d’impact sur les perfor-

mances des ressources (utilisation supplémentaire du processeur et de la mémoire) et d’énergie consommée

pour réaliser la migration. Selon la quantification, la mesure est impactée par divers facteurs tels que la latence

réseau, la taille des données à lire, écrire et communiquer, ou encore la charge actuelle des ressources.

2.2.2.3 Scalabilité et adaptabilité

La scalabilité et l’adaptabilité sont deux métriques qui permettent de mesurer la capacité du système d’équi-

librage à faire face à des changements dans son environnement. La scalabilité se concentre sur la mesure du

passage à l’échelle de la charge ou du nombre de ressources, tandis que l’adaptabilité quantifie la manière dont

le système réagit à une surcharge ou à une panne par exemple. Il n’existe pas de manière précise de calculer ces

métriques comme les précédentes. Elles s’évaluent plutôt par l’analyse de l’évolution d’autres métriques telles

que le débit, le temps de réponse et l’équité de répartition.

Pour mesurer la scalabilité, il est par exemple possible de mesurer la différence du débit et du temps de

réponse entre avant et après une mise à l’échelle de l’environnement (augmentation conséquente de la charge ou

des ressources). L’objectif est alors d’avoir un débit qui corresponde au nouvel environnement et de conserver

un temps de réponse faible. Un système d’équilibrage qui n’est pas scalable peinera à dispatcher la charge

2.2. MÉTRIQUES DE PERFORMANCE 25

efficacement, ce qui augmentera le temps de réponse.

L’adaptabilité, quant à elle, peut être mesurée par le temps que prend le système à retrouver un état d’équi-

libre, après une perturbation (panne d’une ressource ou surcharge). Elle peut notamment être quantifiée par

l’évolution de l’équité de la répartition de la charge entre avant et après la perturbation. L’objectif des sys-

tèmes d’équilibrage adaptatifs est de réagir rapidement et efficacement aux événements inattendus qui peuvent

survenir.

Un bon système d’équilibrage doit être scalable et adaptable afin de fournir de bonnes performances peu

importe la situation. Ces métriques sont notamment directement liés aux concept de robustesse et de résilience.

2.2.3 La robustesse

La robustesse est une métrique essentielle pour évaluer la capacité d’un système d’équilibrage de charge

à maintenir ses performances face à des perturbations, des pannes ou des variations imprévues de la charge.

Un système robuste doit être capable de continuer à fonctionner efficacement même en cas de défaillance de

certaines ressources ou de pics de demande. Cette section explore les différentes dimensions de la robustesse

et les possibilités pour l’évaluer.

2.2.3.1 Définition

De manière générale, la robustesse désigne la capacité d’un système à préserver ses fonctions ou caractéris-

tiques essentielles malgré des perturbations internes ou externes. Cette propriété se manifeste dans de nombreux

domaines, des systèmes biologiques aux infrastructures d’ingénierie, en passant par les réseaux complexes.

En biologie, la robustesse constitue une propriété fondamentale des systèmes évolutifs complexes (KITANO,

2004). Elle permet aux organismes de survivre dans des environnements imprévisibles et de fonctionner malgré

des constituants potentiellement défaillants. Cette robustesse ne signifie pas l’immuabilité du système, mais

sa capacité à maintenir certaines fonctions clés en s’adaptant de manière flexible. Elle peut se traduire par

un retour à un état stable existant (attracteur) ou par une transition vers un nouvel attracteur préservant les

fonctions essentielles, ce qui s’apparente à une forme de résilience.

Dans les systèmes informatiques et d’ingénierie, la robustesse correspond à la capacité de maintenir un

fonctionnement correct sur un large éventail de conditions, tout en dégradant ses performances de manière

contrôlée au-delà de ces limites (GRIBBLE, 2001). Les approches basées sur la prévision exhaustive des scéna-

rios sont remises en question, car elles peuvent introduire une certaine fragilité par l’omission involontaire de

scénarios.

La théorie de la Tolérance Hautement Optimisée (HOT) (CARLSON & DOYLE, 2002) montre que les sys-

tèmes complexes sont souvent conçus pour être très robustes face aux perturbations fréquentes, mais vulné-

rables à celles qui sont rares (fragilité). Cette robustesse sélective repose souvent sur une grande complexité

interne, ce qui accroît la difficulté de gestion des risques.

Un compromis émerge alors entre robustesse, fragilité, performance et consommation de ressources. Un

système peut se révéler robuste dans certains cas, tout en étant extrêmement vulnérable dans d’autres. Com-

26 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

prendre ces compromis est crucial pour localiser les points de défaillance potentiels et mettre en œuvre des

mécanismes de protection efficaces.

Dans le cas de l’équilibrage de charge, la robustesse se manifeste par la capacité du système à absorber des

hausses de charge imprévues (perturbations externes) ou des défaillances de ressources (perturbations internes).

Le système doit pouvoir encaisser une surcharge momentanée et revenir à un état stable. Lorsqu’une ressource

devient indisponible, la distribution de la charge doit être ajustée pour limiter l’impact, au moins jusqu’à sa

remise en service. Toutefois, une surcharge extrême ou un nombre important de défaillances peut entraîner une

saturation ou un effondrement du système. On retrouve ici la dualité robustesse/fragilité.

2.2.3.2 Évaluation

La robustesse d’un système s’évalue généralement en comparant un indice de performance avant et après

une perturbation. Un système est dit robuste si cet indice varie peu, traduisant une stabilité fonctionnelle malgré

les perturbations. À l’inverse, une variation significative révèle une incapacité à s’adapter efficacement.

Dans les travaux de HU et al. (2021), la robustesse est étudiée dans le contexte des réseaux électriques. Les

auteurs proposent un indice évaluant l’efficacité du réseau à acheminer l’électricité des nœuds générateurs vers

les autres. Cet indice repose notamment sur la centralité d’intermédiarité électrique (electricity betweenness

centrality), une extension de la centralité d’intermédiarité classique (NEWMAN, 2005), qui prend en compte

l’ensemble des chemins possibles plutôt que seulement les plus courts. En simulant divers scénarios de dé-

faillance, les auteurs comparent les valeurs de l’indice avant et après perturbation pour en déduire la robustesse

du système.

Dans les systèmes complexes fondés sur une structure en réseau, la robustesse est étroitement liée à l’ar-

chitecture du graphe. Si la défaillance d’un seul nœud entraîne une dégradation marquée de la connectivité –

et donc des performances –, le système est jugé peu robuste. Des indicateurs tels qu’une forte connectivité, un

coefficient de clustering élevé, une faible longueur moyenne des plus courts chemins et un petit diamètre sont

généralement associés à une meilleure robustesse (ZHANG et al., 2015). Ainsi, dans les études de DEKKER et

COLBERT (2004) et ZHANG et al. (2015), la robustesse est mesurée en évaluant combien de nœuds peuvent

être retirés avant que le réseau ne se fragmente en sous-graphes disjoints.

Dans le domaine informatique, la fiabilité du matériel et du logiciel constitue également un indicateur clé

de robustesse. On utilise souvent des mesures telles que le temps moyen avant défaillance (Mean Time To

Failure) et le temps moyen entre deux défaillances (Mean Time Between Failures) (KRASICH, 2009). Le temps

de réparation ou de remplacement d’un composant défaillant (Mean Time To Repair) (MUHAMMAD RIDZUAN

& DJOKIC, 2019) est également déterminant. Ainsi, un système subissant peu de défaillances et capable d’y

remédier rapidement présente un niveau de robustesse élevé.

2.3. CLASSIFICATION ALGORITHMIQUE 27

2.3 Classification algorithmique

De nombreuses études, telles que KATYAL et MISHRA (2013), PATEL et al. (2016), JAFARNEJAD GHOMI

et al. (2017), KUMAR et KUMAR (2019), POURGHEBLEH et HAYYOLALAM (2020), SHAFIQ et al. (2022) et

KANELLOPOULOS et SHARMA (2022), proposent des analyses comparatives de diverses approches d’équili-

brage de charge. Chacune adopte un angle particulier pour classer et évaluer les méthodes proposées.

Dans cette section, nous proposons une classification algorithmique fondée sur l’environnement d’exécu-

tion des solutions. La Figure 2.6 présente cette taxonomie sous forme d’un arbre, permettant une visualisation

synthétique des grandes familles d’approches.

Nous commencerons par explorer les algorithmes conçus pour des environnements statiques et ne nécessi-

tant pas d’adaptation, incluant les méthodes optimales et sous-optimales. Nous aborderons ensuite les environ-

nements dynamiques nécessitant de l’adaptation, en distinguant les approches centralisées, semi-centralisées et

décentralisées ; ces dernières pouvant intégrer ou non des mécanismes de coopération. Pour chacune de ces ca-

tégories, nous présenterons des exemples représentatifs afin d’illustrer les principes de fonctionnement propres

à chaque famille de solutions.

Algorithmes d’équilibrage de charge

Environnement statique Environnement dynamique

Optimal Sous-optimal Centralisé Semi-centralisé Décentralisé

Coopératif Non-coopératif

FIGURE 2.6 – Classification algorithmique des méthodes d’équilibrage selon le type d’environnement.

2.3.1 Équilibrage en environnement statique

Cette section est consacrée aux algorithmes conçus pour un environnement statique. Par définition, un tel

environnement se caractérise par un nombre de ressources fixe et connu à l’avance, tout comme leur capacité

de traitement. Dans certains cas, la charge de travail à répartir est elle aussi préalablement déterminée.

Dans ce cadre, plusieurs approches sont envisageables, que l’on peut regrouper en deux grandes catégories :

les méthodes optimales et sous-optimales. Nous nous intéresserons d’abord aux solutions optimales, puis aux

stratégies sous-optimales.

2.3.1.1 Optimalité

L’optimalité des algorithmes d’équilibrage de charge est définie relativement à un critère de performance

spécifique, tel que la minimisation du temps de réponse, la maximisation du débit ou encore la réduction de

28 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

l’écart de charge entre les ressources. Un algorithme dit optimal est formellement conçu pour atteindre la

meilleure performance possible selon le critère retenu.

Ces algorithmes reposent en général sur des méthodes exactes, c’est-à-dire capables de garantir une solu-

tion optimale au problème posé, notamment via de la programmation linéaire. Dans leurs travaux, PINAR et

AYKANAT (2004) recensent et améliorent plusieurs de ces approches, parmi lesquelles on trouve notamment la

programmation dynamique. Celle-ci consiste à décomposer le problème global en sous-problèmes plus simples,

dont les solutions optimales sont ensuite combinées pour obtenir une solution globale.

PINAR et AYKANAT (2004) explorent également des méthodes fondées sur la recherche paramétrique. Ces

approches visent à identifier les valeurs optimales de certains paramètres clés du système (comme la capacité

des ressources ou la charge entrante) afin d’optimiser le comportement général. Enfin, les algorithmes d’amé-

lioration itérative sont aussi étudiés : ces méthodes partent d’une solution initiale, souvent fournie par une

heuristique, qu’elles affinent progressivement via des ajustements successifs.

L’algorithme proposé par ROSS et YAO (1991) illustre bien cette approche d’optimisation globale. Il traite

à la fois l’équilibrage de la charge entre les ressources et l’ordonnancement des tâches au sein de chaque

ressource. L’ordonnancement est modélisé comme un problème de polymatroïde, permettant de déterminer

une fonction de délai moyen propre à chaque ressource. Sur cette base, la répartition de la charge est formulée

comme un problème d’optimisation non linéaire, dont la résolution vise à minimiser le temps de réponse moyen

du système.

De leur côté, TANTAWI et TOWSLEY (1985) s’intéressent également à la minimisation du temps de réponse

moyen, tout en prenant en compte les délais de communication au sein du réseau. Ils proposent deux algo-

rithmes. Le premier, fondé sur une étude paramétrique, analyse l’évolution de la solution optimale en fonction

du temps de communication. Il examine notamment comment les rôles des nœuds (sources, puits, neutres)

changent avec la variation de ce paramètre. Le second, appelé algorithme au point unique, détermine la straté-

gie optimale d’équilibrage pour un ensemble donné de caractéristiques système. Il classe les nœuds selon leurs

propriétés de délai, identifie les groupes sources et puits, et calcule pour chacun la charge à allouer de manière

optimale.

2.3.1.2 Sous-optimalité

La sous-optimalité désigne une classe d’algorithmes capables de produire des résultats satisfaisants, sou-

vent proches de l’optimal, voire dans certains cas optimaux, mais sans garantie formelle d’optimalité. Cette

catégorie englobe un large éventail d’approches, incluant les heuristiques, les métaheuristiques, ainsi que cer-

taines techniques d’apprentissage automatique.

Dans ces approches, certaines bénéficient d’un encadrement théorique partiel : elles possèdent une borne

d’approximation garantissant que la solution obtenue est située à une certaine distance de l’optimum. C’est

notamment le cas des méthodes de List Scheduling (ARABNEJAD & BARBOSA, 2014), qui affectent les tâches

à la ressource la moins chargée au moment de leur arrivée, avec ou sans tri préalable, ou encore des schémas

d’approximation en temps polynomial (Polynomial Time Approximation Scheme) (CHEKURI & KHANNA,

2.3. CLASSIFICATION ALGORITHMIQUE 29

2005).

Les heuristiques constituent une sous-famille importante d’algorithmes sous-optimaux. Elles reposent sur

des règles prédéfinies simples et sont conçues pour offrir des solutions rapides, au détriment de la garantie de

performance optimale. Leur atout principal réside dans leur efficacité computationnelle, ce qui les rend parti-

culièrement adaptées aux contextes contraints en temps ou en ressources. En revanche, leur pertinence dépend

fortement de la qualité de la modélisation du problème et de la connaissance préalable de l’environnement,

nécessaire pour ajuster les règles de décision.

Parmi les heuristiques classiques, on peut citer le tourniquet (HIDAYAT et al., 2020), basé sur une répartition

cyclique des tâches, les algorithmes Min-Min et Max-Min, qui priorisent respectivement les tâches les plus

courtes ou les plus longues, l’affectation aléatoire (AZAR et al., 1994), et l’ordonnancement selon la charge

actuelle (List Scheduling) (ARABNEJAD & BARBOSA, 2014), qui affecte chaque tâche à la ressource la moins

sollicitée à l’instant de sa soumission.

Certaines heuristiques plus élaborées, bien que plus coûteuses en temps de calcul, permettent d’atteindre

des performances nettement supérieures. Ces méthodes, généralement inspirées de la nature, appartiennent

souvent aux métaheuristiques. C’est une classe d’algorithme d’optimisation générale pouvant être adaptée à

n’importe quel problème d’optimisation. On peut notamment citer le recuit simulé (VAN LAARHOVEN &

AARTS, 1987), inspiré du processus de refroidissement des métaux, les algorithmes génétiques (MIRJALILI,

2019), qui simulent les mécanismes de sélection naturelle, les approches par colonies de fourmis (BIRATTARI &

DORIGO, 2000 ; BIRATTARI et al., 2002 ; BLUM, 2005 ; DORIGO et al., 2006) ou par comportement alimentaire

des abeilles (PHAM et al., 2005 ; YUCE et al., 2013), basées sur le comportement collectif des insectes, ou

l’optimisation par essaim de particules (KENNEDY & EBERHART, 1995 ; RAMEZANI et al., 2014).

Dans ce qui suit, nous présentons plusieurs de ces algorithmes. Nous commencerons par le tourniquet et ses

variantes, avant d’aborder plus en détail les approches inspirées par les comportements collectifs, notamment

ceux des colonies de fourmis et des abeilles.

Le tourniquet Le tourniquet (Round Robin) (HIDAYAT et al., 2020) est l’un des algorithmes d’équilibrage

de charge utilisant une heuristique des plus simples. Il repose sur une répartition cyclique des tâches entre les

ressources disponibles. Le répartiteur maintient une liste ordonnée des ressources et distribue successivement

chaque nouvelle tâche à la ressource suivante dans la liste. Une fois la dernière ressource atteinte, l’algorithme

reprend l’itération depuis le début de la liste, d’où le nom de "tourniquet". Ce mécanisme se base sur le principe

du premier arrivé, premier servi.

La Figure 2.7 illustre ce fonctionnement. L’équilibreur reçoit un flux de tâches qu’il répartit entre trois

ressources indexées. À chaque tâche assignée, l’index de la ressource courante est incrémenté ; lorsqu’il atteint

la fin de la liste, il est réinitialisé à zéro.

Cette méthode est particulièrement adaptée à des environnements homogènes et statiques, où les ressources

présentent des capacités similaires et où les tâches sont relativement uniformes. Elle suppose également que

les caractéristiques de la charge soient connues à l’avance, permettant ainsi un dimensionnement adéquat du

système. En revanche, dès que les conditions d’exécution deviennent hétérogènes, que ce soit au niveau des

30 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

Équilibreur
de charge

Res0 Res1 Res2

Tâches

i+ 1 i+ 1

i← 0

FIGURE 2.7 – Schématisation de l’algorithme du tourniquet. L’équilibreur affecte la tâche entrante à la res-
source Resi, i étant incrémenté à chaque affectation de tâche et remis à 0 lorsque toutes les ressources ont été
parcourues.

ressources ou des tâches, l’algorithme montre ses limites. Ne tenant compte ni des performances des ressources

ni des spécificités des tâches, il peut entraîner une surcharge de certains nœuds et une dégradation globale des

performances.

Le tourniquet pondéré Le tourniquet pondéré (Weighted Round Robin) (DEVI & UTHARIARAJ, 2016)

constitue une extension naturelle du tourniquet classique. Son principal apport réside dans la prise en compte

des capacités relatives des ressources lors de la distribution des tâches au cours d’un tour. Le tourniquet clas-

sique peut ainsi être vu comme un cas particulier du tourniquet pondéré, dans lequel toutes les ressources

possèdent une capacité identique.

Dans cette version pondérée, chaque ressource se voit attribuer un poids proportionnel à sa capacité, relati-

vement à la somme des capacités de l’ensemble des ressources. Plus ce poids est élevé, plus la ressource recevra

de tâches durant un tour. Si l’on reprend la schématisation du tourniquet de la Figure 2.7, une ressource Resi

est associée à un poids pi = ci/
∑

ck, où ci est la capacité de la ressource. Par exemple, avec c0 = 1, c1 = 2 et

c2 = 1, les poids respectifs seront p0 = 0,25, p1 = 0,5 et p2 = 0,25. Lors d’un tour, Res1 recevra donc deux

fois plus de tâches que Res0 ou Res2. Le tableau 2.3 illustre cette répartition, et la Figure 2.8 présente l’ordre

d’attribution des tâches suivant : Res0 → Res1 → Res1 → Res2.

i ci pi Tâches par tour (tourniquet pondéré) Tâches par tour (tourniquet)

0 1 0.25 1 1
1 2 0.5 2 1
2 1 0.25 1 1

TABLE 2.3 – Récapitulatif de l’exemple d’application de l’algorithme Weighted Round Robin avec comparai-
son à l’algorithme Round Robin.

Bien que cette méthode tienne compte des capacités pour répartir les charges de manière équitable, elle

présente une inégalité temporelle dans la distribution : tant qu’une ressource n’a pas reçu l’intégralité des tâches

qui lui reviennent selon son poids, l’algorithme continue de lui affecter des tâches sans passer à la ressource

2.3. CLASSIFICATION ALGORITHMIQUE 31

Équilibreur
de charge

Res0 Res1 Res2

tâches

i+ 1

i+ 1

i+ 1

i← 0

FIGURE 2.8 – Schématisation de l’exemple du tourniquet pondéré, où Res1 reçoit deux fois plus de tâches que
les autres ressources pendant le tour.

suivante. Ce comportement peut entraîner une augmentation du temps de réponse, notamment lorsque des

tâches attendent d’être traitées par une ressource fortement pondérée alors qu’une autre, moins sollicitée, est

disponible.

Pour répondre à cette limitation, KATEVENIS et al. (1991) ont introduit une variante appelée tourniquet

pondéré entrelacé (Interleaved Weighted Round Robin), développée initialement dans un contexte matériel.

L’idée principale est d’étaler l’attribution des tâches sur plusieurs cycles, au sein d’un même tour, afin d’assurer

une meilleure répartition temporelle. Le nombre de cycles d’un tour correspond au maximum de tâches à

attribuer à une ressource. Lors du cycle n, l’algorithme ne considère que les ressources devant recevoir au

moins n tâches. Ainsi, toutes les ressources sont parcourues au premier cycle, seules celles ayant un poids

supérieur au deuxième cycle, et ainsi de suite.

La Figure 2.9 illustre ce fonctionnement avec quatre ressources, dont Res1 et Res3 reçoivent deux fois plus

de tâches que les autres. Le tour complet se compose de deux cycles successifs : Res0 → Res1 → Res2 →

Res3, puis Res1 → Res3. L’étude de TABATABAEE et al. (2021) démontre une amélioration significative du

temps de réponse par rapport au tourniquet pondéré classique.

Res0 Res1 Res2 Res3 Res1 Res3

Cycle 1 Cycle 2

Tour de tourniquet

FIGURE 2.9 – Exemple du parcours de quatre ressources par l’algorithme du tourniquet pondéré entrelacé, où
Res1 et Res3 attendent deux fois plus de tâches que Res0 et Res2.

Comme son prédécesseur, le tourniquet pondéré reste adapté à des environnements statiques. Toutefois,

32 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

il s’avère plus pertinent lorsque les ressources sont hétérogènes, car il répartit les charges en fonction des

capacités. Néanmoins, cet algorithme ne prend toujours pas en compte les longueurs des tâches ni les priorités

d’exécution. Bien qu’il constitue une amélioration notable du tourniquet de base, il demeure relativement limité

face à des scénarios plus complexes.

Optimisation par colonies de fourmis L’optimisation par colonies de fourmis (Ant Colony Optimization)

(BIRATTARI & DORIGO, 2000 ; BIRATTARI et al., 2002 ; BLUM, 2005 ; DORIGO et al., 2006) est une méta-

heuristique bio-inspirée conçue pour résoudre des problèmes d’optimisation combinatoire. Elle s’inspire du

comportement collectif observé chez les colonies de fourmis lors de la recherche de nourriture. Dans la nature,

ces insectes laissent derrière eux des traces de phéromones qui guident leurs congénères vers les sources d’ali-

mentation. Les chemins les plus courts, parcourus plus fréquemment, voient leur concentration en phéromones

augmenter, rendant ces trajets plus attractifs. Ce phénomène de communication indirecte, appelé stigmergie

(DORIGO et al., 2000 ; THERAULAZ & BONABEAU, 1999), conduit à l’émergence collective de solutions sa-

tisfaisantes, voire quasi-optimales.

Pour appliquer cette métaheuristique à un problème donné, il est nécessaire de le modéliser sous forme d’un

espace de recherche défini par les paramètres d’une fonction objectif à minimiser. L’objectif de l’algorithme

est de découvrir un ensemble de valeurs des paramètres menant à une solution satisfaisante.

L’espace de recherche est exploré par des fourmis artificielles à travers une structure composée de trois

graphes superposés :

— Le graphe de construction Gc est un graphe complet dont les sommets correspondent à toutes les

valeurs possibles pour chaque paramètre.

— À partir de Gc, on construit le graphe d’état G, qui représente l’ensemble des solutions (partielles ou

complètes). Les sommets de G sont les solutions, tandis que les arêtes définissent les règles de transition

entre elles.

— Enfin, une fonction de représentation r permet de générer un graphe de représentation Gr, abstraction

de G, dans lequel chaque sommet –appelé phantasme– constitue une perception simplifiée d’un état de

G. Comme r est généralement non bijective, plusieurs états peuvent partager un même phantasme, ce

qui réduit significativement la taille du graphe perçu par les fourmis.

Ainsi, les fourmis interagissent avec l’environnement perçu via Gr, où elles déposent des phéromones, tout en

évoluant réellement dans G pour assurer la construction de solutions réalisables.

L’algorithme commence par l’application d’un niveau initial de phéromones τ0 sur tous les sommets de

Gr. Ce paramètre, réglé de manière empirique, joue un rôle crucial dans le comportement de l’algorithme : une

valeur trop élevée peut entraîner une convergence prématurée vers une solution sous-optimale, tandis qu’une

valeur trop faible ralentit l’exploration.

La méthode est un algorithme itératif qui s’exécute jusqu’à ce qu’une condition d’arrêt soit atteinte (nombre

maximal d’itérations, stagnation, ou convergence). Chaque itération se décompose en deux phases principales :

1. Construction des solutions : un ensemble de fourmis est déployé dans Gr. Elles construisent incré-

mentalement des solutions complètes en se déplaçant de sommet en sommet. Le choix de la prochaine

2.3. CLASSIFICATION ALGORITHMIQUE 33

étape est effectué de manière stochastique, influencé à la fois par la quantité de phéromones présentes

et par des informations heuristiques spécifiques au problème (par exemple, une estimation de la qualité

d’un choix local).

2. Mise à jour des phéromones : après que les fourmis ont construit leurs solutions, le graphe subit une

double mise à jour :

— Une évaporation des phéromones existantes, contrôlée par un taux ρ, permet d’éviter une domina-

tion trop rapide de certains chemins et encourage l’exploration continue.

— Une augmentation des phéromones est ensuite réalisée en ajoutant une quantité Q de nouvelles

phéromones, proportionnelle à la qualité des solutions produites. Cette étape renforce les trajectoires

prometteuses et guide les fourmis futures vers les zones potentiellement optimales.

Ce double mécanisme permet d’équilibrer exploration et exploitation, et constitue le principe central de la

stigmergie algorithmique. Il permet à la colonie de converger vers des solutions efficaces sans supervision

centralisée.

Algorithme des abeilles L’algorithme des abeilles (Bees Algorithm) (PHAM et al., 2005 ; YUCE et al., 2013)

est, tout comme l’approche par colonies de fourmis, une métaheuristique bio-inspirée issue de la famille de

l’intelligence en essaim. Il s’inspire du comportement collectif des abeilles à la recherche de nectar, dans

lequel certaines abeilles exploratrices prospectent l’environnement tandis que d’autres exploitent les zones les

plus prometteuses signalées par leurs congénères.

Le principe repose sur une analogie entre l’espace de recherche et un environnement floral à butiner. Chaque

point de cet espace représente une combinaison de paramètres de la fonction objectif à optimiser. Le but de

l’algorithme est de découvrir progressivement les zones les plus “riches en nectar”, c’est-à-dire celles qui

fournissent les meilleures solutions à la fonction objectif.

L’algorithme fonctionne de manière itérative, avec un ensemble fixe d’abeilles réparties entre deux types

de recherche : la recherche globale, pour explorer de nouveaux espaces, et la recherche locale, pour exploiter

les zones déjà identifiées comme prometteuses.

Au début du processus, n sites de recherche sont générés aléatoirement dans l’espace des solutions, chacun

étant occupé par une abeille. Une évaluation de la qualité de chaque site est ensuite réalisée à l’aide de la

fonction objectif. L’algorithme entre alors dans un cycle d’optimisation composé de quatre étapes principales :

1. Sélection des sites prometteurs : parmi les n sites visités, les m meilleurs sont retenus pour une

exploration approfondie. Ces sites sont classés en deux groupes : sites élites (les plus prometteurs) et

sites non-élites (ayant un bon potentiel, mais moindre).

2. Répartition des abeilles : des abeilles supplémentaires sont assignées aux sites sélectionnés pour mener

une recherche locale. Les sites élites reçoivent un plus grand nombre d’abeilles afin de maximiser

l’exploration dans les zones les plus prometteuses.

3. Recherche locale : les abeilles affectées à un site échantillonnent l’environnement immédiat en ex-

plorant légèrement autour de la solution actuelle (modification des paramètres). Parmi les nouvelles

34 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

solutions générées localement, la meilleure est retenue comme représentante du site, tandis que les

autres abeilles sont supprimées (une dynamique inspirée du processus de sélection dans les algorithmes

génétiques (MIRJALILI, 2019)). Si aucune solution meilleure n’est trouvée, le site est considéré comme

un optimum local (potentiellement global) et retiré de la recherche.

4. Recherche globale : les abeilles restantes (non affectées à un site prometteur) effectuent une exploration

aléatoire dans l’espace global, générant de nouveaux sites comme lors de l’initialisation.

Ce processus est répété jusqu’à ce qu’un critère d’arrêt soit atteint, par exemple un nombre d’itérations maximal

ou une amélioration négligeable de la solution.

Grâce à l’alternance entre exploitation (recherche locale) et exploration (recherche globale), l’algorithme

des abeilles parvient à converger vers des solutions de haute qualité tout en évitant de se figer dans des optima

locaux.

2.3.2 Équilibrage en environnement dynamique

Cette section s’intéresse aux algorithmes conçus spécifiquement pour des environnements dynamiques,

dans lesquels la charge de travail est à la fois inconnue a priori et sujette à des fluctuations importantes dans

le temps, tout comme le nombre et les capacités des ressources disponibles. De telles caractéristiques rendent

les approches statiques inefficaces et exigent le recours à des stratégies d’équilibrage de charge adaptatives,

capables de réagir en temps réel aux évolutions du système.

Les solutions présentées sont classées selon leur architecture de prise de décision. Une distinction est opérée

entre les approches centralisées, semi-centralisées et décentralisées. Ces dernières sont à leur tour subdivisées

en deux catégories : les approches coopératives, dans lesquelles les entités échangent des informations pour

coordonner leur comportement, et les approches non coopératives, où chaque entité agit de manière autonome,

sans coordination explicite avec les autres.

Nous commencerons par les algorithmes à décision centralisée, puis aborderons les approches semi-centralisées,

avant de détailler les méthodes décentralisées, en distinguant successivement les variantes coopératives et non

coopératives.

2.3.2.1 Centralisation

Les algorithmes centralisés regroupent l’ensemble des stratégies dans lesquelles la prise de décision est

assurée par une entité unique. Cette entité centrale, souvent qualifiée de contrôleur ou répartiteur, interagit

directement avec l’ensemble des ressources afin d’optimiser la distribution des tâches en fonction de l’état

global du système.

Dans ce contexte, nous nous intéressons aux algorithmes centralisés capables d’adapter leurs décisions en

temps réel face aux variations de charge des ressources et à l’évolution du flux de travail entrant. Parmi ces

algorithmes, les stratégies basées sur des seuils constituent une famille emblématique. De manière générale,

dans ce type d’approche, le répartiteur central s’appuie sur un seuil de charge ou de performance défini pour

2.3. CLASSIFICATION ALGORITHMIQUE 35

chaque ressource. Lorsqu’une ressource atteint ou dépasse ce seuil, elle est considérée comme surchargée, et

les nouvelles tâches sont alors orientées en conséquence vers d’autres ressources.

En complément des approches à seuil, d’autres stratégies exploitent l’état instantané des ressources pour

orienter l’affectation des tâches. C’est notamment le cas des algorithmes fondés sur la politique de la moindre

connexion, qui consistent à attribuer les nouvelles tâches à la ressource présentant le nombre minimal de

connexions actives. D’autres encore prennent en compte des critères combinés tels que le temps de communi-

cation, le temps de traitement ou le coût global d’exécution afin de minimiser le délai ou maximiser l’efficacité

globale.

Dans cette section, nous analysons trois approches représentatives. Tout d’abord, une stratégie basée sur

des seuils adaptatifs capable d’ajuster dynamiquement ses paramètres en fonction des fluctuations du système.

Ensuite, un algorithme qui combine mesures heuristiques locales et évaluation du coût d’équilibrage, pour

décider de manière informée des transferts de charge. Enfin, un module de décision central qui vient s’ajouter

à une stratégie d’équilibrage simple (par exemple, un tourniquet), afin d’optimiser simultanément la répartition

de la charge et l’allocation dynamique des ressources physiques telles que le processeur et la mémoire.

Seuil auto-apprenant L’approche proposée par GOLDSZTAJN et al. (2022) introduit un mécanisme d’équi-

librage de charge reposant sur un seuil dynamique auto-apprenant. L’objectif principal consiste à optimiser

la qualité de service perçue par l’utilisateur en assurant une répartition efficiente des tâches entre plusieurs

groupes de serveurs.

Le principe de cette méthode repose sur l’utilisation d’un seuil ℓ, représentant un niveau de charge à partir

duquel les décisions d’allocation sont orientées. Lorsqu’une tâche arrive dans le système, sa destination est

déterminée selon l’état de charge relatif des groupes, selon trois cas distincts :

— Si au moins un groupe présente une charge strictement inférieure à ℓ, la tâche est assignée aléatoirement

à l’un de ces groupes.

— Si tous les groupes possèdent au moins ℓ tâches, mais que certains en ont exactement ℓ, le choix est

effectué aléatoirement parmi ces derniers.

— Si l’ensemble des groupes ont une charge strictement supérieure à ℓ, la sélection s’effectue de manière

aléatoire parmi l’ensemble des groupes.

Afin de mettre en œuvre ce processus tout en minimisant les coûts de communication et de stockage,

les auteurs proposent une implémentation fondée sur un système de jetons. Chaque groupe peut émettre au

plus deux jetons distincts à destination du répartiteur central : un jeton vert, indiquant une charge strictement

inférieure à ℓ, et un jeton jaune, signalant une charge inférieure à ℓ + 1. Lorsqu’une tâche est soumise au

répartiteur, celui-ci tente en priorité de l’acheminer vers un groupe disposant d’un jeton vert. À défaut, il

sélectionne un groupe muni d’un jeton jaune. Si aucun jeton n’est disponible, le choix s’effectue alors de

manière uniforme au hasard.

Cette architecture présente l’intérêt notable de réduire la quantité d’informations à échanger et de simplifier

la prise de décision du répartiteur, tout en maintenant une répartition efficace de la charge.

Néanmoins, une limite inhérente à cette approche réside dans le fait que le seuil ℓ constitue un paramètre

36 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

sensible à la charge entrante, laquelle peut être inconnue ou sujette à de fortes variations dans des environ-

nements dynamiques. Pour remédier à ce problème, les auteurs introduisent une règle de contrôle adaptative

permettant de faire évoluer le seuil en temps réel, à l’arrivée de chaque tâche. Cette évolution repose sur une

analyse de l’état global du système, en particulier le nombre total de groupes n et leur niveau de charge respec-

tif. Trois scénarios sont envisagés :

— Le seuil est incrémenté de 1 lorsque la quasi-totalité des groupes présentent une charge strictement

supérieure à ℓ+ 1.

— Le seuil est décrémenté de 1 lorsque la proportion de groupes sous-chargés (ayant strictement moins de

ℓ tâches) est inférieure à un seuil α ∈ [0; 1], défini par au préalable.

— Dans les autres situations, le seuil demeure inchangé.

Ce mécanisme d’ajustement permet au système de s’adapter aux variations temporelles de la charge ainsi

qu’aux modifications du nombre de groupes de serveurs disponibles, garantissant un équilibrage performant

face aux dynamiques imprévisibles d’un environnement incertain.

Équilibrage de charge dynamique global centralisé ZAKI et al. (1996) proposent une stratégie d’équili-

brage de charge adaptée à divers niveaux de centralisation, déclinée en quatre variantes. Dans cette section,

nous nous concentrons sur la première approche : l’équilibrage de charge dynamique global centralisé.

Dans ce modèle, le contrôleur central, qui est également une ressource de traitement, interagit directement

avec l’ensemble des ressources du système. La collecte des informations nécessaires à la prise de décision

repose sur un mécanisme de synchronisation déclenchée par la première ressource ayant terminé une tâche. Lors

de cette synchronisation, chaque ressource interrompt momentanément son activité et transmet au contrôleur

un profil de performance correspondant à son taux de traitement (mesuré en nombre d’instructions par seconde)

depuis la dernière synchronisation.

Les auteurs modélisent le coût de synchronisation comme la somme du coût d’une communication un-vers-

tous (de la ressource initiatrice vers toutes les autres) et d’une communication tous-vers-un (des ressources vers

le contrôleur central). Une fois les informations collectées, le contrôleur calcule une nouvelle répartition des

tâches en se basant sur les performances passées pour estimer les performances futures des ressources.

Avant de procéder à la migration des tâches, le contrôleur mène une analyse de rentabilité visant à évaluer

si les gains attendus en termes de performances justifient les coûts associés aux déplacements de tâches. Ce

coût dépend de la quantité de travail à transférer, du nombre de messages échangés et des caractéristiques du

réseau (telles que la latence et la bande passante). Ce mécanisme vise à éviter des réallocations inefficaces,

telles que le déplacement de petites charges sans bénéfice notable ou, à l’inverse, une réorganisation massive

pour un gain marginal.

Le déplacement effectif des tâches n’est déclenché que si la rentabilité estimée dépasse un seuil prédéfini.

Lorsque cette condition est satisfaite, le contrôleur communique à chaque ressource les instructions nécessaires,

spécifiant les tâches à transférer et les destinations correspondantes. Les ressources émettrices envoient alors

directement les données aux ressources réceptrices, qui reprennent leur activité une fois l’ensemble des données

attendues reçues.

2.3. CLASSIFICATION ALGORITHMIQUE 37

Bien que cette stratégie permette d’atteindre une répartition de charge proche de l’optimum, les auteurs

soulignent qu’elle peut entraîner un coût de communication et de synchronisation particulièrement élevé par

rapport à ses variantes plus distribuées. Afin de réduire ces coûts, une variante reposant sur une prise de décision

locale est proposée.

Dans cette approche, le système est subdivisé en sous-groupes de ressources, chacun fonctionnant comme

un système d’équilibrage dynamique autonome. Les ressources appartenant à un même groupe peuvent échan-

ger leurs états et transférer des tâches entre elles, mais aucune communication inter-groupes n’est autorisée.

Chaque groupe est doté de son propre contrôleur central, chargé d’orchestrer localement l’équilibrage de la

charge.

Cette organisation permet de réduire les coûts de communication et de synchronisation. Cependant, elle pré-

sente également certaines limites : l’équilibrage global du système peut s’en trouver affecté. En effet, l’absence

de coordination entre les groupes peut conduire à des déséquilibres où certains groupes demeurent surchargés

tandis que d’autres disposent de ressources sous-utilisées. De plus, la convergence vers une solution équilibrée

peut s’avérer plus lente en comparaison avec la stratégie entièrement centralisée.

Enfin, les auteurs proposent également des variantes entièrement décentralisées de l’algorithme, dont les

principes et le fonctionnement seront examinés dans la section dédiée à la décentralisation.

Module de décision central de répartition de charge Le module de décision central de répartition de charge

(Central Load Balancing Decision Module), tel que décrit par RADOJEVIĆ et ŽAGAR (2011), ne constitue pas

à proprement parler un algorithme d’équilibrage de charge. Il s’agit plutôt d’un composant externe qui vient

s’ajouter à une infrastructure centralisée préexistante afin d’optimiser dynamiquement l’équilibrage de charge

en réponse à l’état réel du système.

Ce module s’inscrit néanmoins pleinement dans le paradigme de la répartition centralisée, dans la mesure où

il agit en tant que contrôleur centralisé et que ses décisions influencent directement la distribution des requêtes

à travers le système. Sa particularité réside dans sa capacité à interagir avec l’ensemble des composants du

système pour collecter des données, analyser leur état, et orchestrer des ajustements de manière proactive.

Afin de remplir sa fonction, le module surveille divers indicateurs pertinents, tels que le trafic au niveau

des équilibreurs ainsi que l’utilisation des ressources matérielles, incluant serveurs physiques, processeurs,

mémoire vive, etc. À partir des données collectées, il procède à des calculs internes, destinés à évaluer les

déséquilibres potentiels ou réels. Il peut ensuite influencer les décisions des équilibreurs en leur transmettant

des directives spécifiques.

Par exemple, dans le cas d’un algorithme de type tourniquet, le module peut demander à exclure temporaire-

ment une ressource surchargée de la rotation, jusqu’à ce qu’elle retrouve un état normal. Il surveille également

l’expérience utilisateur, mesurée principalement par le temps de réponse global d’une requête (comprenant

l’envoi de la tâche, son traitement, et le retour du résultat à l’utilisateur). Une augmentation significative de ce

temps de réponse constitue un indicateur de dysfonctionnement, potentiellement lié à une surcharge ou à une

latence réseau. En réaction, le module peut réorienter dynamiquement la charge vers d’autres ressources plus

disponibles afin de restaurer la qualité de service.

38 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

La Figure 2.10 illustre le fonctionnement général d’un système intégrant un module de décision central.

Ressources

Équilibreur
de charge

Res0 Res1 Res2

Module

Collecte
données

Influence

Tâches

FIGURE 2.10 – Schématisation d’un système doté d’un module de décision central d’équilibrage de charge.

Bien que l’action du module s’exerce en premier lieu sur les équilibreurs de charge, son champ d’interven-

tion s’étend également aux ressources elles-mêmes, que l’on désignera ici par le terme de serveurs virtuels. Un

serveur virtuel représente une instance logicielle capable de traiter des requêtes, et s’exécute généralement sur

un serveur physique, lequel peut héberger plusieurs instances virtualisées identiques. Ce modèle est conforme

à l’architecture web semi-centralisée décrite en Section 2.1.2.2.

Grâce à la virtualisation, le module peut migrer dynamiquement des instances de serveurs virtuels d’un

serveur physique à un autre. Par ailleurs, il est en mesure de réallouer les ressources matérielles (processeur,

mémoire, etc.) entre les différentes instances selon les besoins observés.

La Figure 2.11 présente un exemple de migration. Le système comprend un module de décision centralisé,

un équilibreur de charge, ainsi que deux serveurs physiques, notés SPA et SPB . Chacun héberge deux serveurs

virtuels : SVA1, SVA2, SVB1 et SVB2. Lorsque SVA1 subit une dégradation de performance, le module dé-

cide de migrer SVA2 vers SPB , dont les ressources sont suffisantes. Il procède ensuite à une réallocation des

ressources de SPA au bénéfice exclusif de SVA1, tandis que les ressources de SPB sont réparties entre trois

instances : SVB1, SVB2 et SVA2 (désormais migré).

2.3.2.2 Semi-centralisation

La semi-centralisation désigne les stratégies d’équilibrage de charge combinant des éléments de prise de dé-

cision centralisée et décentralisée, dans l’objectif de tirer parti des avantages respectifs de ces deux approches.

Ce type de paradigme repose le plus souvent sur une organisation hiérarchique de la structure décisionnelle :

le système est alors composé de plusieurs contrôleurs centraux, chacun responsable d’un sous-groupe de res-

sources ou de contrôleurs, formant une arborescence logique jusqu’aux unités de calcul. Dans la majorité des

cas, cette hiérarchie est préétablie. Toutefois, certains travaux, comme celui de SIOUTAS et al. (2022) avec le

D³-Tree, proposent des mécanismes de maintien et d’adaptation dynamique de cette structure.

Les objectifs des stratégies hiérarchiques sont variés. Certaines cherchent à équilibrer la charge de travail

entre les ressources, tandis que d’autres visent à répartir équitablement les ressources entre différentes branches

2.3. CLASSIFICATION ALGORITHMIQUE 39

SPA SPB

Équilibreur
de charge

SVA1

SVA2

SVB1

SVB2

SVA2

Module

Migration

Collecte
données

Influence

FIGURE 2.11 – Exemple de migration du serveur virtuel A2 depuis le serveur physique A vers le B par le
module de décision central d’équilibrage de charge en réponse à une latence de A1.

de l’arbre pour faciliter la distribution. Enfin, certaines approches combinent ces deux objectifs. À ce titre,

l’étude menée par PRIYA et GNANASEKARAN (2017) propose une classification de solutions couvrant ces

différentes configurations, avec, entre autres, des structures à deux (MEGHARAJ & MOHAN, 2013) ou trois

niveaux (S.-C. WANG et al., 2010).

Dans cette section, nous nous concentrerons particulièrement sur le D³-Tree, une solution capable de main-

tenir dynamiquement un arbre binaire parfait servant de surcouche de routage des requêtes vers les ressources

situées en feuilles. Nous aborderons ensuite une stratégie d’équilibrage paresseuse, qui ne déclenche la redis-

tribution des tâches que lorsqu’un déséquilibre significatif est détecté à une échelle locale ou globale.

Arbre dynamique, distribué et déterministe L’arbre dynamique, distribué et déterministe (Dynamic Dis-

tributed Deterministic Tree, D³-Tree) (SIOUTAS et al., 2022) est une structure de données distribuée qui agit

comme une surcouche de contrôle au réseau de communication d’un système décentralisé. Son objectif est de

structurer et restreindre les communications entre ressources afin d’optimiser les transmissions d’information.

Ainsi, même si le réseau physique sous-jacent est pleinement connecté, la surcouche limite les communications

aux liens jugés pertinents.

