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Avertissement

Dans le cadre de la rédaction de ce manuscrit, plusieurs outils ont été utilisés dans le but d’en améliorer la
qualité et de faciliter le processus de travail.

Tout d’abord, la plateforme Overleaf a été utilisée pour la rédaction du document. Overleaf est un éditeur
IATEX en ligne qui facilite grandement la collaboration, en particulier avec les encadrants.

Ensuite, des outils d’intelligence artificielle basés sur des modeles de langage (tels que ChatGPT, Le Chat
ou NotebookLM) ont été employés pour des tiches de relecture, de reformulation linguistique et d’amélioration
stylistique. Leur utilisation a permis de renforcer la clarté et la fluidité de certaines sections du texte. Ils ont
également été sollicités pour la synthese d’articles scientifiques, dans le but d’optimiser la phase de revue de la
littérature.

Il est important de souligner que ces outils ont été utilisés exclusivement comme aide a la rédaction et a la
productivité. Aucun contenu scientifique original n’a été généré par ces systemes. Toutes les idées, interpréta-
tions et conclusions présentées dans ce document sont le fruit d’un travail personnel. Le contenu de la revue de
la littérature a été étudié, compris, puis rédigé avant ’intégration dans le document.

Enfin, dans un souci de transparence et de reproductibilité, le code source utilisé pour obtenir les résultats
présentés dans ce manuscrit est mis a disposition en open source sous licence MIT. Il est librement accessible
afin que chacun puisse le consulter, 1’utiliser ou le modifier, contribuant ainsi a la vérifiabilité des résultats et a

la poursuite des travaux par la communauté scientifique.
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Résumé

De nombreux systemes, naturels ou artificiels, s’appuient sur des mécanismes d’équilibrage de charge pour
fonctionner efficacement, mécanismes qui dépendent directement de 1’organisation de leurs composants. Cette
organisation peut étre centralisée, contrdlée par une entité unique, ou émerger a partir de décisions prises loca-
lement, conduisant a une auto-organisation du systeme. Nous nous intéressons dans cette these a la criticalité
auto-organisée, un phénomene ot des instabilités locales génerent spontanément des organisations. Nous explo-
rons ainsi comment ce phénomene peut étre exploité pour équilibrer la charge dans des systemes informatiques
distribués. Dans un premier temps, nous examinons la robustesse des systemes qui présentent de la criticalité
auto-organisée a I’aide du modele du tas de sable proposé par Bak, Tang et Wiesenfeld. Nos résultats montrent
que I’introduction d’une quantité minimale d’aléatoire dans la structure du systeme augmente notablement sa
résistance aux défaillances, repoussant ainsi les seuils critiques d’effondrement. Dans un second temps des
mécanismes d’auto-adaptation, utilisant un modele dérivé du tas de sable ol chaque élément est susceptible de
traiter des tiches, sont développés. Ces mécanismes s’adaptent efficacement aux surcharges tout en présentant
des atouts et des limites propres. Ces travaux ouvrent des perspectives vers des systemes distribués robustes et

adaptatifs inspirés de I’auto-organisation.

Mots-clé : Systéme complexe, criticalité auto-organisée, auto-organisation, tas de sable, équilibrage de charge,

robustesse, auto-adaptation.



vi



Abstract

Many natural and artificial systems rely on load-balancing mechanisms to operate efficiently, mechanisms
that are directly influenced by the organization of their components. This organization can be either centrali-
zed, governed by a single controlling entity, or it can emerge from local decision-making processes, leading
to self-organization within the system. This dissertation focuses on self-organized criticality, a phenomenon in
which local instabilities spontaneously give rise to organized behavior. We investigate how this phenomenon
can be leveraged to balance load in distributed computing systems. First, we examine the robustness of sys-
tems exhibiting self-organized criticality through the sandpile model introduced by Bak, Tang, and Wiesenfeld.
Our results show that introducing a minimal amount of randomness into the system’s structure significantly
enhances its resilience to failures, thereby increasing the critical thresholds at which collapse occurs. Second,
we develop self-adaptive mechanisms based on a modified sandpile model, in which each component is ca-
pable of processing tasks. These mechanisms adapt efficiently to overload conditions while exhibiting specific
advantages and limitations. This work opens new perspectives for the design of robust and adaptive distributed

systems inspired by self-organization.

Key-words : Complex system, self-organized criticality, self-organization, sandpile, load balancing, robust-

ness, self-adaption.
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Chapitre 1

Introduction

L’étude des phénomenes naturels a depuis longtemps inspiré le développement de modeles computationnels
capables de résoudre des problémes complexes. Qu’ils soient biologiques, physiques ou comportementaux, ces
phénomenes présentent des dynamiques robustes, adaptatives et souvent décentralisées. Cette observation a
conduit a I’émergence de I’informatique bio-inspirée : une discipline interdisciplinaire qui exploite les principes
évolutifs, collectifs et auto-organisés observés dans la nature pour concevoir des algorithmes.

Ces systemes naturels se distinguent par leur capacité d’auto-organisation, oll un comportement global
émerge de simples interactions locales. On peut citer les mouvements synchronisés d’oiseaux et de pois-
sons (REYNOLDS, 1987), I’organisation des colonies de fourmis et d’abeilles pour la recherche de nourriture
(BONABEAU et al., 1997), ainsi que la criticalité auto-organisée illustrée par les avalanches dans les milieux
granulaires (BAK et al., 1987) et les séismes (STEIN & KLOSKO, 2002).

Cette capacité a atteindre un équilibre dynamique sans contrdle centralisé, grace aux interactions locales et
aux phénomenes critiques, ouvre la voie a 1’application de ces principes aux infrastructures numériques. Tout
comme les avalanches de sable redistribuent de 1’énergie ou que les comportements collectifs optimisent la
recherche de ressources, on peut envisager des protocoles décentralisés ou la charge de travail se régule par des
ajustements locaux.

Dans le contexte numérique actuel, la fourniture de services informatiques fiables, performants et durables
représente un défi majeur. La croissance exponentielle de la demande rend indispensable le développement
de mécanismes d’équilibrage de charge efficaces et décentralisés, capables de s’adapter a des environnements
dynamiques tels que les datacenters, les infrastructures cloud ou les réseaux de capteurs. Le modele du tas de
sable, introduit par Bak, Tang et Wiesenfeld (BAK et al., 1987) est un exemple paradigmatique de criticalité
auto-organisée appliquée a un systéme discret simple et ouvert : il montre comment, par 1’action locale de
cellules souples a un seuil critique, le systéme atteint spontanément un état de tension critique ponctué d’ava-
lanches qui le réorganisent. REcemment, plusieurs travaux ont exploré 1’application du modele du tas de sable
pour répartir la charge de maniere locale et émergente (GASIOR & SEREDYNSKI, 2017 ; LAREDO et al., 2017;
LAREDO et al., 2014). Toutefois, ces études se limitent généralement a des grilles régulieres et négligent a

la fois la diversité des topologies et la résilience aux défaillances, tout en se basant sur des hypotheses fortes
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comme le nombre illimité de ressources.

Cette thése adopte une approche centrée sur I’analyse et ’extension de modeles bio-inspirés pour 1’équili-
brage de charge décentralisé, en s’appuyant sur le principe de criticalité auto-organisée. Le mécanisme d’ava-
lanches critiques, hérité du modele du tas de sable, est mobilisé pour définir des protocoles locaux ol I’injection
ou la redistribution de charge déclenche spontanément des réajustements émergents globaux, assurant ainsi une
adaptation continue et robuste face aux variations de la demande.

Ces différentes observations ont orienté le travail de recherche qui se structure autour de deux contributions
principales :

— Premiére contribution : une étude approfondie de la robustesse du modele du tas de sable sur des
structures variées. Un cadre expérimental original intégre un algorithme de recablage pour générer des
graphes petit-monde et un mécanisme de suppression aléatoire de cellules, afin d’évaluer I’influence de
la topologie et la robustesse aux pannes sur la criticalité du systéme.

— Deuxiéme contribution : prolongement d’une extension du modele du tas de sable qui introduit des
grains avec une taille et des cellules ayant une capacité de traitement quelque soit la situation sur la
grille, simulant ainsi des ressources réparties traitant progressivement les taches. Plusieurs mécanismes
décentralisés d’ajustement dynamique de la capacité de traitement sont proposés et comparés, dans le
but d’optimiser un compromis entre consommation énergétique et qualité de service dans différents
scénarios avec un nombre borné de ressources.

Au-dela de ces apports, la theése propose un cadre méthodologique et illustre comment les principes de

criticalité auto-organisée peuvent étre exploités pour concevoir des systemes distribués a la fois adaptatifs,

robustes et efficients.

1.1 Structure du document

Cette these est structurée en plusieurs chapitres répartis en deux grandes catégories : les chapitres documen-
taires, qui dressent un état de 1’art sur les thématiques étudiées, et les chapitres de contributions, qui présentent
les travaux de recherche menés.

Le chapitre introductif, correspondant au présent chapitre, propose une entrée en matiere aux thématiques
abordées dans ce mémoire. Il fournit également des informations pratiques telles que la structure globale du
document et I’accessibilité du code source développé pour les simulations.

Le deuxieme chapitre constitue un état de I’art des mécanismes d’équilibrage de charge. Il explore les pa-
radigmes qui caractérisent les systemes d’équilibrage, notamment la nature de I’environnement dans lequel ils
operent, leur architecture de contrdle, ainsi que leur mode de prise de décision. Ce chapitre introduit également
un ensemble de métriques permettant d’évaluer les performances de ces mécanismes. Une taxonomie des al-
gorithmes d’équilibrage est proposée, accompagnée d’exemples représentatifs pour chaque classe. L’ attention
se porte ensuite plus spécifiquement sur les mécanismes d’auto-organisation, qui apparaissent particulierement

pertinents dans le cadre de 1’équilibrage de charge décentralisé.
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Le troisieme chapitre est consacré au concept de criticalité auto-organisée, largement observé dans les
systemes naturels. Pour 1’étudier, nous nous intéressons aux modeles qui permettent de la reproduire, en parti-
culier le modele du tas de sable de Bak, Tang et Wiesenfeld, qui constitue la base de nos travaux. Ce second
chapitre documentaire explore également 1’influence de la topologie sur la criticalité auto-organisée et la ro-
bustesse qu’elle confere aux systémes. Enfin, il examine son application a 1’équilibrage de charge dynamique
a travers le prisme du modele du tas de sable.

Le quatrieme chapitre présente notre premiere contribution : une étude de la robustesse du modele du
tas de sable. Nous y introduisons un cadre d’expérimentation original permettant d’observer 1’évolution, a la
fois structurelle et dynamique, du modele dans des environnements variés (grille réguliere, graphe petit-monde,
structure aléatoire) et dégradés. L’introduction de perturbations dans la structure initiale se révele capable de
repousser significativement le seuil d’effondrement du systeme.

Le cinquiéme chapitre, correspondant a notre seconde contribution, introduit une contrainte sur I’environ-
nement d’exécution du modele du tamis, une extension du tas de sable adaptée a la modélisation de systemes
de traitement de tiches. Apres avoir posé les problématiques et les leviers d’action envisageables, nous présen-
tons plusieurs approches permettant de rendre le modele auto-adaptatif face aux surcharges induites par cette
limitation. Ces approches sont d’abord étudiées individuellement, puis comparées dans différents scénarios, a
la fois artificiels et réalistes. Toutes sont fonctionnelles, chacune présentant des avantages et des limites.

Enfin, le dernier chapitre propose une conclusion générale. Il récapitule et discute les principaux apports
du travail effectué, et ouvre des perspectives pour de futures recherches.

Une annexe est également fournie, regroupant sous forme de tableaux les différentes simulations réalisées

et les résultats obtenus.

1.2 Accessibilité du code des simulations

Le code développé dans le cadre de cette these pour produire les résultats présentés est mis a disposition en
open source sous licence MIT sur le dépdt Git suivant : https://git.litislab.fr/pheleine/self-adaptive-sand-sieve.
Les données externes libres utilisées lors des expérimentations, notamment les traces d’exécution issues de
certains systémes du projet libre d’acces Grid Workload Archive (IOSUP et al., 2008a) (https://www.atlarge-
research.com/gwa.html), sont également incluses dans le dépdt. La structure du code, ainsi que les modalités

d’utilisation du code et des données, sont détaillées en Annexe B.
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L’équilibrage de charge est une stratégie visant a répartir la charge de travail au sein d’un systeme afin
d’en utiliser au mieux ses ressources limitées. Il existe de nombreuses situations nécessitant de 1’équilibrage
de charge autour de nous. Prenons I’exemple de 1’encaissement dans un supermarché. Les clients (charge de
travail) vont se répartir sur les différentes caisses (ressources) pour payer leurs futurs achats. Le personnel de
caisse est d’une efficacité variable pour encaisser les articles, tandis que les clients ont un panier plus ou moins
rempli. Ces deux caractéristiques correspondent respectivement a la capacité des ressources et a la quantité de
charge entrante dans le systeme. Les clients vont naturellement se diriger vers les caisses les moins chargées,
puis, si leur file d’attente progresse lentement, changeront de caisse pour une plus rapide dans 1’espoir que
leur tour vienne plus tot. En outre, les caisses peuvent ouvrir ou fermer selon le nombre de clients. Nous
avons ici 'exemple d’un systeme complexe dont I’environnement est dynamique (nombre de caisses, vitesse
d’encaissement, nombre de clients et taille des paniers) et dont la charge s’auto-équilibre (arrivée des clients sur
les caisses les moins chargées et changement de caisse). Par cet exemple, nous touchons du doigt la richesse,
mais également la complexité, du monde de 1’équilibrage de charge. Le choix d’un algorithme d’équilibrage

n’est donc pas anodin et est, le plus souvent, multi-criteres par rapport aux spécificités du systeme.

Dans ce chapitre, nous commencerons par aborder les paradigmes des systemes d’équilibrage en Sec-
tion 2.1, afin de présenter les concepts fondamentaux des algorithmes sous-jacents. Chaque systéme dispose de
ses propres spécificités et contraintes. Nous continuerons donc en Section 2.2 avec les métriques utilisées pour
mesurer les performances des différentes solutions d’équilibrage. Puis, nous nous attarderons sur une classi-
fication des stratégies de répartition d’un point de vue algorithmique en Section 2.3. Nous nous focaliserons
ensuite, en Section 2.4, sur I’auto-organisation et son utilisation pour équilibrer la charge dynamiquement. Pour

terminer, en Section 2.5, nous discuterons des points forts et des points faibles des méthodes présentées.
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2.1 Paradigmes des systemes d’équilibrage

Les caractéristiques d’un systeme déterminent le choix de la stratégie de répartition de charge pouvant étre
mise en ceuvre. Par ailleurs, les orientations conceptuelles des systemes permettent de classifier les algorithmes
selon différents paradigmes, bien que ces derniers coexistent simultanément. Nous commencerons par diffé-
rencier la nature de I’environnement du systéme : statique ou dynamique. Puis, nous nous intéresserons aux
différentes architectures de controle de la charge : centralisée, semi-centralisée et décentralisée. Nous termine-

rons en abordant le mode de prise de décision de 1’algorithme.

2.1.1 Nature de ’environnement

Le paradigme de la nature de 1’environnement concerne la maniere dont les algorithmes sont congus en
fonction des caractéristiques du systeme dans lequel ils operent. L’environnement d’exécution impacte forte-
ment le choix de la stratégie d’équilibrage puisque les contraintes et les objectifs sont directement corrélés a
la stabilité et I’évolutivité du systeme. Il existe deux catégories d’environnements (ALAKEEL, 2009 ; DEEPA
& CHEELU, 2017) : les statiques et les dynamiques. La catégorisation est effectuée en fonction des variations
de la charge entrante et des ressources. Nous étudierons en premier les caractéristiques des environnements
statiques, puis celles des environnements dynamiques. Nous verrons également, pour finir, un dérivé d’envi-

ronnement dynamique a mi-chemin entre les deux. Le Tableau 2.1 résume les caractéristiques de ces trois

catégories.
Environnement | Ressources (nombre et capacités) Charge entrante
Statique Fixes Fixe ou connue a I’avance
Dynamique Fluctuantes Fluctuante
Hybride Initialement fixes, fluctuantes au besoin | Attendue, mais peut fluctuer

TABLE 2.1 — Résumé des caractéristiques des environnements.

2.1.1.1 Environnement statique

Dans un environnement statique, les ressources et la charge a équilibrer sont fixes. Il n’y a pas ou peu
de variations dans le temps. Les décisions d’équilibrage peuvent donc étre adaptées en amont directement au
nombre de ressources disponibles, a leur capacité, ainsi qu’a la charge attendue. La Figure 2.1 présente une
schématisation de 1’environnement statique.

Les stratégies d’équilibrage pour ce type d’environnement sont treés souvent déterministes et de faible com-
plexité. Les algorithmes varient cependant dans leurs approches. On trouve de la répartition approximative
avec des méthodes naives (distribution égale ou équitable par exemple), des heuristiques (régles empiriques
pour guider la répartition) ou encore I’optimalité (optimisation complete pré-fonctionnement). Nous nous pen-
cherons en détails sur ces approches en Section 2.3.1.

Un bon exemple d’environnement statique est une usine. Toute la chaine de production est préparée et

optimisée en amont durant la conception du systeme (optimalité). Chaque poste de travail au sein de I’usine
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Environnement statique

Charge Ressources

OO0

FIGURE 2.1 — Schématisation d’un environnement statique : la charge entrante, le nombre de ressources et
leurs capacités sont fixes.

exécute une tache spécifique a une cadence prédéfinie afin qu’aucun temps mort ne survienne. Tout le systeéme
est figé et un changement dans celui-ci, tel que I’ajout d’un poste de travail, nécessite de recalculer la solution

optimale.

2.1.1.2 Environnement dynamique

Dans un environnement dynamique, que ce soit le nombre de ressources, leurs capacités, ou bien la charge,
tout peut fluctuer. L’évolutivité de I’environnement rend 1’équilibrage bien plus complexe puisqu’il nécessite
une adaptation continue au changement de situation. Pour simplifier, a I’inverse d’un environnement statique,
les algorithmes doivent fonctionner efficacement peut importe la charge de travail et les ressources. La Fi-
gure 2.2 présente une schématisation de 1’environnement dynamique.

Le probleme de 1’équilibrage de charge se complexifie & cause de la nature évolutive de I’environnement.
Les stratégies sont donc plus nombreuses et varient d’autant plus dans leurs approches. Les algorithmes se
divisent généralement en trois catégories d’apres leur architecture de controle : algorithmes centralisés, semi-
centralisés et décentralisés. Nous nous intéresserons a ce paradigme en Section 2. 1.2, tandis que nous étudierons
différents algorithmes selon leur type de stratégie en Section 2.3.2.

L’exemple d’environnement dynamique le plus pertinent de nos jours est certainement les centres de don-
nées (HE et al., 2015; ZHANG et al., 2017), souvent qualifiés par leur nom anglais data centers. La charge,
inconnue et fluctuante, doit étre efficacement distribuée sur les serveurs d’un centre. La distribution des taches
doit étre optimisée pour augmenter la longévité du matériel en évitant un fonctionnement a plein régime en
permanence, pour réduire la consommation énergétique ou encore pour que le systeéme ait un temps réponse
faible. Si un serveur tombe en panne, il ne doit plus étre compté dans la répartition de charge et ses taches

doivent étre redistribuées. A I’inverse, lorsqu’un serveur est ajouté, il doit automatiquement étre inclus dans
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Environnement Dynamique

Ressources

FIGURE 2.2 — Schématisation d’un environnement dynamique : la charge entrante, le nombre de ressources et
leurs capacités fluctuent.

I’écosysteme du centre.

2.1.1.3 Environnement hybride

Un environnement hybride est un dérivé de systéme dynamique a mi-chemin entre statique et dynamique.
La charge de travail est attendue, bien qu’elle puisse évoluer, et les ressources sont préparées en conséquence.
Lorsqu’une surcharge inattendue survient, de nouvelles ressources sont automatiquement allouées pour y faire
face. A contrario, lorsque la charge diminue, les ressources excédentaires sont automatiquement désallouées
pour retrouver la configuration initiale. Pour résumer, un nombre initial de ressources est alloué par rapport a
la charge attendue et leur nombre (ou capacité) est ajusté au besoin.

Le systeme de caisses d’un supermarché, utilis€ comme exemple en introduction du chapitre, illustre bien
ce type d’environnement. Un nombre minimal de caisses est constamment ouvert afin de garantir un service
de base, ce nombre étant défini selon I’affluence attendue a différents moments de la journée. En cas de forte
affluence, du personnel en réserve est mobilisé pour ouvrir de nouvelles caisses. Les clients se redistribuent
alors spontanément entre les caisses disponibles, ce qui permet de fluidifier le traitement des files. Une fois la
vague passée, les caisses superflues ferment et le personnel retourne en réserve.

Ce type d’environnement est particulierement représentatif des systemes cloud, et plus spécifiquement des
services web. L’usage de ces services est en général prévisible, mais le systeme doit pouvoir s’adapter a des
variations soudaines de trafic. Dans ce cadre, des technologies d’orchestration comme Kubernetes ont été dé-
veloppées. Elles offrent notamment des fonctionnalités de mise a I’échelle automatique, permettant d’ajuster
dynamiquement le nombre de répliques d’un service en fonction de la charge observée (THE KUBERNETES
AUTHORS, 2025). Les réactions du systeme sont prédéfinies mais paramétrables dynamiquement, offrant ainsi

un compromis efficace entre flexibilité et contrdle.
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2.1.2 Architecture de controle

Le paradigme de I’architecture de contrdle définit qui prend les décisions de distribution de la charge dans le
systeme. Les architectures sont au nombre de trois (AL-RAYIS & KURDI, 2013 ; IVANISENKO & RADIVILOVA,
2015) : centralisée, semi-centralisée et décentralisée. Chacune dispose de forces et de faiblesses et conviennent
a des situations différentes. C’est ce que nous allons étudier dans cette section, dans I’ordre énoncé précédem-

ment.

2.1.2.1 Centralisation

Le principe de I’architecture centralisée est d’avoir un composant unique de contrdle qui prend les décisions
pour tout le systeme. Ce controleur central dispose d’une vue centrale et interagit avec toutes les ressources
disponibles. La structure sous-jacente est typiquement une étoile dont le controleur en est le centre et les
ressources ses extrémités. La duplication de bases de données ou le calcul parallele utilisent cette méthode
désignée par le pattern maitre-esclave. Dans le premier cas, le serveur central (maitre) va propager les requétes
d’écriture sur toutes les bases de données dupliquées (esclaves). Dans le deuxieme cas, le processeur "maitre"
divise les calculs complexes qu’il distribuera aux processeurs "esclaves" avant d’en agréger les résultats. On
notera que dans le cas d’un systeme centralisé, toutes les ressources doivent &tre en communication avec le
contrdleur central, ce qui n’est pas le cas desdites ressources entre elles. La Figure 2.3 illustre la centralisation
avec un contrdleur (maftre) qui communique avec trois ressources (esclaves). Dans le cadre de 1’équilibrage de
charge, tout transite par le contrdleur central qui décide sur quelle ressource envoyer les tiches pour équilibrer
au mieux I'utilisation des ressources. Le web utilise cette architecture a plusieurs niveaux pour répartir le trafic

entre les services d’un serveur web, mais également entre différentes instances de celui-ci.

Controleur
central

FIGURE 2.3 — Schématisation de la centralisation.

2.1.2.2 Semi-centralisation

La semi-centralisation, aussi qualifiée d’architecture hiérarchique, consiste généralement en de la centrali-
sation mise en arborescence. Chaque nceud de I’arbre correspond a un controleur qui répartit la charge envoyée
par son parent entre ses fils, tandis que les feuilles correspondent aux ressources. Un contr6leur au niveau n
connait donc I’état de ses ressources (sous-controleurs ou ressources directes) au niveau n + 1 et remonte 1’in-

formation de son état a son contrdleur parent du niveau n— 1 s’il existe. Par conséquent, un contréleur prend les
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décisions pour un nombre restreint de sous-contrdleurs, qui eux-mémes contrdlent une sous-partie du systéme,
et ainsi de suite. Au final, la répartition de la charge s’effectue de concert au travers de tous les niveaux de la
hiérarchie. Cette architecture est qualifiée de semi-centralisée puisque la prise de décision de chaque branche et
sous-branche de 1’arbre est centralisée, mais les décisions sont toutefois indépendantes d’une branche a I’autre.

Le web et les services cloud de maniere générale reposent sur cette architecture (AFZAL & KAVITHA,
2019). La Figure 2.4 schématise son utilisation appliquée au web. Le niveau 1 correspond aux services tels
qu’Amazon Web Services, Google Cloud Platform ou encore Microsoft Azure, qui permettent de dupliquer
dynamiquement tout un serveur web selon le trafic pour en répartir la charge. Puis vient le niveau 2 qui cor-
respond aux instances du serveur web dupliqué. Le serveur web, Nginx pour ne citer que le plus utilisé depuis
2020, fait de la répartition de charge entre ses services du niveau 3, préalablement dupliqués si besoin, pour y

distribuer les requétes entrantes.

Requétes

. Service
Niveau 1 cloud
. Serveur Serveur | Serveur |
Niveau 2 ! !
web web : web ;
Niveau 3 [Service 1} [Service 2} [Service 1} [Service 2} i [Service 1} [Service 2} 3
Instance initiale Duplication 1 : Duplication n }

FIGURE 2.4 — Schématisation de I’architecture semi-centralisée (hiérarchique) appliquée au web.

Cette architecture est généralement paramétrée en amont (profondeur de I’arbre, nombre de nceuds contrd-
leurs, etc.). Cependant, il existe tout de méme des algorithmes pour maintenir la structure de 1’arbre de maniere
décentralisée et dynamique tels que les modeles D2-Tree (BRODAL et al., 2015) et D3-Tree (SIOUTAS et al.,

2022).

2.1.2.3 Décentralisation

A T’opposé de I’architecture centralisée, I’approche décentralisée se caractérise par 1’absence d’un nceud de
contrdle unique. Chaque ressource du systéme fonctionne de manieére autonome, prenant ses décisions sur la
base de son propre état et, le cas échéant, d’une connaissance partielle ou compléte de I’environnement global.

Cette organisation permet 1’émergence de comportements coopératifs et/ou autonomes, selon les modalités
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d’interaction entre les entités.