Dans le cadre des algorithmes étudiés, la surcouche prend la forme d’un arbre binaire parfait, où chaque

nœud dispose exactement de deux fils et toutes les feuilles se trouvent à une même profondeur, comme illustré

à la Figure 2.12 pour un arbre de hauteur 3. Le D³-Tree fournit une méthode distribuée permettant de main-

tenir dynamiquement cette structure d’arbre parfait au sein d’un réseau décentralisé. Celui-ci sert de canal de

routage des tâches vers les feuilles, lesquelles, à leur tour, répartissent les tâches parmi les ressources qu’elles

regroupent. La structure est hiérarchique, dynamique et auto-gérée, avec des algorithmes déterministes garan-

tissant une complexité maximale de O(log(N)) pour toute opération, où N est le nombre total de nœuds.

40 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

FIGURE 2.12 – Exemple d’arbre binaire parfait de hauteur 3.

Pour appréhender le fonctionnement du D³-Tree, il est nécessaire de présenter au préalable son prédéces-

seur, le D²-Tree (Deterministic Decentralized Tree) (BRODAL et al., 2015), dont il constitue une extension.

Le D²-Tree a été conçu pour l’organisation et la recherche de données dans des réseaux de type pair-à-

pair. Il repose sur une architecture à deux niveaux. Le niveau supérieur est un arbre binaire parfait de taille

log(N), destiné à accélérer les recherches. Le niveau inférieur se compose de conteneurs (“buckets”), c’est-

à-dire d’ensembles de log(N) nœuds regroupés autour d’une feuille représentante dans l’arbre supérieur. Les

conteneurs sont des listes doublement chaînées, leur premier élément étant connecté directement à la feuille

correspondante.

Chaque nœud de l’arbre maintient plusieurs types de connexions :

— Vers son père et ses enfants ;

— Vers ses voisins dans un parcours infixe (gauche, racine, droite) ;

— Vers la feuille la plus à gauche et la plus à droite de son sous-arbre ;

— Vers des nœuds du même niveau avec des sauts exponentiels (2n-ièmes voisins à gauche et à droite).

Ces connexions respectent des propriétés strictes : par exemple, si deux nœuds sont connectés, leurs pères le

sont également, et de même pour leurs frères gauches et droits.

La plage de données gérée par un nœud correspond à l’union des plages de ses descendants. La navigation

dans l’arbre se fait donc efficacement par subdivisions successives (hiérarchie).

L’arbre supporte diverses opérations décentralisées de maintien : lorsqu’un nouveau nœud rejoint le réseau,

il est intégré à un conteneur existant via une redirection effectuée par un nœud arbitraire. Lorsqu’un nœud est

supprimé, il est remplacé par l’un de ses voisins infixes. Les tables de routage sont mises à jour dynamiquement

pour conserver la cohérence structurelle.

Le D²-Tree assure également un équilibrage de la charge grâce à des mécanismes de pondération. Chaque

nœud calcule un poids correspondant à la charge que doit gérer son sous-arbre, et un rééquilibrage est déclenché

si l’écart de densité (ratio entre le poids d’un nœud et la taille cumulée des conteneurs de son sous-arbre) entre

deux frères dépasse un certain seuil. Par ailleurs, un système d’extension et de contraction ajuste la hauteur de

l’arbre en fonction de la taille des conteneurs.

Ainsi, cette structure parvient à combiner centralisation de la recherche et décentralisation du maintien,

assurant une répartition équilibrée de la charge tout en tolérant une certaine dynamique dans le réseau. Ce-

pendant, le D²-Tree présente une fragilité importante face aux défaillances, notamment si une feuille tombe en

2.3. CLASSIFICATION ALGORITHMIQUE 41

panne : le conteneur qu’elle représente devient alors inatteignable. C’est précisément cette faiblesse que vient

corriger le D³-Tree.

Dans le D³-Tree, chaque feuille étend ses connexions aux conteneurs des feuilles référencées dans sa table

de routage (ses 2n-ièmes voisins). Ainsi, un conteneur reste accessible même si sa feuille représentante est

défaillante, et l’arbre peut être réorganisé pour exclure dynamiquement les nœuds défaillants.

SIOUTAS et al. (2022) démontrent que cette amélioration renforce considérablement la robustesse du sys-

tème sans pour autant dégrader ses performances par rapport à la structure initiale.

Équilibrage de charge périodique hiérarchique L’équilibrage de charge périodique hiérarchique (Periodic

Hierarchical Load Balancing) proposé par ZHENG et al. (2011) a été conçu pour améliorer les performances des

supercalculateurs de grande échelle. Cette approche vise à combiner les avantages des stratégies centralisées et

distribuées, tout en limitant leurs inconvénients : la faible scalabilité des premières et les coûts computationnels

élevés des secondes.

Le système repose sur une division des ressources en groupes autonomes, eux-mêmes organisés en une

hiérarchie arborescente. Chaque groupe fonctionne de manière indépendante selon un schéma centralisé lo-

calement, tout en s’insérant dans une structure globale décentralisée. Ainsi, chaque nœud de l’arbre, qualifié

de chef de groupe (group leader) par les auteurs, est responsable de l’équilibrage de charge dans son propre

sous-arbre, indépendamment des autres branches. Comme évoqué en Section 2.1.2.2, cette approche permet

de réduire les ressources mémoire et le temps d’exécution requis pour réaliser l’équilibrage, chaque chef de

groupe ne gérant qu’un sous-ensemble limité de ressources.

Le terme “périodique” renvoie au fait que l’équilibrage n’est pas continu, mais effectué ponctuellement,

lorsque cela est jugé nécessaire. Un rééquilibrage est déclenché si un déséquilibre de charge est détecté au sein

d’un sous-arbre. La détection repose sur une communication ascendante de la charge entre les nœuds : chaque

chef de groupe agrège les informations provenant de ses enfants pour évaluer l’état global de son sous-arbre.

Un rééquilibrage est initié lorsque la charge d’un enfant diverge significativement de la moyenne du groupe,

à condition que le gain de performances attendu soit supérieur au coût de l’opération (collecte des données,

exécution de l’algorithme, migration des tâches).

Pour estimer ce gain, l’algorithme s’appuie sur une forme de persistance des tâches : bien que leur durée ou

leur complexité exacte soit inconnue, les tâches ont tendance à avoir une structure ou un comportement similaire

au cours du temps. Le rééquilibrage s’appuie alors sur un mécanisme de jetons contenant les métadonnées des

tâches, qui sont redistribués de manière centralisée par chaque chef de groupe. Les tâches elles-mêmes ne sont

déplacées qu’une fois la redistribution des jetons complétée, ce qui permet de limiter le coût de communication.

Grâce à cette architecture hiérarchique, l’approche permet de réaliser des ajustements localement, tout en

conservant la capacité à réagir globalement à des déséquilibres plus étendus. Elle illustre ainsi un compromis

efficace entre centralisation et décentralisation, dans le but d’assurer un équilibrage de charge scalable, flexible

et performant.

42 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

2.3.2.3 Décentralisation coopérative

La décentralisation coopérative regroupe les stratégies déployées dans des environnements distribués où

l’ensemble des entités du système collaborent activement pour assurer l’équilibrage de charge. Ce mode de

fonctionnement repose sur le partage d’informations entre les ressources, telles que leur niveau de charge, leur

capacité de traitement, ou encore les métadonnées associées aux tâches.

En fonction du mécanisme de diffusion adopté, les ressources peuvent disposer d’informations locales,

issues de leur voisinage immédiat, ou d’informations globales, lorsque la propagation de l’information est

conçue pour couvrir l’ensemble du système. Sur la base de ces données, chaque ressource est en mesure de

prendre des décisions d’équilibrage de manière autonome, sans supervision centralisée.

La communication entre ressources peut s’opérer selon plusieurs modalités :

— par communication indirecte ou environnementale, où les entités modifient leur environnement commun

(par exemple via des dépôts de traces ou de signaux) pour influencer les décisions futures ;

— par diffusion structurée de l’information, à l’aide de protocoles de communication dédiés ;

— ou encore par partage direct entre pairs, sous forme d’échanges explicites de données.

Ces mécanismes de partage peuvent aboutir soit à un consensus global, coordonnant l’ensemble des décisions,

soit à des prises de décisions locales, potentiellement indépendantes mais cohérentes grâce à la coopération.

Dans la suite, nous nous intéresserons à trois algorithmes représentatifs de cette approche : l’optimisation

par colonies de fourmis et le comportement coopératif des abeilles appliqués à l’équilibrage de charge en

temps réel par communication environnementale, ainsi qu’une version distribuée de l’algorithme d’équilibrage

dynamique centralisé présenté précédemment, basé sur l’obtention d’un consensus global par communication

directe.

Optimisation par colonies de fourmis en temps réel L’optimisation par colonies de fourmis, que nous

avons étudiée précédemment, est une méthode d’optimisation au sens strict. Cependant, elle a été adaptée à des

fins d’équilibrage de charge décentralisé en temps réel (KATYAL & MISHRA, 2013 ; LI et al., 2011 ; LIU et al.,

2006).

Le problème à résoudre est ici l’équilibrage des tâches sur les ressources d’un système décentralisé. Ce

système constitue l’espace exploratoire des fourmis : chaque ressource représente une solution potentielle pour

le dépôt d’une tâche. Les fourmis servent alors de “véhicule” aux tâches, qu’elles déplacent de manière sto-

chastique dans le système. Le déplacement est influencé non seulement par les phéromones déposées, mais

également par des informations heuristiques locales, telles que la capacité de la ressource, les tâches en attente

ou l’état de charge des ressources voisines.

Les fourmis tendent à se diriger vers les ressources les plus susceptibles de traiter rapidement leur tâche,

c’est-à-dire celles faiblement chargées ou plus performantes. L’exploration d’une fourmi prend fin dès qu’une

condition liée à la ressource courante est remplie, par exemple lorsque sa charge est inférieure à celle des

ressources voisines. Elle affecte alors sa tâche à cette ressource, puis dépose des phéromones sur le chemin

emprunté. Comme dans l’algorithme d’origine, ces phéromones s’évaporent progressivement. Une fois leur

2.3. CLASSIFICATION ALGORITHMIQUE 43

tâche délivrée, les fourmis disparaissent.

Cette communication indirecte via les phéromones permet aux tâches d’atteindre dynamiquement la res-

source la plus adaptée, et produit une auto-organisation coopérative du système. L’évaporation des phéromones

et l’utilisation d’informations heuristiques locales assurent à l’algorithme une capacité d’adaptation aux varia-

tions de charge dans le système.

Une autre approche, complémentaire, vise à optimiser les communications entre ressources dans un en-

vironnement distribué dynamique, afin d’améliorer la migration des tâches. Les travaux de CARDON et al.

(2006) et DUTOT (2005) proposent un algorithme bio-inspiré appelé AntCO², qui combine optimisation par

colonies de fourmis et mécanismes de compétition. L’objectif est de concilier minimisation des communica-

tions et équilibrage de charge, sans recourir à une fonction objectif explicite. L’organisation émerge alors de

manière autonome.

Le système est modélisé sous forme de graphe dynamique, où les sommets représentent les ressources et

les arêtes les communications. Chaque sommet constitue une colonie identifiée par une couleur. Des fourmis

partent de leur colonie et déposent des phéromones colorées le long de leur chemin. La quantité de phéromones

est déterminée dynamiquement et celles-ci s’évaporent avec le temps. La couleur dominante des phéromones

présentes sur les arêtes d’un sommet définit sa propre couleur.

Lorsqu’une fourmi se déplace, elle privilégie les arêtes où la concentration de phéromones de sa propre

couleur est la plus élevée. Si cette concentration est trop faible, la fourmi meurt et une nouvelle naît ailleurs

dans le graphe (mécanisme de “mort et éclosion”). La compétition entre colonies conduit à une agrégation des

ressources communiquant intensivement, qui tendent à adopter la même couleur. Cette structuration dynamique

du graphe favorise la migration optimale des tâches tout en réduisant les communications.

L’algorithme des abeilles en temps réel L’algorithme des abeilles, présenté auparavant comme une méthode

d’optimisation stricte, a également été adapté à l’équilibrage de charge décentralisé en temps réel. La version

adaptée, nommée butinage des abeilles (Honeybee Foraging) (KATYAL & MISHRA, 2013 ; RANDLES et al.,

2010 ; SESUM-CAVIC & KÜHN, 2010a, 2010b), modélise chaque ressource (nœud) du système sous forme

de fleur (file d’attente des tâches) et de ruche (système de calcul local). Les fleurs contiennent du nectar (les

tâches), que les abeilles transfèrent afin d’équilibrer la répartition entre les ruches, qui les traiteront ensuite.

Chaque ruche dispose de trois types d’abeilles : les butineuses (ou exploratrices), les suiveuses et les re-

ceveuses. Ces dernières modélisent le traitement local du nectar. Les butineuses explorent le système pour

identifier une ruche partenaire avec laquelle échanger du nectar. Une fois la cible identifiée, les suiveuses réa-

lisent le transfert de tâches entre les ruches.

Le déclenchement de la recherche d’une ruche partenaire dépend d’une politique libre. Il peut s’agir,

par exemple, d’un déclenchement par les nœuds surchargés, sous-chargés, ou encore en prévention par ceux

proches de la surcharge. En fonction de cette politique, les cibles seront choisies parmi les nœuds présentant

un état opposé à celui du nœud initiateur.

Lors de leur exploration, les butineuses choisissent leur direction à l’aide d’une règle de transition d’état

Pij , où i et j désignent respectivement leur position actuelle et une destination possible. Cette règle, intro-

44 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

duite par WONG et al. (2008), s’inspire du comportement naturel des abeilles qui effectuent une “danse” pour

indiquer les zones les plus riches en nectar (BIESMEIJER & SEELEY, 2005). Une butineuse ayant trouvé un par-

tenaire pertinent retourne à sa ruche et en partage les caractéristiques : qualité du partenaire, chemin emprunté,

distance, état des nœuds visités.

À chaque visite, la butineuse évalue la convenance du nœud rencontré via une fonction δ(x), où x est

une mesure de l’état du nœud. Selon SESUM-CAVIC et KÜHN (2010b), cette évaluation peut être donnée par

x = cp/p
1−ch , où cp est la complexité des tâches, p la puissance de calcul, et ch la charge du nœud. Plus x est

proche de 1, plus le partenaire est considéré comme adéquat.

La butineuse calcule ensuite une valeur de fitness f(x) = δ(x)
distance , représentant le rapport entre la qualité

du partenaire et le coût d’accès. Si cette valeur est élevée par rapport à la fitness moyenne de la ruche (fruche),

la butineuse recrute des suiveuses pour transférer des tâches. Elle influence également les explorations futures.

En revanche, si sa fitness est faible, elle peut devenir suiveuse elle-même.

Ce mécanisme d’exploration, d’évaluation et de recrutement induit une auto-organisation efficace du sys-

tème. Il permet une répartition dynamique des charges, adaptée aux capacités et aux besoins des nœuds à tout

moment.

Équilibrage de charge dynamique global distribué Nous nous intéressons à présent à la version décentra-

lisée de l’équilibrage de charge dynamique introduite par ZAKI et al. (1996), précédemment présentée dans la

section consacrée aux algorithmes centralisés. Le principe fondamental de l’algorithme demeure identique, à

l’exception notable que le contrôleur central est ici répliqué sur l’ensemble des ressources.

Lors du déclenchement d’une synchronisation, qui survient dès qu’une ressource termine une tâche, chaque

ressource diffuse son profil de performance à l’ensemble des autres. Le coût de synchronisation se compose

alors d’une communication un-à-tous (déclenchement de la synchronisation) suivie d’une communication tous-

à-tous (diffusion des profils de performance entre toutes les ressources). Chaque ressource, disposant de la vue

complète de l’état du système, peut ainsi calculer localement une nouvelle distribution des tâches.

Si le bénéfice escompté de la redistribution des tâches excède le coût de communication associé au transfert

des données, alors l’équilibrage est effectivement déclenché. Chaque ressource détermine son rôle à partir

de la nouvelle distribution : une ressource identifiée comme émettrice (c’est-à-dire disposant d’un excédent

de charge) transfère directement ses tâches excédentaires à une ressource réceptrice (dont la charge cible est

supérieure à sa charge actuelle).

Cette approche repose donc sur un partage globalisé de l’information et une coopération entre les res-

sources, impliquant une interconnexion complète du réseau. Un tel modèle entraîne un coût communicationnel

potentiellement élevé, notamment dans les systèmes de grande taille. Cependant, les auteurs soulignent que

cette solution offre, dans la plupart des cas, les meilleures performances en termes d’équilibrage et de temps de

réponse, comparée à la version centralisée.

À l’instar de la stratégie centralisée, les auteurs proposent également une seconde variante décentralisée.

Celle-ci reprend le même mécanisme, mais appliqué au sein de groupes de ressources fermés. Ainsi, chaque

groupe procède à un équilibrage interne sans coordination avec les autres. Bien que cette méthode permette

2.3. CLASSIFICATION ALGORITHMIQUE 45

de réduire les coûts de communication, elle reste vulnérable aux déséquilibres globaux induits par l’absence

d’échanges inter-groupes, de la même manière que pour sa version centralisée en groupes.

2.3.2.4 Décentralisation non-coopérative

Les algorithmes décentralisés non coopératifs forment une classe de stratégies dans laquelle aucune co-

ordination explicite n’est établie entre les ressources du système. Les communications, lorsqu’elles existent,

sont minimales ou strictement locales, ce qui rend les décisions d’équilibrage entièrement autonomes et indé-

pendantes. Dans la majorité des cas, chaque ressource prend ses décisions en se basant exclusivement sur des

informations locales : son niveau de charge, sa file d’attente, ou son état d’inactivité.

Cette approche se retrouve notamment dans plusieurs mécanismes :

— les mécanismes de vol de travail (work stealing), dans lesquels une ressource inactive initie elle-même

le transfert en récupérant du travail depuis une autre ;

— les mécanismes de partage de travail (work sharing), qui au contraire délèguent automatiquement les

nouvelles tâches vers d’autres ressources dès leur arrivée, sans attendre une demande ou une concerta-

tion ;

— les algorithmes à seuil, où les tâches en excès sont transférées vers d’autres ressources, soit de manière

aléatoire, soit vers des nœuds dédiés appelés puits (sinks), comme nous le verrons plus loin.

Dans ces systèmes, la sélection de la ressource cible repose fréquemment sur un sondage aléatoire du

voisinage, sans garantie de charge optimale, mais avec l’objectif de réactivité et de simplicité.

Dans la suite, nous étudierons trois algorithmes représentatifs de cette approche : la stratégie d’équilibrage

par vol de travail, un échantillonnage aléatoire biaisé, proposant un mécanisme de partage de tâches intelligent,

et enfin une politique de déchargement distribuée fondée sur un seuil local dynamique.

Équilibrage par vol de travail Le vol de travail (work stealing) (BLUMOFE & LEISERSON, 1999) est un

algorithme décentralisé initialement introduit pour le calcul multi-threadé dans le cadre de la parallélisation

intra-processeur, c’est-à-dire entre les différents cœurs d’un même processeur. Le principe est simple : lors-

qu’un cœur de processeur a épuisé sa pile de threads (tâches ou sous-tâches parallélisables), il tente de voler du

travail à un autre cœur encore actif.

Pour ce faire, chaque cœur maintient une structure de données appelée file prête (ready deque), qui fonc-

tionne comme une file à double extrémité : les nouveaux threads sont ajoutés par le bas, un cœur retire les

threads à traiter également par le bas, tandis que les autres cœurs peuvent voler un thread par le haut de cette

file.

Le traitement des threads suit trois comportements principaux :

— Création de sous-thread : le thread courant est replacé en bas de la file et le nouveau thread est exécuté

immédiatement.

— Fin du thread : le cœur récupère le thread suivant dans sa file, ou initie un vol si elle est vide.

— Blocage du thread : il est temporairement mis de côté, appliquant le comportement de fin de thread, et

réinséré en bas de la file une fois débloqué.

46 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

Lorsqu’un cœur devient inactif, il tente de voler un thread à un autre cœur, choisi uniformément au hasard.

S’il trouve une victime ayant une file non vide, il prend le thread le plus en haut. Sinon, il sélectionne un autre

cœur et recommence. Ce mécanisme implique une interconnexion complète entre les ressources du système.

Ce modèle présente de bonnes performances et réduit le nombre de migrations de tâches comparé à des

stratégies comme le partage de travail (work sharing), où les threads sont immédiatement migrés dès leur créa-

tion. Le vol de travail n’opère des transferts que lorsqu’ils sont strictement nécessaires, c’est-à-dire lorsqu’une

ressource devient inactive.

Ce modèle a été étendu aux environnements distribués, notamment par K. WANG et al. (2014), pour s’adap-

ter à des applications à fort volume de données. Dans ces contextes, le simple vol de tâches pose un nouveau

défi : la localisation des données. Déplacer une tâche peut impliquer un transfert massif de données, ce qui peut

annuler les bénéfices de l’équilibrage de charge.

Pour pallier ce problème, les auteurs introduisent un vol de travail intelligent. Chaque nœud dispose désor-

mais de deux files : une liste locale, réservée aux tâches devant être exécutées localement en raison du poids de

leurs données, et une liste partageable, contenant les tâches à faible empreinte de données, donc transférables à

moindre coût.

Lorsqu’une tâche arrive sur un nœud, celui-ci estime le coût de transfert des données associées. Si ce coût

est inférieur à un seuil t, la tâche est placée dans la liste partageable. Sinon, elle est soit traitée localement, soit

redirigée vers un autre nœud mieux placé selon la localisation des données.

Le choix de la victime n’est plus purement aléatoire : un nœud inactif (voleur) parcourt un sous-ensemble

aléatoire de nœuds et choisit celui ayant le plus de tâches partageables. Un mécanisme de temporisation adap-

tative est aussi introduit : plus un nœud échoue à voler, plus il attend avant de réessayer. En cas de succès,

l’intervalle entre les tentatives est réinitialisé à une valeur faible.

Une politique de répartition flexible et sensible à la localité des données permet aux nœuds de rééquilibrer

leurs files en cas de surcharge. Un nouveau seuil tt est défini comme temps maximal d’exécution acceptable

pour la liste locale. Le temps d’exécution de la liste est estimé par rapport au débit (tâches par seconde) passé

du nœud. Si l’estimation dépasse ce seuil, les tâches du bas de cette file sont déplacées vers la liste partageable,

permettant leur redistribution.

Enfin, un système de stockage clé-valeur distribué est utilisé pour partager entre tous les nœuds les méta-

données des tâches, incluant leurs dépendances et l’emplacement de leurs données.

Échantillonnage aléatoire biaisé L’échantillonnage aléatoire biaisé (Biased Random Sampling) (KATYAL

& MISHRA, 2013 ; RAHMEH et al., 2008 ; RANDLES et al., 2010) repose sur une marche aléatoire dans un

graphe virtuel représentant les ressources du système. Il vise à équilibrer les charges tout en structurant les

communications de manière décentralisée et dynamique.

Le système est modélisé comme un graphe orienté dont les sommets représentent les ressources. Ce graphe

est initialisé aléatoirement. Le degré entrant d’un sommet reflète sa capacité initiale : plus une ressource est

puissante, plus elle possède d’arêtes entrantes. Les arêtes sortantes sont déterminées indirectement, selon la

construction des autres arêtes entrantes. Le degré entrant évolue au fil du temps et finit par refléter la disponi-

2.3. CLASSIFICATION ALGORITHMIQUE 47

bilité actuelle de la ressource.

Chaque ressource n’a connaissance que de son voisinage immédiat (entrées et sorties), ce qui permet une

gestion locale du graphe, par exemple via une table de routage.

Lorsqu’une tâche arrive, la ressource déclenche une marche aléatoire à travers le graphe. À chaque étape,

un voisin est choisi aléatoirement via une arête sortante du sommet courant. La marche se limite à w = log(n)

sauts, où n est le nombre total de ressources. Une fois la marche terminée, la tâche est affectée à la ressource

ayant la meilleure disponibilité (c’est-à-dire le degré entrant le plus élevé) parmi celles visitées. Ce choix

constitue le biais par rapport à un échantillonnage aléatoire simple.

Pour refléter cette affectation, la ressource cible supprime une de ses arêtes entrantes, réduisant ainsi sa

disponibilité future. Une fois la tâche traitée, elle recrée une arête entrante depuis la ressource qui avait initié

la marche. Cela augmente sa disponibilité et sa probabilité d’être sélectionnée à nouveau.

Ce modèle d’adaptation du graphe, combiné au biais dans la sélection des ressources, permet une auto-

organisation du système en fonction des charges. Il pourrait cependant être amélioré par l’introduction d’autres

critères de sélection : capacité réelle, géographie du réseau (latence), ou en le couplant avec un mécanisme de

clustering actif tel que proposé par SAFFRE et al. (2009), afin de regrouper les services similaires et optimiser

encore les parcours aléatoires.

Politique de déchargement distribuée basée sur un seuil La politique de déchargement distribuée basée

sur un seuil (Decentralized Threshold-based Offloading Policy), proposée par QIN et al. (2021, 2023a, 2023b),

s’inscrit dans le contexte du cloud computing mobile. L’architecture du système repose sur une hiérarchie

composée de dispositifs mobiles à capacité de calcul limitée, susceptibles de recevoir des charges de travail, et

d’un ensemble de serveurs mutualisés disposant de ressources computationnelles substantielles.

Cette stratégie vise à décharger dynamiquement les tâches des appareils mobiles vers les serveurs, en parti-

culier lorsque les premiers sont en situation de surcharge. Chaque appareil mobile prend de manière autonome

la décision de déléguer ou non une tâche, en se fondant sur un seuil propre maintenu localement. Deux méca-

nismes de mise à jour de ce seuil sont proposés, tous deux validés à la fois théoriquement et empiriquement

(via des simulations), comme étant efficaces en termes de performances globales du système.

La première méthode, dite de mise à jour distribuée du seuil (Distributed Threshold Update), repose sur une

combinaison de données locales propres à chaque appareil et d’une estimation globale de l’état des serveurs. Les

données locales incluent, entre autres, la longueur de la file d’attente, la latence liée au déchargement de tâches,

ainsi que la consommation énergétique. À chaque itération, le groupe de serveurs calcule une estimation de son

taux d’occupation global, fondée sur les seuils reçus des appareils, puis diffuse cette information à l’ensemble

des dispositifs mobiles. Ces derniers l’intègrent, conjointement avec leurs propres données locales, dans un

problème d’optimisation visant à déterminer le seuil de déchargement qui minimise leur coût opérationnel. Ce

processus est itératif et se poursuit jusqu’à ce que la variation entre deux estimations successives de l’occupation

des serveurs soit inférieure à une tolérance ϵ. L’objectif de cet algorithme est d’atteindre un équilibre distribué,

dans lequel aucun appareil n’a intérêt à modifier unilatéralement son seuil.

La seconde approche, nommée mise à jour itérative du seuil (Iterative Threshold Update), suit un principe

48 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

analogue, mais introduit une méthode d’optimisation incrémentale. Elle consiste à ajuster progressivement le

seuil de déchargement dans le but de minimiser une fonction de coût propre à chaque appareil. Cette fonction

combine le temps de traitement local, le coût d’utilisation des serveurs cloud, et l’état estimé du système. L’oc-

cupation des serveurs est inférée à partir des seuils des appareils à travers une probabilité de déchargement,

elle-même dérivée du taux d’arrivée des tâches et de la longueur moyenne des files d’attente. L’algorithme

commence par une phase d’optimisation gourmande, visant une amélioration rapide, suivie d’ajustements in-

crémentaux (+1 ou -1 sur le seuil) réalisés à chaque itération. Ce processus se poursuit jusqu’à l’atteinte d’un

critère d’arrêt prédéfini, tel qu’un nombre fixe d’itérations ou la stabilisation du seuil.

En définitive, cette politique établit un schéma de déchargement totalement décentralisé, où chaque appareil

prend ses décisions localement, sans communication directe avec les autres dispositifs, ni coordination expli-

cite entre eux. Le seul échange d’information transite via les estimations globales fournies par le groupe de

serveurs (qui ne prend aucune décision), garantissant ainsi une scalabilité élevée du système et une réduction

substantielle de la surcharge de communication.

2.4 L’auto-organisation pour de la répartition dynamique

L’auto-organisation est un phénomène très présent dans les systèmes naturels, et plus largement dans les

systèmes complexes (BOOLCHAND et al., 2005 ; HEYLIGHEN, 2009a, 2009b ; ISAEVA, 2012 ; LEVIN, 2005).

Ces systèmes sont souvent décrits comme se situant dans un état hors de l’équilibre (PRIGOGINE, 1978), po-

tentiellement dans certains cas au bord du chaos, où une perturbation minime peut entraîner une transformation

drastique de leur configuration globale. Ce sont des systèmes dissipatifs typiquement ouverts traversés par des

flux d’énergie, de matière ou d’information qui échangent avec leur environnement.

L’auto-organisation se définit comme l’apparition de structures spontanées ou de comportements globaux

cohérents à partir d’interactions locales sans intervention externe ni contrôle centralisé. Ce caractère spontané

découle du fait qu’aucun agent (interne ou externe au système) ne dirige ou ne coordonne explicitement le

processus : celui-ci émerge collectivement, via l’agrégation non linéaire de causes locales. Ce mécanisme

permet l’émergence de d’états ou de structures complexes imprévues à partir de règles simples (STROGATZ,

2024). Un corollaire fondamental est la robustesse structurelle. Dans un système suffisamment vaste, tout agent

peut être retiré ou remplacé sans compromettre la dynamique globale.

Il s’agit d’un processus collectif, massivement parallèle et distribué, dans lequel chaque agent du système

contribue également à l’organisation résultante. Les interactions s’effectuent d’abord localement, entre agents

voisins, tandis que les agents éloignés agissent de manière indépendante. Cependant, une modification locale

peut se propager en cascade et affecter des zones éloignées, générant ainsi une cohérence à l’échelle globale.

De plus, des perturbations aléatoires peuvent se produire, permettant au système d’explorer de nouvelles tra-

jectoires .

La nature des interactions locales varie selon le domaine étudié. Par exemple, en physique, elles peuvent

prendre la forme de diffusions thermodynamiques ; en biologie, par des mécanismes de sélection naturelle ou de

rétroaction (positive ou négative) permettant une adaptation dynamique des agents. Ces interactions permettent

2.5. DISCUSSION DES MÉTHODES ET DES MODÈLES 49

au système de générer de l’ordre à partir du désordre, qu’il soit d’origine locale ou globale.

Grâce à leur caractère distribué, les systèmes auto-organisés se révèlent hautement robustes face aux dé-

faillances locales et aux perturbations extérieures. L’auto-organisation induit par ailleurs l’émergence d’un

attracteur dans l’espace des états du système : une région stable vers laquelle convergent spontanément les dy-

namiques du système, et au sein de laquelle les agents tendent à se stabiliser. Cette propriété restreint cependant

la liberté individuelle des agents à sortir de certains états une fois l’attracteur atteint.

On retrouve des dynamiques d’auto-organisation dans une grande diversité de disciplines. En biologie,

elles s’observent dans la morphogenèse, l’organisation cellulaire, les réseaux neuronaux, les écosystèmes ou

encore dans les mécanismes évolutifs. En physique et chimie, elles apparaissent dans des processus tels que la

cristallisation, la magnétisation, ou les structures dissipatives. Dans les systèmes d’information, on les retrouve

dans l’architecture de l’internet, les réseaux de connaissances ou encore les automates cellulaires. Même les

systèmes économiques et sociaux, comme les marchés, les communautés de recherche (PERC, 2013) ou les

civilisations, présentent des comportements auto-organisés.

En raison de leur robustesse et de leur capacité à s’adapter dynamiquement, les systèmes auto-organisés

sont explorés depuis les années 1990 comme modèle pour l’équilibrage de charge dans des environnements

distribués. WILLEBEEK-LEMAIR et REEVES (1993) proposent deux stratégies décentralisées reposant respec-

tivement sur des modèles de diffusion (les tâches s’écoulent des nœuds surchargés vers les sous-chargés) et

de gradient (les nœuds sous-chargés sollicitent du travail). JELASITY et al. (2004) démontrent l’efficacité des

protocoles de bavardage pour répartir la charge de manière efficace. Des approches explicitement basées sur

l’auto-organisation ont ensuite été proposées, comme celles de JIE HU (2006) et LAREDO et al. (2017), s’ins-

pirant respectivement de la diffusion d’un fluide (stabilisation) et de la dynamique du tas de sable (éboulement

des grains), pour modéliser la redistribution des tâches. Ces méthodes reposent sur des interactions locales

dans le voisinage immédiat pour permettre au système global d’atteindre un équilibre de charge dynamique et

distribué.

Plusieurs des algorithmes présentés dans les sections précédentes relèvent également de l’auto-organisation.

C’est notamment le cas des méthodes bio-inspirées, telles que l’optimisation par colonies de fourmis ou le

comportement de recherche de nourriture des abeilles, qui utilisent des signaux locaux (stigmergie ou commu-

nication dansée) pour coordonner la répartition des tâches en temps réel.

Même les approches dites non coopératives peuvent manifester une forme d’auto-organisation. Le vol de

travail, par exemple, aboutit à une occupation continue des ressources par simple effet d’interaction locale.

L’échantillonnage aléatoire biaisé, de son côté, permet un équilibrage spontané en acheminant les nouvelles

tâches vers les ressources les moins chargées, sans coordination centrale.

2.5 Discussion des méthodes et des modèles

Dans ce chapitre, nous avons examiné les systèmes d’équilibrage de charge à travers les principaux pa-

radigmes qui les structurent : l’environnement d’exécution, l’architecture de contrôle, et le mode de prise de

50 CHAPITRE 2. ÉQUILIBRAGE DE CHARGE

décision. Nous avons également présenté différentes métriques d’évaluation permettant de mesurer leur effica-

cité et leur pertinence selon le contexte.

Le choix d’une stratégie d’équilibrage doit être soigneusement réfléchi, en tenant compte à la fois (i)

des caractéristiques spécifiques de l’environnement d’exécution et (ii) des objectifs de performance visés. Par

exemple, dans un contexte stable et bien maîtrisé, une approche centralisée fondée sur des heuristiques simples

s’avère souvent suffisante, car elle permet une prise de décision rapide avec un coût de communication réduit.

En revanche, dans un environnement dynamique, instable ou imprévisible, il est préférable de privilégier des

approches décentralisées capables d’adaptation face à l’évolution constante du système.

Les méthodes centralisées présentent généralement l’avantage d’un faible coût en communication et d’une

décision rapide, mais au prix d’un coût computationnel élevé (du fait de la vue globale nécessaire) et d’une

fragilité structurelle liée au point de défaillance unique qu’est le contrôleur central. À l’opposé, les méthodes

décentralisées répartissent la charge de décision entre les ressources, souvent via des mécanismes d’interac-

tion locale ou de coopération. Elles sont intrinsèquement plus robustes, mais peuvent nécessiter un temps de

convergence plus long et un coût communicationnel accru.

Les approches hybrides, généralement fondées sur des architectures hiérarchiques, tentent de combiner

les avantages des deux paradigmes. Elles permettent une prise de décision plus rapide que les méthodes pu-

rement décentralisées tout en offrant une meilleure robustesse que les approches centralisées. Toutefois, leur

complexité de mise en œuvre est significative, notamment lorsqu’elles doivent s’adapter dynamiquement à

l’évolution du système. Elles peuvent également entraîner une réduction des capacités de calcul disponibles,

une fraction des ressources étant mobilisée pour la gestion de l’équilibrage lui-même.

Comme nous l’avons vu précédemment, les dynamiques d’auto-organisation offrent une alternative décen-

tralisée efficace pour atteindre un état d’équilibre global par le biais d’interactions locales. Ce type de système,

par sa robustesse intrinsèque et sa capacité d’adaptation, est particulièrement adapté aux environnements distri-

bués et dynamiques. C’est cette approche que nous avons choisie d’explorer dans le cadre des présents travaux.

Dans les chapitres à venir, nous nous concentrerons sur le modèle du tas de sable introduit par Bak, Tang

et Wiesenfeld (BAK et al., 1987), ainsi que sur ses principales évolutions. Ce modèle, fondé sur un automate

cellulaire à règles locales simples, est capable de générer des comportements complexes et émergents, en lien

direct avec les dynamiques d’auto-organisation.

Le tas de sable constitue une approche naturelle et dynamique de l’équilibrage de charge : les cellules de

l’automate (modélisant les ressources de calcul) se déchargent spontanément sur leurs voisines dès qu’un seuil

local est dépassé. Les grains de sable, assimilables à des tâches, se déplacent ainsi dans l’espace jusqu’à ce que

le système atteigne un état de stabilité globale.

Ce modèle sera étudié en détail dans le chapitre suivant, ainsi que le phénomène dont il constitue l’une

des manifestations emblématiques : la criticalité auto-organisée, étroitement liée aux propriétés adaptatives des

systèmes complexes, et tout particulièrement ceux issus de la nature.

Chapitre 3

La criticalité auto-organisée

Table des matières du chapitre
3.1 Introduction à la criticalité auto-organisée . 52

3.2 Le tas de sable . 53

3.2.1 Le modèle initial de Bak-Tang-Wiesenfeld . 53

3.2.2 Le tas de sable dissipatif . 56

3.2.3 Autres modèles présentant de la SOC . 57

3.3 Topologies de réseau dans les systèmes SOC . 60

3.4 Robustesse des systèmes SOC . 62

3.4.1 Robustesse structurelle : organisations hiérarchiques et modulaires 62

3.4.2 Robustesse dynamique : auto-adaptation et mécanismes de contrôle 63

3.5 Le tas de sable pour de l’équilibrage dynamique . 63

3.5.1 Le tas de sable ordonnanceur . 64

3.5.2 Un ordonnanceur et équilibreur de charge décentralisé 65

3.5.3 Le tamis . 66

Les systèmes complexes ont souvent des comportements émergents, issus d’interactions locales simples

entre leurs composants. Ces dynamiques peuvent engendrer des structures globales, une adaptation spontanée

ou encore des réponses qui semblent disproportionnées lors de perturbations minimes. Parmi les phénomènes

caractéristiques de ces systèmes figure la notion de criticalité auto-organisée (Self-Organized Criticality, SOC)

(BAK, 1996). Elle décrit la tendance de certains systèmes à évoluer naturellement vers un état critique, situé à

la frontière entre ordre et chaos, où une perturbation mineure peut déclencher des réactions majeures affectant

l’ensemble du système. Ce phénomène a des implications profondes dans divers domaines, allant des neuros-

ciences à l’économie, aidant à expliquer des phénomènes tels que le fonctionnement cérébral (PLENZ et al.,

2021), les krachs boursiers (BIONDO et al., 2015) et d’autres événements de grande envergure (MARKOVIĆ &

GROS, 2014).

Cette dynamique d’auto-organisation peut s’avérer très intéressante dans le cadre de l’équilibrage de charge.

51

52 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

Un tel système disposant d’une caractéristique de ce type pourrait être capable de répartir dynamiquement la

charge par des mécanismes intrinsèques, sans nécessiter une intervention externe. Ainsi, de nombreux systèmes

naturels présentent les caractéristiques de la SOC. Ces dernières leur permettent d’être résilients et robustes en

présence de perturbations. Elle pourrait être particulièrement utile et efficace pour les systèmes distribués,

pouvant être sujets à des pannes, et ce malgré leurs topologies diverses. C’est pour cette raison que, dans ce

chapitre, une attention toute particulière sera portée sur l’exploration du tas de sable (représentant majeur des

modèles de SOC) dans diverses topologies au travers de plusieurs études.

Dans ce chapitre, le concept de SOC sera tout d’abord introduit. Nous nous intéresserons ensuite aux

différents modèles de SOC, et plus particulièrement au modèle du tas de sable. Notre attention se portera ensuite

sur les topologies des systèmes SOC et les impacts de ces dernières sur leur dynamique. Nous poursuivrons

avec une analyse de la robustesse des systèmes SOC, en mettant en lumière comment leur capacité à s’auto-

organiser contribue à leur résilience. Pour terminer, nous verrons comment le modèle du tas de sable, modèle

de référence de la SOC, peut être adapté à l’équilibrage dynamique de charge, en exploitant ses propriétés

intrinsèques pour optimiser la répartition des ressources dans des systèmes complexes.

3.1 Introduction à la criticalité auto-organisée

La criticalité auto-organisée, introduite en 1987 par Bak, Tang et Wiesenfeld (BAK et al., 1987), a été

illustrée à travers un automate cellulaire connu sous le nom de modèle du tas de sable. Ce modèle s’inspire des

dynamiques d’avalanches observées dans les milieux granulaires, et met en évidence comment des interactions

locales simples peuvent conduire un système vers un état critique global. Le modèle du tas de sable simule des

grains de sable déposés aléatoirement sur les cellules d’une grille. Cette grille est de dimension 2 et régulière.

Elle définit un espace discret formé de cases carrées et un voisinage pour chacune des cases de la grille. Lorsque

le nombre de grains sur un site dépasse un certain seuil, les grains basculent vers les sites voisins, provoquant

potentiellement une réaction en chaîne ou une avalanche. Ce modèle simple mais puissant capture l’essence de

la SOC et a été largement étudié pour comprendre la dynamique des états critiques dans une vaste gamme de

disciplines.

En neurosciences, le concept de criticalité auto-organisée a contribué à la compréhension des avalanches

neuronales, définies comme des épisodes transitoires d’activité cérébrale suivant des distributions spatiales et

temporelles caractéristiques, suggérant un fonctionnement du cerveau à proximité d’un état critique (BEGGS

& PLENZ, 2003 ; HAHN et al., 2010 ; PLENZ et al., 2021). La topologie du réseau neuronal apparaît comme

un facteur déterminant dans la régulation de ces dynamiques, les patterns de connectivité influençant direc-

tement la propagation et la stabilité des avalanches (BORNHOLDT & RÖHL, 2003). Toute altération de cet

équilibre critique peut être à l’origine de dysfonctionnements neurologiques majeurs, tels que les crises épilep-

tiques (MEISEL et al., 2012). Ainsi, le bon fonctionnement des systèmes neuronaux dépend fondamentalement

de leur robustesse structurelle, qui assure la résilience face à de telles perturbations.

De même, d’autres systèmes complexes, tels que les systèmes financiers et les réseaux électriques, dé-

pendent également de leur robustesse structurelle. Les systèmes financiers présentent des dynamiques de prix

3.2. LE TAS DE SABLE 53

endogènes et des krachs boursiers, reflétant l’état critique et les interactions réseau des participants au mar-

ché (BIONDO et al., 2015). Les systèmes électriques révèlent comment les pannes en cascade et les blackouts

peuvent être déclenchés et atténués en comprenant les états critiques et la structure du réseau (SHENGWEI

MEI et al., 2008). Dans ces deux contextes, le bon fonctionnement de ces systèmes dépend fortement de leur

topologie réseau.

3.2 Le tas de sable

La criticalité auto-organisée décrit un mécanisme universel par lequel les systèmes complexes évoluent

naturellement vers un état critique, à la frontière entre stabilité et chaos (BAK et al., 1988). Dans cet état,

de petites perturbations peuvent entraîner des événements en cascade de différentes amplitudes, suivant une

distribution en loi de puissance. La SOC a été observée dans une large gamme de systèmes naturels et artificiels,

notamment les tremblements de terre, les feux de forêt, l’activité neuronale et les marchés financiers. Ces

systèmes n’ont pas besoin d’être finement ajustés pour atteindre la criticalité ; au contraire, ils s’autorégulent par

des dynamiques intrinsèques, faisant de la SOC un cadre convaincant pour comprendre certains comportements

émergents dans les systèmes complexes.

Le modèle le plus emblématique illustrant la SOC est le tas de sable de Per Bak, Chao Tang et Kurt Wie-

senfeld (BAK et al., 1987), que nous aborderons en premier lieu. L’objectif des auteurs est de proposer une

modélisation simple de la SOC afin d’en étudier les dynamiques. Ce modèle est considéré comme classique

en raison de sa capacité à démontrer comment des systèmes complexes peuvent évoluer vers un état critique

stable.

Plusieurs variantes ont depuis été proposées, notamment le modèle du tas de sable dissipatif. Cette version,

que nous aborderons par la suite, explore d’autres dimensions du phénomène, en particulier l’impact des modi-

fications de la topologie sous-jacente du système. Étudier comment ces changements influencent la propagation

des avalanches permet d’ouvrir de nouvelles pistes de réflexion sur la résilience et l’adaptabilité des systèmes

soumis à une criticalité auto-organisée.

Enfin, nous explorerons quelques autres modèles présentant des caractéristiques de SOC, comme la modé-

lisation de tremblements de terre, de feux de forêt, ou encore d’avalanches neuronales, pour compléter cette

section. Ces modèles, bien que différents dans leur approche et ayant leur propre objectif, partagent un but

commun de mieux comprendre les mécanismes sous-jacents à l’auto-organisation critique.