Cette méthode se base sur I’échange d’information au sein du systéme par divers algorithmes et protocoles
de communication. Par conséquent, les ressources doivent étre suffisamment connectées les unes aux autres
pour faciliter les interactions. La structure sous-jacente est généralement un graphe fortement connexe dont
les distances inter-sommets sont faibles (peu de sommets intermédiaires). Les systemes peer-to-peer tels que
BitTorrent fonctionnent par exemple de cette maniere. Les machines du réseau partagent les données déja
téléchargées pour que d’autres les récuperent et les partagent a leur tour ; chaque machine est a la fois émétrice

et réceptrice de I’information.

La Figure 2.5 illustre la décentralisation avec cinq ressources communiquant plus ou moins entre elles.
Appliquée a la répartition de charge, cette architecture dite distribuée permet d’équilibrer le travail entre les

ressources sans controle externe.

R5 R4

FIGURE 2.5 — Schématisation de la décentralisation.

2.1.3 Mode de prise de décision

Apres avoir examiné les différentes architectures de contrdle afin de déterminer 1’entité responsable de la
prise de décision, il convient désormais d’examiner les mécanismes selon lesquels ces décisions sont élaborées,
a travers le prisme des modes décisionnels. Ce paradigme repose sur un ensemble de choix issus de différents
criteres dont la combinaison détermine la forme finale du processus décisionnel. Nous débuterons cette analyse
par la temporalité de la décision, qui peut &tre prise de maniere proactive ou réactive. Nous examinerons ensuite
la nature du processus décisionnel, qui peut étre déterministe ou stochastique. Nous poursuivrons par I’adap-
tabilité des algorithmes. Enfin, nous nous intéresserons a la méthodologie de prise de décision, qui repose soit

sur des regles préétablies, soit sur des approches d’apprentissage.



2.1. PARADIGMES DES SYSTEMES D’EQUILIBRAGE 13

2.1.3.1 Temporalité de la décision

Le critere de la temporalité de la décision est crucial dans 1’équilibrage de charge, car il définit 1’optique
dans laquelle une décision est prise : la distribution des taches peut étre soit anticipée soit faite en direct a leur
arrivée. On peut qualifier ce critere de réactivité. Les algorithmes se découpent donc en deux approches qui

seront détaillées dans cette section : les proactifs et les réactifs.

Algorithmes proactifs Les algorithmes proactifs visent a anticiper les besoins futurs du systéme en s’ap-
puyant sur des modeles prédictifs issus d’analyses de données historiques. Ces modeles peuvent étre fondés
sur des méthodes statistiques traditionnelles, telles que les séries temporelles ou les modeles de Markov, ou
sur des techniques d’apprentissage automatique, comme les réseaux de neurones ou les machines a vecteurs
de support. Par exemple, le modele proposé dans (YADAV et al., 2021) se base sur de 1’apprentissage profond
(Long Short-term Memory (HOCHREITER, 1997)) pour prédire la charge future des serveurs a partir de séries
temporelles.

Dans certains cas, ces modeles prédictifs sont couplés a des algorithmes d’optimisation, tels que la program-
mation linéaire ou des algorithmes évolutionnaires, afin d’optimiser la répartition des taches sur les ressources
disponibles. Les auteurs de (BOULMIER et al., 2022) proposent notamment un critere d’équilibrage de charge
optimal et automatisé. Celui-ci anticipe le moment optimal pour équilibrer la charge, afin de maximiser la
performance de 1’algorithme d’équilibrage sous-jacent tout en évitant des opérations inutiles.

Toutefois, tous les algorithmes proactifs ne nécessitent pas une optimisation complexe ; certains reposent
sur des heuristiques prédéfinies. Le seuil auto-apprenant proposé par GOLDSZTAIN et al. (2022) et le modele
ULBA (BOULMIER et al., 2019) (Underloading Load Balancing Approach) en sont deux exemples. Le pre-
mier ajuste dynamiquement un seuil de répartition de charge (qui anticipe le choix des ressources) selon la
charge actuelle des ressources, tandis que le deuxieme redistribue la charge des ressources presque surchargées
(sélectionnées d’apres un score heuristique) pour anticiper leur surcharge.

Enfin, ces systemes prédictifs sont souvent surveillés en continu via des métriques de performance, et
peuvent intégrer des mécanismes d’apprentissage en temps réel pour ajuster leurs décisions en fonction des
évolutions du systeme. C’est notamment le cas du seuil auto-apprenant, du modele ULBA, ou encore les mé-
thodes a base d’apprentissage par renforcement comme le modele introduit par MUTHUSAMY et DHANARAJ

(2023), basé sur du Q-learning (WATKINS & DAYAN, 1992).

Algorithmes réactifs Les algorithmes réactifs ajustent la répartition des charges en fonction des événements
observés dans le systeme, tels que 1’arrivée de nouvelles taches, la fin de traitement d’une ressource ou une
défaillance matérielle. Contrairement aux algorithmes proactifs, ils ne cherchent pas a anticiper les besoins
futurs, mais réagissent en temps réel en fonction de I’état du systéme. Leur simplicité d’implémentation les
rend particulierement adaptés aux environnements ol la charge évolue de maniere imprévisible.

Certains algorithmes réactifs prennent explicitement en compte la charge du systeme : par exemple, 1’algo-
rithme de moindre connexion (Least-Connection) (MUSTAFA, 2017) assigne systématiquement les nouvelles

taches a la ressource la moins sollicitée. C’est également le cas des stratégies a seuils, pour lesquelles une
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action résulte du dépassement d’un seuil de charge, telle que la réaffectation des taches d’une ressource, ou
encore le changement de la ressource cible comme pour la distribution de requétes tenant compte de la localité
(Locality-Aware Request Distribution) (PAT et al., 1998) ou la politique de déchargement distribuée propo-
sée par QIN et al. (2021, 2023a, 2023b). A Iinverse, d’autres approches appliquent des régles de répartition
sans considération de I’état du systeme. C’est notamment le cas de I’algorithme du tourniquet (Round Robin)
(HIDAYAT et al., 2020) et de sa variante pondérée (Weighted Round Robin) (DEVI & UTHARIARAIJ, 2016), qui
distribuent les tdches de maniere cyclique entre les ressources.

D’autres techniques issues des modeles multi-agents, plus élaborées, reposent sur une prise de décision
décentralisée. Chaque agent alloue des taches localement en fonction de son voisinage, ce qui peut conduire a
une auto-organisation émergente du systéme, et donc a son équilibrage. L’algorithme d’échantillonnage aléa-
toire biaisé (Biased Random Sampling) (RAHMEH et al., 2008) illustre bien ce principe : une tche n’est pas
directement affectée a une ressource, mais suit une marche aléatoire contrélée explorant le voisinage, avant
d’étre assignée a la ressource dont la charge est la plus faible.

Enfin, bien que les algorithmes évolutionnaires soient souvent utilisés dans les stratégies proactives, cer-
taines adaptations leur permettent de fonctionner en mode réactif, notamment dans des environnements dé-
centralisés et dynamiques. Ces méthodes inspirées de I’intelligence en essaim, comme les colonies de fourmis
(Ant Colony Optimization) (L1 et al., 2011 ; L1U et al., 2006) ou encore le comportement de recherche de nec-
tar par les abeilles (Honeybee Foraging Behavior) (RANDLES et al., 2010; SESUM-CAVIC & KUHN, 2010a,
2010b), permettent un équilibrage émergent basé sur des heuristiques locales et des interactions entre entités
autonomes. Ces méthodes réactives ne planifient pas a I’avance, mais ajustent leur comportement en fonction

des variations de charge détectées dans leur environnement immédiat.

2.1.3.2 Nature du processus décisionnel

Une autre maniere de qualifier la prise de décision d’un algorithme d’équilibrage de charge réside dans
la nature de son processus décisionnel. Le choix entre un modele déterministe ou stochastique dépend des
contraintes du systeme a équilibrer. Alors que les solutions déterministes offrent stabilité et robustesse dans
des environnements bien maitrisés, les stratégies stochastiques sont souvent privilégiées dans des contextes
dynamiques et incertains, ot une approche plus flexible et adaptative est nécessaire. Cette section explore ces

deux paradigmes, leurs principes, leurs avantages et leurs limites dans le cadre de 1’équilibrage de charge.

Processus déterministe Les stratégies déterministes reposent généralement sur des régles fixes, des heuris-
tiques explicites ou des modeles mathématiques prédéfinis pour attribuer une tiche a une ressource donnée.
Elles garantissent une prise de décision enticrement prévisible et reproductible : pour un méme état du sys-
teme, la solution d’équilibrage obtenue sera identique. Les criteres de sélection des ressources peuvent étre soit
statiques, soit dynamiques. Dans le premier cas, les choix sont définis a I’avance, indépendamment de 1’état
courant du systeme, aboutissant ainsi 2 une répartition souvent fixe et uniforme des tiches. A I’inverse, dans
le second cas, les décisions s’adaptent en fonction d’heuristiques explicites, telles que la charge du processeur

ou la latence de connexion. Néanmoins, quelle que soit I’approche adoptée, 1’absence d’éléments aléatoires
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garantit une réponse systématique et reproductible pour un méme ensemble d’entrées. Parmi les algorithmes
déterministes statiques, on retrouve notamment le tourniquet (HIDAYAT et al., 2020) et sa variante pondérée
(DEVI & UTHARIARAJ, 2016), déja évoqués dans la section précédente. En ce qui concerne les algorithmes
déterministes dynamiques, des stratégies telles que la moindre connexion (MUSTAFA, 2017) ou les approches a
seuils (PAL et al., 1998 ; QIN et al., 2021, 2023a, 2023b), également mentionnées auparavant, illustrent cette ca-
tégorie. Les algorithmes déterministes constituent une solution simple et efficace pour 1’équilibrage de charge
dans des environnements maitrisés, qu’ils soient statiques ou dynamiques mais prévisibles. Cependant, leur
rigidité peut s’avérer limitante lorsque la charge varie de maniere imprévisible. Afin de mieux s’adapter aux
fluctuations dynamiques du systeéme, il existe ainsi des approches intégrant une composante aléatoire, offrant

une plus grande flexibilité.

Processus stochastique Contrairement aux algorithmes déterministes, les algorithmes stochastiques integrent
une composante aléatoire dans le processus de prise de décision. Cette approche permet de mieux gérer les sys-
témes soumis a des charges imprévisibles ou fortement fluctuantes, ot une stratégie rigide pourrait conduire a
un déséquilibre. L’aléatoire peut étre exploité de différentes manieres : certains algorithmes sélectionnent une
ressource au hasard parmi un sous-ensemble de candidats (comme I’algorithme d’équilibrage aléatoire (AZAR
et al., 1994)), tandis que d’autres ajustent dynamiquement leurs choix en fonction de probabilités influen-
cées par I’état du systeme. Par exemple, I’algorithme d’échantillonnage aléatoire biaisé (RAHMEH et al.,
2008) réalise une marche aléatoire sur un graphe représentant les ressources, tout en favorisant celles qui sont
sous-utilisées pour I’affectation des tiches. De plus, certaines approches plus avancées utilisent des méthodes
bio-inspirées adaptées a 1’équilibrage de charge, comme 1’optimisation par colonies de fourmis (KATYAL &
MISHRA, 2013; LI et al., 2011 ; LIU et al., 2006) ou par comportement de recherche de nectar des abeilles
(KATYAL & MISHRA, 2013 ; RANDLES et al., 2010; SESUM-CAVIC & KUHN, 2010a, 2010b). Le premier al-
gorithme utilise des agents artificiels qui laissent des traces numériques pour influencer les décisions des agents
suivants, tandis que le deuxiéme biaise 1’exploration de 1’environnement par un partage des chemins explorés
par les agents prédécesseurs pour les recherches futures. Bien que ces méthodes offrent une adaptabilité accrue,
elles présentent un cofit computationnel potentiellement plus élevé et peuvent nécessiter un ajustement précis

des parametres pour garantir une convergence efficace vers une solution optimale.

2.1.3.3 Adaptabilité

L’ adaptabilité désigne la capacité d’un algorithme d’équilibrage de charge a ajuster ses décisions en fonc-
tion des variations dynamiques de 1’environnement. Un algorithme est considéré comme adaptatif lorsqu’il
modifie son comportement en réponse aux fluctuations de charge entrante, aux variations de performance des
ressources ou aux événements imprévus tels que des pannes ou des pics de trafic. Cette capacité d’adaptation
est souvent liée a la scalabilité, qui désigne la maniere dont 1’algorithme maintient ses performances lorsqu’il
est confronté a une augmentation du nombre de ressources ou de taches a traiter.

Les méthodes d’adaptation reposent sur différentes approches. Certaines stratégies, comme la moindre

connexion (MUSTAFA, 2017) ou les stratégies a seuils (PAI et al., 1998; QIN et al., 2021, 2023a, 2023b),
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réagissent directement a 1’état instantané du systeme en ajustant la répartition des tiches de maniere réactive.
D’autres algorithmes exploitent des techniques d’apprentissage automatique, ol une rétroaction en temps réel
permet d’améliorer progressivement la prise de décision. Enfin, des approches inspirées de la biologie et des
systemes multi-agents, comme 1’optimisation par colonies de fourmis (KATYAL & MISHRA, 2013; L1 et al.,,
2011; L1u et al., 2006), I’optimisation par essaims de particules (Particle Swarm Optimization) (KENNEDY &
EBERHART, 1995; RAHMEH et al., 2008) ou le comportement de recherche de nectar par les abeilles (KATYAL
& MISHRA, 2013 ; RANDLES et al., 2010 ; SESUM-CAVIC & KUHN, 2010a, 2010b), utilisent des mécanismes
d’auto-organisation pour répartir dynamiquement la charge.

L’ objectif principal de 1’adaptabilité est d’assurer un bon niveau de performance face aux imprévus, ce qui
est directement lié a la robustesse de 1’algorithme, un concept approfondi en Section 2.2.3. Toutefois, certains
algorithmes restent statiques et n’intégrent aucune forme d’adaptation. C’est notamment le cas du tourniquet
(HIDAYAT et al., 2020), qui applique une regle fixe en assignant les tdches en séquence, sans prise en compte de
I’état du systeme. Dans des environnements hautement prévisibles et stables, ces algorithmes peuvent s’ avérer
suffisants, voire préférables, car ils offrent une simplicité de mise en ceuvre et un faible colit computationnel,
1a ot I’introduction d’une adaptabilité complexe ne serait pas nécessaire. Cependant, leur manque de flexibilité
peut poser probleme lorsqu’une scalabilité efficace est requise pour gérer une augmentation de la taille du

systeme. Les stratégies décentralisés offrent notamment de meilleurs résultats dans ce genre de situation.

2.1.3.4 Approche décisionnelle

L approche décisionnelle d’un algorithme d’équilibrage de charge désigne la maniere dont les décisions
sont prises et justifiées. Ce critere repose sur la méthodologie employée pour sélectionner la ressource cible
lors de la répartition des charges. On distingue principalement deux grandes familles : les approches basées sur

des regles explicites et celles qui reposent sur I’apprentissage et 1’adaptation dynamique.

A base de régles Les approches basées sur des régles reposent sur des décisions prises a partir de critéres
prédéfinis, qui peuvent étre statiques ou dynamiques, selon qu’elles prennent ou non en compte 1’état courant
du systeme. Elles offrent I’avantage d’étre simples a implémenter et de nécessiter peu de ressources computa-
tionnelles, mais leur rigidité peut les rendre moins efficaces dans des environnements a forte variabilité.

Les regles statiques définissent un comportement immuable, ou les décisions sont prises selon des regles
fixées a I’avance, indépendamment de 1’évolution de la charge ou des ressources disponibles. Elles conviennent
particulierement aux environnements stables et prévisibles, ol les variations sont limitées. Un exemple typique
est 'algorithme du tourniquet (HIDAYAT et al., 2020), qui distribue les tiches de maniere cyclique entre les
ressources, garantissant une répartition équitable mais sans tenir compte de la charge réelle. Sa variante, le
tourniquet pondéré (DEVI & UTHARIARAJ, 2016), ajuste la distribution en fonction de poids attribués aux
ressources, mais sans adaptation en temps réel.

A T’inverse, les regles dynamiques adaptent les décisions en fonction de I’état courant du systéme, bien
qu’elles ne modifient pas leurs propres criteres d’évaluation au fil du temps. Elles se basent généralement

sur des heuristiques locales, exploitant des métriques telles que la charge des ressources ou leur capacité de
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traitement. Par exemple, I’algorithme de la moindre connexion (MUSTAFA, 2017) attribue systématiquement
les nouvelles taches a la ressource la moins sollicitée au moment de la décision. De méme, les stratégies a
seuils (PAT et al., 1998; QIN et al., 2021, 2023a, 2023b) redistribuent la charge lorsque certaines ressources
atteignent un niveau d’utilisation critique, permettant un équilibrage réactif. Une autre approche de ce type
est I’échantillonnage aléatoire biaisé (RAHMEH et al., 2008), qui utilise un processus aléatoire pour explorer
plusieurs ressources voisines avant d’attribuer une tiche. Bien que 1’exploration repose sur de 1’aléatoire, la
décision finale est guidée par une régle heuristique : la tache est affectée a la ressource rencontrée ayant la plus
faible charge. D’autres approches comme First-Fit et Best-Fit appliquent des regles spécifiques : le premier
affecte la tiche a la premiere ressource disponible, tandis que le second sélectionne celle qui offre I’ajustement
optimal en fonction de criteres définis.

Bien que ces stratégies dynamiques offrent une meilleure réactivité que les méthodes statiques, elles restent
limitées par I’absence d’apprentissage : elles s’adaptent instantanément aux changements mais ne réévaluent
pas leur propre logique au fil du temps. Cette distinction sera essentielle pour différencier ces approches des

méthodes apprenantes, plus flexibles mais également plus coliteuses en ressources computationnelles.

Apprentissage et adaptation dynamique Contrairement aux méthodes reposant sur des regles fixes, les ap-
proches basées sur I’apprentissage et 1’adaptation dynamique ajustent leurs décisions en fonction des données
collectées au fil du temps. Ces méthodes ne se limitent pas a des heuristiques prédéfinies mais modifient pro-
gressivement leur comportement en réponse aux évolutions de 1’environnement. Elles sont particulierement
adaptées aux systemes complexes et dynamiques, ol la variabilité des charges et des ressources rend inefficace
I’usage de regles rigides.

L’ apprentissage peut étre réalisé selon différentes stratégies. Les modeles d’apprentissage supervisé uti-
lisent des données historiques pour entrainer un modele capable de prédire la meilleure allocation des taches
(GURES et al., 2022). Les approches par apprentissage par renforcement permettent quant a elles aux algo-
rithmes d’ajuster leurs décisions via un processus d’essais et d’erreurs, en maximisant une récompense définie,
comme 1’optimisation du temps de réponse ou I’équilibrage des charges entre ressources (MUTHUSAMY &
DHANARAJ, 2023). Des techniques comme les réseaux de neurones profonds (Deep Learning) (KAUR et al.,
2020; YADAV et al., 2021) et les machines a vecteurs de support (Support Vector Machines) (RADHIKA &
DURAIPANDIAN, 2021) sont souvent employées pour détecter des tendances complexes dans la charge du sys-
teme. La mise en place de tels modeles nécessite un entrainement préalable généralement trés coliteux en temps
et en ressources, mais il peut toutefois étre poursuivit en ligne afin de faire évoluer le modele en fonction du
systeme.

Par ailleurs, des stratégies qui reposent sur des modeles d’intelligence collective et d’auto-organisation,
s’inspirent des dynamiques naturelles. Ces approches bio-inspirées adaptées a 1’équilibrage de charge décen-
tralisé, comme 1’optimisation par essaims de particules (KENNEDY & EBERHART, 1995; RAMEZANTI et al.,
2014), les algorithmes basés sur le comportement des colonies de fourmis (KATYAL & MISHRA, 2013 ; LT et
al., 2011 ; L1uetal., 2006) ou celui des abeilles butineuses (KATYAL & MISHRA, 2013 ; RANDLES et al., 2010;

SESUM-CAVIC & KUHN, 2010a, 2010b), permettent aux ressources de prendre des décisions localement, tout
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en contribuant a un équilibrage émergent du systeme. Les stratégies multi-agents, oll chaque ressource agit en
fonction de son propre apprentissage et de son interaction avec ses voisines, offrent notamment une prise de
décision adaptative et dynamique.

L’avantage principal de ces méthodes réside dans leur capacité d’adaptation aux variations imprévues du
systeme, permettant un équilibrage efficace méme en conditions incertaines. Cependant, elles impliquent un
colit computationnel plus élevé que les méthodes basées sur des regles, et nécessitent parfois une phase d’entrai-
nement avant d’atteindre une performance optimale. En outre, les différentes approches décisionnelles peuvent
étre mélangées : une méthode basée sur des regles peut étre couplée a de 1’apprentissage pour modifier ses

parametres d’exécution selon I’état du systéme par exemple (seuils, criteres d’optimalité des ressources, etc.).

2.2 Métriques de performance

L’équilibrage de charge joue un role fondamental dans 1’optimisation des performances des systemes in-
formatiques. Qu’il s’agisse de serveurs, d’architectures cloud, de systeémes embarqués ou de composants élec-
troniques, I’efficacité d’un mécanisme d’équilibrage repose sur sa capacité a répartir la charge de maniere op-
timale, en tenant compte de divers criteéres de performance. Chaque stratégie d’équilibrage de charge possede
des objectifs spécifiques qui influencent son adoption dans les systemes nécessitant un tel mécanisme.

Pour évaluer la pertinence et I’efficacité d’une stratégie d’équilibrage, plusieurs métriques de performance
sont utilisées. Ces métriques permettent de mesurer la rapidité d’exécution des requétes, la charge des res-
sources, 1’équité de répartition ou encore la robustesse du systeéme face aux variations de charge. A ces aspects
classiques s’ajoute aujourd’hui une préoccupation croissante pour 1’efficacité énergétique, notamment dans le
contexte des centres de données et des systemes a grande échelle.

Cette section présente les principales métriques utilisées pour évaluer les systemes d’équilibrage de charge
(BELGAUM et al., 2020; JADER et al., 2019; MISHRA et al., 2020; ROY et al., 2019), que ’on peut regrou-
per en deux catégories complémentaires : métriques classiques et spécifiques a I’équilibrage de charge. Nous
examinerons d’abord les métriques classiques, telles que le temps de réponse, le débit et 1’utilisation des res-
sources. Ces indicateurs, couramment employés pour évaluer la performance de tout systeme informatique,
permettent de mesurer son efficacité globale, indépendamment de 1’intégration d’un mécanisme d’équilibrage
de charge. Nous aborderons ensuite les métriques spécifiques a I’équilibrage, comme 1’équité de répartition, le
taux de migration de charge et la scalabilité. Celles-ci sont congues pour analyser la maniere dont une solution
d’équilibrage influence la distribution de la charge et 1’adaptabilité du systeme face aux variations de demande.
Un bon mécanisme d’équilibrage doit non seulement améliorer les métriques classiques (en réduisant le temps
de réponse et en optimisant 1’utilisation des ressources), mais aussi limiter les effets négatifs mesurés par les
métriques spécifiques, tels qu’un nombre excessif de migrations de charge ou la surcharge de certains noeuds.
Enfin, nous nous intéresserons aux métriques de robustesse, qui occupent une place privilégiée dans nos tra-
vaux. Ces indicateurs permettent d’évaluer la capacité d’un systeme & faire face aux pannes et aux pics de
charge, des enjeux cruciaux pour les infrastructures modernes, ou la continuité de service et la stabilité sont

primordiales.
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2.2.1 Métriques classiques

L’évaluation des performances d’un systeéme informatique repose sur des mesures fondamentales permet-
tant d’analyser son efficacité globale. Ces métriques classiques sont indépendantes des mécanismes d’équi-
librage de charge et sont utilisées pour mesurer la réactivité, la capacité de traitement et I’exploitation des
ressources d’un systeme, qu’il soit centralisé ou distribué.

Dans le contexte de 1’équilibrage de charge, ces indicateurs restent essentiels, car un bon mécanisme d’équi-
librage doit non seulement répartir efficacement la charge, mais aussi améliorer les performances globales du
systeme. Un temps de réponse réduit, un débit élevé et une utilisation optimale des ressources sont autant de cri-
teres qui garantissent un fonctionnement fluide et performant. Ces aspects influencent directement 1’expérience
utilisateur et les temps de calcul, en assurant des interactions rapides, une latence minimale et une stabilité
accrue du service.

Cette section examine les principales métriques classiques. Nous commencerons par le temps de réponse,
qui reflete la rapidité du systeme a traiter les requétes, avant d’aborder le débit, indicateur clé de sa capacité
de traitement. Nous nous pencherons ensuite sur 1’utilisation des ressources, qui permet d’évaluer 1’efficacité
d’exploitation des composants matériels. Enfin, nous étudierons la consommation énergétique, un critere direc-
tement li¢ a ’utilisation des ressources, qui est de plus en plus crucial dans 1’optimisation des infrastructures

modernes.

2.2.1.1 Temps de réponse

Le temps de réponse, aussi qualifié de latence du systeme ou de qualité de service (QoS), correspond au
temps total que met le systeme a fournir un résultat lors d’une requéte. Cette métrique est particulierement
importante pour le web. Jakob Nielsen a partagé dans le chapitre 3 de son livre Usability engineering (1993)
trois limites principales de temps de réponse (¢7) pour les interfaces utilisateur (NIELSEN, 1993) :

— tr < 0,1 seconde : réponse percue comme instantanée ;

— 0,1 < tr < 1 seconde : perte de la sensation d’instantanéité, mais le flux de pensée de I’utilisateur reste

ininterrompu ;

— 1 < tr <10 secondes : attente encore acceptable, mais nécessite un indicateur visuel ; perte de I’atten-

tion de I’utilisateur au-dela.
De nos jours, les utilisateurs ont tendance a abandonner la navigation d’un site web présentant un temps de
réponse de plus de 3 secondes pour afficher une page. Google conseille un temps de réponse maximum de
2,5 secondes pour ’affichage du contenu principal, peu importe I’appareil utilisé (« Largest Contentful Paint
| Lighthouse », 2020), sans quoi la perte d’utilisateurs due a 1’attente augmente fortement. Cette limite de
rétention tend a diminuer avec le temps, en adéquation avec la recherche d’instantanéité par la société et la
réduction du niveau de concentration des nouvelles générations.