3.2.1 Le modèle initial de Bak-Tang-Wiesenfeld

Le modèle canonique proposé par Bak, Tang, et Wiesenfeld (BAK et al., 1987) est un automate cellulaire

défini sur une grille régulière de dimension 2, généralement avec une configuration de voisinage de von Neu-

mann, où chaque cellule interagit uniquement avec ses voisins immédiats. Dans cette configuration, chaque

cellule (ou nœud) de la grille peut contenir un certain nombre de “grains” qui peuvent “basculer” vers des sites

voisins lorsqu’un certain seuil est dépassé. La grille elle-même peut être représentée comme un graphe, où

54 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

les nœuds correspondent aux cellules individuelles et les arêtes représentent les connexions entre les cellules

voisines. La plupart des cellules ont quatre voisins dans une configuration de von Neumann, à l’exception de

celles situées sur les bords de la grille, qui en ont trois, et des cellules d’angle, qui n’en ont que deux.

La dynamique du tas de sable est régie par un ensemble de règles locales simples qui créent de l’instabilité

et génèrent des mécanismes d’autorégulation. Chaque cellule a un seuil critique de quatre grains, ce qui signifie

que si une cellule accumule quatre grains ou plus, elle devient instable et “s’éboule”. Lors de cet événement

d’éboulement, la cellule distribue un grain à chacune de ses quatre voisines. Si une cellule voisine est située en

dehors de la grille, le grain tombe hors du système, ce qui fait du tas de sable un système ouvert. Des grains

sont ajoutés aléatoirement à la grille, et dès que l’ajout d’un grain fait dépasser le seuil d’une cellule, celle-

ci s’éboule, ce qui peut déclencher une réaction en chaîne d’éboulements, connue sous le nom d’avalanche.

La Figure 3.1 propose une représentation visuelle de l’éboulement d’une cellule. Un grain est déposé sur une

cellule au bord de l’instabilité (3 grains), déclenchant un éboulement qui redistribue ses grains aux cellules

voisines.

(a) Configuration initiale. (b) Dépôt d’un grain au centre. (c) Éboulement du centre.

FIGURE 3.1 – Illustration d’un éboulement dans un tas de sable de taille 3×3. (a) La cellule centrale est
initialement au bord de l’éboulement. (b) Un grain est déposé dessus, provoquant l’instabilité du système.
(c) La cellule s’écroule et redistribue ses grains entre ses voisines.

Avec le temps, le système évolue vers un état critique où des avalanches de tailles variées se produisent.

La distribution de ces tailles suit une loi de puissance correspondant au bruit rose, également appelé bruit

1/f . Celui-ci se caractérise par une densité spectrale décroissante en 1/f , ce qui signifie que chaque octave

transporte la même puissance (VOSS & CLARKE, 1975) : les basses fréquences (avalanches courtes) sont plus

prononcées qu’avec un bruit blanc, mais sans l’excès d’inertie énergétique du bruit rouge. En revanche, le bruit

rouge (ou bruit brownien) présente une densité spectrale décroissante en 1/f2, conduisant à une domination

encore plus forte des basses fréquences et à un signal de type marche aléatoire, comme décrit dans la littérature

sur les spectres de “red noise” (GILMAN et al., 1963).

Ce comportement est caractéristique des systèmes présentant une SOC, où les grands événements sont

rares, mais les petits événements sont fréquents. Notamment, le modèle du tas de sable présente une invariance

d’échelle et une auto-similarité, ce qui signifie que les mêmes motifs statistiques émergent indépendamment de

la taille du système ou du niveau de détail. Pendant une avalanche, aucun nouveau grain n’est ajouté tant que

le système n’est pas revenu à une configuration stable, garantissant que tous les événements d’éboulement sont

3.2. LE TAS DE SABLE 55

terminés.

Le processus de simulation du tas de sable est le suivant : un grain est déposé aléatoirement sur la grille à

chaque cycle. Si cela rend une cellule instable (c’est-à-dire que le nombre de grains atteint 4), une avalanche

de durée indéterminée est déclenchée et résolue avant de passer au cycle suivant. Lors de l’éboulement d’une

cellule, un grain est transmis à chacune des cellules voisines, et la cellule en question voit son nombre de grains

diminuer de 4. Ainsi, une cellule située en bordure, qui ne dispose pas de quatre voisines, fera disparaître un

à deux grains du système pendant son éboulement. Ce mécanisme permet de stabiliser le système en évacuant

l’excès de grains. L’Algorithme 1 propose un pseudo-code de ce processus.

Algorithm 1: Processus de simulation du tas de sable canonique
Input: G : grille

cycles : nombre de cycles de simulation
1 cycle← 0
2 while cycle < cycles do
3 Dépôt d’un grain sur une cellule aléatoire de G
4

/* Gestion de l’avalanche potentielle */
5 while au moins une cellule de G est instable do
6 foreach cellule de G do

/* Éboulement de la cellule */
7 if cellule.grains ≥ 4 then
8 foreach voisine de cellule do
9 voisine.grains← voisine.grains + 1

10 end
11 cellule.grains← cellule.grains - 4
12 end
13 end
14 end
15

16 cycle← cycle + 1
17 end

La figure 3.2 illustre un processus typique d’avalanche dans le modèle du tas de sable, démontrant la réac-

tion en chaîne qui se produit lorsqu’un grain est ajouté au système. Comme le montre l’exemple, l’éboulement

initial de la cellule centrale se propage à ses voisines, pouvant provoquer une instabilité supplémentaire et en-

traîner une redistribution plus large des grains. De telles cascades illustrent la dynamique critique du modèle,

où de petites perturbations peuvent déclencher des événements à grande échelle. La nature en cascade des

avalanches dans le modèle du tas de sable est une caractéristique de la criticalité auto-organisée, mettant en

évidence le comportement en loi de puissance et l’invariance d’échelle inhérents à de tels systèmes.

Le modèle de tas de sable BTW est considéré comme abélien car l’ordre dans lequel les événements d’ébou-

lement se produisent durant une avalanche n’affecte pas la configuration finale du système. Cette propriété est

essentielle pour simplifier la dynamique du modèle et garantir la reproductibilité des résultats, indépendamment

de la séquence des éboulements.

56 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

(a) Configuration stable initiale. (b) Dépôt d’un grain au centre. (c) Éboulement du centre.

(d) Éboulement supplémentaire. (e) Dernier éboulement. (f) Configuration stable finale.

FIGURE 3.2 – Exemple d’une avalanche en trois étapes dans un tas de sable BTW de taille 3× 3. Un grain est
ajouté à la cellule centrale dans la configuration stable initiale (a), ce qui la fait atteindre un seuil critique de
4 (b) et déclenche le début d’une avalanche. Les 4 grains de la cellule centrale sont redistribués à ses voisines
(c), provoquant une instabilité supplémentaire et éjectant un grain hors du système (d). L’avalanche se poursuit
(e) pour atteindre un nouvel état d’équilibre (f) après l’éjection de deux grains supplémentaires.

3.2.2 Le tas de sable dissipatif

Le modèle dissipatif du tas de sable conserve les mécanismes fondamentaux du fonctionnement original,

mais diffère dans la manière dont les grains sortent du système. Contrairement au modèle classique où les grains

disparaissent lorsqu’ils tombent en dehors des limites du système depuis un nœud en bordure, les bords du

système sont ici fermés. Les grains disparaissent progressivement au fil de leurs déplacements dans le système

(BHAUMIK & SANTRA, 2013 ; GOH et al., 2003 ; MALCAI et al., 2006). À chaque transfert d’un grain d’un

nœud à un autre pendant une avalanche, il existe une probabilité ϵ que le grain disparaisse. Le modèle dissipatif

proposé dans (BHAUMIK & SANTRA, 2013) introduit une contrainte supplémentaire : la dissipation ne peut

se produire que lors de transferts vers des nœuds aléatoires préalablement sélectionnés, représentant ainsi les

bordures du modèle canonique. Bien que cette probabilité ϵ puisse être définie de diverses manières, elle est

généralement ajustée et fixée à l’avance, car elle influence directement la tension du système nécessaire pour

atteindre la SOC. En effet, la probabilité doit permettre au système d’atteindre un état stationnaire, caractérisé

par l’équilibre entre le nombre de grains ajoutés et ceux dissipés. Le mécanisme de dissipation rend ces modèles

non conservatifs, en opposition au modèle canonique.

L’introduction de la dissipation dans les modèles de tas de sable permet de mieux comprendre les phéno-

mènes naturels où la conservation stricte de la matière ou de l’énergie n’est pas respectée. Par exemple, dans

les systèmes géophysiques tels que les tremblements de terre ou les glissements de terrain, une partie de l’éner-

gie est dissipée sous forme de chaleur ou d’autres formes non récupérables. En biologie, ces modèles peuvent

3.2. LE TAS DE SABLE 57

être utilisés pour étudier la propagation des signaux neuronaux, où certains signaux peuvent être perdus ou

atténués au cours de leur transmission. Un autre avantage des modèles dissipatifs est leur capacité à reproduire

des comportements critiques plus réalistes. En ajustant la probabilité de dissipation ϵ, il est possible de modu-

ler la dynamique du système pour qu’il atteigne un état de SOC plus stable et robuste. Cela permet de mieux

comprendre comment les systèmes naturels et artificiels peuvent s’adapter et évoluer face à des perturbations

externes. En outre, les modèles dissipatifs permettent d’explorer les transitions de phase et les points critiques

dans les systèmes non-conservatifs. En variant la probabilité de dissipation, on peut observer des changements

dans les propriétés statistiques des avalanches, telles que leur taille et leur durée. Ces observations peuvent

fournir des informations précieuses sur la manière dont les systèmes complexes réagissent aux perturbations et

aux contraintes externes.

3.2.3 Autres modèles présentant de la SOC

Bien que le modèle du tas de sable en soit le paradigme fondateur, il n’est pas le seul à manifester des

comportements relevant de la criticalité auto-organisée. D’autres modèles, qu’ils en soient directement dérivés

ou non, présentent également des signatures caractéristiques de la SOC (TURCOTTE, 1999). Nous détaillerons

quelques-uns de ces modèles dans cette section en nous intéressant aux modèles de tremblements de terre

d’Olami-Feder-Christensen, de percolation (incluant le modèle de feux de forêt), d’avalanches neuronales, et

pour terminer le Chip-firing game.

Modèle d’Olami-Feder-Christensen : l’étude statistique des tremblements de terre montre que la croûte

terrestre se comporte comme un système complexe et présente des dynamiques s’apparentant à de la SOC

(SORNETTE & SORNETTE, 1989), notamment par la présence de multiples lois de puissance dans les mesures.

Les auteurs de (OLAMI et al., 1992) qualifient les tremblements de terre de “paradigme le plus pertinent de

la criticalité auto-organisée”. Les recherches se sont donc naturellement orientées vers la modélisation des

séismes par des mécanismes de SOC. Olami, Feder et Christensen ont proposé une modélisation (OLAMI et al.,

1992) (modèle OFC) basée sur une version simplifiée du modèle ressort-bloc de Burridge-Knopoff (BURRIDGE

& KNOPOFF, 1967), qui modélise les tremblements de terre. Ce modèle est un automate cellulaire où chaque

cellule représente un bloc, les cellules étant reliées par des ressorts. Elles accumulent de l’énergie jusqu’à

un seuil critique avant d’effectuer un “glissement”, exerçant une force sur le voisinage via les ressorts. Les

voisins peuvent à leur tour dépasser le seuil critique et contribuer à la propagation, provoquant une avalanche

de réactions. Les interactions inter-cellules sont régies par des paramètres, notamment l’élasticité des ressorts.

Le modèle OFC incorpore une dissipation de l’énergie, rendant le modèle non-conservatif et plus réaliste.

Les auteurs montrent que l’exposant des lois de puissance observées est directement corrélé au coefficient de

dissipation.

Modèles de percolation et de feux de forêt : les modèles de percolation sont généralement utilisés pour

modéliser et étudier la connectivité et la propagation dans des systèmes désordonnés. Ils s’appliquent à divers

phénomènes, tels que la dynamique des fluides dans des milieux poreux, la conduction électrique dans des

58 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

matériaux composites, ou encore la propagation des feux de forêts. Le principe de ces modèles repose sur la

génération d’un réseau (souvent une grille) où chaque nœud, appelé site, peut être occupé ou non selon une pro-

babilité. Au fil de la simulation, les sites changent d’état en fonction de leur voisinage. Les études se concentrent

principalement sur la formation de clusters de sites occupés lorsque l’état de certains sites est modifié. Il existe

un seuil critique de densité d’occupation, appelé seuil de percolation, au-delà duquel un cluster infini appa-

raît, signifiant une propagation de l’occupation à travers tout le système. Certaines modélisations intègrent des

mécanismes qui ajustent dynamiquement la probabilité d’occupation des sites pour amener spontanément le

système à proximité du seuil de percolation. C’est notamment le cas du modèle de percolation auto-organisée

(Self-Organized Percolation) (ALENCAR et al., 1997), dont les auteurs comparent le comportement au concept

de SOC. Le modèle de percolation dirigée (Directed Percolation) (VÁZQUEZ & COSTA, 1999) est également

lié à la SOC. Il intègre une notion de direction dynamique pour la propagation, ainsi que des états absorbants.

Ces états apparaissent spontanément en fonction d’une probabilité de propagation des avalanches, paramètre

du système, permettant à celles-ci d’être finies. Une faible probabilité conduit tous les sites vers une inactivité

définitive, tandis qu’une probabilité suffisamment élevée peut entraîner une propagation continue.

Les modèles de percolation sont également utilisés dans l’étude des feux de forêt (DROSSEL & SCHWABL,

1992) à travers une extension du modèle classique de percolation de sites, incluant un mécanisme spécifique

de déclenchement d’incendies. À chaque pas de temps, un arbre peut être placé aléatoirement sur un site

vacant et, à intervalle régulier, une étincelle est déposée aléatoirement sur un arbre, provoquant ainsi un départ

d’incendie. Le feu ainsi déclenché se propage aux arbres situés sur les sites voisins, modifiant leur état en “en

feu” et générant un feu de forêt, réaction en chaîne assimilable à une avalanche. Cette propagation se poursuit

jusqu’à épuisement des arbres dans le voisinage immédiat du front d’incendie. Les arbres brûlés disparaissent

alors, laissant leurs sites vides. Grâce au processus continu d’ajout (plantation aléatoire) et de retrait (incendies)

d’arbres, le système s’auto-organise spontanément dans un état où la taille des feux suit une distribution en loi

de puissance.

Modèles d’avalanches neuronales : les réseaux neuronaux ont été largement étudiés au cours des dernières

décennies, et ils présentent des dynamiques de SOC résultant du mécanisme d’activation en cascade des neu-

rones (HESSE & GROSS, 2014 ; PLENZ et al., 2021). Plusieurs travaux, tels que (de ARCANGELIS et al., 2006 ;

RYBARSCH & BORNHOLDT, 2014), proposent des modélisations de réseaux neuronaux pour capturer et ana-

lyser l’essence naturelle de la SOC dans ces réseaux.

Les auteurs de (de ARCANGELIS et al., 2006) ont développé un modèle reproduisant la plasticité cérébrale.

Ce modèle consiste en un réseau électrique où les nœuds représentent des neurones et les liaisons, les synapses

entre neurones voisins. Chaque neurone possède un potentiel qui, lorsqu’il dépasse un seuil, est déchargé vers

les voisins proportionnellement au potentiel de chacune de ses liaisons. Un neurone ainsi déclenché retrouve

un potentiel nul et devient temporairement inactif, n’acceptant aucune charge de ses voisins. L’état des liaisons

est mis à jour à chaque pas de temps pour augmenter leur capacité lorsqu’elles sont utilisées et la réduire

lorsqu’elles ne le sont pas, jusqu’à atteindre une capacité nulle. Ces évolutions reproduisent le renforcement et

l’affaiblissement synaptique du cerveau, pouvant mener à la disparition des liaisons synaptiques. Les résultats

3.2. LE TAS DE SABLE 59

obtenus avec ce modèle montrent les lois de puissance caractéristiques de la SOC. Les auteurs de (RYBARSCH

& BORNHOLDT, 2014) proposent un modèle minimal de réseaux neuronaux, visant à servir de base solide pour

des modèles plus complexes. Cette modélisation s’inspire des modèles de spins, dont le modèle d’Ernst-Ising

est le plus connu : des électrons sont mis en réseau et disposent d’une orientation (spin : { 12 ;−
1
2}) ; l’état

suivant d’un électron dépend de son voisinage ainsi que de paramètres externes tels que la température. Dans le

modèle de réseau neuronal de (RYBARSCH & BORNHOLDT, 2014), les neurones (nœuds du réseau) possèdent

un état booléen, et leur état à l’étape suivante dépend de l’état moyen de leur voisinage comparé à un seuil

critique d’activation. Ce seuil est maintenu localement au cours du temps : à chaque pas de temps, un neurone

a une probabilité d’augmenter son seuil égale à la moyenne de ses activations sur les V derniers pas de temps,

V correspondant au temps d’épuisement des neurones. Ce modèle présente les signatures de la SOC, et les

résultats correspondent aux données expérimentales sur l’activité corticale.

Chip-firing game : le Chip-firing game (BJÖRNER et al., 1991 ; MERINO, 2005) est un jeu solitaire où des

jetons sont initialement empilés sur les sommets d’un graphe. Une étape du jeu consiste à sélectionner un

sommet possédant au moins autant de jetons que son degré et à faire “tirer” un jeton vers chacun de ses voisins,

réduisant ainsi son nombre de jetons d’autant que son degré. Le jeu s’achève lorsqu’aucun sommet ne dispose

plus d’assez de jetons pour être “tiré”. Une partie de Chip-firing game, telle qu’illustré par la Figure 3.3,

peut être comparée à une avalanche dans un modèle de tas de sable (Figure 3.2). De plus, comme le tas de

sable, le Chip-firing game est abélien : une disposition initiale des jetons conduira invariablement à une même

disposition finale, indépendamment de l’ordre dans lequel les sommets sont “tirés”. En adoptant une perspective

plus large, le tas de sable peut être considéré comme une configuration spécifique du Chip-firing game, où tous

les sommets ont un degré de 4. Cependant, contrairement au tas de sable, qui est un système ouvert permettant

l’évacuation de l’excès de grains, le Chip-firing game est un système fermé. Par conséquent, si le nombre initial

de jetons est trop élevé, la partie peut devenir infinie. La similarité des mécanismes du Chip-firing game avec

ceux du tas de sable en fait un modèle présentant des caractéristiques de SOC.

3

0
2 1 2

0

1

(a)

0

1
3 1 2

0

2

(b)

1

2
0 2 2

0

2

(c)

1

2
1 0 3

0

2

(d)

1

2
1 1 0

1

3

(e)

2

2
1 1 1

2

0

(f)

FIGURE 3.3 – Exemple d’une partie de Chip-firing game. À chaque étape, un nœud disposant d’au moins autant
de jetons que de voisins est sélectionné (nœud rouge). Il “tire” alors un jeton vers chaque voisin (nœuds bleus).
Ce processus est répété jusqu’à ce qu’aucun nœud ne détienne plus d’assez de jetons pour être sélectionné.

60 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

3.3 Topologies de réseau dans les systèmes SOC

Alors que le modèle classique du tas de sable de Bak-Tang-Wiesenfeld est généralement implémenté sur

une grille régulière, de nombreux systèmes réels présentant une SOC se produisent dans des réseaux com-

plexes (BASSETT & BULLMORE, 2006). Contrairement aux grilles régulières, les réseaux complexes englobent

une large gamme de structures caractérisées par des motifs de connectivité différents, y compris des topolo-

gies de type petit-monde et sans échelle. Ces variations dans la structure du réseau peuvent avoir un impact

significatif sur l’émergence et les propriétés statistiques de la SOC, motivant des recherches approfondies sur

la manière dont différentes topologies influencent les dynamiques de la SOC (BHAUMIK & SANTRA, 2013 ;

de ARCANGELIS & HERRMANN, 2002 ; GOH et al., 2003 ; KARMAKAR & MANNA, 2005 ; PAN et al., 2007).

Une approche notable consiste à transformer une grille régulière en un réseau de type petit-monde par

recâblage. Dans (BHAUMIK & SANTRA, 2013), une méthode de reconnexion est introduite, des arêtes aléa-

toires sont ajoutées entre des paires de nœuds, modifiant ainsi la connectivité du réseau. Pour s’adapter à ce

changement structurel, le mécanisme d’expulsion des grains basé sur les bords est remplacé par un modèle de

dissipation tel que présenté en Section 3.2.2. En revanche, la dissipation proposée par BHAUMIK et SANTRA

(2013) ne s’effectue qu’à partir de nœuds sélectionnés arbitrairement plutôt que pour n’importe quel déplace-

ment de grain. La probabilité de dissipation choisie correspond à la fréquence empirique d’éjection des grains

par les bordures du tas de sable canonique. De même, PAN et al. (2007) étudient les graphes dirigés en mo-

difiant la destination des connexions sortantes, permettant à chaque nœud d’avoir un nombre variable d’arêtes

entrantes tout en conservant exactement quatre arêtes sortantes. Cette approche préserve les dynamiques du tas

de sable sans nécessiter de modifications supplémentaires. Une autre méthode, décrite par de ARCANGELIS

et HERRMANN (2002), incorpore également des ajouts aléatoires d’arêtes mais les compense en supprimant

d’autres, garantissant que le degré moyen des nœuds reste à quatre. Malgré les variations de mise en œuvre, les

trois études révèlent une évolution commune : à mesure que les réseaux deviennent de plus en plus reconnectés,

les distributions en loi de puissance régissant les tailles des avalanches deviennent plus pentues, indiquant un

changement dans le comportement critique du système.

Au-delà des réseaux de type petit-monde, les réseaux sans échelle (Scale-Free Networks) (BARABÁSI &

ALBERT, 1999) ont également été étudiés dans le contexte de la SOC. Ces réseaux sont caractérisés par une

distribution de degrés hétérogène, où quelques nœuds (hubs) ont une connectivité nettement plus élevée que

les autres. Cette caractéristique structurelle est couramment observée dans les systèmes naturels et joue un

rôle crucial dans les dynamiques de la SOC. Les réseaux sans échelle ont été étudiés dans (GOH et al., 2003).

Les structures ont été générées en utilisant l’algorithme proposé dans (GOH et al., 2001), où les arêtes sont

ajoutées en fonction des poids des nœuds pour atteindre le degré moyen souhaité. Il est important de noter

que le modèle du tas de sable est alors dissipatif pour préserver sa nature de système ouvert. La relation entre

l’exposant de degré du réseau sans échelle (γ) et l’exposant de la distribution des tailles d’avalanches (τ) est

examinée. L’étude montre que lorsque 2 < γ < 3, l’exposant τ suit la relation τ =
γ

γ − 1
, tandis que pour

γ > 3, τ converge vers 1,5. La Figure 3.4 illustre ces différentes situations par quatre courbes représentant la

distribution des tailles des avalanches pour différents γ. Plus γ est faible, plus τ est élevé. Cela indique que

3.3. TOPOLOGIES DE RÉSEAU DANS LES SYSTÈMES SOC 61

les réseaux avec une concentration plus élevée de hubs (plus faible γ) présentent des longueurs de chemin plus

courtes et des distributions d’avalanches plus pentues, renforçant les observations précédentes des réseaux de

type petit-monde.

FIGURE 3.4 – Figure 1 des travaux de GOH et al. (2003) illustrant la pente de la distribution des avalanches dans
des réseaux sans échelle de différents exposants de degré γ. Plus γ est faible, plus la distribution est pentue :
γ = ∞ (magenta □), γ = 3 (bleu △), γ = 2,2 (vert ⋄), et γ = 2 (rouge⃝). Lorsque γ → ∞, τ → 1,5. La
fréquence des avalanches est exprimée en probabilité de parution par rapport à toutes les avalanche survenues.

Une approche alternative est explorée dans (KARMAKAR & MANNA, 2005), où les réseaux sans échelle

sont intégrés dans une grille tout en maintenant des dynamiques de tas de sable conservatrices. En modifiant

le réseau pour minimiser les longueurs des liens, les réseaux sans échelle optimisés résultants présentent un

comportement multi-échelle similaire à celui des grilles à maillage carré. En revanche, les réseaux sans échelle

non optimisés ne montrent pas cette caractéristique, soulignant le rôle de la structure du réseau dans la déter-

mination des propriétés de la SOC. Ces résultats montrent collectivement que la topologie sous-jacente a un

impact profond sur les dynamiques du tas de sable, influençant non seulement la présence de la SOC mais aussi

ses propriétés statistiques.

L’influence de la topologie du réseau sur la SOC ne se limite pas aux modèles de tas de sable. D’autres sys-

tèmes de SOC, tels que le modèle de tremblement de terre d’Olami-Feder-Christensen (OLAMI et al., 1992), ont

été étudiés sur diverses structures de réseau. Dans (LISE & PACZUSKI, 2002), les graphes aléatoires d’Erdös-

Rényi (ERDÖS & RÉNYI, 1960) et les graphes évolutifs sont analysés. La différence essentielle entre ces deux

types réside dans la nature statique des graphes d’Erdös-Rényi par rapport à la réaffectation dynamique des

voisins dans les graphes évolutifs à chaque étape temporelle. L’étude montre que le comportement de SOC

est observé dans le modèle d’Olami-Feder-Christensen sur les graphes d’Erdös-Rényi, avec un exposant de loi

de puissance de τ ≃ 1,65, indépendamment du fait que le système soit conservatif ou non. Cependant, dans

les graphes évolutifs, la SOC n’émerge que dans les systèmes conservatifs. Au final, l’étude suggère que des

interactions locales fixes, développant d’une corrélation spatiale, sont essentielles pour maintenir la SOC dans

les systèmes non-conservatifs (dissipatifs).

Un exemple particulièrement significatif de SOC dans un système en réseau est l’architecture neuronale

du cerveau. Des études expérimentales ont montré que les réseaux neuronaux dans les couches superficielles

62 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

du cerveau développent des motifs de connectivité préférentiels, formant souvent des structures ressemblant

à des réseaux sans échelle (BEGGS & PLENZ, 2003 ; EYTAN & MAROM, 2006 ; HAHN et al., 2010 ; PLENZ

et al., 2021). Ces réseaux contiennent des neurones “hubs” hautement connectés, qui s’activent avant le reste

du réseau, déclenchant des avalanches neuronales, une caractéristique de la SOC dans le cerveau. Notamment,

ces avalanches n’émergent qu’une fois le réseau complètement mature. En revanche, les systèmes neuronaux

dépourvus de cette organisation préférentielle tendent à fonctionner dans un état supercritique, où l’activité se

propage de manière incontrôlable plutôt que de s’autoréguler. De plus, il a été montré que l’équilibre entre les

neurones excitateurs et inhibiteurs est crucial pour maintenir le comportement de SOC dans le cerveau (EYTAN

& MAROM, 2006).

Ces études témoignent du rôle fondamental de la topologie du réseau dans la détermination des dynamiques

des systèmes SOC. Qu’il s’agisse de modèles de tas de sable, de simulations de tremblements de terre ou de

réseaux neuronaux biologiques, la structure sous-jacente des interactions influence non seulement l’émergence

de la SOC mais aussi son maintien face à des variations de structure. Comprendre ces effets fournit des infor-

mations sur le caractère transversal de la SOC à travers divers systèmes et offre un cadre pour analyser l’impact

des changements structurels dans les réseaux complexes du monde réel.

3.4 Robustesse des systèmes SOC

La robustesse des systèmes SOC peut être analysée selon deux perspectives complémentaires : d’une part,

les propriétés structurelles de la topologie du réseau sous-jacent, et d’autre part, les processus internes régissant

la dynamique du système. Ces deux aspects jouent un rôle crucial dans le maintien de la stabilité tout en

préservant l’état critique nécessaire au comportement de la SOC.

3.4.1 Robustesse structurelle : organisations hiérarchiques et modulaires

Une stratégie courante pour renforcer la robustesse des systèmes complexes consiste à intégrer des struc-

tures modulaires hiérarchiques. Dans ces réseaux, les nœuds ayant des interactions fréquentes sont regroupés en

modules, où les connexions intra-modules sont plus denses que les connexions inter-modules. L’aspect hiérar-

chique apparaît lorsque les modules eux-mêmes forment des clusters de niveau supérieur, créant une structure

multi-couches qui équilibre la coordination locale et globale.

Ce type d’organisation a été largement étudié dans les systèmes biologiques, en particulier dans les réseaux

neuronaux (MEISEL et al., 2012 ; S.-J. WANG & ZHOU, 2012). Le cerveau, par exemple, exploite la modula-

rité hiérarchique pour garantir à la fois l’efficacité et la résilience. Cette structure empêche les perturbations

locales de se propager de manière incontrôlée, évitant ainsi les défaillances à grande échelle telles que celles

observées lors des crises épileptiques (MEISEL et al., 2012), où le système passe d’un état de SOC à un régime

supercritique caractérisé par une propagation incontrôlée de l’activité. Cependant, une structure excessivement

modulaire peut entraver la transmission globale de l’activité, risquant de pousser le système vers un état sous-

critique. Pour maintenir la criticalité, la modularité est couplée à une adaptabilité structurelle, un mécanisme

3.5. LE TAS DE SABLE POUR DE L’ÉQUILIBRAGE DYNAMIQUE 63

également observé dans les systèmes neuronaux (MEISEL et al., 2012).

3.4.2 Robustesse dynamique : auto-adaptation et mécanismes de contrôle

Au-delà des considérations structurelles, la robustesse des systèmes SOC provient également de méca-

nismes auto-adaptatifs qui régulent la dynamique du système. Les études sur les réseaux adaptatifs (GROSS

& BLASIUS, 2008 ; ROHLF & BORNHOLDT, 2009) montrent que la SOC peut émerger dans des systèmes où

la connectivité évolue au fil du temps en fonction des interactions entre les nœuds. Ces réseaux présentent un

haut degré de résilience, car l’auto-organisation réduit la dépendance aux conditions initiales et aux paramètres

externes.

Une autre approche pour améliorer la robustesse consiste à contrôler la dynamique des avalanches afin

de prévenir les effondrements à l’échelle du système (CAJUEIRO & ANDRADE, 2010). Une stratégie consiste

à déclencher de manière préventive des avalanches locales dans les régions proches de l’état critique, empê-

chant ainsi une accumulation excessive d’énergie qui pourrait conduire à des cascades à grande échelle. Deux

méthodes de sélection sont proposées pour déclencher ces avalanches préventives :

1. Sélection basée sur le degré : les nœuds ayant la plus forte connectivité sont surveillés, et lorsque l’un

d’eux approche du seuil critique, une avalanche est déclenchée. Cette méthode est très efficace mais

nécessite une connaissance complète de la structure du réseau.

2. Sélection aléatoire : les nœuds sont choisis aléatoirement pour être surveillés et faire l’objet d’interven-

tions, offrant une stratégie plus réalisable lorsque les informations sur l’ensemble du réseau ne sont pas

disponibles, bien que légèrement moins efficace.

Ces résultats soulignent l’interaction entre la topologie du réseau et les mécanismes internes de régulation

dans le maintien de la SOC. Alors que la modularité hiérarchique assure une résilience structurelle, la connec-

tivité adaptative et le déclenchement contrôlé des avalanches garantissent une stabilité dynamique, empêchant

le système de dériver vers des états supercritiques ou sous-critiques.

3.5 Le tas de sable pour de l’équilibrage dynamique

Maintenant que nous avons exploré la criticalité auto-organisée et touché du doigt son potentiel, il est temps

de revenir sur notre sujet principal : l’équilibrage de charge. Il est tentant d’imaginer un système d’équilibrage

présentant une telle dynamique pour auto-organiser de manière décentralisée les tâches entre ses ressources. La

question est alors : comment modéliser un système d’équilibrage présentant des dynamiques de SOC?

Bien que le tas de sable constitue un cadre conceptuel très important, il ne reflète pas, malheureusement,

le fonctionnement réel d’un système de traitement de tâches. Si une analogie peut être faite entre les grains

qui se déplacent et les tâches cherchant une ressource disponible, le mécanisme d’expulsion des grains hors du

système (autorisant le retour à un état stable) n’est pas transposable à un système de traitement de tâches, dans

lequel chacune doit impérativement être prise en charge.

64 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

Afin de mieux représenter ce type de système, deux extensions du modèle initial ont été proposées dans

des travaux antérieurs à cette thèse par LAREDO et al. (2012, 2014) : le tas de sable ordonnanceur et le tamis.

Ces deux modèles modifient le principe d’évacuation en introduisant une ouverture en surface, permettant un

traitement progressif des grains. Nous verrons que ces deux modèles démontrent des performances d’ordonnan-

cement au moins équivalentes, voire supérieures, à celles des solutions traditionnelles sur certains aspects. Les

études menées sur ces modèles soulignent le potentiel des modèles de type tas de sable pour gérer efficacement

la charge de travail dans des environnements dynamiques, tout en maintenant une qualité de service élevée et

une consommation énergétique optimisée.

Dans cette section, nous allons tout d’abord nous intéresser au tas de sable ordonnanceur. Puis, nous présen-

terons un système d’équilibrage et d’ordonnancement inspiré du modèle du tas de sable et du modèle précédent.

Enfin, nous terminerons cette section et ce chapitre par l’étude du modèle du tamis, sur lequel se basent les tra-

vaux présentés au Chapitre 5.

3.5.1 Le tas de sable ordonnanceur

Le tas de sable ordonnanceur (Sandpile Scheduler) a été introduit dans (LAREDO et al., 2012) puis amélioré

dans (LAREDO et al., 2014), dans le but de proposer une solution d’équilibrage de charge dynamique adaptée

à des environnements décentralisés.

Ce modèle vise à explorer dans quelle mesure les dynamiques issues de la criticalité auto-organisée peuvent

être exploitées pour produire un équilibrage de charge efficace, en s’inspirant des mécanismes fondamentaux

du modèle de tas de sable. Toutefois, ce dernier ne permet pas de simuler fidèlement un système de traitement

de tâches, ce qui justifie l’introduction de deux modifications majeures dans le tas de sable ordonnanceur : une

nouvelle approche du mécanisme d’évacuation des grains, et une gestion adaptée des avalanches.

Les grains ne peuvent plus être évacués hors du système par les bordures. Chaque cellule est désormais

dotée d’une capacité de traitement, ce qui permet une prise en charge progressive des grains au fil du temps. De

plus, la taille des grains devient variable, introduisant ainsi une granularité plus fine dans la modélisation de la

charge de travail. Ce nouveau modèle permet de faire un parallèle direct entre le tas de sable ordonnanceur et

un système de traitement de tâches, dont le Tableau 3.1 propose les correspondances.

Tas de sable ordonnanceur Système de traitement de tâches
Grain de sable ⇔ Tâche à traiter
Taille de grain ⇔ Durée de la tâche
Cellule de l’automate ⇔ Unité de calcul
Vitesse de traitement ⇔ Vitesse de calcul
Grains sur une cellule ⇔ File d’attente de l’unité de calcul

TABLE 3.1 – Correspondances entre le tas de sable ordonnanceur et un système de traitement de tâches.

Chaque cellule de l’automate est dotée d’un agent dont le rôle est de surveiller la charge de la cellule cor-

respondante ainsi que celle des cellules voisines. Lorsque la quantité de grains présente sur une cellule dépasse

le nombre total des grains dans son voisinage, l’agent déclenche un écroulement de la cellule et réaffecte des

3.5. LE TAS DE SABLE POUR DE L’ÉQUILIBRAGE DYNAMIQUE 65

grains à ses voisines. L’une des voisines peut alors devenir instable à son tour, prolongeant ainsi l’avalanche.

Ce mécanisme, en plus de reproduire les dynamiques de la SOC, permet un équilibrage efficace des grains dans

le système.

La notion de bordure n’étant plus pertinente en raison du nouveau paradigme d’évacuation des grains, le

tas de sable ordonnanceur a été étudié sur des structures de graphe petit-monde générées à partir d’un maillage

en anneau. Ces structures permettent d’explorer des configurations plus réalistes et adaptées aux systèmes de

traitement de tâches modernes.

Le tas de sable ordonnanceur a été testé avec le problème d’ordonnancement de sacs-de-tâches (Bags-of-

Tasks scheduling problem) (IOSUP et al., 2008b), où des ensembles de tâches à traiter en parallèle sont envoyés

dans le système. Le modèle démontre de meilleures performances (temps de traitement total, quantités de

traitements, nombre de migrations des tâches) sur des structures de type petit-monde que sur des maillages,

avec des résultats proches de l’optimalité. Cela s’explique par la capacité des avalanches à atteindre des zones

plus distantes de la structure pour disperser la charge, tandis que les avalanches restent locales dans un maillage.

De plus, le modèle démontre une excellente capacité à gérer la charge dans des environnements hétérogènes,

où les ressources (cellules) disposent de vitesses de traitement différentes. Enfin, le tas sa sable ordonnanceur

présente de meilleures performances que des systèmes d’équilibrage classiques comme l’affectation aléatoire

ou le tourniquet (Round Robin).

En outre, le modèle a été amélioré avec un protocole de bavardage (Gossip protocol) visant à réduire le

nombre de migrations des tâches, impactant ainsi la consommation énergétique du système. Plutôt que de trans-

férer physiquement les tâches durant les avalanches, seules quelques informations nécessaires sont transmises.

Une fois une configuration stable trouvée, les tâches sont effectivement déplacées vers leur ressource finale de

l’avalanche. Ce mécanisme permet de réduire considérablement l’impact énergétique lié au déplacement des

tâches pour équilibrer le système.

3.5.2 Un ordonnanceur et équilibreur de charge décentralisé

Le système proposé par GĄSIOR et SEREDYŃSKI (2017) constitue une approche décentralisée pour l’ordon-

nancement et l’équilibrage de tâches dans un environnement de cloud computing, s’inspirant des dynamiques

du modèle de tas de sable et du tas de sable ordonnanceur. Ces travaux visent principalement à optimiser les

performances du système en réduisant le temps d’exécution des tâches. L’environnement considéré est sta-

tique et entièrement connu à l’avance : le nombre de ressources de calcul, leur puissance, le nombre de cœurs

disponibles, ainsi que les latences de communication entre ressources sont fixés.

Afin de distribuer les tâches au mieux, un mécanisme local aux nœuds déclenche la répartition des tâches

à l’instar du modèle du tas de sable. Cependant, la décision du déclenchement résulte d’une comparaison

de l’état local d’un nœud à son voisinage et non pas de son propre état uniquement, comme le tas de sable

ordonnanceur. Chaque nœud dispose d’une estimation de sa charge comparée au voisinage, déterminant son

état : surchargé, équilibré ou sous-chargé. Cette estimation est découpée en deux indicateurs : le temps de

complétion maximal des tâches en attente (Cmax) et le temps de calcul non utilisé (τ). Le premier indicateur

66 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

correspond à l’accumulation de tous les temps de complétion des tâches d’un nœud. Le second correspond,

suite à un ordonnancement local des tâches, au temps de calcul du nœud non utilisé par les tâches jusqu’à leur

complétion totale. Un τ à 0 signifie qu’aucune nouvelle tâche ne peut être ordonnancée sans violer les dates

limites de tâches présentes. Ainsi, un nœud est surchargé lorsque la différence entre Cmax et Cvoisins
max dépasse

un seuil fixé préalablement ou lorsque τ = 0. Dans cet état, toute nouvelle tâche arrivant sur le nœud est

automatiquement redirigée vers un voisin, de même que les tâches locales ne pouvant être traitées localement

dans le temps imparti. Un des nœuds voisins recevant l’une des tâches en excès peut alors devenir lui-même

surchargé provoquant une réaction en chaîne : une avalanche.

Bien que la consommation énergétique constitue un enjeu majeur dans les environnements de cloud com-

puting, elle n’est pas prise en compte dans ces travaux. De même, la problématique de la surcharge globale du

système est ignorée, alors même qu’une telle situation peut survenir à tout moment. Dans le cadre du méca-

nisme de répartition proposé, une surcharge implique un fonctionnement intensif : les tâches continuent de se

déplacer dans le système jusqu’à ce qu’un état stable soit atteint, où aucun nœud n’est surchargé. Ce processus

peut nécessiter une avalanche de grande ampleur, entraînant une consommation énergétique significative.

3.5.3 Le tamis

Le modèle du tamis a été introduit dans (LAREDO et al., 2017), à l’instar du tas de sable ordonnanceur, afin

d’examiner dans quelle mesure les dynamiques de criticalité auto-organisée peuvent favoriser un équilibrage de

charge efficace, en s’inspirant des mécanismes du tas de sable. La principale différence entre ces deux modèles

réside dans le fait que le tamis conserve les mécanismes du modèle canonique d’automate cellulaire, et se

différencie également par le type d’environnement considéré pour le système.

Le tamis introduit une ouverture du système en surface, similaire au tas de sable ordonnanceur : les cellules

disposent d’une capacité de tamisage (vitesse de traitement) et les grains d’une taille donnée. Ces derniers

sont tamisés progressivement au fil du temps par les cellules. Il est donc possible d’établir un parallèle entre

le tamis et un système de traitement, dont certaines correspondances ont été proposées précédemment dans

le Tableau 3.1. L’Algorithme 2 présente le fonctionnement du tamis en pseudo-code. À chaque cycle, en plus

des étapes classiques du tas de sable (dépôt d’un grain et gestion de l’instabilité), le tamis ajoute une étape de

tamisage.

La Figure 3.5 illustre le modèle du tamis. Les grains sont déposés sur la grille, de manière similaire au

modèle du tas de sable. Cependant, si un grain se retrouve sur une cellule vide (par un dépôt ou une avalanche),

il entre en état de tamisage et ne participe plus aux mécanismes canoniques de l’automate cellulaire. Selon sa

taille et la capacité de tamisage de la cellule, le grain sera progressivement tamisé et finira par sortir du système

(par le dessous de la grille). Par ce mécanisme, les grains passent progressivement au travers du système, tel

que le ferait du sable dans un tamis réel.

Ce nouveau modèle introduit un paramètre crucial : la capacité de tamisage des cellules. À l’instar de la

probabilité de dissipation dans les modèles dissipatifs du tas de sable (Section 3.2.2), la capacité de tamisage

influence directement la dynamique des avalanches, notamment lorsque le système est de taille finie. En effet,

3.5. LE TAS DE SABLE POUR DE L’ÉQUILIBRAGE DYNAMIQUE 67

Algorithm 2: Processus de simulation du tamis
Input: G : grille

cycles : nombre de cycles de simulation
1 cycle← 0
2 while cycle < cycles do
3 Étape 1 : dépôt d’un grain sur une cellule aléatoire de G
4 Étape 2 : gestion de l’avalanche potentielle
5

/* Tamisage des grains */
6 foreach cellule ∈ G do
7 if cellule non vide then
8 Progression du tamisage des grains de la cellule
9 end

10 end
11

12 cycle← cycle + 1
13 end

Grain en attente

Grain en traitement

Entrée

Sortie

FIGURE 3.5 – Illustration du modèle du tamis. Les grains clairs jouent le même rôle que dans le tas de sable
canonique, tandis que les grains foncés, en train d’être tamisés, n’influent plus sur les avalanches. L’ouverture
du système se fait par le tamisage progressif des grains.

le traitement des grains s’effectuant au fil du temps (et non pendant les avalanches), plus la charge de grains

(nombre et/ou taille) augmente, plus des avalanches de très grande échelle surviendront. Lorsque la charge

atteindra presque la capacité totale de tamisage du système par cycle, aucune configuration stable ne pourra plus

être atteinte. La capacité de tamisage joue donc un rôle déterminant dans la gestion de la charge et de la stabilité

globale du système. Dans le contexte d’un système de traitement de tâches, une capacité de tamisage bien

calibrée permet de réguler le flux de tâches et d’éviter les surcharges, assurant ainsi une répartition équilibrée

et efficace de la charge sur les ressources.

L’étude sur le tamis s’est concentrée sur sa capacité à trouver un compromis idéal entre consommation

énergétique, due à la puissance de calcul et à la quantité des ressources (cellules) du système, et la qualité de

68 CHAPITRE 3. LA CRITICALITÉ AUTO-ORGANISÉE

service (vitesse et quantité des tâches traitées). Pour ce faire, l’étude a été menée dans un environnement à

structure de grille infinie : les ressources sont allumées et éteintes selon les besoins. Une ressource sans tâche

(grain) est éteinte et s’allume lorsqu’elle reçoit une tâche durant une avalanche. Les résultats ont démontré la

capacité du tamis à trouver un compromis quasi-optimal entre efficience énergétique et qualité de service.

Cependant, ces résultats concernent un système infini. Les systèmes de calcul réels, bien qu’ayant des

capacités très importantes, ne disposent pas d’un nombre infini de processeurs. Comme nous l’avons vu, le

tamis en l’état ne permet pas de gérer une surcharge dans un environnement fini. C’est pourquoi, dans le

Chapitre 5, nous explorerons une manière d’améliorer le tamis sur ce point.