Le temps de réponse englobe plusieurs métriques plus précises qui interviennent de maniere successive tout
au long du processus d’interaction avec le systeéme. En premier lieu, le temps de transmission de la requéte,

qui comprend la latence du réseau, le processus de sélection du serveur par le systeme d’équilibrage de charge
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(dont I’efficacité dépend de la stratégie adoptée) ainsi que le délai d’attente avant traitement, lequel est influencé
par la charge et la capacité du serveur choisi. Cette premiere métrique souligne I’importance d’un systeme
d’équilibrage de charge performant, car celui-ci influence directement le temps de réponse global du systeme.
Ensuite, le temps consacré au traitement de la requéte par le serveur, qui inclut le temps de lecture des données,

est pris en compte. Enfin, la latence associée a la communication de la réponse est également intégrée.

2.2.1.2 Débit

Le débit est une mesure clé de la performance d’un systeme, représentant la quantité de travail achevé par
unité de temps. Exprimé sous la forme D = %, ou N est la quantité de travail achevé (exprimé en nombre de
taches, requétes, opérations, etc.) et T la période d’observation (généralement en secondes), le débit reflete la
capacité du systeéme a absorber une charge de travail donnée.

Le débit et le temps de réponse sont étroitement liés, puisque le second influence directement le premier.
Une réponse rapide permet de pouvoir traiter plus de tiches dans un laps de temps donné. Toutefois, un débit
élevé n’implique pas nécessairement un temps de réponse faible. Un systeme peut traiter un grand nombre de
taches tout en ayant des temps de réponse longs si celles-ci sont mises en attente ou s’il y a de la latence de
communication par exemple. Un bon mécanisme d’équilibrage de charge vise donc a maximiser le débit tout
en maintenant un temps de réponse faible en exploitant pleinement la capacité disponible du systeme par une

répartition efficace de la charge.

2.2.1.3 Utilisation des ressources physiques

L utilisation des ressources, au centre des performances des systeémes informatiques, correspond a la pro-
portion (généralement exprimée en pourcentage) dans laquelle un systeme exploite ses ressources matérielles
et logicielles (processeur, mémoire, réseau, stockage, etc.). Cette métrique permet d’évaluer ’efficacité de 1’al-
location des ressources et d’identifier les éventuels goulets d’étranglement pour limiter leur impact sur les
performances du systeme.

Une utilisation optimale des ressources signifie qu’elles sont exploitées efficacement sans étre sous-utilisées
(potentiel gaspillé, inefficacité énergétique) ni surchargées (dégradation des performances, augmentation du
temps de réponse). Dans un systéme bien équilibré, I’utilisation des ressources doit étre homogene pour éviter

qu’un goulet d’étranglement n’affecte ses performances, et donc la qualité de service.

2.2.1.4 Consommation énergétique

La consommation énergétique des infrastructures et services cloud constitue un enjeu majeur du monde
numérique moderne. Avec la multiplication des services et la demande croissante en puissance de calcul, la
consommation énergétique des centres de données et systemes distribués augmente chaque année, entrainant
une hausse des cofits d’exploitation et une empreinte carbone accrue. Cette tendance souleve des défis a la fois
économiques et environnementaux, nécessitant des solutions efficaces pour limiter I’impact énergétique des

systemes informatiques.
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La consommation d’énergie est généralement exprimée en joules (J) ou en watts-heures (Wh). Une autre
métrique couramment utilisée est la puissance moyenne consommée (W) sur une période donnée. Dans le
contexte des centres de données et systémes distribués, la consommation d’énergie est souvent évaluée via des
indicateurs comme I’efficacité d’utilisation de 1’énergie (MALONE & BELADY, 2006) (Power Usage Effective-
ness, PUE), qui mesure 1’efficacité énergétique globale d’un centre de données. La mesure est un ratio entre la

consommation totale de I’infrastructure informatique du centre (serveurs, stockage et conversion de 1’énergie,

énergie totale

énergie serveurs Une valeur

systemes de refroidissement) et uniquement celle utilisée par ses serveurs : PUE =

proche de 1 signifie une utilisation efficace de 1’énergie.

Une autre métrique couramment utilisée pour évaluer 1’efficacité énergétique des systemes est le produit
énergie-délai (Energy-Delay Product, EDP) (GONZALEZ & HOROWITZ, 1996). Celui-ci établit un compromis
entre la consommation énergétique et le temps de réponse, permettant ainsi d’évaluer I’impact des optimisations
sur ces deux aspects. Le produit énergie-délai est défini comme suit : EDP(J - s) = E(J) x D(s), ou E(J)
est la consommation d’énergie en joules et D(s) le temps de réponse en secondes. Une valeur faible du produit
est souhaitable, car elle indique un compromis optimal entre efficacité énergétique et temps de réponse. Une
diminution de la valeur indique une amélioration du systeéme, soit en réduisant sa consommation d’énergie a
délai constant, soit en accélérant I’exécution sans surcofit énergétique, soit en améliorant les deux facteurs a
la fois. A I’inverse, une augmentation de la valeur traduit une détérioration des performances, impliquant soit
une consommation excessive, soit un allongement du temps de réponse, soit les deux. Lorsque le produit reste
constant malgré des ajustements, cela signifie que les gains réalisés sur un facteur sont compensés par une

dégradation équivalente de 1’autre.

De nombreux travaux de recherche, tels que HASAN et al. (2017), KATAL et al. (2023), LEE et ZOMAYA
(2012), LIN et al. (2018) et UCHECHUKWU et al. (2014), se focalisent sur la modélisation de la consommation
énergétique des infrastructures cloud afin d’identifier les principaux leviers d’optimisation. Etant étroitement
liée a I'utilisation des ressources, la consommation énergétique peut étre réduite grace a des améliorations a
la fois matérielles et logicielles. Les optimisations matérielles visent a améliorer 1I’efficacité énergétique des
composants en ajustant dynamiquement la tension et la fréquence des processeurs (Dynamic Voltage and Fre-
quency Scaling), a optimiser la gestion de la mémoire et du stockage (réduction des acces en lecture/écriture),
et a adopter des systemes de refroidissement plus efficients pour limiter la dissipation thermique. Les optimi-
sations logicielles, quant a elles, interviennent a plusieurs niveaux, notamment a travers la virtualisation des
serveurs, qui permet une meilleure mutualisation des ressources, 1’optimisation des programmes pour réduire
leur demande en calcul et en mémoire, ainsi que I’intégration d’algorithmes d’équilibrage de charge visant a
répartir intelligemment la charge tout en minimisant la consommation énergétique. L’ objectif est de trouver un
compromis entre performance, qualité de service et efficacité énergétique. Par ailleurs, 1’ utilisation d’énergies
renouvelables constitue un levier supplémentaire dans cette démarche. Des entreprises comme Google se sont
engagées dans cette voie, avec I’ambition d’alimenter leurs centres de données exclusivement en énergie verte

d’ici 2030 (« Un fonctionnement écoresponsable - Centres de données Google », s. d.).

Dans ce contexte, les mécanismes d’équilibrage de charge jouent un role clé en répartissant intelligemment
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la charge de travail pour éviter la surcharge de certains nceuds, réduire la consommation énergétique globale
et améliorer I’efficacité des infrastructures. Une approche bien congue permet ainsi de trouver un compromis

entre performance, cofits et impact environnemental.

2.2.2 Métriques spécifiques

Si les métriques classiques (temps de réponse, débit, utilisation des ressources, etc.) permettent d’évaluer la
performance globale d’un systeme, elles ne suffisent pas a mesurer ’efficacité des mécanismes d’équilibrage de
charge. En effet, un bon équilibrage ne se limite pas a garantir de bonnes performances en termes de rapidité et
d’efficacité, mais il doit aussi assurer une répartition optimale de la charge, une gestion efficace des migrations
de tiches et une scalabilité performante.

Dans cette section, nous introduisons des métriques spécifiques a 1’équilibrage de charge, congues pour
évaluer les performances des algorithmes et stratégies de répartition. Nous commencerons par 1’équité de ré-
partition de la charge, qui correspond au degré d’uniformité dans la distribution des taches entre les ressources.
Nous continuerons avec le taux de migration de charge, qui quantifie la fréquence et le cofit des transferts de
charge entre les ressources. Enfin, nous nous intéresserons a la scalabilité, qui évalue la capacité du systeme a
s’adapter efficacement a I’augmentation de la charge, ou a 1’ajout de nouvelles ressources sans dégradation des

performances.

2.2.2.1 Equité de répartition de la charge

L’équité de répartition de la charge est une métrique qui sert a mesurer le degré d’uniformité dans la distri-
bution du travail entre les différentes ressources du systeéme. L’ objectif derriere 1'utilisation de cette métrique
est de détecter un déséquilibre dans 1'utilisation des ressources pour identifier une surcharge (dégradation des
performances et allongement du temps de réponse) ou une sous-utilisation (gaspillage des capacités dispo-
nibles) de certaines ressources. Un systeme d’équilibrage de charge efficace doit tendre vers une distribution
équitable afin d’optimiser a la fois les performances et I’utilisation des ressources.

La méthode de mesure d’équité la plus courante est I’indice de Jain (JAIN et al., 1984), qui propose une
mesure répondant mieux a 1’objectif (évaluer I’équité de distribution) que des mesures plus classiques comme

la variance ou le coefficient de variation (Y2Uance

). L'indice propose une valeur allant de 0 a 1 et se calcule de

moyenne
la maniére suivante :
N
(Z Li)?
J= % 2.1)

NY L}
i=1

ou N est le nombre de ressources et L; la charge (Load) de la ressource 7 et J € [%, 1]. Lorsque J est proche
de 0, la distribution de la charge est fortement déséquilibrée, tandis que lorsque J = 1, la charge est répartie
de maniere parfaitement équitable. Cependant, I’indice a pour but d’étre utilisé en environnement homogene

(ressources uniformes); il ne prend pas en compte les potentielles variances de capacités entre les ressources.
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Prenons I’exemple de deux ressources A et B pour lesquelles Cy =4, Cp =2et Ly = L = 3 : I’indice de
Jain aurait une valeur de 1 (égalité parfaite du nombre de tiches entre les ressources), bien que la ressource B
soit chargée a 150% de sa capacité et la ressource A ne soit qu’a 75%.

L’indice peut toutefois étre adapté en pondérant la charge des ressources par leur capacité comme suit :

Jy= =L (2.2)

ou C; est la capacité de la ressource 7. L’indice indique alors une équité parfaite lorsque la proportion de charge
par rapport a la capacité est identique pour toutes les ressources. On peut différencier les deux indices : la
forme initiale mesure 1’égalité de la répartition (charge identique sur toutes les ressources), tandis que la forme
pondérée en mesure réellement 1’équité (charge proportionnelle a la capacité des ressources). Si I’on reprend
I’exemple précédent, I’indice est alors J, = 0,9.

Le Tableau 2.2 propose une série de scénarios de répartitions de charge avec les deux indices (d’égalité
et d’équité) calculés. On peut voir que méme si I’indice de Jain initial indique une équité parfaite, sa forme
pondérée en est trés éloignée dans certains cas (scénario 3). A I'inverse, lorsque 1’équité est parfaite propor-

tionnellement aux capacités, I’indice non pondéré ne I’indique pas forcément (scénario 5).

2.2.2.2 Migration de la charge

La migration de la charge correspond a la redistribution dynamique des taches entre les ressources d’un
systeme. Elle ne concerne que les systemes présentant de 1’adaptabilité; les algorithmes tels que le Round
Robin en sont complétement dépourvus par exemple. Plusieurs métriques permettent d’évaluer 1’efficacité de
cette migration : le nombre de migrations, et le temps et le cofit d’une migration. Cet ensemble de métriques
permet de mesurer ’efficacité du systeme a répartir efficacement les tiches pour s’adapter a la charge.

Le nombre de migrations correspond a la longueur du trajet des tiches (nombre de sauts d’une ressource
a une autre) dans le systéme pour trouver leur ressource de traitement. Un trajet long indique que le systeme
peine a trouver une destination pour la tache, impliquant une dépense énergétique plus élevée et un temps de
réponse allongé.

Le temps de migration quantifie la durée nécessaire pour transférer une tache d’une ressource a une autre.
Dans certaines études il correspond a une étape de migration, tandis pour d’autres la métrique correspond au
temps total de transfert d’une tache vers une ressource adéquat (possibles migrations multiples). Les migrations
pouvant survenir au niveau des instances virtuelles (grace a la virtualisation des serveurs) mais également au
niveau physique (entre machines), le temps de migration dépend de plusieurs facteurs, tels que la taille des
données a transférer et la latence réseau. Un temps de migration trop long peut retarder 1’exécution des tiches
et impacter les performances globales du systeme, notamment son temps de réponse.