Chapitre 4

Robustesse du tas de sable

Table des matières du chapitre
4.1 Cadre d’étude de la robustesse structurelle . 70

4.1.1 Algorithme de recâblage . 70

4.1.2 Processus de dégradation . 73

4.1.3 Cadre global : construction de graphe avec recâblage et dégradation 74

4.2 Dispositif expérimental . 76

4.2.1 Paramètres des simulations . 76

4.2.2 Outils d’analyse . 76

4.3 Étude illustrative . 77

4.3.1 Recâblage . 77

4.3.2 Dégradation . 78

4.3.3 Recâblage et dégradation . 79

4.4 Analyse des résultats . 80

4.4.1 Robustesse des différentes structures . 81

4.4.2 Évolution de la dynamique du tas de sable . 81

4.4.3 Discussion . 83

4.5 Conclusion . 85

Comme nous l’avons vu dans le chapitre précédent, la SOC, à travers le modèle du tas de sable, est capable

de produire un équilibrage de charge efficace. La robustesse est un concept clé pour les systèmes d’équili-

brage, définissant leur capacité à faire face à des défaillances inattendues. Il est donc important d’examiner la

robustesse du modèle du tas de sable.

Bien que de nombreuses études aient exploré le développement de la SOC au sein de diverses structures

(Section 3.3), aucune, à notre connaissance, ne s’est penchée sur son comportement en contexte dégradé, ni sur

l’influence des topologies sur l’impact de cette dégradation. Une telle compréhension pourrait offrir des pistes

pertinentes pour renforcer la résilience des mécanismes d’équilibrage de charge face aux perturbations ou aux

défaillances.

69

70 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

Ce premier travail vise à proposer un modèle à la fois simple et pertinent pour l’analyse de la robustesse

dans les systèmes SOC. Notre approche préserve la simplicité du modèle original du tas de sable, tout en y

intégrant, de manière cohérente, une diversité de topologies de réseau ainsi que des scénarios de défaillances

structurelles.

Pour atteindre cet objectif, nous proposons deux modifications principales du modèle canonique du tas de

sable : i) un mécanisme de recâblage permettant de générer un large éventail de topologies de réseau – allant

de grilles régulières jusqu’à des structures présentant divers degrés de randomisation et des caractéristiques de

petit monde – tout en maintenant un degré de nœud constant, et ii) une approche de simulation progressive

de la dégradation, dans laquelle la dynamique du tas de sable est étudiée à partir d’un système pleinement

fonctionnel, puis soumise à une augmentation graduelle des défaillances de nœuds, jusqu’à ce que seuls 10%

d’entre eux restent opérationnels.

En fin de compte, notre étude vise à explorer les interactions entre la criticalité auto-organisée et les dé-

faillances structurelles au sein des réseaux complexes à travers le prisme du modèle du tas de sable. En exami-

nant différentes structures de réseau (réseau en grille régulière, réseaux de petit monde, réseaux aléatoires) et

différents scénarios de défaillance, nous cherchons à identifier des motifs et des principes qui peuvent améliorer

la conception de réseaux plus robustes et résilients.

4.1 Cadre d’étude de la robustesse structurelle

En s’appuyant sur les enseignements des études antérieures sur la criticalité auto-organisée et les topolo-

gies de réseaux, cette section présente le cadre utilisé pour analyser la robustesse structurelle du modèle du tas

de sable Bak-Tang-Wiesenfeld. Si les recherches existantes ont largement étudié l’influence des structures de

réseau sur le comportement SOC, la manière dont ces systèmes réagissent à une dégradation progressive de

leur architecture demeure une question encore pas ou peu explorée. Pour cela, nous introduisons deux méca-

nismes clés de modification de la topologie du système : un processus de recâblage, qui nous permet d’explorer

les effets de la modification de la connectivité tout en maintenant un degré de nœud fixe, et un processus de

dégradation, qui supprime systématiquement des nœuds pour simuler des défaillances structurelles. Ces mo-

difications offrent un environnement contrôlé pour étudier l’interaction entre la criticalité auto-organisée et la

robustesse du réseau.

4.1.1 Algorithme de recâblage

La modification des topologies de réseau dans les modèles de SOC implique souvent des changements

structurels qui altèrent des propriétés fondamentales telles que la régularité, la directionnalité des connexions

ou les mécanismes de dissipation. De nombreuses approches existantes introduisent de telles modifications,

rendant les modèles résultants non conservatifs et s’écartant du modèle de tas de sable canonique. Pour préser-

ver le cadre original tout en permettant des altérations contrôlées, nous proposons un algorithme de recâblage

qui maintient le degré des nœuds constant tout en introduisant progressivement de l’aléatoire dans la topologie

4.1. CADRE D’ÉTUDE DE LA ROBUSTESSE STRUCTURELLE 71

du réseau.

L’algorithme proposé, inspiré du principe de permutation de G. A. Croes (CROES, 1958), permet la transi-

tion d’une topologie de grille régulière à une structure de type petit-monde (WATTS & STROGATZ, 1998), puis

à un réseau complètement aléatoire. L’algorithme prend en entrée le graphe et le nombre d’arêtes à recâbler. En

augmentant le nombre d’arêtes recâblées, nous ajustons systématiquement la structure du réseau sans modifier

les règles fondamentales régissant la dynamique du tas de sable, garantissant ainsi que tout changement observé

dans le comportement du système découle directement des altérations topologiques.

Algorithm 3: Recâblage aléatoire d’arêtes
Input: G : Graphe sur lequel appliquer le recâblage

m : Nombre d’arêtes à recâbler
1 while m > 1 do
2 Sélection aléatoire de deux arêtes non-recâblées et ne partageant pas de nœud {u,v} et {s,t} de G
3 Suppression des arêtes sélectionnées de G
4 Ajout des nouvelles arêtes {u,t} et {s,v} à G
5 m← m− 2

6 end

Soit G = (V,E) un graphe non orienté, où V est l’ensemble des nœuds (sommets) et E est l’ensemble des

arêtes. Chaque arête e ∈ E est définie comme une paire non ordonnée de nœuds {vi, vj} avec vi, vj ∈ V .

L’algorithme 3 fonctionne comme suit : deux arêtes, {u,v} et {s,t}, sont sélectionnées aléatoirement dans

E, où u, v, s, t ∈ V sont distincts. Comme illustré dans la Figure 4.1, l’algorithme échange ensuite un nœud

de chaque arête, formant ainsi deux nouvelles arêtes, {u,t} et {s,v}. Ce processus est répété m
2 fois, où m

est le nombre total d’arêtes à reconnecter, garantissant que chaque arête est modifiée une seule fois. De plus,

l’algorithme impose une contrainte empêchant la sélection d’arêtes partageant un nœud commun, préservant

ainsi l’intégrité structurelle du réseau.

s

v t

u

(a) Étape 1 :
Sélection des arêtes à

recâbler

s

v t

u

(b) Étape 1 :
Permutation des arêtes

sélectionnées

u v

t

s

(c) Étape 2 :
Sélection d’arêtes

additionnelles

u v

t

s

(d) Étape 2 :
Permutation des arêtes

additionnelles

FIGURE 4.1 – Exemple de processus de recâble d’une grille de taille 3 avec m = 4.

Les résultats obtenus avec cette méthode de recâblage concordent avec les études précédentes sur les to-

pologies de réseau SOC. Comme le montre la Figure 4.2a, l’exposant de la loi de puissance de la distribution

des durées d’avalanche augmente avec le nombre de reconnexions, reflétant un changement dans la dynamique

des avalanches. Notamment, les changements les plus significatifs se produisent pour de faibles coefficients de

reconnexion, ce qui suggère que même des altérations topologiques minimes peuvent influencer la dynamique

72 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

du tas de sable.

0 20 40 60 80 100
Recâblage (%)

1.0

1.2

1.4

1.6

1.8

2.0

Ex
po

sa
nt Bruit rose

Bruit rouge
Valeurs mesurées

(a) Évolution de l’exposant de la loi de puissance pour la
distribution des durées d’avalanche.

0 20 40 60 80 100
Recâblage (%)

1

2

3

4

5

No
m

br
e

de
 d

ép
la

ce
m

en
ts

1e9

(b) Évolution de la quantité de mouvement des grains dans
le système.

FIGURE 4.2 – Effets du recâblage d’une grille de taille 128 sur la dynamique du tas de sable.

Malgré le maintien d’un degré de nœud constant, la méthode de reconnexion proposée produit des résultats

similaires à ceux observés dans la littérature pour d’autres approches de reconnexion qui modifient le degré des

nœuds. Plus précisément, l’exposant de la loi de puissance augmente à mesure que la topologie passe d’une

structure régulière à un réseau de type petit-monde, puis se stabilise lorsque la topologie de type petit-monde

évolue vers un réseau aléatoire.

Une augmentation de l’exposant de la loi de puissance se traduit par une occurrence plus élevée de petites

avalanches et une fréquence plus faible de grandes avalanches catastrophiques. Dans ce contexte, un exposant

de 1 correspond au bruit rose, tandis qu’un exposant de 2 est associé au bruit rouge. Selon les travaux fondateurs

de Bak, Tang et Wiesenfeld (BAK et al., 1987), une grille régulière produit du bruit rose, tandis qu’une faible

quantité de recâblage décale la dynamique des avalanches vers un bruit rosé, un état intermédiaire entre le bruit

rose et le bruit rouge.

D’un point de vue performance énergétique, l’évolution des avalanches montre qu’un recâblage minime

permet de réduire le nombre de sauts effectués par les grains, et par conséquent, la consommation énergétique

due aux communications. La Figure 4.2b illustre qu’au début du recâblage (5%), le nombre de grains déplacés

par les avalanches est divisé par 10 , atteignant une efficacité jusqu’à 17 fois supérieure lors d’un recâblage

complet. Cela démontre une capacité accrue du système à s’auto-réguler comme le suggère l’évolution de

l’exposant discuté précédemment.

Ces améliorations notables sont dues à la rapide diminution des distances dans la structure, caractéristique

des réseaux de type petit-monde. La Figure 4.3 montre une diminution abrupte de la distance séparant les

nœuds d’un bord du système. Cette réduction est particulièrement remarquable pour les nœuds les plus éloignés

(courbe orange pointillée). Après les premiers pourcentages de recâblage, les distances moyennes et maximales

deviennent très proches et faibles. Cela signifie que, quel que soit le nœud sur lequel se trouve un grain, il n’est

qu’à quelques sauts d’être expulsé, optimisant ainsi le processus d’équilibrage de charge.

4.1. CADRE D’ÉTUDE DE LA ROBUSTESSE STRUCTURELLE 73

0 20 40 60 80 100
Recâblage (%)

0

10

20

30

40

50

60

Di
st

an
ce

 d
u

bo
rd

 le
 p

lu
s p

ro
ch

e

Moyenne
Maximum

FIGURE 4.3 – Effet du recâblage d’une grille de taille 128 sur la distance séparant les nœuds d’un bord.
La première courbe (pleine bleue) correspond à la moyenne des distances, tandis que la deuxième courbe
(pointillée orange) présente les distances des nœuds les plus éloignées.

En ce qui concerne la densité de grains représentée dans la Figure 4.4, le processus de reconnexion entraîne

seulement une légère diminution. Une densité de 0 indiquerait un tas de sable qui ne retient aucun grain dans

le système, tandis qu’une densité de 1 correspond à un système où chaque nœud conserve constamment quatre

grains. La faible réduction de densité observée avec la reconnexion suggère que, bien que la structure du

réseau change, la capacité globale du système à maintenir une tension nécessaire à son auto-organisation reste

pratiquement inchangée.

0 20 40 60 80 100
Recâblage (%)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ité

FIGURE 4.4 – Évolution de la densité de grains dans un tas de sable de taille 128 au fil du recâblage.

4.1.2 Processus de dégradation

La structure supportant le modèle de tas de sable est progressivement dégradée pour analyser sa robustesse.

Ce processus de dégradation se compose de deux étapes principales. Tout d’abord, une partie des nœuds est

retirée aléatoirement du graphe, réduisant ainsi la connectivité globale. Dans une deuxième étape, les zones

74 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

isolées qui émergent en raison de la suppression des nœuds sont identifiées et éliminées pour maintenir une

structure fonctionnelle. Ce processus est détaillé dans l’Algorithme 4.

Algorithm 4: Processus de dégradation
Input: G : Graphe initial

n : Nombre de nœuds à supprimer
Output: Graphe modifié après dégradation

1 Étape 1 : Supprimer aléatoirement n nœuds de G

2 Étape 2 : Identifier et supprimer les clusters fermés
3 for chaque cluster dans G do
4 if cluster n’a pas de nœuds bordure then
5 Supprimer le cluster de G
6 end
7 end

Étape 1 : Suppression des nœuds Un pourcentage défini de nœuds est retiré du système, calculé comme

une fraction de la taille totale du graphe. Cette suppression est effectuée aléatoirement tout en garantissant que

la structure résultante reste un cadre viable pour la dynamique du tas de sable. À mesure que les nœuds sont

supprimés, le graphe se divise naturellement en plusieurs composants séparés, appelés clusters.

Étape 2 : Suppression des clusters fermés Après la première étape, certains clusters peuvent devenir com-

plètement isolés, ce qui signifie qu’ils n’ont pas de nœuds frontaliers. Cette situation pose problème pour la

dynamique du tas de sable, car les grains piégés à l’intérieur de tels clusters circuleraient indéfiniment sans

pouvoir sortir du système. Pour éviter ce problème, les clusters qui ne contiennent pas au moins un nœud

frontalier, appelés clusters fermés, sont retirés du graphe. En revanche, les clusters ayant au moins un nœud

frontalier, appelés clusters ouverts, sont conservés, car ils permettent la dissipation des grains.

La Figure 4.5 illustre le processus de dégradation en deux étapes, qui commence par un graphe de base

initial et applique les deux étapes de dégradation : d’abord, des nœuds aléatoires sont supprimés, puis les

clusters fermés sont retirés. Pour démontrer l’impact non linéaire de la deuxième étape sur la structure du

graphe, la Figure 4.6 présente plusieurs scénarios avec différents pourcentages de suppression de nœuds. À

mesure que la suppression de nœuds augmente, la deuxième étape élimine progressivement les clusters fermés,

affectant ainsi de manière significative la structure.

4.1.3 Cadre global : construction de graphe avec recâblage et dégradation

Le cadre global pour l’analyse de la robustesse structurelle du modèle du tas de sable comprend deux

étapes séquentielles. Tout d’abord, une grille initiale est générée. Optionnellement, la grille subit un processus

de recâblage qui modifie la connectivité tout en préservant un degré constant des nœuds. Ensuite, le graphe

recâblé est modifié davantage en appliquant le processus de dégradation décrit précédemment.

En détail, le cadre fonctionne comme suit :

1. Génération de la grille : une grille de taille S × S est créée pour servir de structure fondamentale.

4.1. CADRE D’ÉTUDE DE LA ROBUSTESSE STRUCTURELLE 75

(a) Grille initiale (b) Dégradation étape 1 (c) Dégradation étape 2

FIGURE 4.5 – Exemple du processus de dégradation sur une grille de 16× 16. (a) Structure initiale de la grille,
les carrés représentent les nœuds frontaliers et les cercles représentent les nœuds internes. (b) Première étape de
dégradation, 40% des nœuds sont supprimés, laissant des nœuds déconnectés d’une bordure (losanges rouges).
(c) Deuxième étape de dégradation, les clusters fermés sont supprimés, laissant la structure restante divisée en
plusieurs clusters, chacun marqué par une couleur. Le plus grand cluster est mis en évidence avec des contours
en gras.

(a) 40% des nœuds supprimés (b) 50% des nœuds supprimés (c) 60% des nœuds supprimés

FIGURE 4.6 – Exemple de trois scénarios de dégradation sur une grille de 16 × 16, illustrant l’impact non
linéaire de la deuxième étape de dégradation. La figure met en évidence la manière dont la suppression des
clusters isolés devient plus significative à mesure que le pourcentage de nœuds supprimés augmente.

2. Reconnexion : une fraction spécifiée des arêtes est recâblée, introduisant de l’aléatoire dans la topologie

tout en maintenant un degré constant pour chaque nœud.

3. Dégradation : un pourcentage donné de nœuds est retiré du graphe reconnecté. Ensuite, les clusters

fermés (c’est-à-dire ceux qui manquent de nœuds bordures) sont supprimés, garantissant que la structure

restante supporte correctement la dynamique du tas de sable.

4. Ajustement du seuil : enfin, chaque nœud met à jour son seuil critique en fonction de son nombre

actuel de voisins (avec des ajustements supplémentaires pour les nœuds de bordure et d’angle) afin de

garantir la compatibilité avec le modèle du tas de sable.

76 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

4.2 Dispositif expérimental

Cette section présente la conception expérimentale utilisée pour évaluer le modèle du tas de sable et sa

robustesse structurelle. Dans notre cadre, des simulations sont réalisées sur des grilles qui peuvent subir un

recâblage optionnel suivi d’une dégradation. Les sous-sections suivantes décrivent les paramètres de simulation

et les métriques utilisées pour évaluer à la fois le comportement dynamique des avalanches et le degré de

dégradation structurelle.

4.2.1 Paramètres des simulations

Les expériences sont menées sur une grille de taille S = 128 × 128. Chaque simulation s’exécute sur un

total de 400 000 cycles, précédés d’une phase d’initialisation de 40 000 cycles pour permettre au système de

se stabiliser. À chaque cycle, un grain est ajouté aléatoirement, ce qui peut déclencher une avalanche lorsqu’un

nœud dépasse son seuil.

Les principaux paramètres de simulation incluent :

— Taux de recâblage (Rewiring Rate, RR) : la fraction des arêtes qui sont reconnectées, variant de 0%

à 100% par incréments de 1%. Ce paramètre permet l’étude de la dynamique du tas de sable à travers

différentes topologies de réseau, allant d’une grille régulière à des structures de type petit-monde et

aléatoires.

— Taux de suppression des nœuds (Nodes Removal Rate, NRR) : la fraction de nœuds supprimés pour

simuler la dégradation, variant de 0% à 90% par incréments de 1%.

— Moyennage : pour chaque combinaison de taux de reconnexion et de suppression des nœuds, les résul-

tats sont moyennés sur 25 simulations indépendantes, chacune utilisant une graine aléatoire différente.

Le Tableau 4.1 résume les paramètres de simulation.

Nom Abréviation Valeur Définition
Grid size S 128 Taille initiale de la grille

Rewiring rate RR 0-100% Fraction des arêtes recâblées

Node removal rate NRR 0-90%
Taux auquel les nœuds sont initialement supprimés lors de
la première étape de la dégradation

Simulation cycles cycles 400k Nombre total de cycles par simulation

Random seeds seeds 25
Nombre de simulations indépendantes moyennées pour
chaque combinaison de taux de reconnexion et de suppres-
sion des nœuds

TABLE 4.1 – Paramètres des simulations.

4.2.2 Outils d’analyse

Pour évaluer à la fois la performance dynamique du modèle du tas de sable et la robustesse de sa structure

de réseau, nous utilisons les métriques suivantes :

— Densité des grains : le rapport entre le nombre total de grains et la capacité totale des nœuds. Une

4.3. ÉTUDE ILLUSTRATIVE 77

densité de 0 implique une absence de rétention de grains, tandis qu’une densité de 1 indique que chaque

nœud est à sa capacité maximale, autrement dit au bord de l’éboulement.

— Mouvements des grains : le nombre total de transferts de grains (entre nœuds ou hors du système)

pendant les avalanches, servant d’indicateur pour l’efficacité de stabilisation du système, ainsi que pour

la consommation énergétique liée à la communication des grains.

— Taille du graphe : le nombre de nœuds restants après la dégradation.

— Clusters ouverts : le nombre de clusters qui restent viables (c’est-à-dire qui contiennent au moins un

nœud frontalier) après le processus complet de dégradation.

— Ratio du cluster géant par rapport au graphe : le ratio du nombre de nœuds formant la plus grande

composante connexe du graphe dégradé par rapport au nombre total de nœuds restant. Plus le ratio est

faible, moins le cluster géant est significatif dans le graphe.

— Distance des nœuds d’une bordure : la distance minimale moyenne séparant les nœuds d’un nœud

bordure du système.

4.3 Étude illustrative

Maintenant que le cadre d’étude est posé, nous allons nous intéresser à quelques cas pratiques illustrant sa

mise en œuvre. L’objectif est de comprendre comment la structure générée évolue au cours de son recâblage

et de sa dégradation, et comment cela peut impacter la dynamique du tas de sable. Les résultats numériques

seront présentés plus tard en Section 4.4. La structure que nous étudierons ici est une grille de taille 16. Nous

commencerons par examiner l’impact du recâblage seul, puis nous analyserons la dégradation seule. Enfin,

nous explorerons l’effet combiné des deux processus.

4.3.1 Recâblage

La Figure 4.7 illustre l’évolution des connexions dans la grille au fur et à mesure du recâblage. On ob-

serve qu’avec un recâblage minime, produisant une structure de type petit-monde, de nombreux raccourcis

apparaissent déjà. Ces raccourcis permettent de connecter des régions éloignées, réduisant ainsi considérable-

ment les distances. Au-delà de 30% de recâblage, le mélange des connexions est tel que la structure peut être

considérée comme aléatoire.

Comme discuté en Section 4.1.1, le recâblage influence la dynamique des avalanches dans le modèle du

tas de sable. La Figure 4.8 propose une autre représentation de cette influence : le mouvement des grains sur

les nœuds. Plus un nœud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge.

Cette représentation montre que, à mesure que le recâblage augmente, les nœuds sont utilisés de manière plus

homogène. En revanche, lorsque la structure est dépourvue de raccourcis, le mouvement est principalement

concentré en son centre.

78 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

(a) 0% (b) 10% (c) 20%

(d) 30% (e) 50% (f) 100%

FIGURE 4.7 – Évolution des connexions dans une grille de taille 16 après recâblage pour différents taux.

(a) Aucun recâblage (b) 10% de recâblage (c) 50% de recâblage

FIGURE 4.8 – Carte de chaleur du mouvement des grains dans une grille de taille 16, avec et sans recâblage.
Plus un nœud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge. L’échelle est
indépendante d’une représentation à l’autre. Cela permet de voir que le recâblage homogénéise le mouvement
des grains.

4.3.2 Dégradation

Pour ce qui est du processus de dégradation, son impact sur la structure a été introduit en Section 4.1.2

et illustré par les Figures 4.5 et 4.6. De manière similaire à l’analyse du recâblage, nous pouvons examiner

comment la dégradation influence l’utilisation des nœuds. La Figure 4.9 montre cette influence pour des grilles

où 40%, 50%, et 60% des nœuds ont été initialement supprimés. On observe que, plus un nœud est éloigné d’une

bordure, plus il est emprunté par les grains, comme c’est le cas pour la grille initiale (Figure 4.8). Cependant,

4.3. ÉTUDE ILLUSTRATIVE 79

à mesure que la dégradation progresse, les plus gros clusters disposent de moins en moins de nœuds bordure

pour éjecter les grains, favorisant ainsi des avalanches relativement longues par rapport à leur taille. De plus,

ces clusters concentrent la majorité des grains en raison de leur taille. C’est pourquoi, comme le montre la

Figure 4.10, les rares nœuds bordure des plus gros clusters éjectent beaucoup plus de grains du système que les

autres.

(a) 40% des nœuds supprimés (b) 50% des nœuds supprimés (c) 60% des nœuds supprimés

FIGURE 4.9 – Carte de chaleur du mouvement des grains dans une grille de taille 16 après dégradation. Plus un
nœud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge. L’échelle est indépendante
d’une représentation à l’autre. L’éclatement de la structure en de multiples petits morceaux diminue le nombre
de nœuds de bordure pour les clusters les plus gros, concentrant alors la majorité du mouvement.

(a) 40% des nœuds supprimés (b) 50% des nœuds supprimés (c) 60% des nœuds supprimés

FIGURE 4.10 – Carte de chaleur de l’éjection des grains pour une grille de taille 16 après dégradation. Plus un
nœud éjecte des grains au cours des avalanches, plus il est coloré en rouge. L’échelle est indépendante d’une
représentation à l’autre.

4.3.3 Recâblage et dégradation

Maintenant que nous avons étudié l’impact des deux processus séparément, nous pouvons nous intéresser

à leur combinaison. La Figure 4.11 illustre l’évolution d’une grille dont 50% des nœuds sont initialement sup-

primés. On observe que le nombre de nœuds supprimés lors de la deuxième étape du processus de dégradation

diminue presque de moitié avec seulement 20% de recâblage. De plus, un cluster (réellement) géant, essentiel

à la bonne auto-régulation du système à grande échelle, apparaît. En revanche, lorsqu’il n’y a pas de recâblage,

aucun cluster ne se démarque réellement, tous étant d’une taille très modeste.

80 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

(a) 0% de recâblage (b) 10% de recâblage (c) 20% de recâblage

(d) 0% de recâblage (e) 10% de recâblage (f) 20% de recâblage

FIGURE 4.11 – Évolution de la structure d’une grille de taille 16 dont 50% des nœuds sont supprimés, sans
recâble puis avec un recâblage de 10 et 20%. La première ligne illustre l’évolution du nombre de clusters fermés
(identifiés par des losanges rouges pour leurs nœuds), tandis que la seconde montre les clusters restants une
fois le processus de dégradation complet.

Ces processus de recâblage et de dégradation offrent un cadre d’étude puissant pour analyser comment

la SOC, à travers le modèle du tas de sable, se comporte dans une multitude de structures. Maintenant que

nous avons les clés de compréhension de ces processus et de leurs impacts, nous pouvons analyser comment le

modèle du tas de sable et sa structure y réagissent.

4.4 Analyse des résultats

Cette section propose une analyse complète des résultats des simulations. Les expériences évaluent deux

aspects clés : la robustesse structurelle de diverses topologies de réseau face à la dégradation et l’évolution de la

dynamique du tas de sable en réponse à ces changements structurels. Nous commencerons par examiner la ma-

nière dont les différentes structures de réseau introduisant du recâblage se détériorent, puis nous poursuivrons

avec le comportement dynamique du modèle du tas de sable dans ces structures. La discussion finale résume

les principales conclusions et leurs implications.

4.4. ANALYSE DES RÉSULTATS 81

4.4.1 Robustesse des différentes structures

La robustesse du réseau, telle que définie par DEKKER et COLBERT (2004), fait référence au nombre mi-

nimum de suppressions de nœuds nécessaires pour déconnecter un réseau. Dans notre cadre d’étude du tas de

sable, le réseau se dégrade progressivement jusqu’à s’effondrer complètement. Les grilles sont particulière-

ment vulnérables aux défaillances structurelles. Notre objectif est de maximiser le nombre de nœuds conservés

dans un seul cluster connecté pendant cette dégradation, retardant ainsi le début d’une fragmentation rapide

et étendue. Cette approche améliore la tolérance aux pannes du réseau, non pas en empêchant les premières

scissions, qui surviennent tôt, mais en retardant la rupture critique en de nombreux petits clusters. À cette fin,

nous appliquons la technique de recâblage, détaillée dans la Section 4.1.1, pour renforcer la robustesse face à

la dégradation.

La Figure 4.12 illustre l’évolution structurelle pour différents taux de recâblage pendant la dégradation.

Pour la grille régulière (RR=0%), un seuil critique apparaît entre 30% et 40% de suppressions de nœuds, au-delà

duquel commence l’effondrement. Ce point est marqué par un écart abrupt de la taille du graphe par rapport

à l’indicateur de dégradation linéaire (ligne pointillée rouge dans la Figure 4.12a). Le réseau se fragmente

alors en de nombreux petits clusters, dont plusieurs manquent de nœuds frontaliers et sont ensuite supprimés

(Figure 4.12b). Simultanément, la dominance de la composante géante diminue (Figure 4.12c), reflétant la

désintégration en composantes plus petites et moins significatives.

De manière remarquable, même un recâblage minimal améliore considérablement la robustesse. Le seuil

d’effondrement est repoussé de 10 à 20%, permettant finalement au réseau de supporter jusqu’à 60% de sup-

pressions de nœuds avant une fragmentation critique. Cette amélioration découle de la perturbation des mé-

triques de distance originales du réseau par le recâblage, raccourcissant les chemins, en particulier vers les

nœuds bordures (Figure 4.12d), et améliorant ainsi la connectivité et la stabilité face à la dégradation.

4.4.2 Évolution de la dynamique du tas de sable

Les changements dans la topologie du réseau modifient naturellement le comportement du modèle du tas

de sable canonique, affectant particulièrement sa capacité à maintenir la criticalité auto-organisée à mesure que

la structure subit une dégradation. Cette sous-section examine comment la dynamique du modèle évolue avec

des suppressions progressives de nœuds pour différents taux de recâblage, en se concentrant sur des métriques

clés telles que la densité de grains et le nombre total de mouvements des grains. En analysant ces métriques, il

devient évident que la reconnexion non seulement renforce la robustesse structurelle, mais façonne également

la performance du modèle sous contrainte. La Figure 4.13 illustre cette progression : la Figure 4.13a met en

évidence les changements de densité de grains, et la Figure 4.13b illustre le nombre total de mouvements de

grains pour chaque configuration de réseau.

Dans une grille sans recâblage (RR = 0%), le début de la dégradation déclenche une réponse en deux

phases. À mesure que la proportion de nœuds supprimés approche environ 40%, les chemins entre les nœuds

et les points de sortie deviennent plus longs, augmentant le temps que les grains passent dans le système. Ce

parcours prolongé entraîne une augmentation des mouvements de grains (Figure 4.13b), atteignant jusqu’à 51

82 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

0 20 40 60 80 100
Noeuds supprimés (%)

0

2500

5000

7500

10000

12500

15000

No
m

br
e

de
 n

oe
ud

s

Indicator
RR=0%
RR=10%
RR=20%
RR=30%
RR=40%
RR=50%
RR=60%
RR=70%
RR=80%
RR=90%
RR=100%

(a) Taille du graphe.

0 20 40 60 80 100
Noeuds supprimés (%)

0

20

40

60

80

100

120

140

No
m

br
e

de
 c

lu
st

er
s o

uv
er

ts

RR=0%
RR=10%
RR=20%
RR=30%
RR=40%
RR=50%
RR=60%
RR=70%
RR=80%
RR=90%
RR=100%

(b) Nombre de clusters ouverts.

0 20 40 60 80 100
Noeuds supprimés (%)

0.2

0.4

0.6

0.8

1.0

Ta
ille

 d
u

clu
st

er
 g

éa
nt

 /
Ta

ille
 d

u
gr

ap
he

RR=0%
RR=10%
RR=20%
RR=30%
RR=40%
RR=50%
RR=60%
RR=70%
RR=80%
RR=90%
RR=100%

(c) Ratio du cluster géant par rapport au graphe.

0 20 40 60 80 100
Noeuds supprimés (%)

0

10

20

30

40

50

60

Di
st

an
ce

 m
in

im
um

 d
'u

ne
 b

or
du

re

RR=0%
RR=10%
RR=20%
RR=30%
RR=40%
RR=50%
RR=60%
RR=70%
RR=80%
RR=90%
RR=100%

(d) Distance moyenne des nœuds d’une bordure.

FIGURE 4.12 – Évolution de l’impact de la dégradation sur différentes structures avec un taux de recâblage
allant de 0 à 100% par incréments de 10%.

4.4. ANALYSE DES RÉSULTATS 83

0 20 40 60 80 100
Noeuds supprimés (%)

0.0

0.2

0.4

0.6

0.8

1.0
De

ns
ité

RR=0%
RR=10%
RR=20%
RR=30%
RR=40%
RR=50%

RR=60%
RR=70%
RR=80%
RR=90%
RR=100%

(a) Densité des grains.

0 20 40 60 80 100
Noeuds supprimés (%)

107

108

109

1010

1011

No
m

br
e

de
 d

ép
la

ce
m

en
ts

 d
e

gr
ai

ns

RR=0%
RR=10%
RR=20%
RR=30%

RR=40%
RR=50%
RR=60%
RR=70%

RR=80%
RR=90%
RR=100%

(b) Mouvements des grains.

FIGURE 4.13 – Évolution de l’impact de la dégradation sur la dynamique du tas de sable pour des structures
avec un taux de recâblage allant de 0 à 100% par incréments de 10%.

fois la valeur de base à environ 42% de suppression de nœuds, accompagnée d’une légère augmentation de la

densité de grains (Figure 4.13a). Cependant, une fois que le réseau dépasse ce seuil, la fragmentation en clusters

ouverts plus petits réduit brusquement les longueurs des chemins, entraînant une diminution des mouvements

de grains et de la densité. À ce stade, le système perd la tension nécessaire pour maintenir la SOC, et les

avalanches à grande échelle ne se produisent plus.

L’introduction du recâblage modère ces effets, retardant le point auquel le réseau subit une fragmentation

brutale. Des routes plus courtes vers les points de sortie distribuent les grains de manière plus uniforme pendant

une période plus longue, maintenant des niveaux plus élevés de mouvements de grains (Figure 4.13b) et de

densité (Figure 4.13a) plus en avant dans le processus de dégradation. La connectivité améliorée augmente le

seuil d’effondrement d’au moins 15% de suppressions de nœuds supplémentaires par rapport à la grille sans

recâble. Les taux de recâblage intermédiaires (par exemple, de 10% à 90%) produisent un gradient de résultats,

avec des fluctuations plus prononcées de la densité et des mouvements à mesure que le taux de recâblage

augmente. Globalement, le recâblage s’avère bénéfique pour préserver la SOC et ralentir la transition vers un

état fragmenté et sous-critique.

4.4.3 Discussion

Cette étude fait progresser la compréhension de la robustesse structurelle et de la criticalité auto-organisée

dans les réseaux complexes en examinant le modèle du tas de sable de Bak-Tang-Wiesenfeld à travers diverses

topologies et scénarios de dégradation. Notre analyse révèle des éléments clés sur la robustesse des réseaux, la

dynamique des avalanches et le maintien de l’état critique, avec des implications pour les systèmes technolo-

giques et biologiques.

Robustesse des réseaux : Les résultats montrent que les grilles régulières maintiennent le comportement

de SOC jusqu’à un taux de défaillance des nœuds de 30 à 40%, tandis que les réseaux avec un recâblage

84 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

minimal (par exemple, 10% de reconnexion) tolèrent jusqu’à 55% de pertes de nœuds avant une fragmen-

tation critique. Cette disparité souligne le rôle crucial de la structure topologique dans l’amélioration de la

résilience. Les propriétés de « petit monde » introduites par le recâblage, telles que la réduction des longueurs

de chemin et l’amélioration de la connectivité, reflètent des caractéristiques observées dans des systèmes réels

résilients. Par exemple, dans les réseaux de processeurs, où des défaillances de nœuds (processeurs) ou de liens

(connexions) peuvent survenir en raison de problèmes matériels, l’adoption de telles topologies pourrait retar-

der la défaillance du système, offrant une stratégie pratique pour concevoir des infrastructures technologiques

tolérantes aux pannes, comme les systèmes de calcul distribué ou les réseaux énergétiques.

Dynamique des avalanches : Le recâblage maintient l’état critique pendant une dégradation prolongée en

améliorant l’efficacité de la redistribution des grains induite par les avalanches, comme en témoignent une den-

sité de grains plus élevée et des mouvements de grains optimisés (Section 4.4.2). Cette efficacité réduit l’énergie

nécessaire à la stabilisation du système. Dans ce contexte, les topologies recâblées minimisent les mouvements

de grains inutiles, similaires à la réduction des coûts de communication entre les cœurs ou les nœuds d’un

réseau informatique. Un tel comportement suggère des applications potentielles dans la distribution dynamique

de la charge de travail, où la réorganisation des connexions pourrait réduire la consommation d’énergie lors des

transferts de données, améliorant ainsi la durabilité des systèmes informatiques.

Maintien de l’état critique : La capacité des réseaux reconnectés à préserver la SOC au minimum jusqu’à

55% de défaillances de nœuds met en lumière leur potentiel pour la gestion des pannes dans les systèmes

à haute criticité, tels que les dispositifs embarqués ou les réseaux en temps réel. Lorsqu’un nœud tombe en

panne, les topologies recâblées facilitent un réacheminement rapide, atténuant la dégradation des performances

ou la perte de données. La criticalité prolongée réduit l’énergie nécessaire pour retrouver la stabilité après une

perturbation, diminuant ainsi la dépendance aux mécanismes de redondance. Dans les réseaux de processeurs,

cela pourrait prolonger la durée de vie des composants et optimiser l’utilisation de l’énergie en évitant des

opérations de récupération excessives, en ligne avec les objectifs d’efficacité et de résilience.

Connexions avec le fonctionnement cérébral et les crises épileptiques : Les résultats résonnent avec la

SOC dans les systèmes biologiques, notamment les réseaux neuronaux du cerveau. Les avalanches neuro-

nales, une caractéristique de la SOC, permettent un traitement efficace de l’information dans les cerveaux

sains (BEGGS & PLENZ, 2003 ; HAHN et al., 2010). Cependant, des perturbations structurelles, analogues aux

défaillances de nœuds dans ce modèle, peuvent déstabiliser cet équilibre, poussant le système vers un état su-

percritique, comme observé lors des crises épileptiques (MEISEL et al., 2012). L’observation que les grilles

régulières s’effondrent à 30-40% de perte de nœuds est parallèle à la manière dont une déconnexion neuro-

nale excessive peut déclencher une activité incontrôlée. Inversement, la robustesse accrue des réseaux recâblés

suggère que le maintien d’un équilibre topologique, similaire à la modularité hiérarchique du cerveau (S.-J.

WANG & ZHOU, 2012), pourrait retarder de telles transitions. Cette analogie implique que les enseignements

tirés du modèle du tas de sable pourraient aiguiller vers des stratégies pour stabiliser les réseaux neuronaux,

4.5. CONCLUSION 85

potentiellement en atténuant les crises épileptiques en préservant une connectivité critique.

Implications Plus Larges : L’effondrement brutal des métriques de SOC au-delà de seuils critiques (par

exemple, 55% de perte de nœuds dans les réseaux recâblés) indique que, bien que les modifications topolo-

giques renforcent la résilience, des limites structurelles inhérentes persistent. Cela soulève des questions sur

les transitions vers des états chaotiques ou sous-critiques dans les systèmes artificiels et naturels. Par exemple,

dans les réseaux électriques, le dépassement d’un seuil de défaillance pourrait conduire à des pannes en cas-

cade (SHENGWEI MEI et al., 2008), tandis que dans les réseaux financiers, cela pourrait précipiter des krachs

boursiers (BIONDO et al., 2015). Ces résultats fournissent ainsi un cadre pour anticiper et gérer de tels points

de basculement à travers les domaines.

En résumé, cette étude non seulement éclaire l’interaction entre la topologie et la résilience de la SOC,

mais établit également un lien entre les perspectives théoriques et les applications pratiques. En soulignant les

parallèles avec le fonctionnement cérébral et les systèmes technologiques, elle met en lumière la pertinence

universelle de ces principes et ouvre la voie à des avancées interdisciplinaires.

4.5 Conclusion

Cette étude explore l’interaction entre la criticité auto-organisée (SOC) et la robustesse structurelle dans

les réseaux complexes, en utilisant le modèle du tas de sable de Bak-Tang-Wiesenfeld comme cadre d’analyse.

En examinant les effets de la topologie du réseau et de la dégradation sur le comportement de la SOC, nous

découvrons des mécanismes qui améliorent la résilience dans divers systèmes.

Nos principales contributions sont les suivantes :

1. Robustesse structurelle améliorée : les grilles régulières maintiennent la SOC jusqu’à un taux de dé-

faillance des nœuds de 30 à 40%, tandis que les réseaux avec un recâblage minimal (10%) supportent

jusqu’à 55% de pertes de nœuds. Cela démontre que de petits ajustements topologiques renforcent

considérablement la résilience, offrant un modèle pour la conception de réseaux tolérants aux pannes.

2. Dynamique des avalanches optimisée : le recâblage réduit les longueurs moyennes des chemins pour

la redistribution des grains, retardant l’effondrement structurel et maintenant une densité de grains plus

élevée pendant la dégradation. Cette efficacité préserve l’état critique, reflétant les comportements adap-

tatifs dans les systèmes naturels et artificiels.

3. Gains d’efficacité énergétique : la réduction des mouvements de grains dans les réseaux recâblés dimi-

nue l’énergie nécessaire à la stabilisation, un principe applicable à la minimisation de l’utilisation des

ressources dans les systèmes technologiques comme les réseaux de processeurs ou les réseaux élec-

triques.

4. Pertinence dans le monde réel : les résultats ont des implications pratiques pour les infrastructures cri-

tiques, par exemple, l’amélioration de la tolérance aux pannes dans les systèmes informatiques, et les

86 CHAPITRE 4. ROBUSTESSE DU TAS DE SABLE

systèmes biologiques, comme la stabilisation des réseaux neuronaux pour prévenir les crises épilep-

tiques. Cette double applicabilité souligne l’universalité de la résilience de la SOC.

5. Orientations de recherche : l’étude met en lumière le potentiel des réseaux auto-adaptatifs qui se recon-

nectent dynamiquement en réponse aux pannes, ouvrant la voie à l’exploration future de stratégies de

résilience en temps réel.

Ces contributions révèlent que la topologie du réseau est un levier crucial pour maintenir la SOC sous

contrainte structurelle. En exploitant un recâblage minimal, nous pouvons concevoir des systèmes capables de

supporter des perturbations importantes tout en optimisant l’utilisation de l’énergie, une découverte pertinente

pour des domaines tels que la distribution d’énergie, les neurosciences, et dans notre cas l’équilibrage de charge.

À l’avenir, l’étude des mécanismes auto-adaptatifs pourrait encore améliorer les modèles de SOC, permettant

aux réseaux de maintenir de manière autonome leur robustesse et leur efficacité dans des applications telles que

les réseaux intelligents ou les prothèses neurales. Ce travail fournit ainsi une base pour construire des systèmes

complexes résilients et durables, capables de prospérer face à l’adversité.

Chapitre 5

Le tamis auto-adaptatif

Table des matières du chapitre
5.1 Un environnement limité pour le tamis . 88

5.2 Seuil critique dynamique . 89

5.2.1 Modélisation . 89

5.2.2 Cas d’étude . 92

5.2.2.1 Présentation des scénarios . 92

5.2.2.2 Résultats des scénarios . 93

5.3 Modélisation de la capacité de tamisage dynamique . 93

5.4 Adaptation des capacités par entropie locale . 95

5.4.1 L’entropie locale . 96

5.4.2 Méthode naïve . 97

5.4.3 Méthode proportionnelle . 98

5.4.4 Détermination des paramètres de l’entropie locale 100

5.4.4.1 Cadre d’étude . 101

5.4.4.2 Adaptation naïve . 103

5.4.4.3 Adaptation proportionnelle . 105

5.4.5 Comparaison des méthodes . 109

5.5 Adaptation des capacités par protocole de bavardage . 110

5.5.1 Modélisation . 111

5.5.2 Cadre d’étude . 112

5.5.3 Analyse de l’adaptation . 112

5.6 Comparaison des méthodes . 116

5.6.1 Cadre d’étude . 116

5.6.1.1 Charge fixe et charge fluctuante . 116

5.6.1.2 Charge réelle . 117

87

88 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

5.6.2 Scénarios de charge fixe et fluctuante . 118

5.6.3 Scénario de charge réelle . 120

5.7 Conclusion . 124

Le modèle de tamis, dans sa version initiale présentée en Section 3.5.3, constitue une modélisation à la fois

simple et efficace d’un système de traitement de tâches. Il a démontré sa capacité à équilibrer dynamiquement

la charge de travail et à traiter efficacement les tâches qui lui sont confiées. Toutefois, comme évoqué précé-

demment, ce modèle a été étudié dans un environnement infini, ce qui ne reflète pas les contraintes réelles

d’un système de traitement, où le nombre de ressources est limité.

Dans ce chapitre, nous introduisons une évolution du modèle : le tamis auto-adaptatif. L’objectif principal

de ce nouveau modèle est de rendre le tamis adaptatif, afin qu’il soit capable de fonctionner durablement dans un

système contraint en taille, tout en préservant sa décentralisation. Nous montrerons, à travers différentes études,

que les mécanismes d’adaptation proposés permettent au système de faire face au travail qui lui est soumis tout

en conservant ses propriétés d’auto-organisation, en particulier lorsqu’il est soumis à une surcharge continue.

Nous commencerons par discuter de l’introduction explicite des contraintes de taille dans le modèle, des

problématiques qu’elles soulèvent, ainsi que des leviers intrinsèques au modèle que nous mobilisons pour y

répondre. Nous nous intéresserons ensuite à une première amélioration portant sur les seuils critiques dyna-

miques, avant d’aborder la modélisation de l’évolutivité des capacités de tamisage au niveau cellulaire. Nous

présenterons et analyserons ensuite deux mécanismes d’adaptation de ces capacités : un modèle basé sur un

calcul d’entropie locale, et un modèle fondé sur un protocole de bavardage. Enfin, ces deux approches seront

comparées afin d’évaluer leurs performances respectives dans différents contextes de charge.

5.1 Un environnement limité pour le tamis

Afin d’introduire la contrainte de limitation des ressources, l’automate cellulaire n’évolue plus dans une

grille classique comme c’était le cas jusqu’à présent, mais dans une topologie toroïdale. Cette configuration

suppose que les bords de la grille sont connectés entre eux, formant une surface continue équivalente à celle

d’un tore. Ce choix permet d’éliminer les effets de bord en uniformisant le voisinage des cellules, et ainsi

de simuler un espace homogène, fini en nombre de cellules mais sans frontières, dans lequel chaque cellule

possède exactement le même nombre de voisines.

Si l’environnement du tamis devient limité, la charge que peut gérer le système est bornée par sa capacité

de traitement globale. Une charge excédant ce seuil provoquera une avalanche qualifiée d’infinie ; c’est-à-dire

que le système sera trop saturé pour trouver une répartition stable de la charge, et l’avalanche se poursuivra in-

définiment, entraînant une dépense énergétique importante et un blocage des simulations. La problématique de

la gestion de la surcharge est donc soulevée pour le modèle initial du tamis. Nous explorerons ici deux options

intrinsèques au modèle permettant d’y répondre : le seuil critique d’éboulement et la capacité de tamisage des

cellules.

Le seuil critique est un paramètre sensible, car il définit la quantité de grains qu’une cellule peut retenir

5.2. SEUIL CRITIQUE DYNAMIQUE 89

avant de s’ébouler. Une valeur trop élevée peut complètement annuler le déclenchement des avalanches, et par

conséquent, tout mécanisme d’auto-organisation dans le système. Le seuil critique ne peut donc pas être fixé à

une valeur élevée à priori. Une approche adaptative semble plus adéquate pour le faire évoluer et ainsi contrôler

les avalanches. Cependant, l’adaptation de ce paramètre seul ne ferait que repousser le problème. En effet, si

le système n’est pas en mesure d’évacuer le surplus de grains, contrôler les avalanches n’y changera rien et

le seuil critique ne fera qu’augmenter au cours du temps. Il est donc nécessaire de s’intéresser également à la

capacité de tamisage des cellules.

Une première approche consisterait à augmenter substantiellement la capacité des cellules afin de rendre

le tamis capable de traiter n’importe quelle quantité de grains. Toutefois, une telle augmentation arbitraire

va à l’encontre de l’objectif d’optimisation de l’efficience énergétique du système. De plus, comme discuté

en Section 3.5.3, la capacité de tamisage influence directement la dynamique des avalanches. Une capacité

trop élevée induit un traitement très rapide des grains et donc une réduction, voire une absence, de la tension

nécessaire à l’auto-organisation du système. Une fois encore, une approche adaptative semble préférable, afin

de maintenir la capacité de traitement des cellules à un niveau optimal, permettant de traiter la charge tout en

maintenant la tension nécessaire à l’équilibrage.

En définitive, pour rendre le tamis plus robuste et résilient, nous avons choisi la voie de l’adaptation com-

binée de ses paramètres en fonction de la charge. L’objectif est de produire ce comportement d’auto-adaptation

de manière émergente, en complément de l’auto-organisation naturelle apportée par les mécanismes du tas de

sable. Nous allons explorer dans les sections suivantes différentes modélisations de cette auto-adaptation.

5.2 Seuil critique dynamique

Le seuil critique dynamique est une stratégie inspirée des travaux de QI et PFENNINGER (2015), visant à

contrôler les avalanches en modifiant dynamiquement le seuil d’éboulement des cellules touchées par une ava-

lanche. L’objectif est d’augmenter la rétention des grains par les cellules lors d’avalanches de grande ampleur,

afin de ralentir leur propagation. En revanche, lors d’avalanches plus modestes, les seuils tendent à retrouver

une valeur plus basse, permettant ainsi la survenue de nouvelles avalanches importantes. Nous proposons ici

une version simple, bien qu’efficace, d’adaptation du seuil critique.

Nous commencerons par proposer une modélisation du seuil critique dynamique, en détaillant les principes

et mécanismes qui le régissent. Dans un second temps, ce modèle sera mis à l’épreuve au travers de différents

scénarios expérimentaux, afin d’illustrer concrètement ses effets sur la dynamique des avalanches et la stabilité

du système.

5.2.1 Modélisation

Le mécanisme du seuil critique dynamique s’incorpore à l’intérieur des avalanches. À chaque étape d’une

avalanche, une cellule qui reçoit au moins deux grains de ses voisines et devient instable voit son seuil in-

crémenté de 2. En revanche, si elle ne reçoit qu’un grain et que diminuer son seuil ne la rendra pas instable,

90 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

celui-ci est décrémenté de 1, jusqu’à un minimum correspondant au nombre de cellules voisines, soit 4 dans

notre étude sur une grille définie par un voisinage de von Neumann.

La valeur d’incrémentation doit être plus élevée que celle de la décrémentation afin que l’augmentation des

seuils ne soit pas immédiatement compensée par la baisse, sans quoi le mécanisme serait inefficace. De plus,

les conditions annexes au nombre de grains reçus sont nécessaires afin de mieux contrôler la modification du

seuil.

Pour le cas de l’incrémentation, si celle-ci se produit dès qu’une cellule reçoit au moins deux grains, les

seuils ne feraient qu’augmenter continuellement au fil du temps. La seconde partie de la condition restreint

l’augmentation du seuil uniquement lorsque c’est nécessaire, c’est-à-dire lorsqu’il y a un mouvement consé-

quent et que l’ajout de grains rend la cellule instable. Pour la diminution du seuil, imposer que la cellule ne soit

pas instable après la décrémentation permet de conserver un seuil qui évite de poursuivre l’avalanche, et ainsi

freiner sa propagation. Sans cette condition, les seuils ne feraient qu’augmenter et diminuer en permanence,

relançant des avalanches qui devaient se terminer.

L’Algorithme 5 propose un pseudo-code du seuil critique dynamique : à chaque étape d’une avalanche du

tas de sable canonique (Algorithme 1), une étape de mise à jour du seuil est effectuée. Bien que simple, ce

mécanisme a des effets à plusieurs niveaux dans le système.

Algorithm 5: Gestion d’une avalanche avec seuil critique dynamique
Input: G : grille

1 while au moins une cellule de G est instable do
/* Éboulement des cellules instables */

2 foreach cellule de G do
/* Éboulement de la cellule */

3 if cellule.grains ≥ cellule.seuil then
4 foreach voisine de cellule do
5 voisine.grains← voisine.grains + 1
6 end
7 cellule.grains← cellule.grains - 4
8 end
9 end

10

/* Mise à jour du seuil */
11 foreach cellule de G do
12 if cellule a reçu au moins 2 grains and cellule est instable then
13 cellule.seuil← cellule.seuil + 2
14 else if cellule a reçu exactement 1 grain and réduire le seuil ne rend pas cellule instable then
15 cellule.seuil← max(4, cellule.seuil - 1)
16 end
17 end
18 end

D’abord, l’auto-adaptation du seuil critique affecte partiellement le déclenchement des éboulements. L’aug-

mentation du seuil d’une cellule permet de retarder momentanément son instabilité. Par exemple, une cellule

disposant de 2 grains et qui en reçoit 2 devrait s’ébouler, mais l’augmentation de son seuil à 6 la maintient

5.2. SEUIL CRITIQUE DYNAMIQUE 91

stable. Toutefois, le mécanisme d’augmentation du seuil n’empêche pas complètement les éboulements ; une

cellule proche de l’éboulement (grains = seuil − 1) s’éboulera tout de même si elle reçoit un, trois ou

quatre grains. En outre, la diminution du seuil permet aux cellules de retrouver progressivement et de manière

contrôlée leur état initial pour garantir que de nouvelles avalanches puissent survenir à l’avenir.

Ensuite, l’augmentation progressive des seuils permet aux cellules d’absorber de plus en plus de grains

lors d’avalanches de grande ampleur, réduisant ainsi leur durée et leur propagation. Ce mécanisme s’avère

particulièrement pertinent dans le contexte du tamis en environnement limité, où il est impératif que les ava-

lanches trouvent une issue autre que l’éjection de grains, comme c’est le cas dans le modèle canonique du tas

de sable. Grâce à cette auto-adaptation des seuils, le tamis est capable de stocker temporairement une surcharge

de grains, avant de retrouver un comportement d’auto-organisation performant dès que les cellules ne sont plus

saturées.

Ainsi, le seuil dynamique permet d’éviter des éboulements lorsque le nombre de grains impliqués dans

l’avalanche est élevé, amortissant les avalanches de grande ampleur, tout en permettant des éboulements néces-

saires à l’auto-organisation. La Figure 5.1 illustre quelques-unes de ces situations. La cellule colorée en jaune

devrait normalement s’ébouler deux fois, mais grâce au seuil dynamique, la seconde est évitée.

Gr = 3
Sc = 4

(a)

Gr = 6
Sc = 6

(b)

Gr = 2
Sc = 6

(c)

Gr = 3
Sc = 5

(d)

Gr = 5
Sc = 7

(e)

FIGURE 5.1 – Illustration de l’évolution du seuil critique d’éboulement d’une cellule durant une avalanche.
Trois grains arrivent sur la cellule jaune (a), augmentant son seuil critique (Sc) et son nombre de grains (Gr) et
faisant s’ébouler la cellule (b). L’avalanche se poursuit et un nouveau grain arrive (c), faisant diminuer le seuil
(d), puis deux nouveaux grains tombent sur la cellule. Elle finit par se stabiliser grâce au seuil dynamique (e).

92 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

5.2.2 Cas d’étude

Nous soumettons ici le mécanisme de seuil critique dynamique à une série de quatre scénarios, afin d’illus-

trer son impact sur la propagation des avalanches. Chaque scénario consiste en l’observation d’une avalanche

résultant d’une configuration initiale spécifique, représentant un niveau de charge donné dans le système. Pour

chaque scénario, nous mesurons la durée (nombre d’étapes) et l’amplitude (nombre de cellules impliquées) de

l’avalanche résultante, en comparant les comportements avec et sans le mécanisme de seuil critique dynamique.

Les scénarios sont d’abord présentés, puis les résultats analysés.

5.2.2.1 Présentation des scénarios

Comme le mécanisme de seuil critique dynamique ne concerne pas uniquement le tamis mais s’applique

au modèle du tas de sable en général, trois des quatre scénarios proposés se déroulent dans un tas de sable

canonique de taille 128× 128 = 16 384 cellules.

Scénario 1 Le système est au bord de l’éboulement généralisé : chaque cellule est initialisée avec exactement

3 grains. Un grain supplémentaire est ensuite ajouté à une cellule choisie aléatoirement afin de déclencher une

avalanche.

Scénario 2 Le système est initialisé dans un état critique : chaque cellule reçoit aléatoirement entre 3 et 5

grains, suivant une distribution uniforme (moyenne de 4 grains). Environ 2
3 des cellules se trouvent donc en

état critique. Aucun grain supplémentaire n’est ajouté, l’avalanche pouvant être déclenchée spontanément du

fait de l’instabilité globale.

Scénario 3 Le système est dans un état plus modéré : chaque cellule est initialisée avec 2 ou 3 grains de

façon aléatoire et uniforme. Six grains supplémentaires sont ensuite ajoutés aléatoirement pour déclencher une

avalanche. Ce scénario illustre un cas plus proche d’un fonctionnement opérationnel courant.

Scénario 4 Le système est fermé et largement saturé : la structure de la grille est rendue torique, supprimant

ainsi les bordures et uniformisant le nombre de voisins pour chaque cellule. Dans ce cas, il devient impossible

d’évacuer les grains en excès vers l’extérieur, ce qui empêche une dissipation naturelle de l’instabilité. Cette

configuration simule le comportement du tamis dans un espace limité, ce qui nous intéresse particulièrement

puisque, dans ce contexte, le tamisage n’intervient qu’après la fin des avalanches.

Chaque cellule est initialisée avec entre 4 et 10 grains (distribution uniforme). Dans une telle configura-

tion, le modèle canonique (sans seuil dynamique) ne peut atteindre la stabilité, toutes les cellules étant en état

critique. Ce scénario vise donc à évaluer la capacité du seuil dynamique à stabiliser une configuration qui,

autrement, conduirait à des avalanches infinies.

5.3. MODÉLISATION DE LA CAPACITÉ DE TAMISAGE DYNAMIQUE 93

5.2.2.2 Résultats des scénarios

La Figure 5.2 propose une comparaison de la dynamique des avalanches d’un tas de sable canonique avec

et sans seuil critique dynamique pour les scénario 1 à 3. Dans l’ensemble de ces configurations, l’introduction

du seuil dynamique permet de réduire significativement l’ampleur (nombre de cellules impliquées) ainsi que la

durée des avalanches.

Ce phénomène est confirmé par la Figure 5.3, qui présente la distribution des durées d’avalanches sur

une simulation de 400 000 cycles. Bien que la distribution globale soit peu altérée, ce qui traduit une auto-

organisation toujours fonctionnelle, on observe une légère augmentation des avalanches de durée moyenne, ce

qui traduit un meilleur amortissement des pics critiques.

Le Tableau 5.1 propose une analyse quantitative complémentaire, en comparant non seulement les durées

des avalanches, mais aussi les seuils critiques moyens atteints à la fin de chacune d’entre elles, pour les scénarios

évoqués. Le quatrième scénario y est inclus. Dans la configuration du quatrième scénario, l’introduction du seuil

critique dynamique permet au système de se stabiliser en 1450 itérations, alors que le modèle canonique ne peut

pas atteindre une stabilité. De manière notable, dans toutes les situations simulées, le seuil critique moyen final

observé est supérieur de quasiment deux unités à la charge moyenne initiale des cellules.

Seuil critique
dynamique

Scénario 1 Scénario 2 Scénario 3 Scénario 4
Durée Seuil Durée Seuil Durée Seuil Durée Seuil

Sans 165 4 7145 4 467 4 Infinie 4
Avec 134 4,9 161 5,8 232 4,25 1450 8,8

TABLE 5.1 – Durée de l’avalanche et seuil critique moyen des cellules d’un tas de sable canonique de taille 128
pour les trois scénarios de la Figure 5.2. Un quatrième scénario est proposé : la structure est rendue toroïdale
(disparition des bords pour éjecter les grains) et les cellules sont remplie de 4 à 10 grains chacune.

En définitive, le mécanisme simple qu’est-ce le seuil critique dynamique constitue une solution efficace

pour contenir les avalanches de grande ampleur tout en préservant la dynamique d’auto-organisation du sys-

tème. Cependant, cette stratégie d’élévation des seuils critiques ne fait que retarder le problème fondamental de

la surcharge dans le tamis : sans évacuation des grains adéquat, les seuils ne feront qu’augmenter indéfiniment,

menaçant à terme l’efficacité du système. Nous aborderons dans les sections suivantes les approches d’adapta-

tion complémentaires concernant les capacités de tamisage des cellules, visant à évacuer dynamiquement les

excès de charge de manière autonome.

5.3 Modélisation de la capacité de tamisage dynamique

Jusqu’à présent, la capacité de tamisage des cellules était définie de manière fixe et invariable. Dans le

modèle présenté en Section 3.5.3, les cellules dépourvues de grains sont considérées comme éteintes, leur

capacité de tamisage étant alors nulle. Ce mécanisme est conservé dans les modèles adaptatifs étudiés dans

les sections suivantes. Toutefois, afin de permettre l’évolution dynamique des capacités, il devient nécessaire

de distinguer deux notions fondamentales : la capacité latente de tamisage, sujette à adaptation, et la capacité

94 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

0 20 40 60 80 100 120 140 160 180

0

1,000

2,000

3,000

4,000

Étape de l’avalanche

N
om

br
e

de
ce

llu
le

s
to

uc
hé

es

Sans seuils dynamiques
Avec seuils dynamiques

(a) Scénario 1 : toutes les cellules sont proches de l’éboulement (3 grains) et un grain est ajouté à une cellule aléatoire.
Le nombre de cellules touchées par l’avalanche est drastiquement réduit, en plus d’avoir une durée plus faible, grâce au
seuil dynamique.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0

5,000

10,000

Étape de l’avalanche

N
om

br
e

de
ce

llu
le

s
to

uc
hé

es

Sans seuil dynamique
Avec seuil dynamique

(b) Scénario 2 : les cellules ont de 3 à 5 grains (de manière aléatoire et uniforme) ; 2
3

des cellules sont en état critique.
L’avalanche de très grande ampleur est très rapidement amortie (161 itérations) et le nombre de cellules touchées par
l’avalanche est drastiquement réduit grâce au seuil dynamique.

0 50 100 150 200 250 300 350 400 450 500

0

1,000

2,000

Étape de l’avalanche

N
om

br
e

de
ce

llu
le

s
to

uc
hé

es

Sans seuil dynamique
Avec seuil dynamique

(c) Scénario 3 : les cellules sont initialisées avec 2 ou 3 grains de manière aléatoire et uniforme, et six grains sont
ajoutés à des cellules aléatoires pour déclencher une avalanche. De même que pour le scénario 1, le nombre de cellules
impactées est très largement réduit et la durée de l’avalanche est ici divisée par deux grâce au seuil critique dynamique.

FIGURE 5.2 – Effet du seuil dynamique sur la dynamique des avalanches dans un tas de sable canonique de
taille 128. Trois scénarios sont proposés : (a) toutes les cellules sont au bord de l’éboulement et 1 grain est
déposé pour créer de l’instabilité ; (b) 2

3 des cellules sont dans un état critique ; (c) les cellules sont initialisées
avec 2 ou 3 grains de manière aléatoire et uniforme, puis six grains sont ajoutés pour provoquer une avalanche.

effective, représentant la “puissance réelle” de traitement exercée à un instant donné.

Chaque cellule est ainsi caractérisée par une capacité latente de tamisage, qui évolue de manière dynamique

au fil du temps selon des règles d’adaptation locales, indépendamment de l’état d’occupation de la cellule. Cette

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 95

100 101 102 103 104

100

101

102

103

104

Durée de l’avalanche

O
cc

ur
re

nc
e

d’
ap

pa
ri

tio
n Sans seuil dynamique

Avec seuil dynamique

FIGURE 5.3 – Distribution des durée des avalanches dans un tas de sable canonique de taille 128 pour une
simulation de 400 000 cycles. La distribution n’est que légèrement modifiée avec le seuil dynamique.

capacité latente représente le potentiel intrinsèque de traitement de la cellule. Lorsqu’une cellule reçoit un grain,

sa capacité latente devient active, donnant lieu à une capacité effective de tamisage correspondant à l’intensité

réelle du traitement exercé.

En l’absence de grain, la capacité effective de tamisage est nulle : bien que la capacité latente soit présente,

elle n’est pas mobilisée. La valeur minimale de la capacité latente est fixée à 1, traduisant l’activation auto-

matique d’une cellule dès réception d’un grain, qu’il y ait eu adaptation préalable ou non. Cette modélisation

permet de reproduire fidèlement le comportement du tamis présenté précédemment : dans ce cas, la capacité

latente est constante (valeur 1), et la capacité effective est égale à 1 si la cellule est occupée, sinon 0.

Cette distinction entre capacité latente et capacité effective présente deux avantages majeurs :

1. Indépendance vis-à-vis de l’occupation : la capacité latente peut évoluer même en l’absence de grains,

ce qui permet aux cellules de conserver et faire croître leur potentiel de traitement pour les phases futures

d’occupation, sans réinitialisation systématique au minimum lors de la libération d’un grain.

2. Estimation énergétique locale : la capacité effective constitue un indicateur de la consommation éner-

gétique réelle associée au traitement des grains. À l’inverse, la capacité latente représente la consom-

mation potentielle si la cellule était pleinement sollicitée.

Cette distinction sera exploitée dans la suite du chapitre, où la capacité effective de tamisage sera utilisée

comme mesure de performance énergétique locale des différents modèles d’adaptation proposés.

5.4 Adaptation des capacités par entropie locale

Le principe de l’adaptation par entropie locale est de monitorer le mouvement des grains à l’échelle des

cellules du tamis, afin que chacune prenne une décision quant à sa capacité de tamisage. Le but est de détecter

une surcharge (impliquant un mouvement conséquent) pour que les cellules adaptent leur capacité de tamisage

de manière décentralisée. Une étape de mise à jour des capacités vient alors se positionner à chaque cycle entre

la gestion de l’avalanche et le tamisage des grains, comme proposé en pseudo-code dans l’Algorithme 6.

96 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

Nous allons d’abord discuter de l’objectif de cette entropie et de la manière dont elle se mesure, puis nous

explorerons deux utilisations qui en sont faites pour adapter les capacités de tamisage des cellules. Nous verrons

ensuite comment sont déterminés les paramètres de ces approches. Enfin, nous les comparerons pour n’utiliser

que la meilleure pour la suite du chapitre.

Algorithm 6: Processus de simulation du tamis auto-adaptatif par entropie locale
Input: G : grille

cycles : nombre de cycles de simulation

1 cycle← 0
2 while cycle < cycles do
3 Étape 1 : dépôt d’un grain sur une cellule aléatoire de G
4 Étape 2 : gestion de l’avalanche potentielle
5

/* Auto-adaptation des cellules */
6 foreach cellule ∈ G do
7 Calcul de l’entropie locale de cellule
8 Mise à jour de la capacité latente de tamisage de cellule
9 end

10

11 Étape 4 : tamisage des grains
12 cycle← cycle+ 1

13 end

5.4.1 L’entropie locale

Ce que nous qualifions d’entropie dans le modèle du tamis correspond à une mesure du mouvement des

grains au sein du système. Une entropie faible traduit un système organisé, dans lequel les grains parviennent

naturellement à s’équilibrer sans nécessiter d’avalanches. À l’inverse, une entropie élevée signale un désordre

transitoire, où les grains doivent être redistribués par des avalanches pour atteindre un état stable. L’entropie

constitue donc une métrique pertinente pour détecter les situations de surcharge, caractérisées par une intensi-

fication du mouvement granulaire.

Afin d’établir une valeur de référence, nous nous appuyons sur le modèle du tas de sable canonique, reconnu

pour sa capacité à maintenir un équilibre auto-organisé à la limite du chaos. Ce système évacue les grains dès

que nécessaire, empêchant toute surcharge prolongée, tout en conservant une dynamique granulaire suffisante

pour l’auto-organisation. Nous définissons ainsi une entropie de référence pré-surcharge à partir des cellules

les plus sollicitées (typiquement celles au centre du tas de sable). Cette entropie est exprimée comme le ratio

entre le nombre total de grains reçus et la durée de la simulation :

Eref =
nombre de grains tombés

durée de la simulation

Elle représente la fréquence moyenne de chute des grains sur une cellule par cycle. Dans le cadre du modèle

canonique, cette valeur atteint : Eref ≃ 0,3.

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 97

100%

Aucun

Infini

Sous-efficience
Elocale > Eref

Équilibre
Elocale ≃ Eref

Sur-efficience Elocale < Eref

Charge du système

M
ou

ve
m

en
t

FIGURE 5.4 – Illustration des différents états du système en fonction du mouvement par rapport à la comparai-
son des entropies locale et de référence.

Dans le tamis auto-adaptatif, chaque cellule effectue un suivi local de son entropie au fil du temps. Elle

enregistre, sur une fenêtre glissante des n derniers cycles, le nombre de grains qu’elle a reçus, et calcule sa

valeur d’entropie locale selon :

Elocale =
nombre de grains enregistrés

n

Une valeur de Elocale = 1 indique qu’en moyenne, la cellule reçoit un grain à chaque cycle. Nous désignerons

cette fenêtre d’observation comme la fenêtre d’entropie.

La comparaison entre Elocale et Eref permet alors d’ajuster dynamiquement les capacités de tamisage :

— Si Elocale > Eref , la cellule est soumise à une activité anormalement élevée, symptôme d’une sur-

charge locale. Il est donc nécessaire d’augmenter sa capacité de tamisage pour faciliter l’évacuation des

grains.

— Inversement, si Elocale < Eref , la cellule participe insuffisamment à l’auto-organisation, ce qui peut

signaler une surcapacité. Dans ce cas, réduire sa capacité permet de réengager cette cellule dans la

dynamique d’équilibrage du système.

L’entropie de référence joue donc le rôle de cible idéale : elle incarne le compromis entre l’auto-organisation

nécessaire à l’équilibrage du système et le tamisage global, assurant un fonctionnement optimal du tamis auto-

adaptatif. La Figure 5.4 illustre visuellement ces différents scénarios, mettant en évidence les zones de sous- et

de sur-utilisation par rapport à cette référence.

5.4.2 Méthode naïve

Nous introduisons ici une version naïve d’adaptation utilisant l’entropie locale définie précédemment. L’ob-

jectif de cette approche est d’offrir une première implémentation simple et accessible, permettant d’évaluer le

potentiel de la stratégie d’adaptation sans recourir à des mécanismes complexes.

98 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

Cette version, baptisée méthode “+1 -1”, repose sur une règle élémentaire : chaque cellule décide, à chaque

cycle, d’augmenter ou de diminuer sa capacité latente de tamisage en fonction de sa propre entropie locale.

Trois cas de figure sont distingués :

— Elocale > Eref : la cellule incrémente sa capacité latente de 1, en réponse à une activité granulaire

supérieure à la normale ;

— Elocale < Eref : la cellule décrémente sa capacité latente de 1 (avec un minimum fixé à 1), reflétant

une sous-utilisation locale ;

— Elocale = Eref : la cellule est en équilibre, aucune modification n’est apportée.

Le pseudo-code de ce mécanisme est présenté dans l’Algorithme 7.

Algorithm 7: Adaptation par entropie locale : méthode “+1 -1”
Input: cellule : cellule à adapter

Eref : entropie de référence

1 Elocale ← cellule.entropie()
2 if Elocale > Eref then
3 cellule.capacitéLatente← cellule.capacitéLatente + 1
4 else if Elocale < Eref then
5 cellule.capacitéLatente← max(1, cellule.capacitéLatente - 1)
6 end

L’application de cette stratégie engendre une variation en “vague” de la capacité latente d’une cellule au

fil du temps, comme l’illustre la Figure 5.5. Par exemple, pour une fenêtre d’entropie de taille 10, la capacité

n’augmente que lorsque plus de 3 grains sont observés dans cette fenêtre (Elocale > Eref), et décroît lorsque

ce nombre tombe en dessous de 3 (Elocale < Eref).

Cette dynamique locale, appliquée à l’échelle globale du tamis, permet une adaptation collective : plusieurs

cellules ajustent simultanément leurs capacités pour évacuer les grains responsables d’une surcharge ponctuelle.

Cette réaction coordonnée favorise un retour à l’équilibre dans les zones instables. Nous verrons, dans les

résultats présentés en fin de section, que ce mécanisme permet au tamis de s’ajuster efficacement et que la

capacité de tamisage moyenne des cellules suit de près la quantité de grains injectée à chaque instant.

5.4.3 Méthode proportionnelle

La seconde stratégie d’adaptation reposant sur l’entropie locale en affine l’exploitation en y intégrant une

notion de proportionnalité. Contrairement à la méthode “+1 -1” qui ajuste la capacité latente par paliers dis-

crets, cette version ajuste directement la capacité à la quantité de grains effectivement observée dans la fenêtre

d’entropie.

Plus précisément, lorsque l’entropie locale dépasse la référence, la cellule adopte comme nouvelle capacité

latente le nombre de grains enregistrés sur la fenêtre d’observation. Ce mécanisme permet une adaptation plus

rapide et plus précise, en alignant immédiatement la capacité au niveau de stress local observé, tout en stabili-

sant cette valeur aussi longtemps que l’activité reste cohérente. Ainsi, la capacité peut légèrement décroître si

le nombre de grains diminue, tout en restant supérieur au seuil de déclenchement.

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 99

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

Cycles

Eref (en grains)
Elocale (en grains)
Capacité de tamisage

FIGURE 5.5 – Exemple de l’adaptation naïve par entropie locale d’une cellule avec une fenêtre d’entro-
pie de taille 10. Lorsque l’entropie locale (courbe rouge) dépasse la référence de 3 grains (barre rose ;
Eref = 3

10 = 0,3), la capacité de la cellule (courbe bleue) augmente de 1 à chaque cycle jusqu’à ce que l’entro-
pie locale retourne en dessous de la référence. La capacité diminue alors, produisant une réaction en “vague”.

La réduction des capacités, quant à elle, obéit à une logique distincte. Plutôt que d’opérer des décréments

progressifs, la cellule réinitialise sa capacité latente dès qu’elle devient vide, c’est-à-dire lorsqu’aucun grain

ne transite par elle. Cette approche offre un délai naturel de vidange, permettant aux cellules de résorber la

surcharge avant de retrouver un mode de fonctionnement minimal. On peut faire ici le parallèle avec les sys-

tèmes de traitement de tâches : une ressource (cellule) qui n’a plus de file d’attente (grains) revient à un état

énergétiquement sobre, avec une capacité minimale (fixée à 1 dans notre étude).

La stratégie peut donc se résumer par les trois règles suivantes :

— Elocale > Eref : la cellule fixe sa capacité latente au nombre de grains enregistrés dans sa fenêtre

d’entropie ;

— Elocale ≤ Eref : la cellule conserve sa capacité latente actuelle ;

— Cellule vide : la cellule réinitialise sa capacité latente au minimum fixé à 1.

Le pseudo-code correspondant est présenté dans l’Algorithme 8.

Algorithm 8: Adaptation par entropie locale : méthode proportionnelle
Input: cellule : cellule à adapter

Eref : entropie de référence

1 Elocale ← cellule.entropie()
2 if cellule.grains = 0 then
3 cellule.capacitéLatente← 1
4 else if Elocale > Eref then
5 cellule.capacitéLatente←

∑n
i=0 cellule.fenêtreEntropie[i]

6 end

À la différence de la méthode “+1 -1”, cette version proportionnelle induit une évolution contrôlée et ré-

100 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

active des capacités latentes, comme illustré en Figure 5.6. La capacité augmente instantanément à un niveau

modéré lorsque Elocale > Eref , puis se maintient stable tant que la surcharge persiste. Dès que la cellule se

vide, elle retrouve immédiatement sa capacité minimale, prête à répondre à une nouvelle sollicitation.

Ce cycle d’augmentation et de réinitialisation, appliqué collectivement, permet au tamis de maintenir une

capacité effective moyenne étroitement corrélée à la proportion de grains injectée. Nous montrerons dans la

suite de cette section que cette stratégie assure une adaptation fluide et efficace du système.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

C
el

lu
le

vi
dé

e
Cycles

Eref (en grains)
Elocale (en grains)
Capacité

FIGURE 5.6 – Exemple de l’adaptation proportionnelle par entropie locale d’une cellule avec une fenêtre
d’entropie de taille 10. Lorsque l’entropie locale (courbe rouge) dépasse la référence de 3 grains (barre rose ;
Eref = 3

10 = 0,3), la capacité de la cellule (courbe bleue) se fixe au nombre de grains enregistrés à chaque
cycle jusqu’à ce que l’entropie locale retourne en dessous de la référence. La capacité est réinitialisée lorsque
la cellule devient vide au cycle 16.

5.4.4 Détermination des paramètres de l’entropie locale

Les stratégies d’adaptation fondées sur l’entropie locale reposent sur deux paramètres essentiels : l’entropie

de référence et la taille de la fenêtre d’observation (ou fenêtre d’entropie). Le premier, initialement fixé à Eref ,

découle d’une estimation empirique réalisée à partir du modèle canonique du tas de sable. Toutefois, cette

valeur de référence n’est pas universellement optimale et peut varier selon la taille de la fenêtre utilisée pour le

calcul de l’entropie locale.

Le choix de ces deux paramètres conditionne l’équilibre global du système entre trois objectifs cruciaux :

— une capacité de tamisage appropriée face aux sollicitations ;

— une consommation énergétique contenue, en évitant des surcapacités inutiles ;

— une répartition homogène de l’activité entre les cellules, évitant que certaines deviennent des points de

congestion ou de faiblesse.

En effet, dans un système décentralisé tel que le tamis, il est souhaitable que l’ensemble des cellules soient

sollicitées de manière équitable. Une cellule surdimensionnée par rapport aux autres agirait comme un puits,

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 101

absorbant une part disproportionnée des grains, ce qui l’expose davantage à l’usure ou à des pannes, et nuit à

la robustesse globale du système.

Afin de calibrer les stratégies d’auto-adaptation par entropie locale, il est donc nécessaire d’explorer un

espace de valeurs pour ces deux paramètres, en évaluant leur influence sur le comportement du système. Cette

étude paramétrique vise non seulement à optimiser les performances de chaque stratégie, mais aussi à garantir

des conditions équitables de comparaison entre les différentes approches d’adaptation proposées dans ce travail.

5.4.4.1 Cadre d’étude

Afin d’évaluer l’impact des paramètres d’adaptation, nous menons une étude systémique des performances

du tamis auto-adaptatif en faisant varier les deux composantes clés : l’entropie de référence Eref et la taille de

la fenêtre d’entropie. L’entropie de référence est explorée autour de sa valeur canonique (0,3), dans un intervalle

allant de 0,05 à 0,45 par pas de 0,05. Quant à la fenêtre d’entropie, sa taille varie de 5 à 20 cycles observés. Des

fenêtres plus longues introduiraient une inertie excessive dans la détection des changements, ce qui limiterait

la réactivité du système aux déséquilibres locaux.

L’objectif de cette étude est d’identifier les couples {Eref ; fenêtre d’entropie} qui permettent une réac-

tion juste et maîtrisée du système face aux sollicitations, en assurant un compromis entre réactivité, efficacité

énergétique et égalité d’utilisation des cellules. Chaque couple de paramètres est évalué selon quatre critères

principaux :

— Capacité de tamisage moyenne : moyenne, sur toute la simulation, des capacités effectives de tamisage

des cellules. Elle doit se rapprocher de la proportion de charge injectée dans le système afin d’assurer

un équilibre sans surdimensionnement inutile.

— Capacité de tamisage maximale moyenne : moyenne des capacités effectives maximales de tamisage

observée parmi les cellules pendant la simulation. Une valeur élevée indique une disparité de la réaction

des cellules, ce qui va à l’encontre de l’uniformisation recherchée.

— Nombre d’avalanches “infinies” : une avalanche est considérée comme infinie si elle excède 500

cycles, seuil basé sur la durée maximale observée dans un tas de sable de même dimension que le tamis,

augmenté d’une marge de sécurité. Une telle avalanche est interrompue pour préserver la progression

de la simulation.

— Consommation énergétique : somme des mouvements de grains provoqués par les avalanches et des

capacités de tamisage effectives des cellules au cours de la simulation, exprimée en pourcentage de la

consommation optimale. Cette consommation optimale est celle d’un système parfaitement statique,

sans mouvement, et distribuant équitablement la charge.

L’évaluation repose sur une série de simulations durant chacune 100 000 cycles, précédés d’une phase

d’initialisation de 10 000 cycles. Chaque scénario est répété 100 fois afin de lisser les variations dues à l’aléa.

Le tamis étudié est de taille fixe (32×32 = 1024 cellules), et à chaque cycle, un grain est injecté aléatoirement

dans la grille. Deux types de politiques d’injection de charge sont testés :

— Politiques fixes : la taille des grains reste constante pendant la simulation, choisie parmi 2048, 3072 et

102 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

4096, soit 2 à 4 fois la taille du tamis.

— Politiques fluctuantes :

■ Charge sinusoïdale : variation périodique entre 2048 et 4096, sur une période de 50 000 cycles.

■ Charge aléatoire avec pics : base gaussienne centrée sur 2048 avec un écart-type de 768, associée

à des pics brusques.

Pour cette dernière politique, la taille minimale des grains est bornée à 1 pour éviter des charges nulles ou

négatives. Chaque cycle a une probabilité Ppic = 2,5 · 10−3 de déclencher un pic de charge durant 50 à 150

cycles. Ces pics consistent en une charge uniforme aléatoire entre 9216 et 11264, soit de 9 à 11 fois la taille

du système. La Figure 5.7 illustre une réalisation typique sur 10 000 cycles. La taille moyenne des grains sous

cette politique est de 3633,4, ce qui implique une capacité optimale par cellule de 3633,4
1024 ≃ 3,55. Pour garantir

l’équité de la comparaison entre stratégies, une même instance de charge aléatoire est utilisée pour chaque

méthode évaluée.

0 2000 4000 6000 8000 10000
Cycle

0

2000

4000

6000

8000

10000

Ta
ille

 d
e

gr
ai

n

FIGURE 5.7 – Exemple des tailles de grain générées avec la politique aléatoire sur 10000 cycles.

Enfin, la capacité latente minimale de chaque cellule est fixée à 1, et toute cellule inactive (ne traitant aucun

grain) entre en mode veille, sans consommation d’énergie (capacité effective). La consommation énergétique

optimale pour une simulation donnée est définie comme :

consommation = capacité cellule optimale× nombre de cellules× durée de simulation

Par exemple :

— Pour une taille de grain constante de 2048 : consommation = 2,048 · 108.

— Pour la politique aléatoire avec pics : consommation = 3,633 · 108.

Comme nous le verrons ci-après, les modèles d’adaptation ajustent les capacités de tamisage au nécessaire.

La consommation induite par le tamisage correspond donc à la consommation optimale. Les différences dans

la consommation totale ne correspondent alors qu’à la consommation associée aux avalanches (déplacements

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 103

des grains). Nous conservons tout de même l’implication du tamisage afin de pouvoir, dans le futur, comparer

ces modèles avec d’autres qui proposeront des résultats d’adaptation potentiellement différents.

5.4.4.2 Adaptation naïve

Les premiers résultats indiquent que l’adaptation naïve fonctionne de manière systématique, indépendam-

ment du couple de paramètres {Eref ; fenêtre d’entropie} utilisé. La capacité moyenne de tamisage des cellules

s’ajuste correctement à la taille des grains injectés : elle atteint approximativement 2 pour des grains de taille

2048, 3 pour 3072, et 4 pour 4096. Le Tableau 5.2 résume ces résultats en indiquant, pour chaque taille de

grain, les valeurs minimales et maximales de capacité moyenne atteinte pour l’ensemble des couples. L’écart

observé est très faible, ce qui traduit une robustesse du modèle d’adaptation naïve par entropie locale, quel que

soit le réglage de ses paramètres.

Taille de grain Capacité moyenne minimale Capacité moyenne maximale
Seuil fixe Seuil dynamique Seuil fixe Seuil dynamique

2048 1,999 1,977 2 2
3072 2,999 2,965 3,001 3
4096 3,999 3,953 4,002 4

TABLE 5.2 – Capacité moyenne atteinte par les couples {Eref ; fenêtre d’entropie} selon la taille des grains
injectés dans le tamis avec adaptation naïve par entropie locale, avec et sans seuil critique dynamique. Pour
chaque taille, les valeurs minimales et maximales des couples sont proposées.

Cependant, au-delà de la faisabilité de l’adaptation, la qualité des performances varie considérablement

d’un couple de paramètres à l’autre. Nous nous concentrons donc sur le cas le plus contraignant, correspondant

à une taille de grain de 4096, afin d’évaluer finement la pertinence des réglages. La Figure 5.8 propose deux

cartes de chaleur pour chaque couple de paramètres : la capacité maximale atteinte par des cellules et le nombre

d’avalanches infinies survenues. Une tendance se dégage des résultats : tous les couples pour lesquels Eref ≥

0,25 présentent des avalanches infinies, tandis que les capacités maximales atteintes sont les plus élevées pour

les couples ayant Eref < 0,25.

Cette opposition illustre une forme d’inertie excessive dans le mécanisme d’adaptation lorsque l’entropie de

référence est faible, combinée à une fenêtre d’observation large. Dans ce cas, très peu de grains suffisent à dé-

clencher une augmentation de capacité, et ces événements étant étalés sur une longue fenêtre, ils s’accumulent

durablement, même si la situation se stabilise.

Par ailleurs, bien que la capacité moyenne du système se stabilise autour de 4, les pics locaux peuvent être

extrêmement hétérogènes. Certaines cellules atteignent des valeurs jusqu’à 11 fois supérieures à l’objectif, tan-

dis qu’une majorité reste au minimum. Ainsi, les couples viables (sans avalanche infinie) ne le sont qu’au prix

d’une surcapacité ponctuelle extrême, ce qui révèle un déséquilibre dans la répartition de l’effort de tamisage.

L’introduction du seuil critique dynamique (en plus de l’adaptation des capacités de tamisage) ne remet pas

en cause la capacité du système à s’adapter : la capacité moyenne reste alignée avec la taille des grains injectés,

comme le confirme de nouveau le Tableau 5.2.

104 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

0

1,000

2,000

3,000

(a) Nombre d’avalanches infinies survenues.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

5

10

15

20

25

30

35

40

45

(b) Capacité maximale atteinte.

FIGURE 5.8 – Résultats de l’adaptation naïve par entropie locale pour chaque couple {Eref ; fenêtre d’entro-
pie} pour une taille de grains à quatre fois la taille du système.

La Figure 5.9 compare alors les performances des couples de paramètres avec cette nouvelle stratégie, selon

les deux mêmes critères que précédemment. Trois observations ressortent :

— le nombre d’avalanches infinies a drastiquement diminué de manière générale ;

— davantage de couples deviennent viables, c’est-à-dire exempts d’avalanches infinies ; les autres en pré-

sentent très peu ;

— la capacité maximale atteinte augmente globalement, en particulier lorsque la fenêtre d’entropie est

large.

Ces résultats traduisent un gain de robustesse important grâce à l’adaptation conjointe des capacités et des

seuils, malgré une légère hausse des valeurs maximales de capacité. Comme dans le cas sans seuil dynamique,

les couples viables correspondent à ceux ayant les capacités maximales les plus élevées, indiquant que la

résilience du système repose toujours en partie sur une surcapacité locale.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

0

1,000

2,000

3,000

(a) Nombre d’avalanches infinies survenues.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

5

10

15

20

25

30

35

40

45

(b) Capacité maximale atteinte.

FIGURE 5.9 – Résultats de l’adaptation naïve par entropie locale avec seuil critique dynamique pour chaque
couple {Eref ; fenêtre d’entropie} pour une taille de grains à quatre fois la taille du système.

Notons que les couples avec une fenêtre d’entropie de taille 5 restent systématiquement non viables, malgré

l’ajout du seuil critique dynamique. Ce comportement s’explique par une durée de réaction faible du système.

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 105

La courte fenêtre empêche l’accumulation d’observations significatives, rendant l’augmentation des capacités

plus difficile. En revanche, la diminution de capacité reste très sensible aux variations ponctuelles. Ce déséqui-

libre se reflète dans les mesures de capacité maximale : les cellules fluctuent trop rapidement, sans atteindre

des valeurs suffisantes pour compenser les pics de charge, ce qui ralentit l’évacuation des grains et accroît

l’instabilité.

Enfin, la Figure 5.10 présente la consommation énergétique du système avec et sans seuil critique dyna-

mique. L’ajout de l’adaptation des seuils permet de réduire considérablement le coût énergétique associé aux

mouvements de grains, rapprochant la majorité des couples viables de la consommation optimale théorique. Les

couples déjà viables sans seuil dynamique ne sont que peu affectés, ce qui souligne leur efficacité intrinsèque

dans l’équilibrage entre tamisage et auto-organisation.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

100

110

120

130

140

(a) Sans seuil dynamique.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

100

110

120

130

140

(b) Avec seuil dynamique.

FIGURE 5.10 – Consommation énergétique du tamis utilisant l’adaptation naïve par entropie locale, avec et
sans seuil dynamique, pour chaque couple {Eref ; fenêtre d’entropie} pour une taille de grains à quatre fois la
taille du système. La consommation est exprimée en pourcentages par rapport à la consommation optimale.

Sur la base de l’ensemble des critères d’évaluation (absence d’avalanches infinies, faible capacité maxi-

male, faible consommation), plusieurs couples de paramètres se démarquent. Le couple {0,25 ; 11} a été retenu

comme référence pour la suite des comparaisons. Il est robuste, présente l’une des capacités maximale les plus

faibles parmi les couples viables et présente une consommation maîtrisée. Ce couple sera utilisé comme point

de comparaison entre les deux méthodes d’auto-adaptation par entropie locale développées dans cette étude.

5.4.4.3 Adaptation proportionnelle

Comme pour la méthode naïve, l’auto-adaptation proportionnelle se révèle pleinement fonctionnelle, comme

en témoignent les résultats du Tableau 5.3. La capacité moyenne de tamisage des cellules augmente avec la taille

des grains injectés dans le système, et les variations entre les couples de paramètres sont faibles. Cela indique

une robustesse du mécanisme d’adaptation proportionnelle, quelles que soient les valeurs de Eref et de la taille

de la fenêtre d’entropie.