Le cofit de migration mesure les cofits computationnels et communicationnels d’une migration entre deux
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Scénario 1 : charge = capacité = 1
Ressource | 1 |2 |3 |4 |5|6|7 |89 ]| 10 | Indice | Indice pondéré
Charge ry1 (1|11 y1p1}j1 11
Capacité |1 (1 |1 |1 |1 |1 [1]1]1]1

1 1

Scénario 2 : charge fixe faible, capacité simple et double

Ressource | 1 [ 2|3 [4|5|6|7|8]9]| 10 | Indice | Indice pondéré
Charge 1y1 (1|11 {1}j1}j1|1}1
Capacité |1 |1 |1 |1 |1 |2|2[2]2] 2

1 0,9

Scénario 3 : charge fixe élevée, capacité simple et quintuple

Ressource | 1 |2 |3 (4 |5(6|7|8|9] 10 | Indice | Indice pondéré
5
1

Charge |5 |5 51515155515
Capacité | 1 | 1 1|{1]5|5]|5|5]| 5

1 ~ 0,69

Scénario 4 : charge et capacité inversées

Ressource | 1 |2 |3 (4 |5]6|7|8]9| 10| Indice | Indice pondéré
Charge |3 (3 (3|22 |2|1|1|1] O

Capacité | 1 |1 |1 |2 ]|2]2|3|3|3]| 4

~ 0,77 ~ 0,56

Scénario 5 : charge = capacité
Ressource | 1 |2 |3 |4 |56 |7 |8|9]| 10| Indice | Indice pondéré

Charge 112(314[5]6[7(8]9]10
Capacité |1 |2 |3 |4 |5]6]|7]8]9]10

~ 0,79 1

TABLE 2.2 — Exemples de scénarios de distribution de charge sur 10 ressources. Pour chaque exemple, I’indice
de Jain et sa version pondérée sont proposés afin de mettre en évidence 1’apport de précision de la pondération.

ressources du systeme. Les cofits sont généralement quantifiés en termes de temps, d’impact sur les perfor-
mances des ressources (utilisation supplémentaire du processeur et de la mémoire) et d’énergie consommée
pour réaliser la migration. Selon la quantification, la mesure est impactée par divers facteurs tels que la latence

réseau, la taille des données a lire, écrire et communiquer, ou encore la charge actuelle des ressources.

2.2.2.3 Scalabilité et adaptabilité

La scalabilité et I’adaptabilité sont deux métriques qui permettent de mesurer la capacité du systeme d’équi-
librage a faire face a des changements dans son environnement. La scalabilité se concentre sur la mesure du
passage a I’échelle de la charge ou du nombre de ressources, tandis que 1’adaptabilité quantifie la maniere dont
le systeme réagit a une surcharge ou a une panne par exemple. Il n’existe pas de maniere précise de calculer ces
métriques comme les précédentes. Elles s’évaluent plutdt par I’analyse de I’évolution d’autres métriques telles
que le débit, le temps de réponse et 1’équité de répartition.

Pour mesurer la scalabilité, il est par exemple possible de mesurer la différence du débit et du temps de
réponse entre avant et apres une mise a 1’échelle de 1’environnement (augmentation conséquente de la charge ou
des ressources). L’ objectif est alors d’avoir un débit qui corresponde au nouvel environnement et de conserver

un temps de réponse faible. Un systeme d’équilibrage qui n’est pas scalable peinera a dispatcher la charge
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efficacement, ce qui augmentera le temps de réponse.

L’adaptabilité, quant a elle, peut étre mesurée par le temps que prend le systeme a retrouver un état d’équi-
libre, apres une perturbation (panne d’une ressource ou surcharge). Elle peut notamment étre quantifiée par
I’évolution de 1’équité de la répartition de la charge entre avant et apres la perturbation. L’ objectif des sys-
temes d’équilibrage adaptatifs est de réagir rapidement et efficacement aux événements inattendus qui peuvent
survenir.

Un bon systeme d’équilibrage doit étre scalable et adaptable afin de fournir de bonnes performances peu

importe la situation. Ces métriques sont notamment directement liés aux concept de robustesse et de résilience.

2.2.3 La robustesse

La robustesse est une métrique essentielle pour évaluer la capacité d’un systeme d’équilibrage de charge
a maintenir ses performances face a des perturbations, des pannes ou des variations imprévues de la charge.
Un systeme robuste doit étre capable de continuer a fonctionner efficacement méme en cas de défaillance de
certaines ressources ou de pics de demande. Cette section explore les différentes dimensions de la robustesse

et les possibilités pour 1’évaluer.

2.2.3.1 Définition

De maniere générale, la robustesse désigne la capacité d’un systeme a préserver ses fonctions ou caractéris-
tiques essentielles malgré des perturbations internes ou externes. Cette propriété se manifeste dans de nombreux
domaines, des systémes biologiques aux infrastructures d’ingénierie, en passant par les réseaux complexes.

En biologie, la robustesse constitue une propriété fondamentale des systemes évolutifs complexes (KITANO,
2004). Elle permet aux organismes de survivre dans des environnements imprévisibles et de fonctionner malgré
des constituants potentiellement défaillants. Cette robustesse ne signifie pas I’'immuabilité du systeme, mais
sa capacité a maintenir certaines fonctions clés en s’adaptant de maniere flexible. Elle peut se traduire par
un retour a un état stable existant (attracteur) ou par une transition vers un nouvel attracteur préservant les
fonctions essentielles, ce qui s’apparente a une forme de résilience.

Dans les systemes informatiques et d’ingénierie, la robustesse correspond a la capacité de maintenir un
fonctionnement correct sur un large éventail de conditions, tout en dégradant ses performances de maniere
contrdlée au-dela de ces limites (GRIBBLE, 2001). Les approches basées sur la prévision exhaustive des scéna-
rios sont remises en question, car elles peuvent introduire une certaine fragilité par I’omission involontaire de
scénarios.

La théorie de la Tolérance Hautement Optimisée (HOT) (CARLSON & DOYLE, 2002) montre que les sys-
témes complexes sont souvent congus pour &tre tres robustes face aux perturbations fréquentes, mais vulné-
rables a celles qui sont rares (fragilité). Cette robustesse sélective repose souvent sur une grande complexité
interne, ce qui accroit la difficulté de gestion des risques.

Un compromis émerge alors entre robustesse, fragilité, performance et consommation de ressources. Un

systeme peut se révéler robuste dans certains cas, tout en étant extrémement vulnérable dans d’autres. Com-
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prendre ces compromis est crucial pour localiser les points de défaillance potentiels et mettre en ceuvre des

mécanismes de protection efficaces.

Dans le cas de I’équilibrage de charge, la robustesse se manifeste par la capacité du systeme a absorber des
hausses de charge imprévues (perturbations externes) ou des défaillances de ressources (perturbations internes).
Le systeme doit pouvoir encaisser une surcharge momentanée et revenir a un état stable. Lorsqu’une ressource
devient indisponible, la distribution de la charge doit étre ajustée pour limiter I’impact, au moins jusqu’a sa
remise en service. Toutefois, une surcharge extréme ou un nombre important de défaillances peut entrainer une

saturation ou un effondrement du systeéme. On retrouve ici la dualité robustesse/fragilité.

2.2.3.2 Evaluation

La robustesse d’un systéme s’évalue généralement en comparant un indice de performance avant et apres
une perturbation. Un systeme est dit robuste si cet indice varie peu, traduisant une stabilité fonctionnelle malgré

les perturbations. A I’inverse, une variation significative révele une incapacité a s’adapter efficacement.

Dans les travaux de HU et al. (2021), la robustesse est étudiée dans le contexte des réseaux électriques. Les
auteurs proposent un indice évaluant I’efficacité du réseau a acheminer 1’électricité des nceuds générateurs vers
les autres. Cet indice repose notamment sur la centralité d’intermédiarité électrique (electricity betweenness
centrality), une extension de la centralité d’intermédiarité classique (NEWMAN, 2005), qui prend en compte
I’ensemble des chemins possibles plutdt que seulement les plus courts. En simulant divers scénarios de dé-
faillance, les auteurs comparent les valeurs de I’indice avant et apreés perturbation pour en déduire la robustesse

du systeme.

Dans les systemes complexes fondés sur une structure en réseau, la robustesse est étroitement liée a 1’ar-
chitecture du graphe. Si la défaillance d’un seul nceud entraine une dégradation marquée de la connectivité —
et donc des performances —, le systeme est jugé peu robuste. Des indicateurs tels qu’une forte connectivité, un
coefficient de clustering élevé, une faible longueur moyenne des plus courts chemins et un petit diametre sont
généralement associés a une meilleure robustesse (ZHANG et al., 2015). Ainsi, dans les études de DEKKER et
COLBERT (2004) et ZHANG et al. (2015), la robustesse est mesurée en évaluant combien de nceuds peuvent

étre retirés avant que le réseau ne se fragmente en sous-graphes disjoints.

Dans le domaine informatique, la fiabilit¢ du matériel et du logiciel constitue également un indicateur clé
de robustesse. On utilise souvent des mesures telles que le temps moyen avant défaillance (Mean Time To
Failure) et le temps moyen entre deux défaillances (Mean Time Between Failures) (KRASICH, 2009). Le temps
de réparation ou de remplacement d’un composant défaillant (Mean Time To Repair) (MUHAMMAD RIDZUAN
& DJOKIC, 2019) est également déterminant. Ainsi, un systeme subissant peu de défaillances et capable d’y

remédier rapidement présente un niveau de robustesse élevé.
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2.3 Classification algorithmique

De nombreuses études, telles que KATYAL et MISHRA (2013), PATEL et al. (2016), JAFARNEJAD GHOMI
et al. (2017), KUMAR et KUMAR (2019), POURGHEBLEH et HAYYOLALAM (2020), SHAFIQ et al. (2022) et
KANELLOPOULOS et SHARMA (2022), proposent des analyses comparatives de diverses approches d’équili-
brage de charge. Chacune adopte un angle particulier pour classer et évaluer les méthodes proposées.

Dans cette section, nous proposons une classification algorithmique fondée sur I’environnement d’exécu-
tion des solutions. La Figure 2.6 présente cette taxonomie sous forme d’un arbre, permettant une visualisation
synthétique des grandes familles d’approches.

Nous commencerons par explorer les algorithmes congus pour des environnements statiques et ne nécessi-
tant pas d’adaptation, incluant les méthodes optimales et sous-optimales. Nous aborderons ensuite les environ-
nements dynamiques nécessitant de 1’adaptation, en distinguant les approches centralisées, semi-centralisées et
décentralisées ; ces dernieres pouvant intégrer ou non des mécanismes de coopération. Pour chacune de ces ca-
tégories, nous présenterons des exemples représentatifs afin d’illustrer les principes de fonctionnement propres

a chaque famille de solutions.

’ Algorithmes d’équilibrage de charge ‘

/

’ Environnement statique ‘ ’ Environnement dynamique ‘

’ Optimal ‘ ’ Sous-optimal ‘ ’ Centralisé ‘ ’ Semi-centralisé ‘ ’ Décentralisé ‘

’ Coopératif ‘ ’ Non-coopératif ‘

FIGURE 2.6 — Classification algorithmique des méthodes d’équilibrage selon le type d’environnement.

2.3.1 Equilibrage en environnement statique

Cette section est consacrée aux algorithmes congus pour un environnement statique. Par définition, un tel
environnement se caractérise par un nombre de ressources fixe et connu a 1’avance, tout comme leur capacité
de traitement. Dans certains cas, la charge de travail a répartir est elle aussi préalablement déterminée.

Dans ce cadre, plusieurs approches sont envisageables, que 1’on peut regrouper en deux grandes catégories :
les méthodes optimales et sous-optimales. Nous nous intéresserons d’abord aux solutions optimales, puis aux

stratégies sous-optimales.

2.3.1.1 Optimalité

L’optimalité des algorithmes d’équilibrage de charge est définie relativement a un critere de performance

spécifique, tel que la minimisation du temps de réponse, la maximisation du débit ou encore la réduction de
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I’écart de charge entre les ressources. Un algorithme dit optimal est formellement congu pour atteindre la
meilleure performance possible selon le critere retenu.

Ces algorithmes reposent en général sur des méthodes exactes, c’est-a-dire capables de garantir une solu-
tion optimale au probléme posé, notamment via de la programmation linéaire. Dans leurs travaux, PINAR et
AYKANAT (2004) recensent et améliorent plusieurs de ces approches, parmi lesquelles on trouve notamment la
programmation dynamique. Celle-ci consiste a décomposer le probleme global en sous-problémes plus simples,
dont les solutions optimales sont ensuite combinées pour obtenir une solution globale.

PINAR et AYKANAT (2004) explorent également des méthodes fondées sur la recherche paramétrique. Ces
approches visent a identifier les valeurs optimales de certains parametres clés du systeme (comme la capacité
des ressources ou la charge entrante) afin d’optimiser le comportement général. Enfin, les algorithmes d’amé-
lioration itérative sont aussi étudiés : ces méthodes partent d’une solution initiale, souvent fournie par une
heuristique, qu’elles affinent progressivement via des ajustements successifs.

L’ algorithme proposé par ROsS et YAO (1991) illustre bien cette approche d’optimisation globale. Il traite
a la fois I’équilibrage de la charge entre les ressources et 1’ordonnancement des tiches au sein de chaque
ressource. L’ordonnancement est modélisé comme un probleme de polymatroide, permettant de déterminer
une fonction de délai moyen propre a chaque ressource. Sur cette base, la répartition de la charge est formulée
comme un probléme d’optimisation non linéaire, dont la résolution vise a minimiser le temps de réponse moyen
du systeme.