Nous focalisons l’analyse sur la situation la plus contraignante, correspondant à une taille de grains de

4096, à l’aide des données présentées dans la Figure 5.11. Bien que la qualité de l’adaptation reste sensible

106 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

Taille de grain Capacité moyenne minimale Capacité moyenne maximale
Seuil fixe Seuil dynamique Seuil fixe Seuil dynamique

2048 1,996 1,996 2,001 2
3072 2,99 2,981 3,001 3
4096 3,984 3,962 4 4,001

TABLE 5.3 – Capacité moyenne atteinte par les couples {Eref ; fenêtre d’entropie} selon la taille des grains
injectés dans le tamis avec adaptation proportionnelle par entropie locale, avec et sans seuil critique dynamique.
Pour chaque taille, les valeurs minimales et maximales des couples sont proposées.

aux paramètres, comme dans le cas de la méthode naïve, les écarts de performance entre les meilleurs et les

pires couples sont nettement moindres ici. Cela traduit un meilleur contrôle des capacités de tamisage, indé-

pendamment des réglages choisis. Ce comportement est particulièrement visible dans les mesures de capacité

maximale atteinte : les pics restent systématiquement inférieurs à 15 pour la majorité des couples. À l’inverse,

la méthode naïve dépasse souvent ce seuil. De plus, un plus grand nombre de couples est viable, et la majorité

des couples restants ne provoque que peu d’avalanches infinies.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

0

1,000

2,000

3,000

(a) Nombre d’avalanches infinies survenues.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

5

10

15

20

25

30

35

40

45

(b) Capacité maximale atteinte.

FIGURE 5.11 – Résultats de l’adaptation proportionnelle par entropie locale pour chaque couple {Eref ; fenêtre
d’entropie} pour une taille de grains à quatre fois la taille du système.

Malgré ces résultats globalement meilleurs, la méthode proportionnelle présente un désavantage lors de

la sélection des paramètres optimaux : les capacités maximales atteintes sont directement corrélées aux pa-

ramètres, en particulier au produit Eref × fenêtre. Prenons par exemple le couple {0,2 ; 16}, l’un des plus

performants. L’entropie locale nécessaire pour augmenter la capacité est ici de ⌈0,2× 16⌉ = 4, ce qui est pré-

cisément la capacité cible. Les cellules oscillent entre des capacités de 1 et 4, pour maintenir une entropie

locale autour de Eref . Si la tension s’accroît, davantage de grains sont observés, entraînant une augmentation

proportionnelle de la capacité. Ainsi, le choix des paramètres optimaux dépend fortement de la charge injectée

dans le système lorsque celle-ci est constante. La Figure 5.12 montre que les couples minimisant la capacité

maximale sont ceux pour lesquels :

⌈Eref × fenêtre⌉ = taille des grains
taille du système

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 107

Cette relation rend le dispositif expérimental inadapté à la sélection d’un couple générique de paramètres, car

il est trop dépendant de la charge.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

5

6

7

8

9

10

11

12

13

(a) Taille de grains : 2048.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

8

9

10

11

12

13

14

(b) Taille de grains : 3072.

FIGURE 5.12 – Capacités maximales atteintes avec l’adaptation proportionnelle par entropie locale pour
chaque couple {Eref ; fenêtre d’entropie} pour une taille de grains de deux et trois fois la taille du système.

Pour dépasser cette limitation, nous avons placé le système dans une situation de charge fluctuante : la taille

des grains injectés varie selon une sinusoïde. Les résultats, présentés dans la Figure 5.13, révèlent plusieurs

tendances majeures :

— La structure des résultats est très proche de celle obtenue avec des grains de taille fixe de 4096.

— Peu d’avalanches infinies apparaissent, même chez les couples non optimaux.

— Avec l’introduction du seuil critique dynamique (Figure 5.14), presque tous les couples deviennent

viables. Seuls quelques cas isolés présentent une unique avalanche infinie.

— Les capacités maximales atteintes sont globalement inférieures à celles obtenues sans le seuil dyna-

mique.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

0

1,000

2,000

3,000

(a) Nombre d’avalanches infinies survenues.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

5

10

15

20

25

30

35

40

45

(b) Capacité maximale atteinte.

FIGURE 5.13 – Résultats de l’adaptation proportionnelle par entropie locale pour chaque couple {Eref ; fenêtre
d’entropie} pour une taille de grains sinusoïdale.

Un autre point notable est que la consommation énergétique devient presque indépendante des paramètres,

une fois le seuil dynamique activé (Figure 5.15). Comme pour la méthode naïve, les couples viables (ou quasi-

108 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

0

1,000

2,000

3,000

(a) Nombre d’avalanches infinies survenues.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

5

10

15

20

25

30

35

40

45

(b) Capacité maximale atteinte.

FIGURE 5.14 – Résultats de l’adaptation proportionnelle par entropie locale avec seuil critique dynamique
pour chaque couple {Eref ; fenêtre d’entropie} pour une taille de grains sinusoïdale.

viables) maintiennent une consommation énergétique faible et stable, même sans ajustement dynamique du

seuil. Cela suggère une capacité intrinsèque à équilibrer le traitement des grains excédentaires avec la tension

nécessaire à l’auto-organisation, sans recours excessif aux ressources.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

100

101

102

103

104

(a) Sans seuil dynamique.

5 10 15 20

0.05

0.15

0.25

0.35

0.45

Fenêtre d’entropie

E
r
e
f

100

101

102

103

104

(b) Avec seuil dynamique.

FIGURE 5.15 – Consommation énergétique du tamis utilisant l’adaptation proportionnelle par entropie locale,
avec et sans seuil dynamique, pour chaque couple {Eref ; fenêtre d’entropie} pour une taille de grains sinusoï-
dale.

En considérant l’ensemble des critères (viabilité, limitation des pics de capacité, faible consommation éner-

gétique), le couple{0,25 ; 14} a été retenu comme référence pour la méthode proportionnelle. Ce couple est :

— est viable dans les scénarios avec ou sans seuil dynamique,

— présente l’une des capacités maximales les plus faibles,

— et produit l’une des consommations énergétiques les plus basses, y compris sous charge fluctuante.

Il sera utilisé pour comparer les deux approches d’adaptation par entropie locale dans la suite de l’étude.

5.4. ADAPTATION DES CAPACITÉS PAR ENTROPIE LOCALE 109

5.4.5 Comparaison des méthodes

Bien que des indices aient déjà suggéré la supériorité de la méthode proportionnelle d’adaptation par en-

tropie locale, nous procédons ici à une comparaison directe entre les deux approches. Les paramètres retenus

sont {0,25 ; 11} pour la méthode naïve et {0,25 ; 14} pour la méthode proportionnelle, chacun représentant

un couple optimal selon les analyses précédentes. Toutes les expériences ont été réalisées dans des conditions

identiques à celles utilisées pour la sélection des paramètres.

Le Tableau 5.4 présente, pour différentes tailles de grains et scénarios de charge, la capacité maximale at-

teinte par les cellules ainsi que la consommation énergétique du système. Les résultats montrent que la méthode

proportionnelle consomme légèrement moins d’énergie que la méthode naïve, avec une consommation proche

de l’optimum, et maintient une capacité de tamisage maximale systématiquement deux à trois fois inférieure,

ce qui traduit une adaptation plus fine et maîtrisée.

Taille de grain Méthode Eref Fenêtre d’entropie Capacité max. Consommation

2048 Naïve 0,25 11 16 102,06%
Proportionnelle 0,25 14 6 100,1%

3072 Naïve 0,25 11 21 102,49%
Proportionnelle 0,25 14 8 100,1%

4096 Naïve 0,25 11 26 102,55%
Proportionnelle 0,25 14 9 100,33%

Sinusoïde Naïve 0,25 11 23 102,63%
Proportionnelle 0,25 14 7 100,17%

Aléatoire Naïve 0,25 11 24 103,15%
Proportionnelle 0,25 14 8 101,18%

TABLE 5.4 – Comparaison des couples de paramètres sélectionnés pour les méthodes d’adaptation par entropie
locale pour les différentes tailles de grain.

Les Figures 5.16 et 5.17 illustrent l’évolution de la capacité moyenne du système en réponse à des charges

dynamiques : une charge sinusoïdale (Figure 5.16), et une charge aléatoire comportant des pics de surcharge

(Figure 5.17). Dans chaque graphique, la courbe bleue représente la taille du grain injecté (normalisée par

rapport à la taille du système), tandis que la courbe orange montre la capacité moyenne de tamisage du système.

Les résultats mettent en évidence des différences notables. La méthode naïve génère une réponse instable

et très fluctuante, ce qui reflète une forte sensibilité du système aux variations de charge. La méthode propor-

tionnelle, en revanche, assure une adaptation progressive, lissée et robuste, même face à des charges extrêmes.

En particulier, le scénario avec pics montre que le système proportionnel encaisse des surcharges importantes

sans réaction excessive, ce qui témoigne d’un mécanisme de régulation efficace et durable.

Sur l’ensemble des critères (capacité maximale, stabilité, consommation énergétique, et résilience face

aux charges fluctuantes) la méthode proportionnelle s’avère nettement supérieure à la méthode naïve pour

l’adaptation basée sur l’entropie locale.

110 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

0 20000 40000 60000 80000 100000
Cycles

2

3

4

Taille de grain
Capacité mesurée

(a) Méthode naïve.

0 20000 40000 60000 80000 100000
Cycles

2

3

4

Taille de grain
Capacité mesurée

(b) Méthode proportionnelle.

FIGURE 5.16 – Évolution de la capacité de tamisage d’un tamis de taille 32 pour les deux méthodes d’adapta-
tion par entropie locale pour une taille de grain sinusoïdale. Les valeurs sont normalisées par rapport à la taille
du système. Par exemple, une valeur de 3 correspond réellement à 3072.

0 20000 40000 60000 80000 100000
Cycles

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Taille de grain
Capacité mesurée

(a) Méthode naïve.

0 20000 40000 60000 80000 100000
Cycles

0

2

4

6

8

10
Taille de grain
Capacité mesurée

(b) Méthode proportionnelle.

FIGURE 5.17 – Évolution de la capacité de tamisage moyenne des cellules d’un tamis de taille 32 pour les deux
méthodes d’adaptation par entropie locale pour une taille de grain aléatoire avec des pics de grosse surcharge.
Les valeurs sont normalisées par rapport à la taille du système.

5.5 Adaptation des capacités par protocole de bavardage

L’adaptation par protocole de bavardage constitue une nouvelle stratégie permettant d’ajuster dynamique-

ment les capacités de tamisage des cellules. À l’instar de la méthode fondée sur l’entropie locale, elle exploite

le mouvement des grains comme indicateur d’activité, mais adopte une approche plus directe, sans mesure

explicite ni traitement statistique. Cette stratégie repose sur la combinaison de deux mécanismes déjà présentés

et introduit un troisième élément clé : la communication de l’état “bordure” entre cellules, rendue possible par

la propagation d’avalanches locales.

Dans un premier temps, nous détaillons le fonctionnement de l’algorithme et ses mécanismes internes.

5.5. ADAPTATION DES CAPACITÉS PAR PROTOCOLE DE BAVARDAGE 111

Nous analysons ensuite les dynamiques d’adaptation induites par cette approche, après avoir posé le cadre

méthodologique de l’étude.

5.5.1 Modélisation

L’algorithme est initialisé en affectant aléatoirement l’état “bordure” à une faible portion des cellules du ta-

mis. Ces cellules, considérées comme sources de l’état, conservent définitivement ce statut, même en l’absence

de grains. Leur nombre doit rester limité afin d’éviter une surréaction du système au moindre mouvement.

Lors d’une avalanche, toute cellule recevant un grain depuis une voisine en état “bordure” adopte ce nouvel

état et incrémente sa capacité de tamisage de 1, suivant un principe analogue au seuil critique dynamique. À

l’instar de l’adaptation proportionnelle par entropie locale, une cellule vidée de ses grains réinitialise sa capacité

à sa valeur minimale (1) et perd l’état “bordure”, sauf si elle fait partie des cellules sources. Ainsi, les cellules

sans état conservent un fonctionnement minimal, mais continuent à participer aux avalanches, contribuant

pleinement à l’auto-organisation du système.

Ce mécanisme permet un engagement progressif des cellules dans l’adaptation en fonction de la tension

présente dans le système. Plus les avalanches sont fréquentes, plus l’état “bordure” se propage, et plus les ca-

pacités de tamisage augmentent collectivement. Inversement, la perte de l’état “bordure” permet de désengager

les cellules lorsque la charge diminue, maintenant ainsi un régime général de tamisage adapté à la demande. À

l’échelle d’une cellule, la capacité de tamisage oscille dynamiquement selon l’activité locale, produisant une

capacité moyenne globale proportionnelle à l’intensité du flux de grains injectés.

Contrairement aux méthodes par entropie locale, l’adaptation par protocole de bavardage n’introduit pas de

phase dédiée dans le cycle de simulation. Le mécanisme est intégré directement à la gestion des avalanches, à

la manière du seuil critique dynamique. L’Algorithme 9 en présente le pseudo-code détaillé.

La Figure 5.18 illustre la distribution spatio-temporelle de l’état “bordure” dans un tamis de taille 32, selon

différentes tailles de grains :

— À 50% de la capacité du tamis (512), la tension est quasi inexistante, les avalanches rares, et seules

quelques cellules proches des sources adoptent brièvement l’état.

— À 100% de la capacité (1024), la tension devient significative : l’état “bordure” est transmis à l’ensemble

du tamis, bien que principalement autour des cellules sources.

— Pour une charge à 200% (2048), la propagation est massive : la majorité des cellules sont “bordure”

environ la moitié du temps.

— Enfin, à 400% (4096), les avalanches deviennent omniprésentes et la quasi-totalité des cellules sont en

état “bordure” quasi permanent.

L’évolution de la présence de l’état “bordure” reflète donc la réponse adaptative du système. Étant donné

que chaque acquisition de cet état s’accompagne d’une augmentation de la capacité de tamisage, cette dyna-

mique de propagation implique l’augmentation des capacités des capacités de tamisage des cellules.

112 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

Algorithm 9: Auto-adaptation par protocole de bavardage : incorporation dans les avalanches
Input: G : grille

/* Gestion d’une avalanche */
1 while au moins une cellule de G est instable do
2 foreach cellule de G do

/* Éboulement de la cellule */
3 if cellule.grains ≥ 4 then
4 foreach voisine de cellule do
5 voisine.grains← voisine.grains + 1
6

/* Communication de l’état bordure et incrémentation de la
capacité */

7 if cellule est “bordure” then
8 Communication de l’état “bordure” à voisine
9 voisine.capacité = voisine.capacité + 1

10 end
11 end
12 cellule.grains← cellule.grains− 4

13 end
14 end
15 end

5.5.2 Cadre d’étude

Le cadre d’étude pour l’évaluation de l’adaptation par protocole de bavardage est calqué sur celui défini

pour l’adaptation par entropie locale (voir Section 5.4.4.1). Cependant, le panel de tailles de grain des les

politiques fixes est élargi, s’étendant de 256 à 4096, afin d’explorer des régimes de sous-charge. En outre,

l’initialisation du protocole de bavardage est réalisée avec seulement 1% des cellules définies comme sources

de l’état “bordure”, afin d’introduire une hétérogénéité minimale dans le système initial.

Les métriques d’analyse utilisées pour évaluer l’efficacité de cette stratégie sont identiques à celles em-

plyées pour l’adaptation par entropie locale. Deux métriques complémentaires sont toutefois introduites pour

caractériser plus finement le comportement du système :

— Densité : mesure le nombre moyen de grains présents sur les cellules, normalisée par le seuil critique

d’éboulement. Une densité égale à 1 signifie que toutes les cellules sont à un grain de s’ébouler, repré-

sentant un état de tension maximale où le système est plein.

— Taux d’utilisation des cellules : correspond au rapport entre le nombre de cycles pendant lesquels une

cellule traite un grain et la durée totale de la simulation. Un taux égal à 1 indique que la cellule a été

sollicitée en continu, ce qui reflète un niveau élevé d’activité.

5.5.3 Analyse de l’adaptation

À l’instar de l’adaptation par entropie locale, l’adaptation par protocole de bavardage s’avère pleinement

fonctionnelle. Le Tableau 5.5 présente les résultats obtenus pour plusieurs scénarios de charge, en termes de

capacités moyennes et maximales, consommation énergétique et nombre d’avalanches infinies. Les résultats

5.5. ADAPTATION DES CAPACITÉS PAR PROTOCOLE DE BAVARDAGE 113

0

0.2

0.4

0.6

0.8

1

(a) Taille de grain : 512.

0

0.2

0.4

0.6

0.8

1

(b) Taille de grain : 1024.

0

0.2

0.4

0.6

0.8

1

(c) Taille de grain : 2048.

0

0.2

0.4

0.6

0.8

1

(d) Taille de grain : 4096.

FIGURE 5.18 – Taux de présence de l’état “bordure” sur les cellules d’un tamis de taille 32 utilisant l’adaptation
par protocole de bavardage pour différentes tailles de grain. Le taux correspond au ratio entre le nombre de
cycles où chaque cellule est en état “bordure” par rapport à la durée totale de la simulation. Une valeur à 1
signifie que la cellule a été “bordure” durant toute la simulation. C’est notamment le cas des cellules sources
de l’état (1% des cellules) en rouge foncé.

montrent que les capacités de tamisage s’ajustent de manière efficace, avec des valeurs maximales modérées,

une consommation énergétique proche de l’optimal, et aucune avalanche infinie, quel que soit le scénario

considéré.

Taille de grain Capacité moyenne Capacité maximale Avalanches infinies Consommation
2048 2 8 0 100,36%
3072 3 11 0 100,15%
4096 3,99 14 0 99,81%

Sinusoïdale 3 11 0 100,15%
Aléatoire 3,59 14 0 101,14%

TABLE 5.5 – Résultats de l’adaptation par protocole de bavardage dans un tamis de taille 32. Chaque ligne
correspond à un scénario de charge. Les trois premiers sont des tailles de grain fixes de 2048, 3072 et 4096.
Le dernier est une taille fluctuante qui suit une sinusoïde oscillant entre 2048 et 4096 sur une période de 50000
cycles.

La réactivité élevée de cette méthode permet une augmentation rapide des capacités locales, ce qui réduit

fortement la tension dans le système, en comparaison au tas de sable canonique ou aux modèles d’adaptation

précédents. Comme le montre le Tableau 5.6, lorsque que la taille des grains injectés est supérieure ou égale

114 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

à la taille du système, la tension reste faible, le système n’étant même pas rempli à moitié. Cela se traduit par

une réduction significative du nombre et de la durée des avalanches, qui ne dépassent plus dix étapes. Ainsi, les

redistributions massives de grains sont évitées, tout comme les avalanches infinies, rendant inutile l’usage du

seuil critique dynamique.

Taille de grain 256 512 1024 2048 4096
Densité 0,01 0,07 0,41 0,34 0,40

Cellules “bordures” 50% du temps 0 0 0 95% 100%

TABLE 5.6 – Densité de grains et taux de cellules ayant l’état “bordure” au moins 50% du temps dans un tamis
de taille 32 utilisant l’adaptation par protocole de bavardage pour différentes tailles de grain. Une densité de 1
signifie que toutes les cellules sont à 1 grain de s’ébouler, tandis que 0 signifie que le système est vide.

Dans les scénarios de sous-charge (taille de grain inférieure à 1024), la tension est quasi nulle, les cellules

ayant le temps de traiter chaque grain avant d’en recevoir un autre. Le pic de densité est atteint à 1024, ce qui

correspond exactement à la capacité de traitement du système en un cycle. À cette valeur, le système opère à

la limite entre sous-charge et surcharge, générant très peu d’avalanches. Dans cette configuration, l’adaptation

des capacités ne s’active que marginalement, comme en témoigne un taux nul de cellules en état “bordure” au

moins 50% du temps. Cela suffit néanmoins à préserver le système d’une surcharge.

À partir d’une taille de grain de 2048, l’adaptation s’active de manière globale, presque toutes les cellules

adoptant une capacité accrue au moins la moitié du temps. Ce déclenchement global, bien que modeste (aug-

mentation de capacité d’une unité seulement), réduit la tension en permettant à certaines cellules de surpasser

temporairement les besoins, tandis que d’autres demeurent à un niveau minimal d’activité. Pour 4096, une taille

de grain plus élevée, davantage de mouvement est requis pour atteindre les capacités de tamisage nécessaires,

ce qui entraîne une reprise de l’augmentation de la densité.

Malgré une tension généralement faible, les petites avalanches locales permettent une redistribution des

grains, assurant une utilisation quasi complète du système dès que la taille des grains est au moins égale à celle

du système. Comme le montre la Figure 5.19, le taux d’utilisation des cellules reste élevé pour ces cas, tandis

qu’en sous-charge, il est proportionnel à la charge injectée, soit 256
1024 = 25% et 512

1024 = 50%.

L’adaptation par protocole de bavardage montre également une bonne capacité à suivre des charges dyna-

miques. La Figure 5.20a illustre l’évolution de la capacité de tamisage moyenne face à une charge sinusoïdale,

démontrant une adaptation continue et fluide à la variation de la taille des grains. On observe cependant une

phase transitoire amortie d’environ 10 000 cycles, caractéristique de cette méthode, correspondant à une oscil-

lation autour de la valeur cible avant stabilisation. Ce phénomène est systématiquement observé, indiquant que

le temps d’initialisation de cette approche est plus long que celui des méthodes basées sur l’entropie locale.

Enfin, la Figure 5.20b met en évidence la résilience du protocole de bavardage face aux charges aléatoires

et aux pics inattendus. Bien que la capacité de tamisage moyenne oscille en réponse aux variations, cette oscil-

lation reste modérée et centrée autour de la capacité optimale (environ 3,55), garantissant ainsi une réactivité

efficace sans excès.

5.5. ADAPTATION DES CAPACITÉS PAR PROTOCOLE DE BAVARDAGE 115

0

0.2

0.4

0.6

0.8

1

(a) Taille de grain : 256.

0

0.2

0.4

0.6

0.8

1

(b) Taille de grain : 512.

0

0.2

0.4

0.6

0.8

1

(c) Taille de grain : 1024.

0

0.2

0.4

0.6

0.8

1

(d) Taille de grain : 2048.

FIGURE 5.19 – Taux d’utilisation des cellules d’un tamis de taille 32 utilisant l’adaptation par protocole de
bavardage pour différentes tailles de grain. Le taux correspond au ratio entre le nombre de cycles où chaque
cellule traite un grain par rapport à la durée totale de la simulation. Une valeur à 1 signifie que la cellule a été
utilisée durant toute la simulation.

0 20000 40000 60000 80000 100000
Cycles

2

3

4

Taille de grain
Capacité mesurée

(a) Charge sinusoïdale.

0 20000 40000 60000 80000 100000
Cycles

0

2

4

6

8

10
Taille de grain
Capacité mesurée

(b) Charge aléatoire avec pics.

FIGURE 5.20 – Évolution de la capacité moyenne de tamisage dans un tamis de taille 32 utilisant l’adaptation
par protocole de bavardage. La taille des grains, relative à la taille du système, est sinusoïdale et aléatoire.

116 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

5.6 Comparaison des méthodes

Dans cette section, nous allons comparer les deux stratégies d’adaptation des capacités : l’adaptation pro-

portionnelle par entropie locale couplée au seuil dynamique, et l’adaptation par protocole de bavardage. Le

cadre d’étude sera d’abord posé. Puis nous comparerons les deux méthodes pour les scénarios de charge que

nous avons déjà étudié pour les méthodes séparées : différentes charges fixes et charge fluctuante. Nous nous

intéresserons ensuite aux performances des méthodes pour un scénario de charge réelle. Enfin, nous discuterons

des avantages et des inconvénients de chaque méthode.

5.6.1 Cadre d’étude

Le cadre d’étude pour comparer les deux approches d’adaptation des capacités de tamisage du tamis se

divise en deux. La première partie, très similaire à ce que nous avons déjà vu précédemment, concerne les

scénarios de charge fixes et fluctuantes pour lesquels le système est constamment surchargé. La seconde partie

concerne le cas du scénario de charge réelle.

5.6.1.1 Charge fixe et charge fluctuante

Pour les scénarios de charge fixe et fluctuante, le cadre d’étude demeure identique à celui employé dans

l’étude individuelle des deux méthodes d’adaptation. Cependant, de nouvelles métriques viennent complé-

ter celles utilisées précédemment, et la consommation énergétique ne correspond désormais plus qu’aux ava-

lanches, tout en étant exprimée en ratio par rapport à la consommation totale du système. Les nouvelles mé-

triques sont les suivantes :

— Consommation énergétique des avalanches : cumul de tous les mouvements de grains pendant les

avalanches. Cette consommation est exprimée en ratio par rapport à la consommation totale (tamisage

et avalanche).

— Indice de Jain : mesure de l’égalité de la répartition des grains sur les cellules. Nous utilisons ici la

version simple de l’indice (Équation 2.1), adaptée au contexte dans lequel les capacités de tamisage

sont en constante évolution et où la file d’attente de grains est courte. Bien que le tamis auto-adaptatif

soit conçu pour gérer la surcharge plutôt que pour garantir un équilibrage parfait de la charge, cette

métrique fournit une indication sur l’état du système après la surcharge. Une valeur de 1 indique une

répartition parfaite.

— Débit : moyenne du nombre de grains tamisés à chaque cycle de simulation. Une valeur à 1 indique

qu’en moyenne, un grain est traité et retiré du système à chaque cycle.

— Durée de vie d’un grain : nombre de cycles qu’un grain passe dans le tamis, entre son introduction

dans le système et son tamisage complet. Cette métrique reflète le temps de réponse du système, notion

évoquée au Chapitre 2, et peut être interprétée comme un indicateur de qualité de service.

Enfin, les paramètres spécifiques à chaque méthode sont les suivants :

— l’adaptation par entropie locale utilise le couple de paramètres {0,25 ; 14} ;

5.6. COMPARAISON DES MÉTHODES 117

— l’adaptation par protocole de bavardage est initialisée avec 1% de cellules sources de l’état “bordure”.

5.6.1.2 Charge réelle

La charge réelle utilisée dans ce scénario est extraite du projet Grid Workload Archive IOSUP et al. (2008a),

qui met à disposition les traces d’exécution de divers systèmes de calcul distribués. Les détails relatifs à la

provenance de ces données, ainsi que leur format, sont présentés en Section B.2.2 de l’Annexe B, dédiée à la

reproductibilité des expériences. Dans le cadre de ce travail, nous exploitons plus précisément les traces des

systèmes AuverGrid, NorduGrid et SHARCNET.

Étant donné la longueur totale des traces (allant de plusieurs mois à plusieurs années, donc des dizaines de

millions de secondes), nous restreignons notre étude à une fenêtre de deux semaines d’activité, soit 1 209 600

secondes (cycles). Contrairement aux précédentes études où un seul grain était injecté par cycle, plusieurs

tâches peuvent ici être soumises simultanément, ce qui rapproche ce scénario des modèles de type sac-de-

tâches abordés en Section 3.5.1.

Afin de mettre les mécanismes d’adaptation à l’épreuve, la taille du tamis est volontairement réduite à 100

cellules (grille toroïdale de 10 × 10), soit un nombre de ressources bien inférieur à celui des centres de calcul

étudiés (475, 2000 et 6828). Cela est justifié par l’observation que ces systèmes sont rarement utilisés à pleine

capacité, comme le montrent les analyses statistiques accompagnant les traces.

Les simulations s’exécutent jusqu’à ce que le tamis soit vide, après l’injection des grains correspondant aux

tâches des 1 209 600 secondes à partir des dates de début suivantes :

— AuverGrid : 1er avril 2006 ;

— NorduGrid : 1er janvier 2006 ;

— SHARCNET : 1er septembre 2006.

Ces dates correspondent à des périodes durant lesquelles de nombreuses tâches ont été soumises aux systèmes.

L’objectif de ce scénario est d’évaluer la capacité du tamis auto-adaptatif à gérer une charge réelle, selon

les deux méthodes d’adaptation des capacités de tamisage. Pour ce faire, le fonctionnement idéal des centres

est simulé à partir des traces, en considérant que chaque tâche est affectée à un processeur unique de capacité 1,

lequel disparaît une fois la tâche terminée. Ce fonctionnement de référence permet d’évaluer les performances

du tamis adaptatif selon les métriques suivantes :

— Temps total d’exécution (makespan) : durée nécessaire pour tamiser l’ensemble des grains insérés,

jusqu’à ce que le système soit vide.

— Consommation d’énergie : somme des capacités effectives utilisées et des déplacements de grains,

exprimée en pourcentage de la consommation de référence dérivée des traces.

— Capacité de tamisage globale : capacité de tamisage totale (somme des capacités effectives) de toutes

les cellules à chaque cycle, représentant la “puissance instantanée” du système.

Les paramètres restent identiques aux études précédentes : {0,25 ; 14} pour l’adaptation par entropie locale,

et une seule cellule (soit 1%) initialement en état “bordure” pour le protocole de bavardage.

Enfin, la nature des charges (potentiellement plusieurs grains injectés à chaque cycle) rend nécessaire le

118 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

couplage systématique des deux approches avec le seuil critique dynamique. Celui-ci permet d’amortir les pics

de soumission simultanée et d’éviter les avalanches prolongées lorsque le système est temporairement saturé.

Dans ce cadre, les avalanches ne sont plus limitées à une durée maximale de 500 itérations.

5.6.2 Scénarios de charge fixe et fluctuante

Les résultats sont synthétisés dans les tableaux complémentaires 5.7 et 5.8. Le premier tableau rassemble

les mesures pour la phase opérationnelle des simulations (100 000 cycles après initialisation ; 1 grain est injecté

à chaque cycle) : la capacité de tamisage moyenne et maximale, la consommation d’énergie liée aux avalanches

et l’indice de Jain. Le second tableau, pour une simulation complète (phase d’initialisation de 10 000 cycles ;

phase opérationnelle de 100 000 cycles avec injection de grains, et phase de vidange complète du système), ne

propose plus la capacité moyenne et l’indice de Jain qui deviennent des métriques non pertinentes à cause des

phases d’initialisation et de vidange. En revanche, le débit est ajouté.

Comme nous l’avons déjà observé dans les études précédentes menées de manière individuelle, les deux

méthodes d’adaptation des capacités de tamisage sont fonctionnelles et permettent au système de répondre

efficacement à la charge. Néanmoins, quelques différences apparaissent lorsqu’elles sont mises en comparaison

directe, comme le montrent les résultats synthétisés dans le Tableau 5.7.

Taille
de grain Méthode Capacité Consommation

des avalanches
Indice
de JainMoyenne Maximale

2048 Entropie locale 2 6 0,21% 0,7
Prot. de bavardage 2 8 0,04% 0,51

3072 Entropie locale 3 8 0,2% 0,72
Prot. de bavardage 3 11 0,03% 0,55

4096 Entropie locale 4 9 0,31% 0,72
Prot. de bavardage 3,99 14 0,03% 0,58

Sinusoïde Entropie locale 3 7 0,23% 0,71
Prot. de bavardage 3 11 0,03% 0,54

Aléatoire Entropie locale 3,58 8 0,25% 0,71
Prot. de bavardage 3,59 14 0,03% 0,54

TABLE 5.7 – Comparaison des méthodes d’auto-adaptation selon la tailles des grains injectés dans le tamis.
Les résultats concernent les 100 000 cycles de simulation après initialisation, pour lesquels un grain est injecté
dans le tamis à chaque cycle. La capacité de tamisage moyenne doit être au plus proche de taille des grains

taille du système , soit
2, 3, 4, 3 et 3,55 pour les tailles proposées. Une capacité de tamisage maximale faible indique une adaptation
plus homogène et contrôlée. La consommation des avalanches représente la quantité d’énergie dépensée par les
avalanches par rapport à la consommation totale (avalanches et tamisage). Plus l’indice de Jain est proche de
1, plus l’équilibrage des grains sur les cellules est intéressant.

Sur le plan des capacités de tamisage, les deux approches atteignent des valeurs moyennes très similaires et

nécessaires, quels que soient les scénarios. Cependant, l’adaptation par protocole de bavardage tend à pousser

localement les capacités plus haut, ce qui entraîne un tamisage hétérogène ; c’est-à-dire que certaines zones

du système sont en sur-tamisage tandis que d’autre sont en sous-tamisage par rapport à l’objectif, bien qu’à

l’échelle du système, la capacité de tamisage soit au nécessaire. À l’inverse, l’adaptation par entropie locale a

5.6. COMPARAISON DES MÉTHODES 119

un meilleur contrôle de l’ajustement des capacités.

Cette dynamique a des conséquences sur les mécanismes d’organisation du système. La plus grande réacti-

vité du protocole de bavardage impacte significativement la tension interne, limitant les déplacements de grains

et donc les avalanches. Par conséquent, la consommation énergétique liée aux avalanches est nettement plus

faible avec cette méthode qu’avec celle basée sur l’entropie locale. Cela dit, dans les deux cas, cette compo-

sante énergétique demeure très marginale comparée à celle induite par le tamisage lui-même. La consommation

énergétique totale, majoritairement définie par le tamisage, reste ainsi très proche du nécessaire pour les deux

stratégies, avec des différences négligeables.

En ce qui concerne l’équilibrage de la charge, mesuré à l’aide de l’indice de Jain, l’adaptation par entro-

pie locale s’avère plus efficace. La tension interne maintenue dans le système favorise une répartition plus

homogène des grains à travers les cellules. À l’inverse, la méthode par protocole de bavardage, en réduisant

fortement les avalanches, aboutit à une répartition de la charge plus locale et fragmentée, particulièrement entre

zones éloignées. Cela ne pose pas de problème dans un contexte de surcharge constante, où la majorité des res-

sources sont sollicitées. En revanche, dans un scénario à fortes fluctuations, avec alternance de pics et de phases

de sous-charge, cette fragmentation peut entraîner une sous-utilisation partielle du système.

Cette hétérogénéité, tant au niveau des capacités de tamisage que du niveau de charge, permet au protocole

de bavardage de bénéficier d’un temps d’exécution total réduit. Il en résulte un débit légèrement supérieur à

celui obtenu avec l’approche par entropie locale, comme le montre le Tableau 5.8. Les débits mesurés restent

inférieurs à 1, dans la mesure où l’entièreté de la simulation (incluant les phases d’initialisation et de vidange)

est prise en compte.

Taille
de grain Méthode Capacité

maximale
Consommation
des avalanches Débit

2048 Entropie locale 6 0,2% 0,88
Prot. de bavardage 7 0,04% 0,93

3072 Entropie locale 6 0,2% 0,83
Prot. de bavardage 10 0,03% 0,9

4096 Entropie locale 7 0,3% 0,79
Prot. de bavardage 13 0,03% 0,88

Sinusoïde Entropie locale 6 0,23% 0,71
Prot. de bavardage 10 0,03% 0,79

Aléatoire Entropie locale 7 0,24% 0,75
Prot. de bavardage 12 0,03% 0,82

TABLE 5.8 – Comparaison des méthodes d’auto-adaptation selon la tailles des grains injectés dans le tamis.
Les résultats concernent les simulations complètes : phase d’initialisation (10 000 cycles), phase opérationnelle
avec injection de grains (100 000 cycles), et phase de vidange complète du système. Une capacité de tami-
sage maximale faible indique une adaptation plus homogène et contrôlée. La consommation des avalanches
représente la quantité d’énergie dépensée par les avalanches par rapport à la consommation totale (avalanches
et tamisage). Le débit correspond au nombre moyen de grain tamisé (sortant du système) à chaque cycle. Un
débit élevé indique un tamisage plus rapide.

Par ailleurs, la mesure des capacités de tamisage maximales sur l’entièreté de la simulation présente une

120 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

baisse des valeurs. Cela est dû à l’inactivité majoritaire des cellules pendant l’initialisation et à leur inacti-

vité progressive durant la vidange. La consommation associées aux avalanches reste toutefois pratiquement

inchangée et demeure très marginale, malgré la présence de la phase d’initialisation qui tend à faire surréagir

le système avant que l’adaptation ne le stabilise, en particulier pour le protocole de bavardage.

Enfin, du point de vue de la qualité de service, mesurée par la durée de vie des grains (cf. Figure 5.21), des

différences significatives apparaissent. Dans les deux approches, aucun ordonnancement n’est appliqué locale-

ment pour les opérations de tamisage, et le déplacement des grains repose sur une dynamique de type marche

aléatoire. Dans ce cadre, la tension plus forte induite par l’entropie locale, qui favorise un bon équilibrage,

a ici un effet négatif : les grains peuvent être repoussés et circuler longtemps dans le tamis avant d’atteindre

une cellule prête à les traiter, ce qui augmente leur durée de vie. À l’inverse, dans le protocole de bavardage,

les grains se déplacent peu et attendent généralement peu (équivalent du tamisage d’un à trois grains) avant

d’être tamisés. La qualité de service est ainsi nettement supérieure avec cette méthode, les grains étant traités

de manière plus fluide et rapide.

Entropie locale Protocole de bavardage
0

2,000

4,000

6,000

8,000

10,000

D
ur

ée
de

vi
e

d’
un

gr
ai

n

FIGURE 5.21 – Durée de vie des grains dans un tamis de taille 32 selon chaque méthode d’adaptation des
capacités de tamisage pour la charge sinusoïdale. Chacune présente des valeurs aberrantes non présentes sur le
graphique pour la lisibilité : jusqu’à 35000 pour la première, et jusqu’à 15000 pour la seconde.

D’après cette étude, le choix de la meilleure modélisation de l’adaptation des capacités de tamisage dépend

des objectifs. Si l’on souhaite de la parcimonie dans l’utilisation des ressources, l’adaptation par entropie locale

offre de meilleurs résultats. En revanche, si l’on s’intéresse plutôt à la qualité de service, l’adaptation par

protocole de bavardage propose de bien meilleures performances.

5.6.3 Scénario de charge réelle

Comme le montre le Tableau 5.9, les deux méthodes d’adaptation des capacités de tamisage sont capables de

faire face efficacement à des charges issues de systèmes réels, avec une consommation énergétique globalement

équivalente à celle dérivée des systèmes de calcul dont proviennent les traces.

Sur la trace AuverGrid, l’approche par protocole de bavardage parvient à reproduire un temps total d’exé-

cution très proche de la référence, voire légèrement inférieur. L’adaptation par entropie locale, en revanche,

5.6. COMPARAISON DES MÉTHODES 121

Trace Système Temps d’exécution Consommation
des avalanches

AuverGrid
Référence 1 418 433 0%

Entropie locale 1 565 105 0,013%
Prot. de bavardage 1 407 797 0,003%

NorduGrid
Référence 6 371 445 0%

Entropie locale 2 099 109 0,294%
Prot. de bavardage 1 407 116 0,013%

SHARCNET
Référence 4 711 420 0%

Entropie locale 4 899 089 0,171%
Prot. de bavardage 1 920 970 0,021%

TABLE 5.9 – Résultats des méthodes d’auto-adaptation pour les traces AuverGrid, NorduGrid et SHARCNET.

nécessite environ 10% de cycles supplémentaires pour parvenir au traitement complet de la charge. Cela dit,

cette différence n’impacte pas significativement la consommation d’énergie, les deux approches maintenant une

dépense énergétique quasiment identique à celle des systèmes de référence. La Figure 5.22 illustre la réaction

des modèles pour cette trace. On observe que pour le tamis auto-adaptatif, peu importe la méthode d’adaptation,

il ajuste organiquement sa capacité de tamisage globale pour suivre les pics de charge.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Cycle 1e6

0

100

200

300

400

500

600

Ca
pa

cit
é

de
 ta

m
isa

ge

AuverGrid
Entropie locale
Prot. de bavardage

FIGURE 5.22 – Évolution de la capacité de tamisage globale des systèmes pour la trace d’AuverGrid.

Les traces NorduGrid et SHARCNET présentent une dynamique de soumission de tâches différente. La

quantité de charge injectée est généralement très faible, interrompue par des pics soudains et brefs, contrai-

rement à la trace AuverGrid qui présente une charge plus continue ponctuée de hausses modérées. De plus,

des durées de tâches beaucoup plus longues sont présentes. Cette dynamique a pour effet d’activer violemment

les mécanismes d’adaptation, exploitant la tension élevée induite par ces pics pour augmenter rapidement les

capacités de tamisage. Le tamis parvient alors à traiter les grains beaucoup plus rapidement que les systèmes

d’origine, tout en revenant rapidement à un état de veille, ce qui explique que la consommation énergétique

totale demeure très proche de celle de référence.

Les Figures 5.23 et 5.24 illustrent l’évolution de la capacité de tamisage du système pour les traces Nordu-

122 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

Grid et SHARCNET. Les cycles au-delà de 2 millions ont été tronqués, car ils n’apportent pas d’information

significative : la capacité y décroît progressivement. Par ailleurs, l’axe des ordonnées est représenté en échelle

logarithmique afin de faciliter la lecture, rendue difficile par les réactions violentes observées ponctuellement.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Cycle 1e6

100

101

102

103

104

Ca
pa

cit
é

de
 ta

m
isa

ge

NorduGrid
Entropie locale
Prot. de bavardage

FIGURE 5.23 – Évolution de la capacité de tamisage globale des systèmes pour la trace de NorduGrid. La
capacité de tamisage est affichée en échelle logarithmique.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Cycle 1e6

100

101

102

103

104

105

Ca
pa

cit
é

de
 ta

m
isa

ge

SHARCNET
Entropie locale
Prot. de bavardage

FIGURE 5.24 – Évolution de la capacité de tamisage globale des systèmes pour la trace de SHARCNET. La
capacité de tamisage est affichée en échelle logarithmique.

Lorsque la capacité se stabilise autour de 100 (c’est-à-dire en l’absence ou en présence d’une adaptation

minimale), le tamis auto-adaptatif réagit de manière satisfaisante. En revanche, les pics de charge soudains

(visibles dans les données de référence par des sauts brusques) forcent le système à ajuster ses capacités, ce

qui provoque des réactions particulièrement marquées. C’est notamment le cas pour l’adaptation par proto-

cole de bavardage, qui atteint une capacité globale de 60 000 (soit 600 par cellule) sur la trace SHARCNET.

Ces réactions brutales entraînent une vidange rapide du tamis, suivie d’une chute abrupte des capacités avant

l’apparition d’un nouveau pic. La méthode basée sur l’entropie locale, bien qu’elle génère également des pics

d’adaptation importants, produit des ajustements plus modérés. Cette modération se traduit notamment par un

5.6. COMPARAISON DES MÉTHODES 123

temps de traitement légèrement plus élevé que la référence sur la trace SHARCNET.

L’adaptation plus limitée produite par l’entropie locale s’explique par les caractéristiques intrinsèques de

la méthode : la mesure de l’entropie étant effectuée sur une fenêtre temporelle courte, la réaction adaptative

s’affaiblit rapidement une fois le pic de charge passé. Une fois stabilisé par le seuil critique dynamique, le

système présente une capacité de tamisage réduite, insuffisante pour achever rapidement le traitement des

grains restants. À l’inverse, le protocole de bavardage conserve les capacités élevées atteintes pendant le pic,

permettant de maintenir un régime de traitement plus intense jusqu’à complète vidange du tamis. En outre, dans

un tel contexte, les performances de la méthode par entropie locale dépendent totalement de ses paramètres

puisqu’il définissent la capacité d’adaptation minimale (⌈Eref × fenêtre⌉).

Les surréactions brèves mais intenses soulignent un aspect fondamental du décalage entre la conception

du tamis auto-adaptatif et les pratiques des systèmes réels. Alors que le tamis est pensé pour s’adapter à une

surcharge constante, les systèmes de calcul sont, eux, dimensionnés pour fonctionner en sous-charge, afin de

pouvoir absorber des pics de demande. Lorsque le nombre de cellules du tamis est équivalent au nombre de

processeurs des systèmes de référence, aucune avalanche ni adaptation n’est observée, les ressources étant

suffisantes pour absorber la charge.

Les systèmes réels ayant une puissance limitée par le matériel, nous avons introduit une limitation arbitraire

de la capacité de tamisage par cellule, fixée à 20, soit 2000 pour le système complet afin d’aller un peu plus

loin. Le Tableau 5.10 présente les résultats obtenus pour NorduGrid et SHARCNET, la trace AuverGrid n’étant

pas affectée par cette contrainte.

Trace Système Temps d’exécution Consommation
des avalanches

NorduGrid
Référence 6 371 445 0%

Entropie locale 2 275 380 0,313%
Prot. de bavardage 1 261 919 0,031%

SHARCNET
Référence 4 711 420 0%

Entropie locale 5 108 906 0,191%
Prot. de bavardage 2 075 012 0,133%

TABLE 5.10 – Résultats des méthodes d’auto-adaptation pour les traces NorduGrid et SHARCNET avec une
limitation de capacité de tamisage à 20.