De leur coté, TANTAWI et TOWSLEY (1985) s’intéressent également a la minimisation du temps de réponse
moyen, tout en prenant en compte les délais de communication au sein du réseau. Ils proposent deux algo-
rithmes. Le premier, fondé sur une étude paramétrique, analyse 1’évolution de la solution optimale en fonction
du temps de communication. Il examine notamment comment les roles des nceuds (sources, puits, neutres)
changent avec la variation de ce parametre. Le second, appelé algorithme au point unique, détermine la straté-
gie optimale d’équilibrage pour un ensemble donné de caractéristiques systeme. Il classe les nceuds selon leurs
propriétés de délai, identifie les groupes sources et puits, et calcule pour chacun la charge a allouer de maniere

optimale.

2.3.1.2 Sous-optimalité

La sous-optimalité désigne une classe d’algorithmes capables de produire des résultats satisfaisants, sou-
vent proches de I’optimal, voire dans certains cas optimaux, mais sans garantie formelle d’optimalité. Cette
catégorie englobe un large éventail d’approches, incluant les heuristiques, les métaheuristiques, ainsi que cer-
taines techniques d’apprentissage automatique.

Dans ces approches, certaines bénéficient d’'un encadrement théorique partiel : elles possédent une borne
d’approximation garantissant que la solution obtenue est située a une certaine distance de 1’optimum. C’est
notamment le cas des méthodes de List Scheduling (ARABNEJAD & BARBOSA, 2014), qui affectent les tiches
a la ressource la moins chargée au moment de leur arrivée, avec ou sans tri préalable, ou encore des schémas

d’approximation en temps polynomial (Polynomial Time Approximation Scheme) (CHEKURI & KHANNA,
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2005).

Les heuristiques constituent une sous-famille importante d’algorithmes sous-optimaux. Elles reposent sur
des regles prédéfinies simples et sont concues pour offrir des solutions rapides, au détriment de la garantie de
performance optimale. Leur atout principal réside dans leur efficacité computationnelle, ce qui les rend parti-
culierement adaptées aux contextes contraints en temps ou en ressources. En revanche, leur pertinence dépend
fortement de la qualité de la modélisation du probleme et de la connaissance préalable de 1’environnement,
nécessaire pour ajuster les regles de décision.

Parmi les heuristiques classiques, on peut citer le tourniquet (HIDAYAT et al., 2020), basé sur une répartition
cyclique des taches, les algorithmes Min-Min et Max-Min, qui priorisent respectivement les tiches les plus
courtes ou les plus longues, 1’affectation aléatoire (AZAR et al., 1994), et I’ordonnancement selon la charge
actuelle (List Scheduling) (ARABNEJAD & BARBOSA, 2014), qui affecte chaque tache a la ressource la moins
sollicitée a I’instant de sa soumission.

Certaines heuristiques plus élaborées, bien que plus coliteuses en temps de calcul, permettent d’atteindre
des performances nettement supérieures. Ces méthodes, généralement inspirées de la nature, appartiennent
souvent aux métaheuristiques. C’est une classe d’algorithme d’optimisation générale pouvant étre adaptée a
n’importe quel probleme d’optimisation. On peut notamment citer le recuit simulé (VAN LAARHOVEN &
AARTS, 1987), inspiré du processus de refroidissement des métaux, les algorithmes génétiques (MIRJALILI,
2019), qui simulent les mécanismes de sélection naturelle, les approches par colonies de fourmis (BIRATTARI &
DORIGO, 2000 ; BIRATTARI et al., 2002 ; BLUM, 2005 ; DORIGO et al., 2006) ou par comportement alimentaire
des abeilles (PHAM et al., 2005; YUCE et al., 2013), basées sur le comportement collectif des insectes, ou
I’optimisation par essaim de particules (KENNEDY & EBERHART, 1995; RAMEZANI et al., 2014).

Dans ce qui suit, nous présentons plusieurs de ces algorithmes. Nous commencerons par le tourniquet et ses
variantes, avant d’aborder plus en détail les approches inspirées par les comportements collectifs, notamment

ceux des colonies de fourmis et des abeilles.

Le tourniquet Le tourniquet (Round Robin) (HIDAYAT et al., 2020) est I'un des algorithmes d’équilibrage
de charge utilisant une heuristique des plus simples. Il repose sur une répartition cyclique des tches entre les
ressources disponibles. Le répartiteur maintient une liste ordonnée des ressources et distribue successivement
chaque nouvelle tiche a la ressource suivante dans la liste. Une fois la derniére ressource atteinte, 1’algorithme
reprend I’itération depuis le début de la liste, d’ol le nom de "tourniquet”. Ce mécanisme se base sur le principe
du premier arrivé, premier servi.

La Figure 2.7 illustre ce fonctionnement. L’équilibreur regoit un flux de taches qu’il répartit entre trois
ressources indexées. A chaque tiche assignée, 1’index de la ressource courante est incrémenté ; lorsqu’il atteint
la fin de la liste, il est réinitialisé a zéro.

Cette méthode est particulierement adaptée a des environnements homogenes et statiques, ou les ressources
présentent des capacités similaires et ou les tAches sont relativement uniformes. Elle suppose également que
les caractéristiques de la charge soient connues a 1’avance, permettant ainsi un dimensionnement adéquat du

systeme. En revanche, dés que les conditions d’exécution deviennent hétérogenes, que ce soit au niveau des
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Taches ,
Equilibreur
de charge

FIGURE 2.7 — Schématisation de 1’algorithme du tourniquet. L’équilibreur affecte la tiche entrante a la res-
source Res;, 7 étant incrémenté a chaque affectation de tache et remis a 0 lorsque toutes les ressources ont été
parcourues.

ressources ou des taches, I’algorithme montre ses limites. Ne tenant compte ni des performances des ressources
ni des spécificités des tiches, il peut entrainer une surcharge de certains nceuds et une dégradation globale des

performances.

Le tourniquet pondéré Le tourniquet pondéré (Weighted Round Robin) (DEVI & UTHARIARAJ, 2016)
constitue une extension naturelle du tourniquet classique. Son principal apport réside dans la prise en compte
des capacités relatives des ressources lors de la distribution des taches au cours d’un tour. Le tourniquet clas-
sique peut ainsi étre vu comme un cas particulier du tourniquet pondéré, dans lequel toutes les ressources
possedent une capacité identique.

Dans cette version pondérée, chaque ressource se voit attribuer un poids proportionnel a sa capacité, relati-
vement a la somme des capacités de I’ensemble des ressources. Plus ce poids est élevé, plus la ressource recevra
de taches durant un tour. Si I’on reprend la schématisation du tourniquet de la Figure 2.7, une ressource Res;
est associée a un poids p; = ¢;/ Y ¢k, ol ¢; est la capacité de la ressource. Par exemple, avec ¢g = 1, ¢; = 2 et
co = 1, les poids respectifs seront py = 0,25, p; = 0,5 et po = 0,25. Lors d’un tour, Res; recevra donc deux
fois plus de taches que Resy ou Reso. Le tableau 2.3 illustre cette répartition, et la Figure 2.8 présente 1’ordre

d’attribution des tiaches suivant : Resg — Res; — Res; — Ress.

’ ) ‘ Ci Di ‘ Téaches par tour (tourniquet pondéré) H Taches par tour (tourniquet) ‘
0] 11025 1 1
1|2 05 2 1
211|025 1 1

TABLE 2.3 — Récapitulatif de I’exemple d’application de 1’algorithme Weighted Round Robin avec comparai-
son a I’algorithme Round Robin.

Bien que cette méthode tienne compte des capacités pour répartir les charges de maniere équitable, elle
présente une inégalité temporelle dans la distribution : tant qu’une ressource n’a pas recu I’intégralité des tiches

qui lui reviennent selon son poids, I’algorithme continue de lui affecter des taches sans passer a la ressource
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taches .
Equilibreur
de charge

FIGURE 2.8 — Schématisation de I’exemple du tourniquet pondéré, ou Res; recoit deux fois plus de taches que
les autres ressources pendant le tour.

suivante. Ce comportement peut entralner une augmentation du temps de réponse, notamment lorsque des
taches attendent d’€tre traitées par une ressource fortement pondérée alors qu’une autre, moins sollicitée, est
disponible.

Pour répondre a cette limitation, KATEVENIS et al. (1991) ont introduit une variante appelée tourniquet
pondéré entrelacé (Interleaved Weighted Round Robin), développée initialement dans un contexte matériel.
L’idée principale est d’étaler I’ attribution des taches sur plusieurs cycles, au sein d’un méme tour, afin d’assurer
une meilleure répartition temporelle. Le nombre de cycles d’un tour correspond au maximum de taches a
attribuer a une ressource. Lors du cycle n, 1’algorithme ne considere que les ressources devant recevoir au
moins n tiches. Ainsi, toutes les ressources sont parcourues au premier cycle, seules celles ayant un poids
supérieur au deuxieme cycle, et ainsi de suite.

La Figure 2.9 illustre ce fonctionnement avec quatre ressources, dont Res; et Ress recoivent deux fois plus
de taches que les autres. Le tour complet se compose de deux cycles successifs : Resg — Res; — Resy —
Ress, puis Res; — Ress. L'étude de TABATABAEE et al. (2021) démontre une amélioration significative du

temps de réponse par rapport au tourniquet pondéré classique.

M R651 J‘ ReSS

Cycle 1 Cycle 2

Tour de tourniquet

FIGURE 2.9 — Exemple du parcours de quatre ressources par 1’algorithme du tourniquet pondéré entrelacé, ou
Res; et Ress attendent deux fois plus de tches que Resg et Ress.

Comme son prédécesseur, le tourniquet pondéré reste adapté a des environnements statiques. Toutefois,
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il s’avere plus pertinent lorsque les ressources sont hétérogenes, car il répartit les charges en fonction des
capacités. Néanmoins, cet algorithme ne prend toujours pas en compte les longueurs des taches ni les priorités
d’exécution. Bien qu’il constitue une amélioration notable du tourniquet de base, il demeure relativement limité

face a des scénarios plus complexes.

Optimisation par colonies de fourmis L’ optimisation par colonies de fourmis (Ant Colony Optimization)
(BIRATTARI & DORIGO, 2000 ; BIRATTARI et al., 2002 ; BLUM, 2005 ; DORIGO et al., 2006) est une méta-
heuristique bio-inspirée congue pour résoudre des problemes d’optimisation combinatoire. Elle s’inspire du
comportement collectif observé chez les colonies de fourmis lors de la recherche de nourriture. Dans la nature,
ces insectes laissent derriere eux des traces de phéromones qui guident leurs congéneres vers les sources d’ali-
mentation. Les chemins les plus courts, parcourus plus fréquemment, voient leur concentration en phéromones
augmenter, rendant ces trajets plus attractifs. Ce phénomeéne de communication indirecte, appelé stigmergie
(DORIGO et al., 2000; THERAULAZ & BONABEAU, 1999), conduit a I’émergence collective de solutions sa-
tisfaisantes, voire quasi-optimales.

Pour appliquer cette métaheuristique a un probleme donné, il est nécessaire de le modéliser sous forme d’un
espace de recherche défini par les parametres d’une fonction objectif a minimiser. L’ objectif de 1’algorithme
est de découvrir un ensemble de valeurs des parametres menant a une solution satisfaisante.

L’espace de recherche est exploré par des fourmis artificielles a travers une structure composée de trois
graphes superposés :

— Le graphe de construction G, est un graphe complet dont les sommets correspondent a toutes les

valeurs possibles pour chaque parametre.

— A partir de G, on construit le graphe d’état G, qui représente 1’ensemble des solutions (partielles ou
completes). Les sommets de G sont les solutions, tandis que les arétes définissent les régles de transition
entre elles.

— Enfin, une fonction de représentation r permet de générer un graphe de représentation G,., abstraction
de G, dans lequel chaque sommet —appelé phantasme— constitue une perception simplifiée d’un état de
G. Comme r est généralement non bijective, plusieurs états peuvent partager un méme phantasme, ce
qui réduit significativement la taille du graphe percu par les fourmis.

Ainsi, les fourmis interagissent avec 1’environnement pergu via GG, ot elles déposent des phéromones, tout en
évoluant réellement dans G pour assurer la construction de solutions réalisables.

L’algorithme commence par I’application d’un niveau initial de phéromones 7, sur tous les sommets de
G,.. Ce parametre, réglé de maniere empirique, joue un réle crucial dans le comportement de 1’algorithme : une
valeur trop élevée peut entrainer une convergence prématurée vers une solution sous-optimale, tandis qu’une
valeur trop faible ralentit I’ exploration.

La méthode est un algorithme itératif qui s’exécute jusqu’a ce qu’une condition d’arrét soit atteinte (nombre

maximal d’itérations, stagnation, ou convergence). Chaque itération se décompose en deux phases principales :

1. Construction des solutions : un ensemble de fourmis est déployé dans G,. Elles construisent incré-

mentalement des solutions completes en se déplagant de sommet en sommet. Le choix de la prochaine
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étape est effectué de maniere stochastique, influencé a la fois par la quantité de phéromones présentes
et par des informations heuristiques spécifiques au probleme (par exemple, une estimation de la qualité

d’un choix local).

2. Mise a jour des phéromones : apres que les fourmis ont construit leurs solutions, le graphe subit une
double mise a jour :
— Une évaporation des phéromones existantes, controlée par un taux p, permet d’éviter une domina-
tion trop rapide de certains chemins et encourage I’exploration continue.
— Une augmentation des phéromones est ensuite réalisée en ajoutant une quantité () de nouvelles
phéromones, proportionnelle a la qualité des solutions produites. Cette étape renforce les trajectoires

prometteuses et guide les fourmis futures vers les zones potentiellement optimales.