Avec cette limitation de capacité, l’adaptation par entropie locale montre des temps d’exécution légère-

ment accrus, en raison du phénomène déjà évoqué : une capacité d’adaptation insuffisante après les pics de

surcharge. Pour le protocole de bavardage, les résultats sont plus nuancés : la trace SHARCNET montre une

légère dégradation, mais sur la trace NorduGrid, le temps d’exécution est inférieur à celui observé sans limita-

tion. Ce phénomène s’explique par une tension plus élevée et plus homogène dans le système, qui favorise une

meilleure répartition des grains et une utilisation plus régulière des cellules.

Dans l’ensemble, quelle que soit la méthode, la consommation énergétique associée aux avalanches pour

l’équilibrage de la charge reste marginale, y compris en présence de cette contrainte matérielle.

En outre, ces résultats font écho à l’étude de la section précédente : l’adaptation par entropie locale est axée

124 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

sur la parcimonie de l’utilisation des ressources, tandis que l’adaptation par protocole de bavardage offre une

bien meilleure qualité de service.

5.7 Conclusion

Dans ce chapitre, nous avons introduit et étudié une évolution du modèle du tamis, lui-même dérivé du

modèle du tas de sable de Bak, Tang et Wiesenfeld : le tamis auto-adaptatif. Cette évolution vise à doter le

tamis de capacités d’adaptation, lui permettant de fonctionner efficacement dans un environnement limité, à

l’image des systèmes de traitement réels. Deux mécanismes principaux ont été intégrés au modèle : les seuils

critiques dynamiques et les capacités de tamisage adaptatives.

Le premier mécanisme, fondé sur l’ajustement dynamique des seuils critiques d’éboulement, permet au

système de stocker temporairement davantage de grains afin de stopper des avalanches qui, autrement, seraient

interminables. Cette régulation a également pour effet de réduire drastiquement l’ampleur des avalanches, c’est-

à-dire le nombre de cellules impliquées. Ces résultats contribuent non seulement à la faisabilité du modèle

dans un environnement limité, mais aussi à la réduction de la consommation énergétique liée aux processus

d’avalanches pour redistribuer les grains de sable.

Le second mécanisme concerne l’adaptation dynamique de la capacité de tamisage des cellules, de manière

à permettre au système de s’ajuster face à n’importe quel niveau de charge. À cette fin, deux approches ont été

proposées : l’adaptation par entropie locale, et l’adaptation par protocole de bavardage.

L’adaptation par entropie locale, fondée sur une mesure locale du mouvement des grains, offre des perfor-

mances proches de l’optimal dans les scénarios de surcharge constante. En revanche, elle ne surpasse pas les

références dans les scénarios à charge réaliste, du fait de la mesure du mouvement sur une fenêtre glissante. Elle

présente toutefois une gestion fine et contrôlée des capacités, avantageuse pour des environnements maîtrisés.

L’adaptation par protocole de bavardage affiche également des performances quasi-optimales en surcharge

constante, tout en obtenant des temps d’exécution significativement réduits face aux charges réalistes. Cepen-

dant, sa grande réactivité réduit la tension locale dans le système, ce qui peut conduire à une moins bonne

répartition de la charge.

Dans les deux cas, les méthodes proposées permettent au système de s’ajuster de manière décentralisée,

et de réaliser efficacement le tamisage selon la charge soumise. L’adaptation par entropie locale offre une

meilleure parcimonie de l’utilisation des ressources, tandis que l’adaptation par protocole de bavardage propose

une meilleure qualité de service.

Néanmoins, l’approche par entropie locale présente une limite notable : elle nécessite une calibration préa-

lable des paramètres, soit à partir d’une analyse post-mortem, soit en disposant d’une connaissance anticipée de

la charge. Elle offre ainsi une adaptation précise mais présentant une certaine rigidité, bien qu’elle soit capable

de gérer des charges aléatoires comme nous l’avons vu. À l’inverse, dans un contexte de charge incertaine et

s’il n’est pas possible de conduire une étude post-mortem, l’adaptation par protocole de bavardage constitue

une solution plus souple et robuste, capable de maintenir les performances sans connaissance a priori.

Chapitre 6

Conclusion

Les systèmes numériques sont généralement surdimensionnés afin de pouvoir encaisser les pics de charge,

ce qui entraîne bien souvent une consommation énergétique excédentaire. Les performances globales d’un tel

système dépendent notamment de la qualité de l’équilibrage de la charge, en particulier dans des contextes de

ressources limitées. C’est dans cette perspective que nous avons cherché, au cours de ces travaux, à concevoir

des mécanismes capables d’optimiser la consommation énergétique tout en préservant la qualité de service,

même en conditions de surcharge.

Nous avons d’abord étudié les grands paradigmes de l’équilibrage de charge, en abordant les environne-

ments d’exécution, les architectures concernées ainsi que les modes de prise de décision afin de pouvoir situer

notre travail. Nous avons également passé en revue quelques métriques d’évaluation des algorithmes et analysé

en détail certains mécanismes spécifiques. Les approches auto-organisatrices se sont révélées particulièrement

intéressantes en raison de leur robustesse naturelle, de leur parcimonie, et de leur capacité d’adaptation locale

via des interactions entre ressources, les rendant bien adaptées à des environnements décentralisés, dynamiques

et de grande échelle.

Inspirés par les mécanismes d’auto-organisation présents dans la nature, nous nous sommes ensuite penchés

sur le concept de criticalité auto-organisée, un état dynamique au bord de l’équilibre entre ordre et chaos. Ce

principe a été étudié à travers le modèle du tas de sable, et l’une de ses variantes, le tamis, démontrant des

capacités prometteuses en termes d’équilibrage distribué.

Notre première contribution porte sur l’étude de la robustesse de la criticalité auto-organisée dans le mo-

dèle du tas de sable canonique. Pour cela, nous avons proposé un cadre expérimental original, intégrant : (i) un

nouvel algorithme de recâblage, permettant de conserver le fonctionnement du modèle canonique ; (ii) un algo-

rithme de dégradation progressive de la structure sous-jacente, simulant des défaillances matérielles. Ces outils

nous ont permis d’analyser le comportement du système sur différentes topologies, allant de grilles régulières

à des graphes aléatoires ou de type petit-monde, ainsi que leurs variantes dégradées. Les résultats montrent

que les structures faiblement régulières, notamment les petits-mondes, permettent une circulation plus efficace

de l’énergie et retardent significativement l’effondrement du système, suggérant pourquoi de telles structures

émergent plus naturellement dans les systèmes biologiques ou sociaux.

125

126 CHAPITRE 6. CONCLUSION

Plus largement, la robustesse structurelle ouvre la voie à des applications plus concrètes dans plusieurs

domaines où les environnements sont partiellement défaillants, dynamiques ou difficiles à contrôler. On peut

citer notamment :

— les réseaux de capteurs sans fil, sujets à des pertes fréquentes de nœuds ou de liens ;

— les systèmes pair-à-pair ou blockchains, où la topologie est évolutive et décentralisées ;

— les infrastructures informatiques tactiques ou embarquées, utilisées en environnement dégradé (militaire

ou spatial par exemple) ;

— les réseaux neuronaux biologiques ou bio-inspirés, où la plasticité structurelle est naturelle ;

— les systèmes d’équilibrage de charge distribués, dans le cloud ou à la périphérie (edge computing), où

des machines peuvent apparaître et disparaître sans coordination centrale.

En résumé, cette étude démontre que la dynamique du tas de sable peut servir de fondement à des méca-

nismes de régulation distribuée efficaces, même lorsque la structure sous-jacente est instable ou fragmentée, ce

qui constitue un atout fort pour le design de systèmes autonomes robustes.

La seconde contribution concerne l’extension du modèle du tamis à des environnements finis, où le nombre

de ressources est limité. Ce contexte soulève un enjeu critique : la gestion de la surcharge. Dans le modèle

classique, une charge excessive entraîne une saturation du tamis, provoquant une explosion de la consommation

énergétique liée au mécanisme d’équilibrage (avalanches) sans réel bénéfice.

Pour répondre à cette limitation, nous avons introduit le tamis auto-adaptatif, intégrant deux mécanismes

décentralisés : une adaptation du seuil critique d’éboulement des cellules, et une adaptation des capacités de

tamisage (puissance locale des ressources). Ces adaptations sont déclenchées localement, à partir des mouve-

ments de grains observés, permettant une réaction intrinsèque du système aux variations de charge. Le seuil

critique dynamique permet d’amortir les avalanches en autorisant temporairement l’accumulation de grains sur

les cellules, réduisant ainsi la consommation associée. Pour l’adaptation des capacités, deux stratégies ont été

développées : l’une basée sur l’entropie locale (mesure du désordre), l’autre sur un protocole de bavardage.

Les deux méthodes se sont révélées efficaces pour faire face à tous les types de charges (constantes, fluc-

tuantes ou réelles) en maintenant une consommation proche de l’optimum, c’est-à-dire juste suffisante pour

absorber la charge. Le protocole de bavardage, sans paramètre, présente l’avantage de la simplicité et de la

robustesse. L’approche par entropie locale, quant à elle, permet une adaptation plus fine et contrôlée, au prix

d’un réglage de paramètres.

En résumé, ces travaux ouvrent la voie à une gestion énergétique intelligente et décentralisée, fondée sur

des principes naturels d’auto-organisation. Ils démontrent que des modèles simples, bien conçus, peuvent offrir

une robustesse structurelle, une adaptabilité dynamique, et une efficacité énergétique dans des environnements

complexes, sans recours à une supervision centralisée.

Perspectives

Plusieurs pistes peuvent être envisagées pour prolonger et approfondir ces travaux. Nous présentons ici

quelques perspectives de recherche.

127

Seuil critique dynamique Le mécanisme d’adaptation des seuils critiques actuel ne permet une diminution

de ces seuils que lorsqu’une avalanche de faible intensité survient. Cela peut conduire à une situation où, si la

charge dans le système diminue, les seuils restent durablement élevés en l’absence d’avalanches, celles-ci étant

justement inhibées par les seuils élevés. Ce blocage dynamique limite la capacité du système à retrouver un bon

niveau d’auto-organisation. Il serait ainsi pertinent d’introduire un mécanisme de décrément temporel, faisant

décroître progressivement les seuils s’ils n’ont pas été modifiés depuis un certain temps, rétablissant ainsi la

plasticité nécessaire à une adaptation continue.

Capacités de tamisage adaptatives Les mécanismes d’adaptation des capacités de tamisage ont principa-

lement été évalués dans des scénarios de surcharge constante. Il serait intéressant d’étendre ces expérimen-

tations à des charges plus réelles, notamment des charges intermittentes, corrélées ou bruitées, afin d’évaluer

la robustesse des modèles dans des contextes plus proches du fonctionnement de systèmes numériques réels.

Nous avons également introduit de façon préliminaire une limitation arbitraire des capacités pour simuler les

contraintes matérielles d’un système physique. Cette contrainte mériterait d’être approfondie, tant du point de

vue de sa modélisation que de son impact sur la dynamique globale du tamis auto-adaptatif.

Consommation énergétique Sur le plan des mesures de performance, notre modélisation de la consomma-

tion énergétique reste très simplifiée. Ce choix assumé a permis de se concentrer sur la dynamique du système,

mais il s’éloigne du comportement réel des ressources de calcul, dont la consommation n’évolue pas linéaire-

ment avec la puissance mobilisée. Une modélisation plus fine de la consommation énergétique, par exemple

inspirée de profils de consommation de CPU, permettrait de mieux distinguer les performances des différents

mécanismes d’adaptation. Dans ce cadre, il est probable que la stratégie du protocole de bavardage, qui induit

des pics plus marqués de capacité, s’avère moins efficaces que l’approche basée sur l’entropie locale, en termes

de rendement énergétique global.

Avalanches avec tabou Un mécanisme de déplacement avec tabou a été brièvement exploré au cours de nos

travaux, bien qu’il n’ait pas été présenté dans ce document. Ce mécanisme intervient lors de la propagation

des avalanches, en orientant la réaffectation des grains vers les cellules voisines les plus stables, c’est-à-dire

celles qui ont tendance à donner peu de grains. L’objectif est d’éviter de réinjecter de la charge dans une

cellule instable, susceptible de s’ébouler à nouveau, et de privilégier les cellules relativement sous-chargées

pour améliorer la stabilité locale. Un facteur aléatoire est intégré dans la sélection des cellules receveuses afin

de maintenir une diversité dans les chemins empruntés par les grains, évitant ainsi la formation de canaux

rigides dans le système.

Les premiers résultats expérimentaux obtenus suggèrent que ce mécanisme présente plusieurs avantages

notables :

— il réduit le nombre total de déplacements de grains sans perturber l’état de criticalité auto-organisée ;

— il produit un équilibrage quasi parfait de la charge entre les cellules ;

— il améliore nettement la robustesse du tamis sans mécanismes d’adaptation, lui permettant de supporter

128 CHAPITRE 6. CONCLUSION

une charge allant jusqu’à sa taille moins un, sans déclencher d’avalanche infinie, contre environ 97%

de sa taille sans déplacement avec tabou.

Ce mécanisme s’annonce donc particulièrement prometteur et mériterait une étude approfondie, tant sur le plan

de son intégration aux autres mécanismes adaptatifs que sur celui de son impact global sur la performance du

système.

Qualité de service Le modèle du tamis, y compris dans sa version adaptative, ne prend pas en compte l’an-

cienneté des grains dans les files des cellules. Cela peut entraîner un délai du traitement de grains anciens, en

particulier lors des avalanches, et dégrader la qualité de service. Un mécanisme d’ordonnancement pourrait être

introduit pour favoriser le traitement des grains les plus anciens.

Dans cette même optique, il serait pertinent de limiter le nombre de déplacements d’un grain afin d’éviter

qu’il soit constamment repositionné en fin de file. Cela pourrait se faire via une organisation en deux files,

comme l’algorithme de vol de travail étudié au Chapitre 2 : une file contenant les grains devenus immobiles, et

une autre pour ceux encore déplaçables. La cellule prioriserait alors la première pour sélectionner les grains à

tamiser. Des règles spécifiques pourraient toutefois permettre le redéploiement exceptionnel de grains normale-

ment fixes, notamment en cas de surcharge locale. Un tel mécanisme influencerait nécessairement la dynamique

des avalanches, et donc l’état d’auto-organisation du système, ce qui en fait un sujet d’étude à part entière.

Structure sous-jacente Les expérimentations menées ont été limitées à des structures de grille régulière

de taille modérée, en raison du coût des simulations. Il serait pertinent d’étudier le comportement du tamis

auto-adaptatif dans des structures non régulières (petit monde, aléatoires, sans échelle, etc.) ou de plus grande

dimension. Il serait notamment possible de coupler les résultats du Chapitre 4, consacré à la robustesse du tas

de sable, avec les mécanismes du tamis auto-adaptatif pour évaluer leur efficacité dans des environnements plus

hétérogènes ou dégradés.

Concrétisation du modèle Enfin, bien que le tamis auto-adaptatif soit un modèle abstrait, ses mécanismes

pourraient être formalisés dans un cadre applicatif concret. Un exemple pertinent serait celui des services cloud,

où la variation de la demande est absorbée par la création ou la suppression de répliques de services. Dans ce

contexte, chaque réplique peut être assimilée à une unité de capacité de tamisage, contrainte par les ressources

physiques du serveur. Une telle formalisation rapprocherait le modèle des systèmes réels de gestion d’élasticité,

et permettrait d’exploiter les bénéfices des principes d’auto-organisation et de criticalité dans la conception de

systèmes numériques autonomes et résilients.

Asynchronicité des avalanches L’ensemble des études menées dans ce travail repose sur un cadre de simula-

tion synchrone. Cela signifie que lorsqu’une avalanche se déclenche, la simulation est suspendue et l’avalanche

est intégralement traitée jusqu’à ce que le système retrouve un état stable, avant de reprendre son évolution

normale. Or, les systèmes réels ne fonctionnent pas de manière aussi séquentielle : le traitement des tâches

et l’équilibrage de charge s’y déroulent de manière parallèle et continue. Adopter un paradigme d’avalanches

129

asynchrones reviendrait à faire évoluer profondément le cadre d’étude, car les avalanches pourraient alors se

superposer et interagir, rendant leur mesure (durée, amplitude) et leur analyse bien plus complexes. De plus, le

traitement simultané des tâches interférerait directement avec la dynamique des avalanches, modifiant ainsi les

mécanismes d’équilibrage de charge.

Le paradigme asynchrone a été envisagé dès les débuts de ce travail. Cependant, en raison de son éloigne-

ment conceptuel par rapport au modèle canonique du tas de sable, nous avons choisi de le mettre temporaire-

ment de côté. Il constitue néanmoins une piste de recherche essentielle, nécessitant une attention approfondie.

130 CHAPITRE 6. CONCLUSION

Bibliographie

AFZAL, S., & KAVITHA, G. (2019). Load balancing in cloud computing – a hierarchical taxonomical classifi-

cation. Journal of Cloud Computing, 8(1), 22. https://doi.org/10.1186/s13677-019-0146-7

ALAKEEL, A. (2009). A Guide to Dynamic Load Balancing in Distributed Computer Systems. International

Journal of Computer Science and Network Security (IJCSNS), 10.

ALENCAR, A. M., ANDRADE, J. S., & LUCENA, L. S. (1997). Self-organized percolation. Physical Review E,

56(3), R2379-R2382. https://doi.org/10.1103/PhysRevE.56.R2379

AL-RAYIS, E., & KURDI, H. (2013). Performance Analysis of Load Balancing Architectures in Cloud Com-

puting. 2013 European Modelling Symposium, 520-524. https://doi.org/10.1109/EMS.2013.10

ARABNEJAD, H., & BARBOSA, J. G. (2014). List Scheduling Algorithm for Heterogeneous Systems by an

Optimistic Cost Table. IEEE Transactions on Parallel and Distributed Systems, 25(3), 682-694. https:

//doi.org/10.1109/TPDS.2013.57

AZAR, Y., BRODER, A. Z., KARLIN, A. R., & UPFAL, E. (1994). Balanced Allocations. Proceedings of the

twenty-sixth annual ACM symposium on theory of computing, 593-602.

BAK, P. (1996). How nature works : the science of self-organized criticality. Springer New York. https://doi.

org/10.1007/978-1-4757-5426-1

BAK, P., TANG, C., & WIESENFELD, K. (1987). Self-organized criticality : an explanation of the 1/ f noise.

Physical Review Letters, 59(4), 381-384. https://doi.org/10.1103/PhysRevLett.59.381

BAK, P., TANG, C., & WIESENFELD, K. (1988). Self-organized criticality. Physical Review A, 38(1), 364-374.

https://doi.org/10.1103/PhysRevA.38.364

BARABÁSI, A.-L., & ALBERT, R. (1999). Emergence of scaling in random networks. Science, 286(5439),

509-512. https://doi.org/10.1126/science.286.5439.509

BASSETT, D. S., & BULLMORE, E. (2006). Small-world brain networks. The Neuroscientist, 12(6), 512-523.

https://doi.org/10.1177/1073858406293182

BEGGS, J. M., & PLENZ, D. (2003). Neuronal avalanches in neocortical circuits. The Journal of Neuroscience,

23(35), 11167-11177. https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003

BELGAUM, M. R., MUSA, S., ALAM, M. M., & SU’UD, M. M. (2020). A Systematic Review of Load Balancing

Techniques in Software-Defined Networking. IEEE Access, 8, 98612-98636. https://doi.org/10.1109/

ACCESS.2020.2995849

131

https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1103/PhysRevE.56.R2379
https://doi.org/10.1109/EMS.2013.10
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1007/978-1-4757-5426-1
https://doi.org/10.1007/978-1-4757-5426-1
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1177/1073858406293182
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1109/ACCESS.2020.2995849
https://doi.org/10.1109/ACCESS.2020.2995849

132 BIBLIOGRAPHIE

BHAUMIK, H., & SANTRA, S. B. (2013). Critical properties of a dissipative sandpile model on small-world

networks. Physical Review E, 88(6). https://doi.org/https://doi.org/10.1103/PhysRevE.88.062817

BIESMEIJER, J. C., & SEELEY, T. D. (2005). The use of waggle dance information by honey bees throughout

their foraging careers. Behavioral Ecology and Sociobiology, 59(1), 133-142. https://doi.org/10.1007/

s00265-005-0019-6

BIONDO, A. E., PLUCHINO, A., & RAPISARDA, A. (2015). Modeling financial markets by self-organized

criticality. Physical Review E, 92(4), 042814. https://doi.org/10.1103/PhysRevE.92.042814

BIRATTARI, M., DI CARO, G., & DORIGO, M. (2002). Toward the formal foundation of ant programming.

In M. DORIGO, G. DI CARO & M. SAMPELS (Éd.), Ant algorithms (p. 188-201, T. 2463). Springer

Berlin Heidelberg. https://doi.org/10.1007/3-540-45724-0_16

BIRATTARI, M., & DORIGO, M. (2000). For a Formal Foundation of the Ant Programming Approach to Com-

binatorial Optimization. Part 1 : The problem, the representation, and the general solution strategy.

Technical Report TR-H-301 of the ATR-Human Information Processing Labs.

BJÖRNER, A., LOVÁSZ, L., & SHOR, P. W. (1991). Chip-firing games on graphs. European Journal of Combi-

natorics, 12(4), 283-291. https://doi.org/10.1016/S0195-6698(13)80111-4

BLUM, C. (2005). Ant colony optimization : introduction and recent trends. Physics of Life Reviews, 2(4),

353-373. https://doi.org/10.1016/j.plrev.2005.10.001

BLUMOFE, R. D., & LEISERSON, C. E. (1999). Scheduling multithreaded computations by work stealing.

Journal of the ACM, 46(5), 720-748. https://doi.org/10.1145/324133.324234

BONABEAU, E., THERAULAZ, G., DENEUBOURG, J.-L., ARON, S., & CAMAZINE, S. (1997). Self-organization

in social insects. Trends in Ecology & Evolution, 12(5), 188-193. https://doi.org/10.1016/S0169-

5347(97)01048-3

BOOLCHAND, P., LUCOVSKY, G., PHILLIPS, J. C., & THORPE, M. F. (2005). Self-organization and the phy-

sics of glassy networks. Philosophical Magazine, 85(32), 3823-3838. https : / / doi . org / 10 . 1080 /

14786430500256425

BORNHOLDT, S., & RÖHL, T. (2003). Self-organized critical neural networks. Physical Review E, 67(6),

066118. https://doi.org/10.1103/PhysRevE.67.066118

BOULMIER, A., ABDENNADHER, N., & CHOPARD, B. (2022). Optimal load balancing and assessment of

existing load balancing criteria. Journal of Parallel and Distributed Computing, 169, 211-225. https:

//doi.org/10.1016/j.jpdc.2022.07.002

BOULMIER, A., RAYNAUD, F., ABDENNADHER, N., & CHOPARD, B. (2019). On the Benefits of Anticipa-

ting Load Imbalance for Performance Optimization of Parallel Applications. 2019 IEEE International

Conference on Cluster Computing (CLUSTER), 1-9. https : / / doi . org / 10 . 1109 / CLUSTER . 2019 .

8890998

BRODAL, G. S., SIOUTAS, S., TSICHLAS, K., & ZAROLIAGIS, C. (2015). D2-Tree : a new overlay with deter-

ministic bounds. Algorithmica, 72(3), 860-883. https://doi.org/10.1007/s00453-014-9878-4

https://doi.org/https://doi.org/10.1103/PhysRevE.88.062817
https://doi.org/10.1007/s00265-005-0019-6
https://doi.org/10.1007/s00265-005-0019-6
https://doi.org/10.1103/PhysRevE.92.042814
https://doi.org/10.1007/3-540-45724-0_16
https://doi.org/10.1016/S0195-6698(13)80111-4
https://doi.org/10.1016/j.plrev.2005.10.001
https://doi.org/10.1145/324133.324234
https://doi.org/10.1016/S0169-5347(97)01048-3
https://doi.org/10.1016/S0169-5347(97)01048-3
https://doi.org/10.1080/14786430500256425
https://doi.org/10.1080/14786430500256425
https://doi.org/10.1103/PhysRevE.67.066118
https://doi.org/10.1016/j.jpdc.2022.07.002
https://doi.org/10.1016/j.jpdc.2022.07.002
https://doi.org/10.1109/CLUSTER.2019.8890998
https://doi.org/10.1109/CLUSTER.2019.8890998
https://doi.org/10.1007/s00453-014-9878-4

BIBLIOGRAPHIE 133

BURRIDGE, R., & KNOPOFF, L. (1967). Model and theoretical seismicity. Bulletin of the Seismological Society

of America, 57(3), 341-371. https://doi.org/10.1785/BSSA0570030341

CAJUEIRO, D. O., & ANDRADE, R. F. S. (2010). Controlling self-organized criticality in sandpile models.

Physical Review E, 81(1), 015102. https://doi.org/10.1103/PhysRevE.81.015102

CARDON, A., DUTOT, A., GUINAND, F., & OLIVIER, D. (2006). Competing ants for organization detection

application to dynamic distribution. In M. AZIZ-ALAOUI & C. BERTELLE (Éd.), Emergent properties

in natural and artificial dynamical systems (p. 25-52). Springer Berlin Heidelberg. https://doi.org/10.

1007/3-540-34824-7_2

CARLSON, J. M., & DOYLE, J. (2002). Complexity and robustness. Proceedings of the National Academy of

Sciences, 99, 2538-2545. https://doi.org/10.1073/pnas.012582499

CHEKURI, C., & KHANNA, S. (2005). A polynomial time approximation scheme for the multiple knapsack

problem. SIAM Journal on Computing, 35(3), 713-728. https://doi.org/10.1137/S0097539700382820

CROES, G. A. (1958). A Method for Solving Traveling-Salesman Problems. Operations Research, 6(6), 791-

812.

de ARCANGELIS, L., & HERRMANN, H. (2002). Self-organized criticality on small world networks. Physica

A : Statistical Mechanics and its Applications, 308(1), 545-549. https : / /doi .org /10 .1016/S0378-

4371(02)00549-6

de ARCANGELIS, L., PERRONE-CAPANO, C., & HERRMANN, H. J. (2006). Self-organized criticality model

for brain plasticity. Physical Review Letters, 96(2), 028107. https://doi.org/10.1103/PhysRevLett.96.

028107

DEEPA, T., & CHEELU, D. (2017). A comparative study of static and dynamic load balancing algorithms in

cloud computing. 2017 International Conference on Energy, Communication, Data Analytics and Soft

Computing (ICECDS), 3375-3378. https://doi.org/10.1109/ICECDS.2017.8390086

DEKKER, A. H., & COLBERT, B. D. (2004). Network robustness and graph topology. Proceedings of the 27th

Australasian Conference on Computer Science, 26, 359-368.

DEVI, D. C., & UTHARIARAJ, V. R. (2016). Load balancing in cloud computing environment using improved

weighted round robin algorithm for nonpreemptive dependent tasks. The Scientific World Journal,

2016, 1-14. https://doi.org/10.1155/2016/3896065

DORIGO, M., BIRATTARI, M., & STUTZLE, T. (2006). Ant colony optimization. IEEE Computational Intelli-

gence Magazine, 1(4), 28-39. https://doi.org/10.1109/MCI.2006.329691

DORIGO, M., BONABEAU, E., & THERAULAZ, G. (2000). Ant algorithms and stigmergy. Future Generation

Computer Systems, 16(8), 851-871. https://doi.org/10.1016/S0167-739X(00)00042-X

DROSSEL, B., & SCHWABL, F. (1992). Self-organized critical forest-fire model. Physical Review Letters,

69(11), 1629-1632. https://doi.org/10.1103/PhysRevLett.69.1629

DUTOT, A. (2005). Distribution dynamique adaptative à l’aide de mécanismes d’intelligence collective [Thèse].

Université du Havre.

https://doi.org/10.1785/BSSA0570030341
https://doi.org/10.1103/PhysRevE.81.015102
https://doi.org/10.1007/3-540-34824-7_2
https://doi.org/10.1007/3-540-34824-7_2
https://doi.org/10.1073/pnas.012582499
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1016/S0378-4371(02)00549-6
https://doi.org/10.1016/S0378-4371(02)00549-6
https://doi.org/10.1103/PhysRevLett.96.028107
https://doi.org/10.1103/PhysRevLett.96.028107
https://doi.org/10.1109/ICECDS.2017.8390086
https://doi.org/10.1155/2016/3896065
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1016/S0167-739X(00)00042-X
https://doi.org/10.1103/PhysRevLett.69.1629

134 BIBLIOGRAPHIE

ERDÖS, P., & RÉNYI, A. (1960). On the evolution of random graphs. Publ. math. inst. hung. acad. sci, 5(1),

17-60.

EYTAN, D., & MAROM, S. (2006). Dynamics and effective topology underlying synchronization in networks

of cortical neurons. The Journal of Neuroscience, 26(33), 8465-8476. https : / / doi . org / 10 . 1523 /

JNEUROSCI.1627-06.2006

GĄSIOR, J., & SEREDYŃSKI, F. (2017). A sandpile cellular automata-based scheduler and load balancer. Jour-

nal of Computational Science, 21, 460-468. https://doi.org/10.1016/j.jocs.2016.08.005

GILMAN, D. L., FUGLISTER, F. J., & MITCHELL, J. M. (1963). On the Power Spectrum of “Red Noise”. Jour-

nal of Atmospheric Sciences, 20(2), 182-184. https://doi.org/10.1175/1520-0469(1963)020<0182:

OTPSON>2.0.CO;2

GOH, K.-I., KAHNG, B., & KIM, D. (2001). Universal behavior of load distribution in scale-free networks.

Physical Review Letters, 87(27), 278701. https://doi.org/10.1103/PhysRevLett.87.278701

GOH, K.-I., LEE, D.-S., KAHNG, B., & KIM, D. (2003). Sandpile on scale-free networks. Physical Review

Letters, 91(14), 148701. https://doi.org/10.1103/PhysRevLett.91.148701

GOLDSZTAJN, D., BORST, S. C., VAN LEEUWAARDEN, J. S. H., MUKHERJEE, D., & WHITING, P. A. (2022).

Self-learning threshold-based load balancing. INFORMS Journal on Computing, 34(1), 39-54. https:

//doi.org/10.1287/ijoc.2021.1100

GONZALEZ, R., & HOROWITZ, M. (1996). Energy dissipation in general purpose microprocessors. IEEE Jour-

nal of Solid-State Circuits, 31(9), 1277-1284. https://doi.org/10.1109/4.535411

GRIBBLE, S. (2001). Robustness in complex systems. Proceedings Eighth Workshop on Hot Topics in Opera-

ting Systems, 21-26. https://doi.org/10.1109/HOTOS.2001.990056

GROSS, T., & BLASIUS, B. (2008). Adaptive coevolutionary networks : a review. Journal of The Royal Society

Interface, 5(20), 259-271. https://doi.org/10.1098/rsif.2007.1229

GURES, E., SHAYEA, I., ERGEN, M., AZMI, M. H., & EL-SALEH, A. A. (2022). Machine Learning-Based

Load Balancing Algorithms in Future Heterogeneous Networks : A Survey. IEEE Access, 10, 37689-

37717. https://doi.org/10.1109/ACCESS.2022.3161511

HAHN, G., PETERMANN, T., HAVENITH, M. N., YU, S., SINGER, W., PLENZ, D., & NIKOLIĆ, D. (2010).

Neuronal avalanches in spontaneous activity in vivo. Journal of Neurophysiology, 104(6), 3312-3322.

https://doi.org/10.1152/jn.00953.2009

HASAN, M. S., ALVARES, F., LEDOUX, T., & PAZAT, J.-L. (2017). Investigating Energy Consumption and Per-

formance Trade-Off for Interactive Cloud Application. IEEE Transactions on Sustainable Computing,

2(2), 113-126. https://doi.org/10.1109/TSUSC.2017.2714959

HE, K., ROZNER, E., AGARWAL, K., FELTER, W., CARTER, J., & AKELLA, A. (2015). Presto : edge-based load

balancing for fast datacenter networks. ACM SIGCOMM Computer Communication Review, 45(4),

465-478. https://doi.org/10.1145/2829988.2787507

HESSE, J., & GROSS, T. (2014). Self-organized criticality as a fundamental property of neural systems. Fron-

tiers in Systems Neuroscience, 8. https://doi.org/10.3389/fnsys.2014.00166

https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1016/j.jocs.2016.08.005
https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1103/PhysRevLett.91.148701
https://doi.org/10.1287/ijoc.2021.1100
https://doi.org/10.1287/ijoc.2021.1100
https://doi.org/10.1109/4.535411
https://doi.org/10.1109/HOTOS.2001.990056
https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1109/ACCESS.2022.3161511
https://doi.org/10.1152/jn.00953.2009
https://doi.org/10.1109/TSUSC.2017.2714959
https://doi.org/10.1145/2829988.2787507
https://doi.org/10.3389/fnsys.2014.00166

BIBLIOGRAPHIE 135

HEYLIGHEN, F. (2009a). Complexity and self-organization. In M. J. BATES & M. N. MAACK (Éd.), Encyclo-

pedia of library and information sciences, third edition (3rd Edition). CRC Press. https://doi.org/10.

1081/E-ELIS3

HEYLIGHEN, F. (2009b). The Science of Self-Organization and Adaptivity [OCLC : 488796066]. In L. D. KIEL

(Éd.), Knowledge Management, Organizational Intelligence and Learning, and Complexity. Eolss Pu-

blishers.

HIDAYAT, T., AZZERY, Y., & MAHARDIKO, R. (2020). Load Balancing Network by using Round Robin Al-

gorithm : A Systematic Literature Review. Jurnal Online Informatika, 4(2), 85-89. https://doi.org/10.

15575/join.v4i2.446

HOCHREITER, S. (1997). Long Short-term Memory. Neural Computation MIT-Press.

HU, F., CHEN, L., & CHEN, J. (2021). Robustness evaluation of complex power grids containing renewable

energy. International Journal of Electrical Power & Energy Systems, 132, 107187. https://doi.org/10.

1016/j.ijepes.2021.107187

IOSUP, A., LI, H., JAN, M., ANOEP, S., DUMITRESCU, C., WOLTERS, L., & EPEMA, D. H. (2008a). The grid

workloads archive. Future Generation Computer Systems, 24(7), 672-686. https://doi.org/10.1016/j.

future.2008.02.003

IOSUP, A., SONMEZ, O., ANOEP, S., & EPEMA, D. (2008b). The performance of bags-of-tasks in large-scale

distributed systems. Proceedings of the 17th International Symposium on High Performance Distri-

buted Computing, 97-108. https://doi.org/10.1145/1383422.1383435

ISAEVA, V. V. (2012). Self-organization in biological systems. Biology Bulletin, 39(2), 110-118. https://doi.

org/10.1134/S1062359012020069

IVANISENKO, I. N., & RADIVILOVA, T. A. (2015). Survey of major load balancing algorithms in distributed

system. 2015 Information Technologies in Innovation Business Conference (ITIB), 89-92. https://doi.

org/10.1109/ITIB.2015.7355061

JADER, O. H., ZEEBAREE, S., & ZEBARI, R. R. (2019). A state of art survey for web server performance mea-

surement and load balancing mechanisms. International Journal of Scientific & Technology Research,

8(12), 535-543.

JAFARNEJAD GHOMI, E., MASOUD RAHMANI, A., & NASIH QADER, N. (2017). Load-balancing algorithms

in cloud computing : a survey. Journal of Network and Computer Applications, 88, 50-71. https :

//doi.org/10.1016/j.jnca.2017.04.007

JAIN, R. K., CHIU, D.-M. W., HAWE, W. R., et al. (1984). A quantitative measure of fairness and discrimination.

Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA, 21(1).

JELASITY, M., MONTRESOR, A., & BABAOGLU, O. (2004). A Modular Paradigm for Building Self-Organizing

Peer-to-Peer Applications. In G. DI MARZO SERUGENDO, A. KARAGEORGOS, O. F. RANA & F.

ZAMBONELLI (Éd.). G. GOOS, J. HARTMANIS & J. VAN LEEUWEN (Éd.), Engineering Self-Organising

Systems (p. 265-282, T. 2977). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24701-

2_18

https://doi.org/10.1081/E-ELIS3
https://doi.org/10.1081/E-ELIS3
https://doi.org/10.15575/join.v4i2.446
https://doi.org/10.15575/join.v4i2.446
https://doi.org/10.1016/j.ijepes.2021.107187
https://doi.org/10.1016/j.ijepes.2021.107187
https://doi.org/10.1016/j.future.2008.02.003
https://doi.org/10.1016/j.future.2008.02.003
https://doi.org/10.1145/1383422.1383435
https://doi.org/10.1134/S1062359012020069
https://doi.org/10.1134/S1062359012020069
https://doi.org/10.1109/ITIB.2015.7355061
https://doi.org/10.1109/ITIB.2015.7355061
https://doi.org/10.1016/j.jnca.2017.04.007
https://doi.org/10.1016/j.jnca.2017.04.007
https://doi.org/10.1007/978-3-540-24701-2_18
https://doi.org/10.1007/978-3-540-24701-2_18

136 BIBLIOGRAPHIE

JIE HU, R. K. (2006). Decentralized Load Balancing on Unstructured Peer-2-Peer Computing Grids. Fifth

IEEE International Symposium on Network Computing and Applications (NCA’06), 247-250. https:

//doi.org/10.1109/NCA.2006.21

KANELLOPOULOS, D., & SHARMA, V. (2022). Dynamic load balancing techniques in the IoT : a review.

Symmetry, 14(12), 2554. https://doi.org/10.3390/sym14122554

KARMAKAR, R., & MANNA, S. S. (2005). Sandpile model on an optimized scale-free network on Euclidean

space. Journal of Physics A : Mathematical and General, 38(6). https : / / doi . org / 10 . 1088 / 0305 -

4470/38/6/L03

KATAL, A., DAHIYA, S., & CHOUDHURY, T. (2023). Energy efficiency in cloud computing data centers : a

survey on software technologies. Cluster Computing, 26(3), 1845-1875. https : / /doi .org /10 .1007/

s10586-022-03713-0

KATEVENIS, M., SIDIROPOULOS, S., & COURCOUBETIS, C. (1991). Weighted round-robin cell multiplexing

in a general-purpose ATM switch chip. IEEE Journal on Selected Areas in Communications, 9(8),

1265-1279. https://doi.org/10.1109/49.105173

KATYAL, M., & MISHRA, A. (2013). A Comparative Study of Load Balancing Algorithms in Cloud Computing

Environment. International Journal of Distributed and Cloud Computing, 1(2). https://doi.org/10.

48550/ARXIV.1403.6918

KAUR, A., KAUR, B., SINGH, P., DEVGAN, M. S., & TOOR, H. K. (2020). Load Balancing Optimization Based

on Deep Learning Approach in Cloud Environment. International Journal of Information Technology

and Computer Science, 12(3), 8-18. https://doi.org/10.5815/ijitcs.2020.03.02

KENNEDY, J., & EBERHART, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International

Conference on Neural Networks, 4, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968

KITANO, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826-837. https://doi.org/10.1038/

nrg1471

KRASICH, M. (2009). How to estimate and use MTTF/MTBF would the real MTBF please stand up? 2009

Annual Reliability and Maintainability Symposium, 353-359. https://doi.org/10.1109/RAMS.2009.

4914702

KUMAR, P., & KUMAR, R. (2019). Issues and challenges of load balancing techniques in cloud computing : a

survey. ACM Computing Surveys, 51(6), 1-35. https://doi.org/10.1145/3281010

LAREDO, J. J., BOUVRY, P., GUINAND, F., DORRONSORO, B., & FERNANDES, C. (2014). The sandpile sche-

duler : how self-organized criticality may lead to dynamic load-balancing. Cluster Computing, 17(2),

191-204. https://doi.org/10.1007/s10586-013-0328-x

LAREDO, J. J., DORRONSORO, B., PECERO, J., BOUVRY, P., DURILLO, J. J., & FERNANDES, C. (2012). De-

signing a Self-Organized Approach for Scheduling Bag-of-Tasks. 2012 Seventh International Confe-

rence on P2P, Parallel, Grid, Cloud and Internet Computing, 315-320. https : / / doi . org / 10 . 1109 /

3PGCIC.2012.28

https://doi.org/10.1109/NCA.2006.21
https://doi.org/10.1109/NCA.2006.21
https://doi.org/10.3390/sym14122554
https://doi.org/10.1088/0305-4470/38/6/L03
https://doi.org/10.1088/0305-4470/38/6/L03
https://doi.org/10.1007/s10586-022-03713-0
https://doi.org/10.1007/s10586-022-03713-0
https://doi.org/10.1109/49.105173
https://doi.org/10.48550/ARXIV.1403.6918
https://doi.org/10.48550/ARXIV.1403.6918
https://doi.org/10.5815/ijitcs.2020.03.02
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1038/nrg1471
https://doi.org/10.1038/nrg1471
https://doi.org/10.1109/RAMS.2009.4914702
https://doi.org/10.1109/RAMS.2009.4914702
https://doi.org/10.1145/3281010
https://doi.org/10.1007/s10586-013-0328-x
https://doi.org/10.1109/3PGCIC.2012.28
https://doi.org/10.1109/3PGCIC.2012.28

BIBLIOGRAPHIE 137

LAREDO, J. J., GUINAND, F., OLIVIER, D., & BOUVRY, P. (2017). Load Balancing at the Edge of Chaos : How

Self-Organized Criticality Can Lead to Energy-Efficient Computing. IEEE Transactions on Parallel

and Distributed Systems, 28(2), 517-529. https://doi.org/10.1109/TPDS.2016.2582160

Largest Contentful Paint | Lighthouse [Chrome for Developers]. (2020). Accédé le 19 juin 2025, à partir de

https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint

LEE, Y. C., & ZOMAYA, A. Y. (2012). Energy efficient utilization of resources in cloud computing systems.

The Journal of Supercomputing, 60(2), 268-280. https://doi.org/10.1007/s11227-010-0421-3

LEVIN, S. A. (2005). Self-organization and the emergence of complexity in ecological systems. BioScience,

55(12), 1075. https://doi.org/10.1641/0006-3568(2005)055[1075:SATEOC]2.0.CO;2

LI, K., XU, G., ZHAO, G., DONG, Y., & WANG, D. (2011). Cloud Task Scheduling Based on Load Balancing

Ant Colony Optimization. 2011 Sixth Annual Chinagrid Conference, 3-9. https://doi.org/10.1109/

ChinaGrid.2011.17

LIN, W., WANG, H., ZHANG, Y., QI, D., WANG, J. Z., & CHANG, V. (2018). A cloud server energy consump-

tion measurement system for heterogeneous cloud environments. Information Sciences, 468, 47-62.

https://doi.org/10.1016/j.ins.2018.08.032

LISE, S., & PACZUSKI, M. (2002). Nonconservative earthquake model of self-organized criticality on a random

graph. Physical Review Letters, 88(22), 228301. https://doi.org/10.1103/PhysRevLett.88.228301

LIU, L., YANG, Y., LI, L., & SHI, W. (2006). Using Ant Colony Optimization for SuperScheduling in Com-

putational Grid. 2006 IEEE Asia-Pacific Conference on Services Computing (APSCC’06), 539-545.

https://doi.org/10.1109/APSCC.2006.112

MALCAI, O., SHILO, Y., & BIHAM, O. (2006). Dissipative sandpile models with universal exponents. Physical

Review E, 73(5), 056125. https://doi.org/10.1103/PhysRevE.73.056125

MALONE, C., & BELADY, C. (2006). Metrics to Characterize Data Center & IT Equipment Energy Use, Pro-

ceedings of Digital Power Forum, Richardson, TX. Proceedings of the Digital Power Forum.

MARKOVIĆ, D., & GROS, C. (2014). Power laws and self-organized criticality in theory and nature. Physics

Reports, 536(2), 41-74. https://doi.org/10.1016/j.physrep.2013.11.002

MEGHARAJ, G. C., & MOHAN, K. (2013). Two level hierarchical model of load balancing in cloud. Interna-

tional Journal of Emerging Technology and Advanced Engineering, 3(10), 307-311.

MEISEL, C., STORCH, A., HALLMEYER-ELGNER, S., BULLMORE, E., & GROSS, T. (2012). Failure of adap-

tive self-organized criticality during epileptic seizure attacks (T. BEHRENS, Éd.). PLoS Computational

Biology, 8(1), e1002312. https://doi.org/10.1371/journal.pcbi.1002312

MERINO, C. (2005). The chip-firing game. Discrete Mathematics, 302(1), 188-210. https://doi.org/10.1016/j.

disc.2004.07.033

MIRJALILI, S. (2019). Genetic Algorithm. In Evolutionary Algorithms and Neural Networks (p. 43-55, T. 780).

Springer International Publishing. https://doi.org/10.1007/978-3-319-93025-1_4

https://doi.org/10.1109/TPDS.2016.2582160
https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint
https://doi.org/10.1007/s11227-010-0421-3
https://doi.org/10.1641/0006-3568(2005)055[1075:SATEOC]2.0.CO;2
https://doi.org/10.1109/ChinaGrid.2011.17
https://doi.org/10.1109/ChinaGrid.2011.17
https://doi.org/10.1016/j.ins.2018.08.032
https://doi.org/10.1103/PhysRevLett.88.228301
https://doi.org/10.1109/APSCC.2006.112
https://doi.org/10.1103/PhysRevE.73.056125
https://doi.org/10.1016/j.physrep.2013.11.002
https://doi.org/10.1371/journal.pcbi.1002312
https://doi.org/10.1016/j.disc.2004.07.033
https://doi.org/10.1016/j.disc.2004.07.033
https://doi.org/10.1007/978-3-319-93025-1_4

138 BIBLIOGRAPHIE

MISHRA, S. K., SAHOO, B., & PARIDA, P. P. (2020). Load balancing in cloud computing : a big picture. Journal

of King Saud University - Computer and Information Sciences, 32(2), 149-158. https://doi.org/10.

1016/j.jksuci.2018.01.003

MUHAMMAD RIDZUAN, M. I., & DJOKIC, S. Z. (2019). Energy regulator supply restoration time. Energies,

12(6), 1051. https://doi.org/10.3390/en12061051

MUSTAFA, M. E. (2017). Load Balancing Algorithms Round-Robin (RR), Least-Connection, and Least Loaded

Efficiency. Computer Science & Telecommunications, 51(1), 25-30.

MUTHUSAMY, A., & DHANARAJ, R. K. (2023). Dynamic q-learning-based optimized load balancing tech-

nique in cloud (D. XU, Éd.). Mobile Information Systems, 2023, 1-16. https://doi.org/10.1155/2023/

7250267

NEWMAN, M. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1),

39-54. https://doi.org/10.1016/j.socnet.2004.11.009

NIELSEN, J. (1993). Usability engineering. Academic Press.

OLAMI, Z., FEDER, H. J. S., & CHRISTENSEN, K. (1992). Self-organized criticality in a continuous, non-

conservative cellular automaton modeling earthquakes. Physical Review Letters, 68(8), 1244-1247.

https://doi.org/10.1103/PhysRevLett.68.1244

PAI, V. S., ARON, M., BANGA, G., SVENDSEN, M., DRUSCHEL, P., ZWAENEPOEL, W., & NAHUM, E. (1998).

Locality-Aware Request Distribution in Cluster-Based Network Servers. Proceedings of the eighth

international conference on Architectural support for programming languages and operating systems,

205-216. https://doi.org/10.1145/291069.291048

PAN, G.-J., ZHANG, D.-M., YIN, Y.-P., & HE, M.-H. (2007). Sandpile on directed small-world networks.

Physica A : Statistical Mechanics and its Applications, 383(2), 435-442. https://doi.org/https://doi.

org/10.1016/j.physa.2007.04.113

PATEL, D. K., TRIPATHY, D., & TRIPATHY, C. (2016). Survey of load balancing techniques for grid. Journal

of Network and Computer Applications, 65, 103-119. https://doi.org/10.1016/j.jnca.2016.02.012

PERC, M. (2013). Self-organization of progress across the century of physics. Scientific Reports, 3(1), 1720.

https://doi.org/10.1038/srep01720

PHAM, D., GHANBARZADEH, A., KOC, E., OTRI, S., RAHIM, S., & ZAIDI, M. (2005). The bees algorithm.

Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 44-48.

PINAR, A., & AYKANAT, C. (2004). Fast optimal load balancing algorithms for 1d partitioning. Journal of

Parallel and Distributed Computing, 64(8), 974-996. https://doi.org/10.1016/j.jpdc.2004.05.003

PLENZ, D., RIBEIRO, T. L., MILLER, S. R., KELLS, P. A., VAKILI, A., & CAPEK, E. L. (2021). Self-Organized

Criticality in the Brain. Frontiers in Physics, 9, 639389. https://doi.org/10.3389/fphy.2021.639389

POURGHEBLEH, B., & HAYYOLALAM, V. (2020). A comprehensive and systematic review of the load balan-

cing mechanisms in the internet of things. Cluster Computing, 23(2), 641-661. https:/ /doi.org/10.

1007/s10586-019-02950-0

https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.3390/en12061051
https://doi.org/10.1155/2023/7250267
https://doi.org/10.1155/2023/7250267
https://doi.org/10.1016/j.socnet.2004.11.009
https://doi.org/10.1103/PhysRevLett.68.1244
https://doi.org/10.1145/291069.291048
https://doi.org/https://doi.org/10.1016/j.physa.2007.04.113
https://doi.org/https://doi.org/10.1016/j.physa.2007.04.113
https://doi.org/10.1016/j.jnca.2016.02.012
https://doi.org/10.1038/srep01720
https://doi.org/10.1016/j.jpdc.2004.05.003
https://doi.org/10.3389/fphy.2021.639389
https://doi.org/10.1007/s10586-019-02950-0
https://doi.org/10.1007/s10586-019-02950-0

BIBLIOGRAPHIE 139

PRIGOGINE, I. (1978). Time, Structure, and Fluctuations. Science, 201(4358), 777-785. https:/ /doi .org/10.

1126/science.201.4358.777

PRIYA, B., & GNANASEKARAN, T. (2017). Hierarchical Load Balancing Algorithms in Cloud : A Survey. In-

ternational Journal of Computer Applications, 171(4), 19-22. https://doi.org/10.5120/ijca2017915018

QI, J., & PFENNINGER, S. (2015). Controlling the self-organizing dynamics in a sandpile model on complex

networks by failure tolerance. Europhysics Letters, 111(3). https://doi.org/10.1209/0295-5075/111/

38006

QIN, X., LI, B., & YING, L. (2021). Distributed Threshold-based Offloading for Large-Scale Mobile Cloud

Computing. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 1-10. https:

//doi.org/10.1109/INFOCOM42981.2021.9488821

QIN, X., LI, B., & YING, L. (2023a). Efficient Distributed Threshold-Based Offloading for Large-Scale Mobile

Cloud Computing. IEEE/ACM Transactions on Networking, 31(1), 308-321. https://doi.org/10.1109/

TNET.2022.3193073

QIN, X., XIE, Q., & LI, B. (2023b). Distributed Threshold-Based Offloading for Heterogeneous Mobile Edge

Computing. 2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS),

202-213. https://doi.org/10.1109/ICDCS57875.2023.00024

RADHIKA, D., & DURAIPANDIAN, M. (2021). Load Balancing in Cloud Computing Using Support Vector

Machine and Optimized Dynamic Task Scheduling. 2021 9th International Conference on Reliability,

Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1-6. https://doi.

org/10.1109/ICRITO51393.2021.9596289

RADOJEVIĆ, B., & ŽAGAR, M. (2011). Analysis of issues with load balancing algorithms in hosted (cloud)

environments. 2011 Proceedings of the 34th international convention MIPRO, 416-420.

RAHMEH, O. A., JOHNSON, P., & TALEB-BENDIAB, A. (2008). A Dynamic Biased Random Sampling Scheme

for Scalable and Reliable Grid Networks. INFOCOMP Journal of Computer Science, 7(4), 1-10.

RAMEZANI, F., LU, J., & HUSSAIN, F. K. (2014). Task-based system load balancing in cloud computing using

particle swarm optimization. International Journal of Parallel Programming, 42(5), 739-754. https:

//doi.org/10.1007/s10766-013-0275-4

RANDLES, M., LAMB, D., & TALEB-BENDIAB, A. (2010). A Comparative Study into Distributed Load Balan-

cing Algorithms for Cloud Computing. 2010 IEEE 24th International Conference on Advanced Infor-

mation Networking and Applications Workshops, 551-556. https://doi.org/10.1109/WAINA.2010.85

REYNOLDS, C. W. (1987). Flocks, herds and schools : a distributed behavioral model. Proceedings of the 14th

annual conference on Computer graphics and interactive techniques, 25-34. https://doi.org/10.1145/

37401.37406

ROHLF, T., & BORNHOLDT, S. (2009). Self-organized criticality and adaptation in discrete dynamical networks

[Series Title : Understanding Complex Systems]. In T. GROSS & H. SAYAMA (Éd.), Adaptive networks

(p. 73-106). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_5

https://doi.org/10.1126/science.201.4358.777
https://doi.org/10.1126/science.201.4358.777
https://doi.org/10.5120/ijca2017915018
https://doi.org/10.1209/0295-5075/111/38006
https://doi.org/10.1209/0295-5075/111/38006
https://doi.org/10.1109/INFOCOM42981.2021.9488821
https://doi.org/10.1109/INFOCOM42981.2021.9488821
https://doi.org/10.1109/TNET.2022.3193073
https://doi.org/10.1109/TNET.2022.3193073
https://doi.org/10.1109/ICDCS57875.2023.00024
https://doi.org/10.1109/ICRITO51393.2021.9596289
https://doi.org/10.1109/ICRITO51393.2021.9596289
https://doi.org/10.1007/s10766-013-0275-4
https://doi.org/10.1007/s10766-013-0275-4
https://doi.org/10.1109/WAINA.2010.85
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1007/978-3-642-01284-6_5

140 BIBLIOGRAPHIE

ROSS, K. W., & YAO, D. D. (1991). Optimal load balancing and scheduling in a distributed computer system.

Journal of the ACM (JACM), 38(3), 676-689.

ROY, S., HOSSAIN, N., & AL ASIF, M. R. (2019). Measuring the performance on load balancing algorithms.

Global Journal of Computer Science and Technology : B Cloud and Distributed, 19(1).

RYBARSCH, M., & BORNHOLDT, S. (2014). Avalanches in self-organized critical neural networks : a minimal

model for the neural SOC universality class (D. R. CHIALVO, Éd.). PLoS ONE, 9(4), e93090. https:

//doi.org/10.1371/journal.pone.0093090

SAFFRE, F., TATESON, R., HALLOY, J., SHACKLETON, M., & DENEUBOURG, J. L. (2009). Aggregation dy-

namics in overlay networks and their implications for self-organized distributed applications. The

Computer Journal, 52(4), 397-412. https://doi.org/10.1093/comjnl/bxn017

SESUM-CAVIC, V., & KÜHN, E. (2010a). Applying Swarm Intelligence Algorithms for Dynamic Load Balan-

cing to a Cloud Based Call Center. 2010 Fourth IEEE International Conference on Self-Adaptive and

Self-Organizing Systems, 255-256. https://doi.org/10.1109/SASO.2010.19

SESUM-CAVIC, V., & KÜHN, E. (2010b). Comparing Configurable Parameters of Swarm Intelligence Algo-

rithms for Dynamic Load Balancing. 2010 Fourth IEEE International Conference on Self-Adaptive

and Self-Organizing Systems Workshop, 42-49. https://doi.org/10.1109/SASOW.2010.12

SHAFIQ, D. A., JHANJHI, N., & ABDULLAH, A. (2022). Load balancing techniques in cloud computing en-

vironment : a review. Journal of King Saud University - Computer and Information Sciences, 34(7),

3910-3933. https://doi.org/10.1016/j.jksuci.2021.02.007

SHENGWEI MEI, YIXIN NI, GANG WANG & SHENGYU WU. (2008). A Study of Self-Organized Criticality

of Power System Under Cascading Failures Based on AC-OPF With Voltage Stability Margin. IEEE

Transactions on Power Systems, 23(4), 1719-1726. https://doi.org/10.1109/TPWRS.2008.2002295

SIOUTAS, S., SOURLA, E., TSICHLAS, K., VONITSANOS, G., & ZAROLIAGIS, C. (2022). A dynamic distri-

buted deterministic load-balancer for decentralized hierarchical infrastructures. Algorithms, 15(3), 96.

https://doi.org/10.3390/a15030096

SORNETTE, A., & SORNETTE, D. (1989). Self-Organized Criticality and Earthquakes. Europhysics Letters

(EPL), 9(3), 197-202. https://doi.org/10.1209/0295-5075/9/3/002

STEIN, S., & KLOSKO, E. (2002). 7 earthquake mechanisms and plate tectonics. In International geophysics

(p. 69-78, T. 81). Elsevier. https://doi.org/10.1016/S0074-6142(02)80210-8

STROGATZ, S. (2024). Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and

engineering (Third edition). CRC Press, Taylor & Francis Group.

TABATABAEE, S. M., LE BOUDEC, J.-Y., & BOYER, M. (2021). Interleaved weighted round-robin : a network

calculus analysis. IEICE Transactions on Communications, E104.B(12), 1479-1493. https://doi.org/

10.1587/transcom.2021ITI0001

TANTAWI, A. N., & TOWSLEY, D. (1985). Optimal static load balancing in distributed computer systems.

Journal of the ACM, 32(2), 445-465. https://doi.org/10.1145/3149.3156

https://doi.org/10.1371/journal.pone.0093090
https://doi.org/10.1371/journal.pone.0093090
https://doi.org/10.1093/comjnl/bxn017
https://doi.org/10.1109/SASO.2010.19
https://doi.org/10.1109/SASOW.2010.12
https://doi.org/10.1016/j.jksuci.2021.02.007
https://doi.org/10.1109/TPWRS.2008.2002295
https://doi.org/10.3390/a15030096
https://doi.org/10.1209/0295-5075/9/3/002
https://doi.org/10.1016/S0074-6142(02)80210-8
https://doi.org/10.1587/transcom.2021ITI0001
https://doi.org/10.1587/transcom.2021ITI0001
https://doi.org/10.1145/3149.3156

BIBLIOGRAPHIE 141

THE KUBERNETES AUTHORS. (2025). Autoscaling workloads [Kubernetes]. Accédé le 29 mai 2025, à partir

de https://kubernetes.io/docs/concepts/workloads/autoscaling/

THERAULAZ, G., & BONABEAU, E. (1999). A brief history of stigmergy. Artificial Life, 5(2), 97-116. https:

//doi.org/10.1162/106454699568700

TURCOTTE, D. L. (1999). Self-organized criticality. Reports on Progress in Physics, 62(10), 1377-1429. https:

//doi.org/10.1088/0034-4885/62/10/201

UCHECHUKWU, A., LI, K., SHEN, Y., et al. (2014). Energy consumption in cloud computing data centers.

International Journal of Cloud Computing and Services Science (IJ-CLOSER), 3(3), 31-48.

Un fonctionnement écoresponsable - Centres de données Google [Google Data Centers]. (s. d.). Accédé le

19 juin 2025, à partir de https://datacenters.google/intl/fr_ALL/operating-sustainably/

VAN LAARHOVEN, P. J. M., & AARTS, E. H. L. (1987). Simulated annealing. In Simulated annealing : theory

and applications (p. 7-15). Springer Netherlands. https://doi.org/10.1007/978-94-015-7744-1_2

VÁZQUEZ, A., & COSTA, O. S. (1999). Self-organized criticality and directed percolation. Journal of Physics

A : Mathematical and General, 32(14), 2633-2644. https://doi.org/10.1088/0305-4470/32/14/004

VOSS, R. F., & CLARKE, J. (1975). ‘1/f noise’ in music and speech. Nature, 258(5533), 317-318. https://doi.

org/10.1038/258317a0

WANG, K., ZHOU, X., LI, T., ZHAO, D., LANG, M., & RAICU, I. (2014). Optimizing load balancing and data-

locality with data-aware scheduling. 2014 IEEE International Conference on Big Data (Big Data),

119-128. https://doi.org/10.1109/BigData.2014.7004220

WANG, S.-J., & ZHOU, C. (2012). Hierarchical modular structure enhances the robustness of self-organized

criticality in neural networks. New Journal of Physics, 14(2), 023005. https://doi.org/10.1088/1367-

2630/14/2/023005

WANG, S.-C., YAN, K.-Q., LIAO, W.-P., & WANG, S.-S. (2010). Towards a Load Balancing in a three-level

cloud computing network. 2010 3rd International Conference on Computer Science and Information

Technology, 1, 108-113. https://doi.org/10.1109/ICCSIT.2010.5563889

WATKINS, C. J. C. H., & DAYAN, P. (1992). Q-learning. Machine Learning, 8(3), 279-292. https://doi.org/10.

1007/BF00992698

WATTS, D. J., & STROGATZ, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684),

440-442. https://doi.org/10.1038/30918

WILLEBEEK-LEMAIR, M., & REEVES, A. (1993). Strategies for dynamic load balancing on highly parallel

computers. IEEE Transactions on Parallel and Distributed Systems, 4(9), 979-993. https://doi.org/10.

1109/71.243526

WONG, L.-P., LOW, M. Y. H., & CHONG, C. S. (2008). A Bee Colony Optimization Algorithm for Traveling

Salesman Problem. 2008 Second Asia International Conference on Modelling & Simulation (AMS),

818-823. https://doi.org/10.1109/AMS.2008.27

https://kubernetes.io/docs/concepts/workloads/autoscaling/
https://doi.org/10.1162/106454699568700
https://doi.org/10.1162/106454699568700
https://doi.org/10.1088/0034-4885/62/10/201
https://doi.org/10.1088/0034-4885/62/10/201
https://datacenters.google/intl/fr_ALL/operating-sustainably/
https://doi.org/10.1007/978-94-015-7744-1_2
https://doi.org/10.1088/0305-4470/32/14/004
https://doi.org/10.1038/258317a0
https://doi.org/10.1038/258317a0
https://doi.org/10.1109/BigData.2014.7004220
https://doi.org/10.1088/1367-2630/14/2/023005
https://doi.org/10.1088/1367-2630/14/2/023005
https://doi.org/10.1109/ICCSIT.2010.5563889
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/30918
https://doi.org/10.1109/71.243526
https://doi.org/10.1109/71.243526
https://doi.org/10.1109/AMS.2008.27

142 BIBLIOGRAPHIE

YADAV, M. P., PAL, N., & YADAV, D. K. (2021). Workload Prediction over Cloud Server using Time Se-

ries Data. 2021 11th International Conference on Cloud Computing, Data Science & Engineering

(Confluence), 267-272. https://doi.org/10.1109/Confluence51648.2021.9377032

YUCE, B., PACKIANATHER, M., MASTROCINQUE, E., PHAM, D., & LAMBIASE, A. (2013). Honey bees ins-

pired optimization method : the bees algorithm. Insects, 4(4), 646-662. https : / / doi . org /10 .3390 /

insects4040646

ZAKI, M., LI, W., & PARTHASARATHY, S. (1996). Customized dynamic load balancing for a network of

workstations. Proceedings of 5th IEEE International Symposium on High Performance Distributed

Computing, 282-291. https://doi.org/10.1109/HPDC.1996.546198

ZHANG, H., FATA, E., & SUNDARAM, S. (2015). A Notion of Robustness in Complex Networks. IEEE Tran-

sactions on Control of Network Systems, 2(3), 310-320. https://doi.org/10.1109/TCNS.2015.2413551

ZHANG, H., ZHANG, J., BAI, W., CHEN, K., & CHOWDHURY, M. (2017). Resilient datacenter load balancing

in the wild. Proceedings of the Conference of the ACM Special Interest Group on Data Communica-

tion, 253-266. https://doi.org/10.1145/3098822.3098841

ZHENG, G., BHATELÉ, A., MENESES, E., & KALÉ, L. V. (2011). Periodic hierarchical load balancing for large

supercomputers. The International Journal of High Performance Computing Applications, 25(4), 371-

385. https://doi.org/10.1177/1094342010394383

https://doi.org/10.1109/Confluence51648.2021.9377032
https://doi.org/10.3390/insects4040646
https://doi.org/10.3390/insects4040646
https://doi.org/10.1109/HPDC.1996.546198
https://doi.org/10.1109/TCNS.2015.2413551
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1177/1094342010394383

Annexe A

Résumé des expériences

Cette annexe propose une synthèse des expériences menées dans le cadre des travaux présentés dans le

document. Les Tableaux A.1 et A.2 rassemblent respectivement la synthèse des expériences du Chapitre 4 sur

la robustesse du tas de sable et du Chapitre 5 sur le tamis auto-adaptatif. Les expériences sont présentées dans

l’ordre d’apparition dans les chapitres.

Expérience Objectif Méthodologie Résultats Référence
Recâblage du
tas de sable

Étudier l’impact de
l’aléatoire dans la
structure sur la dyna-
mique du modèle

Recâblage aléatoire
progressif de la struc-
ture sous-jacente

L’aléatoire améliore
le fonctionnement du
modèle

Section 4.1.1

Recâblage et
dégradation
du tas de
sable

Étudier l’impact de la
dégradation et du re-
câblage de la structure
sur la robustesse du
modèle

Recâblage et dégrada-
tion progressive de la
structure sous-jacente

Le recâblage permet
de repousser d’envi-
rons 20% de “pan-
nes” le seuil d’effon-
drement

Section 4.4

TABLE A.1 – Synthèse des expériences sur la robustesse du tas de sable (Chapitre 4).

143

144 ANNEXE A. RÉSUMÉ DES EXPÉRIENCES

Expérience Objectif Méthodologie Résultats Référence
Cas d’étude
du seuil
critique dyna-
mique

Étudier l’impact
du seuil critique
dynamique sur les
avalanches du tas de
sable

Simulation d’ava-
lanches avec diffé-
rentes configurations
initiales du système

Réduction de l’ampli-
tude et de la durée
des avalanches ; ava-
lanches “infinies” gé-
rées

Section 5.2.2

Paramétrisation
de l’entropie
locale

Déterminer le
meilleur couple
de paramètres pour
les deux méthodes

Simulations de 144
couples pour des
tailles de grain fixes
et fluctuantes

- Adaptation naïve :
{0,25 ; 11}
- Adaptation prop. :
{0,25 ; 14}

Section 5.4.4

Comparaison
des méthodes
par entropie
locale

Étudier les perfor-
mances des deux
méthodes proposées

Simulations de tailles
de grain fixes et fluc-
tuantes ; comparaison
numérique

Meilleurs contrôle
et performances par
l’approche propor-
tionnelle

Section 5.4.5

Étude du pro-
tocole de ba-
vardage

Étudier les perfor-
mances du protocole
de bavardage pour
l’adaptation

Simulations de tailles
de grain fixes et fluc-
tuantes ; analyse nu-
mérique

Adaptation fonction-
nelle et réactive ; peu
de mouvements

Section 5.5.3

Comparaison
des stratégies
d’adaptation

Comparer les ap-
proches d’adaptation
pour déterminer la
meilleure

Analyse numérique
du comportement
pour des scénarios de
charge fixe, fluctuante
et réaliste

L’entropie locale est
plus parcimonieuse
dans l’utilisation des
ressources ; Le pro-
tocole de bavardage
offre une meilleure
qualité de service

Section 5.6

TABLE A.2 – Synthèse des expériences sur le tamis auto-adaptatif (Chapitre 5).

Annexe B

Reproductibilité des expériences

Dans cette annexe, nous proposons la marche à suivre pour pouvoir reproduire nos expériences à l’aide

du code produit pour nos travaux. Nous verrons dans un premier temps où récupérer le code et les données

utilisées. Ensuite, nous présenterons en détails les données issues de systèmes réels utilisés pour les expériences

de la Section 5.6. Puis, Enfin, nous verrons comment utiliser le code mis à disposition pour reproduire les

expériences.

B.1 Accessibilité du code et des données

Le code est entièrement disponible en open source sous licence MIT. Il est trouvable sur le dépôt Git

suivant : https://git.litislab.fr/pheleine/self-adaptive-sand-sieve. Le dépôt comprend tout le code Java du projet,

ainsi que les archives contenant les traces d’exécution des systèmes réels. Le code est entièrement documenté

afin de faciliter son utilisation. En outre, des scripts Bash sont également inclus, permettant de lancer des

expériences en série (batchs) plutôt qu’une à la fois via les classes Java exécutables.

B.2 Les traces d’exécution de systèmes réels

Dans cette section, nous nous intéressons aux données de systèmes réels que nous avons utilisé pour les ex-

périences du Chapitre 5 sur le tamis auto-adaptatif, afin de comparer les deux approches d’adaptation proposées

dans nos travaux (Section 5.6).

B.2.1 Informations générales

La charge réelle utilisée dans les expériences est extraite du projet Grid Workload Archive (IOSUP et al.,

2008a), dont les contributeurs ont mis à disposition des traces de charge de travail réelles anonymisées issues

de plusieurs centres de calcul, dans un objectif de recherche et de validation expérimentale. Les données sont

accessibles librement à cette adresse : https://atlarge-research.com/gwa.html (dernière consultation en juillet

2025).

145

https://git.litislab.fr/pheleine/self-adaptive-sand-sieve
https://atlarge-research.com/gwa.html

146 ANNEXE B. REPRODUCTIBILITÉ DES EXPÉRIENCES

Plus précisément, nous utilisons dans nos expériences les traces provenant des systèmes suivants :

— AuverGrid : infrastructure située en Auvergne, composée de 5 clusters totalisant 475 processeurs ;

— NorduGrid : système distribué dédié à la recherche académique dans les pays nordiques, comprenant

75 clusters et environ 2000 processeurs ;

— SHARCNET : réseau de calcul de haute performance localisé en Ontario (Canada), constitué de 10

clusters pour un total de 6828 processeurs.

Les traces fournies couvrent différentes périodes : l’année 2006 pour AuverGrid, de 2003 à 2006 pour

NorduGrid, et de 2005 à 2007 pour SHARCNET. Parmi les nombreuses informations disponibles, deux champs

nous intéressent particulièrement : la date de soumission et le temps d’exécution de chaque tâche. Les tâches

dont le temps d’exécution est nul (annulées avant traitement) sont écartées de nos expériences.

Toutes les valeurs temporelles sont exprimées en secondes, ce qui permet un alignement direct avec les

cycles de simulation de nos expériences : une seconde de la trace équivaut à un cycle de simulation du tamis

auto-adaptatif. Chaque tâche est ainsi assimilée à un grain, dont la date de soumission correspond au cycle

d’injection dans le tamis, et dont le temps d’exécution représente la taille. La date de soumission étant exprimée

en nombre de secondes écoulées depuis le 1er janvier 1970, il est possible de filtrer les tâches par période et de

fixer arbitrairement le cycle 0.

B.2.2 Accessibilité des données et leur utilisation

Dans un souci de conservation et de disponibilité des données, les fichiers utilisés au cours de ce travail

sont fournis dans le dépôt, en complément du code source. Ils sont regroupés dans une archive compressée

nommée datasets.zip, située à la racine du dépôt. Par ailleurs, des fichiers d’analyse des traces (également

disponibles sur le site https://www.atlarge-research.com/gwa.html) sont inclus afin de fournir des informations

complémentaires sur les données utilisées.

Pour pouvoir exploiter ces données dans les simulations, il convient de décompresser l’archive, puis de

placer son contenu dans le répertoire de ressources du projet Java, à l’emplacement suivant :

src/main/resources/datasets/

Une fois en place, les fichiers seront automatiquement chargés par les programmes utilisant la politique de

taille de grain fondée sur des données réelles.

B.3 Structure du code

Le code Java développé pour ce travail est organisé en quatre packages principaux, chacun jouant un rôle

spécifique dans l’architecture logicielle. Nous présentons ci-dessous un aperçu de leurs fonctions respectives.

Package gnuplotOut : Ce package fait office d’interface avec le logiciel de visualisation Gnuplot. Il per-

met d’exporter les valeurs mesurées pour différentes métriques vers des fichiers, ainsi que de générer automa-

https://www.atlarge-research.com/gwa.html

B.4. UTILISATION DU CODE 147

tiquement les scripts Gnuplot nécessaires à la production de graphiques à la fin des simulations. Ces scripts

peuvent ensuite être modifiés manuellement si besoin.

Package configuration : Ce package contient l’infrastructure permettant de gérer les configurations

des simulations et le paramétrage du traçage des métriques. Le système de configuration a été conçu de

manière générique et extensible, notamment grâce à l’utilisation de la réflexivité en Java. La classe centrale

Configuration permet de charger dynamiquement tout un ensemble d’entrées de la forme clé=valeur,

que ce soit à partir d’un fichier (une entrée par ligne) ou d’un tableau (arguments du programme Java). La

spécialisation de cette classe permet de définir des attributs qui seront automatiquement initialisés lors du char-

gement des paramètres grâce à la correspondance entre la clé d’une entrée et le nom d’un attribut.

Package sandPileModels : Ce package regroupe l’ensemble des modèles du tas de sable et leurs va-

riantes présentées dans ce manuscrit. La classe SandPileModel, conçue pour être étendue, constitue la

base de tous les modèles implémentés. Le package inclut également les différentes stratégies d’éboulement

(ToppleStrategy), définissant la façon dont les grains sont redistribués aux voisines d’une cellule lors

de son effondrement. Plusieurs stratégies sont disponibles dans la classe utilitaire ToppleStrategies. Le

comportement utilisé dans les expériences présentées repose sur la stratégie ToppleStrategies.DEFAULT,

qui distribue un grain par voisine.

Package simulation : Ce package centralise tout ce qui a trait à la conduite des simulations expérimen-

tales. Il fournit des simulateurs permettant de tester les modèles et de mesurer les différentes métriques. Par

ailleurs, il propose une architecture générique pour la gestion des métriques via la classe Metric<T>, incluant

le stockage de leurs mesures, leur agrégation et leur export pour traçage via le package gnuplotOut.

B.4 Utilisation du code

Dans cette section, nous verrons comment utiliser les programmes proposés pour mener à bien les expé-

riences. Avant de pouvoir utiliser le code, il est nécessaire de préparer l’environnement d’exécution ainsi que

les fichiers de configuration, en fonction du programme que l’on souhaite exécuter. Nous verrons également

comment utiliser les scripts Bash fournis, qui permettent d’automatiser le lancement de séries d’expériences

(batchs).

B.4.1 Préparation de l’environnement

Tout d’abord, l’exécution du programme nécessite que Java, en version 21 ou supérieure, soit installé sur la

machine. Le projet étant géré avec Maven, ce gestionnaire de projet doit également être installé. Maven permet

notamment de gérer automatiquement les dépendances externes, dont GraphStream, une bibliothèque utilisée

pour construire les diverses structures sur lesquelles les modèles de tas de sable (canonique ou dérivés) sont

exécutés. GraphStream peut être consultée à l’adresse suivante : https://graphstream-project.org/.

https://graphstream-project.org/

148 ANNEXE B. REPRODUCTIBILITÉ DES EXPÉRIENCES

L’exécution du projet avec Maven se fait par la commande suivante :

mvn exec:java -Dexec.mainClass="[programme]" -q

Il faut remplacer [programme] par le nom complet de la classe exécutable. Par exemple, le programme de

simulation du tas de sable canonique est :

litis.ri2c.heleine.paulin.selfAdaptiveSandSieve.SimulationSandPile

Tous les programmes mis à disposition ont la même base de nom. Seul le suffixe change selon le programme

désiré. Si le passage des paramètres se fait via les arguments, il faut ajouter l’option suivante :

-Dexec.args="param1=valeur1 param2=valeur2"

La spécification des paramètres est abordée en détails dans la section suivante.

B.4.2 Les programmes et leurs paramètres

Plusieurs programmes exécutables sont mis à disposition à la racine selfAdaptiveSandSieve. Cinq

nous intéressent ici, dont un récapitulatif est proposé dans le Tableau B.1. Ils partagent tous un même en-

semble de paramètres de base regroupés dans le Tableau B.2. Chaque entrée de configuration prend la forme

clé=valeur.

Programme Description
SimulationSandPile Simulation du tas de sable canonique dans différentes

topologies
SimulationNaiveLESASS
SimulationProportionalLESASS

Simulation du tamis auto-adaptatif basé sur l’entropie
locale

SimulationGossipSASS Simulation du tamis auto-adaptatif basé sur le protocole
de bavardage

GraphExamples Génération des visuels de l’étude illustrative du recâ-
blage et de la dégradation

TABLE B.1 – Récapitulatifs des programmes mis à disposition.

B.4.2.1 Programme de simulation du tas de sable canonique

Le programme SimulationSandPile permet de simuler le tas de sable canonique sur différentes topo-

logies. Il est notamment utilisé pour mener les expériences du Chapitre 4, consacrées à l’étude de la robustesse

du modèle.

Ce programme simule le tas de sable sur des structures potentiellement recâblées et/ou dégradées, selon

les paramètres définis. Les paramètres utilisés sont ceux décrits dans le Tableau B.2, auxquels s’ajoute un

paramètre spécifique : uniqueRewire=[Integer]. Il permet de ne simuler qu’un seul taux de recâblage

à la fois, tout en conservant une arborescence de fichiers de sortie identique à celle d’une exécution multi-taux

(par exemple 0-100). Il est particulièrement utile pour les expériences à recâblage fin (par paliers de 1%), sans

dégradation (résultats Section 4.1.1), afin de limiter la consommation mémoire et les ressources en threads.

B.4. UTILISATION DU CODE 149

Clé Type de valeur Définition
gridSize Integer Taille d’un côté de la grille carrée
neighborhood String Nom du voisinage utilisé pour générer la grille :

vonneumann ou moore
cycles Integer Nombre de cycles de la simulation
useInitCycles Boolean Définit si 10% de cycles d’initialisation (exempts de

mesures) sont ajoutés au début de la simulation ou non
toppleStrategy String Nom de la stratégie d’éboulement des cellules utilisée :

default

dynamicThreshold Boolean Définit si le seuil critique dynamique (5.2) sera utilisé
ou non

simultaneousThreads Integer Nombre max. d’expériences exécutées en parallèle
seeds Integer Nombre d’expériences indépendantes simulées et

moyennées
initialRandomSeed Long Graine aléatoire initiale définissant l’aléatoire de toutes

les expériences
rewireStart Integer Valeur de 0 à 100 représentant le pourcentage de recâ-

blage initial de la grille
rewireStop Integer Valeur de 0 à 100 représentant le pourcentage de recâ-

blage de la grille maximal qui sera fait
rewireStep Integer Finesse de la progression du recâblage de

rewireStart à rewireStop
removeRate Integer Valeur de 0 à 100 représentant le pourcentage de cel-

lules supprimées durant la première phase du processus
de dégradation (Section 4.1.2)

TABLE B.2 – Paramètres généraux des programmes de simulation.

Les paramètres peuvent être spécifiés directement en ligne de commande lors de l’exécution du programme,

ou bien listés dans un fichier de configuration, configs/simulationConfigs/sandpile.config

(depuis la racine du dépôt), qui sera utilisé par défaut en l’absence d’arguments.

Un script Bash, sandPile_simulations.sh, situé à la racine du projet, permet de lancer l’ensemble

des expériences portant sur la robustesse du tas de sable. Il est à noter que les simulations sont longues (plusieurs

jours) avec les paramètres par défaut, en raison du volume d’expériences (25 expériences simultanées pour

chaque couple recâblage-dégradation).

B.4.2.2 Paramètres des politiques de taille des grains du tamis

De nouveaux paramètres, spécifiques au fonctionnement du tamis, viennent s’ajouter à ceux présentés dans

le Tableau B.2. Ils concernent la politique d’évolution de la taille des grains injectés dans le tamis au cours du

temps.

Cinq politiques distinctes sont proposées, chacune disposant de ses propres paramètres. Les clés associées à

ces paramètres sont systématiquement préfixées par grainsSizePolicy, afin d’en faciliter l’identification

et l’utilisation. Par exemple : grainsSizePolicy.name=constant. L’ensemble des paramètres relatifs

à ces politiques est détaillé dans le Tableau B.3.

150 ANNEXE B. REPRODUCTIBILITÉ DES EXPÉRIENCES

Taille constante
Clé Type de valeur Définition
name String Nom de la politique à utiliser : constant
constSize Integer Taille constante des grains au fil de la simulation

Taille sinusoïdale
Clé Type de valeur Définition
name String Nom de la politique à utiliser : sinusoid
start Integer Valeur de départ de la sinusoïde (moyenne de la fonc-

tion)
amplitude Integer Fluctuation de la taille autour de start
period Integer Nombre de cycle que dure une vague complète de la

sinusoïde

Taille incrémentale
Clé Type de valeur Définition
name String Nom de la politique à utiliser : incremental
step Integer Valeur de départ et d’incrémentation
every Integer Nombre de cycle avant une incrémentation

Taille aléatoire avec pics
Clé Type de valeur Définition
name String Nom de la politique à utiliser : random-spike
gaussianAvg Integer Valeur moyenne de la base aléatoire
gaussianStdDev Integer Écart-type des valeurs de la base aléatoire
pSpike Double Probabilité de déclenchement d’un pic à chaque cycle
spikeDurationMin Integer Durée minimum d’un pic de charge
spikeDurationMax Integer Durée maximum d’un pic de charge
spikeMin Integer Taille de grain minimum durant un pic
spikeMax Integer Taille de grain maximum durant un pic

Taille réelle
Clé Type de valeur Définition
name String Nom de la politique à utiliser : dataset
datasetName String Nom du dataset : auvergrid, nordugrid ou

sharcnet

startTime Long Date en secondes du début de simulation dans la trace :
- AuverGrid : 1143849600L (1er avril 2006)
- NorduGrid : 1136073600L (1er janvier 2006)
- SHARCNET : 1157068800L (1er septembre 2006)

maxArrivalCycle Long Durée en secondes observée dans la trace

TABLE B.3 – Paramètres des politiques de taille de grains.

B.4.2.3 Programmes de simulation du tamis auto-adaptatif : entropie locale

Les programmes SimulationNaiveLESASS et SimulationProportionalLESASS permettent

de simuler un tamis auto-adaptatif basé respectivement sur la méthode par entropie locale naïve (voir Sec-

tion 5.4.2) et sur la méthode proportionnelle (voir Section 5.4.3). La majorité des paramètres décrits précédem-

B.4. UTILISATION DU CODE 151

ment dans les Tableaux B.2 et B.3 sont à utiliser pour ces simulations. À noter que les paramètres relatifs au

recâblage et à la dégradation ne sont pas utilisés dans ce cadre. Deux paramètres supplémentaires, spécifiques

à l’adaptation par entropie locale, doivent être fournis conformément au Tableau B.4.

Clé Type de valeur Définition
entropyWindow Integer Taille de la fenêtre d’entropie utilisée pour calculer

l’entropie locale (Elocale) des cellules
entropyRef Double Entropie de référence (Eref) utilisée pour prendre les

décisions d’adaptation des cellules

TABLE B.4 – Paramètres spécifique aux méthodes par entropie locale.

Les paramètres peuvent être spécifiés directement en ligne de commande lors de l’exécution, ou bien placés

dans un fichier de configuration situé à l’emplacement suivant, relatif à la racine du dépôt :

/configs/simulationConfigs/sandsieve.config

Ce fichier est utilisé par défaut si aucun argument n’est fourni.

Enfin, un script Bash lesass_simulations.sh, situé à la racine du projet, permet de lancer auto-

matiquement les expériences du Chapitre 5. Ce script prend en paramètre le nom du programme à exécuter :

SimulationNaiveLESASS ou SimulationProportionalLESASS. Il est important de noter que ce

script ne permet de lancer qu’une seule politique de taille des grains à la fois. Pour modifier la politique utilisée,

il faut éditer le script en commentant la ligne d’arguments de la politique désactivée, et en décommentant celle

de la politique souhaitée.

B.4.2.4 Programme de simulation du tamis auto-adaptatif : protocole de bavardage

Le programme SimulationGossipSASS permet de simuler un tamis auto-adaptatif basé sur le proto-

cole de bavardage, tel que présenté dans la Section 5.5. Ce programme exploite les paramètres généraux listés

dans les Tableaux B.2 et B.3, à l’exception de ceux relatifs au recâblage et à la dégradation, qui ne sont pas pris

en compte. Aucun paramètre spécifique supplémentaire n’est requis pour ce modèle.

Les paramètres peuvent être spécifiés directement en ligne de commande lors de l’exécution, ou bien placés

dans un fichier de configuration situé à l’emplacement suivant, relatif à la racine du dépôt :

/configs/simulationConfigs/sandsieve.config

Ce fichier est utilisé par défaut si aucun argument n’est fourni.

Étant donné qu’il n’existe pas de variations de paramètres propres à ce modèle à explorer, aucun script Bash

dédié à l’exécution en batch n’est fourni. L’exécution du programme se fait donc manuellement, via ligne de

commande ou à l’aide d’un fichier de configuration adapté.

B.4.2.5 Génération des illustrations du recâblage et de la dégradation

Le programme GraphExamples est utilisé pour générer les visuels présentés dans l’étude illustrative du

recâblage et de la dégradation (Section 4.3). Il produit des représentations visuelles d’une grille régulière de

152 ANNEXE B. REPRODUCTIBILITÉ DES EXPÉRIENCES

taille 16, modélisée à l’aide de la bibliothèque GraphStream. Les visuels sont générés pour différents niveaux

de dégradation (suppression de nœuds), allant de 0% à 90% par paliers de 5%, et pour des taux de recâblage

allant de 0% à 100% par paliers de 10%. Le programme ne nécessite aucun paramètre d’entrée et peut être

exécuté directement.

	Introduction
	Structure du document
	Accessibilité du code des simulations

	Équilibrage de charge
	Paradigmes des systèmes d'équilibrage
	Nature de l'environnement
	Environnement statique
	Environnement dynamique
	Environnement hybride

	Architecture de contrôle
	Centralisation
	Semi-centralisation
	Décentralisation

	Mode de prise de décision
	Temporalité de la décision
	Nature du processus décisionnel
	Adaptabilité
	Approche décisionnelle

	Métriques de performance
	Métriques classiques
	Temps de réponse
	Débit
	Utilisation des ressources physiques
	Consommation énergétique

	Métriques spécifiques
	Équité de répartition de la charge
	Migration de la charge
	Scalabilité et adaptabilité

	La robustesse
	Définition
	Évaluation

	Classification algorithmique
	Équilibrage en environnement statique
	Optimalité
	Sous-optimalité

	Équilibrage en environnement dynamique
	Centralisation
	Semi-centralisation
	Décentralisation coopérative
	Décentralisation non-coopérative

	L'auto-organisation pour de la répartition dynamique
	Discussion des méthodes et des modèles

	La criticalité auto-organisée
	Introduction à la criticalité auto-organisée
	Le tas de sable
	Le modèle initial de Bak-Tang-Wiesenfeld
	Le tas de sable dissipatif
	Autres modèles présentant de la SOC

	Topologies de réseau dans les systèmes SOC
	Robustesse des systèmes SOC
	Robustesse structurelle : organisations hiérarchiques et modulaires
	Robustesse dynamique : auto-adaptation et mécanismes de contrôle

	Le tas de sable pour de l'équilibrage dynamique
	Le tas de sable ordonnanceur
	Un ordonnanceur et équilibreur de charge décentralisé
	Le tamis

	Robustesse du tas de sable
	Cadre d'étude de la robustesse structurelle
	Algorithme de recâblage
	Processus de dégradation
	Cadre global : construction de graphe avec recâblage et dégradation

	Dispositif expérimental
	Paramètres des simulations
	Outils d'analyse

	Étude illustrative
	Recâblage
	Dégradation
	Recâblage et dégradation

	Analyse des résultats
	Robustesse des différentes structures
	Évolution de la dynamique du tas de sable
	Discussion

	Conclusion

	Le tamis auto-adaptatif
	Un environnement limité pour le tamis
	Seuil critique dynamique
	Modélisation
	Cas d'étude
	Présentation des scénarios
	Résultats des scénarios

	Modélisation de la capacité de tamisage dynamique
	Adaptation des capacités par entropie locale
	L'entropie locale
	Méthode naïve
	Méthode proportionnelle
	Détermination des paramètres de l'entropie locale
	Cadre d'étude
	Adaptation naïve
	Adaptation proportionnelle

	Comparaison des méthodes

	Adaptation des capacités par protocole de bavardage
	Modélisation
	Cadre d'étude
	Analyse de l'adaptation

	Comparaison des méthodes
	Cadre d'étude
	Charge fixe et charge fluctuante
	Charge réelle

	Scénarios de charge fixe et fluctuante
	Scénario de charge réelle

	Conclusion

	Conclusion
	Bibliographie
	Résumé des expériences
	Reproductibilité des expériences
	Accessibilité du code et des données
	Les traces d'exécution de systèmes réels
	Informations générales
	Accessibilité des données et leur utilisation

	Structure du code
	Utilisation du code
	Préparation de l'environnement
	Les programmes et leurs paramètres
	Programme de simulation du tas de sable canonique
	Paramètres des politiques de taille des grains du tamis
	Programmes de simulation du tamis auto-adaptatif : entropie locale
	Programme de simulation du tamis auto-adaptatif : protocole de bavardage
	Génération des illustrations du recâblage et de la dégradation