Ce double mécanisme permet d’équilibrer exploration et exploitation, et constitue le principe central de la
stigmergie algorithmique. Il permet a la colonie de converger vers des solutions efficaces sans supervision

centralisée.

Algorithme des abeilles L algorithme des abeilles (Bees Algorithm) (PHAM et al., 2005 ; YUCE et al., 2013)
est, tout comme 1I’approche par colonies de fourmis, une métaheuristique bio-inspirée issue de la famille de
Iintelligence en essaim. Il s’inspire du comportement collectif des abeilles a la recherche de nectar, dans
lequel certaines abeilles exploratrices prospectent I’environnement tandis que d’autres exploitent les zones les
plus prometteuses signalées par leurs congéneres.

Le principe repose sur une analogie entre 1’espace de recherche et un environnement floral a butiner. Chaque
point de cet espace représente une combinaison de parametres de la fonction objectif a optimiser. Le but de
I’algorithme est de découvrir progressivement les zones les plus “riches en nectar”, c’est-a-dire celles qui
fournissent les meilleures solutions a la fonction objectif.

L’algorithme fonctionne de maniere itérative, avec un ensemble fixe d’abeilles réparties entre deux types
de recherche : la recherche globale, pour explorer de nouveaux espaces, et la recherche locale, pour exploiter
les zones déja identifiées comme prometteuses.

Au début du processus, n sites de recherche sont générés aléatoirement dans 1’espace des solutions, chacun
étant occupé par une abeille. Une évaluation de la qualité de chaque site est ensuite réalisée a ’aide de la

fonction objectif. L’algorithme entre alors dans un cycle d’optimisation composé de quatre étapes principales :

1. Sélection des sites prometteurs : parmi les n sites visités, les m meilleurs sont retenus pour une
exploration approfondie. Ces sites sont classés en deux groupes : sites élites (les plus prometteurs) et

sites non-élites (ayant un bon potentiel, mais moindre).

2. Répartition des abeilles : des abeilles supplémentaires sont assignées aux sites sélectionnés pour mener
une recherche locale. Les sites élites recoivent un plus grand nombre d’abeilles afin de maximiser

I’exploration dans les zones les plus prometteuses.

3. Recherche locale : les abeilles affectées a un site échantillonnent 1’environnement immédiat en ex-

plorant 1égérement autour de la solution actuelle (modification des parametres). Parmi les nouvelles



34 CHAPITRE 2. EQUILIBRAGE DE CHARGE

solutions générées localement, la meilleure est retenue comme représentante du site, tandis que les
autres abeilles sont supprimées (une dynamique inspirée du processus de sélection dans les algorithmes
génétiques (MIRJALILI, 2019)). Si aucune solution meilleure n’est trouvée, le site est considéré comme

un optimum local (potentiellement global) et retiré de la recherche.

4. Recherche globale : les abeilles restantes (non affectées a un site prometteur) effectuent une exploration

aléatoire dans 1’espace global, générant de nouveaux sites comme lors de ’initialisation.

Ce processus est répété jusqu’a ce qu’un critere d’arrét soit atteint, par exemple un nombre d’itérations maximal
ou une amélioration négligeable de la solution.

Grace a I’alternance entre exploitation (recherche locale) et exploration (recherche globale), 1’algorithme
des abeilles parvient a converger vers des solutions de haute qualité tout en évitant de se figer dans des optima

locaux.

2.3.2 Equilibrage en environnement dynamique

Cette section s’intéresse aux algorithmes congus spécifiquement pour des environnements dynamiques,
dans lesquels la charge de travail est a la fois inconnue a priori et sujette a des fluctuations importantes dans
le temps, tout comme le nombre et les capacités des ressources disponibles. De telles caractéristiques rendent
les approches statiques inefficaces et exigent le recours a des stratégies d’équilibrage de charge adaptatives,
capables de réagir en temps réel aux évolutions du systeme.

Les solutions présentées sont classées selon leur architecture de prise de décision. Une distinction est opérée
entre les approches centralisées, semi-centralisées et décentralisées. Ces dernieres sont a leur tour subdivisées
en deux catégories : les approches coopératives, dans lesquelles les entités échangent des informations pour
coordonner leur comportement, et les approches non coopératives, ol chaque entité agit de maniere autonome,
sans coordination explicite avec les autres.

Nous commencerons par les algorithmes a décision centralisée, puis aborderons les approches semi-centralisées,
avant de détailler les méthodes décentralisées, en distinguant successivement les variantes coopératives et non

coopératives.

2.3.2.1 Centralisation

Les algorithmes centralisés regroupent I’ensemble des stratégies dans lesquelles la prise de décision est
assurée par une entité unique. Cette entité centrale, souvent qualifiée de contrdleur ou répartiteur, interagit
directement avec ’ensemble des ressources afin d’optimiser la distribution des tiches en fonction de 1’état
global du systeme.

Dans ce contexte, nous nous intéressons aux algorithmes centralisés capables d’adapter leurs décisions en
temps réel face aux variations de charge des ressources et a I’évolution du flux de travail entrant. Parmi ces
algorithmes, les stratégies basées sur des seuils constituent une famille emblématique. De maniére générale,

dans ce type d’approche, le répartiteur central s’appuie sur un seuil de charge ou de performance défini pour
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chaque ressource. Lorsqu’une ressource atteint ou dépasse ce seuil, elle est considérée comme surchargée, et
les nouvelles tiches sont alors orientées en conséquence vers d’autres ressources.

En complément des approches a seuil, d’autres stratégies exploitent I’état instantané des ressources pour
orienter I’affectation des tiches. C’est notamment le cas des algorithmes fondés sur la politique de la moindre
connexion, qui consistent a attribuer les nouvelles tches a la ressource présentant le nombre minimal de
connexions actives. D’autres encore prennent en compte des criteres combinés tels que le temps de communi-
cation, le temps de traitement ou le cofit global d’exécution afin de minimiser le délai ou maximiser 1’efficacité
globale.

Dans cette section, nous analysons trois approches représentatives. Tout d’abord, une stratégie basée sur
des seuils adaptatifs capable d’ajuster dynamiquement ses parametres en fonction des fluctuations du systeme.
Ensuite, un algorithme qui combine mesures heuristiques locales et évaluation du cofit d’équilibrage, pour
décider de maniere informée des transferts de charge. Enfin, un module de décision central qui vient s’ajouter
a une stratégie d’équilibrage simple (par exemple, un tourniquet), afin d’optimiser simultanément la répartition

de la charge et I’allocation dynamique des ressources physiques telles que le processeur et la mémoire.

Seuil auto-apprenant L’ approche proposée par GOLDSZTAIN et al. (2022) introduit un mécanisme d’équi-
librage de charge reposant sur un seuil dynamique auto-apprenant. L’ objectif principal consiste a optimiser
la qualité de service percue par I’utilisateur en assurant une répartition efficiente des taches entre plusieurs
groupes de serveurs.

Le principe de cette méthode repose sur 1’utilisation d’un seuil ¢, représentant un niveau de charge a partir
duquel les décisions d’allocation sont orientées. Lorsqu’une tache arrive dans le systéme, sa destination est
déterminée selon 1’état de charge relatif des groupes, selon trois cas distincts :

— Si au moins un groupe présente une charge strictement inférieure a ¢, la tiche est assignée aléatoirement

al’un de ces groupes.

— Si tous les groupes posseédent au moins ¢ tiches, mais que certains en ont exactement ¢, le choix est

effectué aléatoirement parmi ces derniers.

— Si I’ensemble des groupes ont une charge strictement supérieure a ¢, la sélection s’effectue de maniere

aléatoire parmi I’ensemble des groupes.

Afin de mettre en ceuvre ce processus tout en minimisant les coflits de communication et de stockage,
les auteurs proposent une implémentation fondée sur un systeéme de jetons. Chaque groupe peut émettre au
plus deux jetons distincts a destination du répartiteur central : un jeton vert, indiquant une charge strictement
inférieure a ¢, et un jeton jaune, signalant une charge inférieure a £ + 1. Lorsqu’une tiche est soumise au
répartiteur, celui-ci tente en priorité de I’acheminer vers un groupe disposant d’un jeton vert. A défaut, il
sélectionne un groupe muni d’un jeton jaune. Si aucun jeton n’est disponible, le choix s’effectue alors de
maniere uniforme au hasard.

Cette architecture présente I’intérét notable de réduire la quantité d’informations a échanger et de simplifier
la prise de décision du répartiteur, tout en maintenant une répartition efficace de la charge.

Néanmoins, une limite inhérente a cette approche réside dans le fait que le seuil £ constitue un parametre
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sensible a la charge entrante, laquelle peut étre inconnue ou sujette a de fortes variations dans des environ-
nements dynamiques. Pour remédier a ce probleme, les auteurs introduisent une regle de contréle adaptative
permettant de faire évoluer le seuil en temps réel, a I’arrivée de chaque tache. Cette évolution repose sur une
analyse de 1’état global du systeme, en particulier le nombre total de groupes n et leur niveau de charge respec-
tif. Trois scénarios sont envisagés :
— Le seuil est incrémenté de 1 lorsque la quasi-totalité des groupes présentent une charge strictement
supérieure a ¢ + 1.
— Le seuil est décrémenté de 1 lorsque la proportion de groupes sous-chargés (ayant strictement moins de
{ tiches) est inférieure a un seuil a € [0; 1], défini par au préalable.
— Dans les autres situations, le seuil demeure inchangé.
Ce mécanisme d’ajustement permet au systeme de s’adapter aux variations temporelles de la charge ainsi
qu’aux modifications du nombre de groupes de serveurs disponibles, garantissant un équilibrage performant

face aux dynamiques imprévisibles d’un environnement incertain.

Equilibrage de charge dynamique global centralisé ZAKI et al. (1996) proposent une stratégie d’équili-
brage de charge adaptée a divers niveaux de centralisation, déclinée en quatre variantes. Dans cette section,
nous nous concentrons sur la premiere approche : I’équilibrage de charge dynamique global centralisé.

Dans ce modele, le contrleur central, qui est également une ressource de traitement, interagit directement
avec I’ensemble des ressources du systeme. La collecte des informations nécessaires & la prise de décision
repose sur un mécanisme de synchronisation déclenchée par la premiere ressource ayant terminé une tache. Lors
de cette synchronisation, chaque ressource interrompt momentanément son activité et transmet au contrdleur
un profil de performance correspondant a son taux de traitement (mesuré en nombre d’instructions par seconde)
depuis la derniere synchronisation.

Les auteurs modélisent le cofit de synchronisation comme la somme du coiit d’une communication un-vers-
tous (de la ressource initiatrice vers toutes les autres) et d’'une communication tous-vers-un (des ressources vers
le contrdleur central). Une fois les informations collectées, le contrdleur calcule une nouvelle répartition des
taches en se basant sur les performances passées pour estimer les performances futures des ressources.

Avant de procéder a la migration des tiches, le contréleur meéne une analyse de rentabilité visant a évaluer
si les gains attendus en termes de performances justifient les colits associés aux déplacements de tiches. Ce
colit dépend de la quantité de travail a transférer, du nombre de messages échangés et des caractéristiques du
réseau (telles que la latence et la bande passante). Ce mécanisme vise a éviter des réallocations inefficaces,
telles que le déplacement de petites charges sans bénéfice notable ou, a I’inverse, une réorganisation massive
pour un gain marginal.

Le déplacement effectif des taches n’est déclenché que si la rentabilité estimée dépasse un seuil prédéfini.
Lorsque cette condition est satisfaite, le contréleur communique a chaque ressource les instructions nécessaires,
spécifiant les taches a transférer et les destinations correspondantes. Les ressources émettrices envoient alors
directement les données aux ressources réceptrices, qui reprennent leur activité une fois I’ensemble des données

attendues recues.
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Bien que cette stratégie permette d’atteindre une répartition de charge proche de I’optimum, les auteurs
soulignent qu’elle peut entrainer un cofit de communication et de synchronisation particulierement élevé par
rapport a ses variantes plus distribuées. Afin de réduire ces cofits, une variante reposant sur une prise de décision
locale est proposée.

Dans cette approche, le systeme est subdivisé en sous-groupes de ressources, chacun fonctionnant comme
un systeme d’équilibrage dynamique autonome. Les ressources appartenant a un méme groupe peuvent échan-
ger leurs états et transférer des tiches entre elles, mais aucune communication inter-groupes n’est autorisée.
Chaque groupe est doté de son propre contrdleur central, chargé d’orchestrer localement 1’équilibrage de la
charge.

Cette organisation permet de réduire les coiits de communication et de synchronisation. Cependant, elle pré-
sente également certaines limites : I’équilibrage global du systéme peut s’en trouver affecté. En effet, 1’absence
de coordination entre les groupes peut conduire a des déséquilibres ou certains groupes demeurent surchargés
tandis que d’autres disposent de ressources sous-utilisées. De plus, la convergence vers une solution équilibrée
peut s’avérer plus lente en comparaison avec la stratégie entierement centralisée.

Enfin, les auteurs proposent également des variantes entierement décentralisées de 1’algorithme, dont les

principes et le fonctionnement seront examinés dans la section dédiée a la décentralisation.

Module de décision central de répartition de charge Le module de décision central de répartition de charge
(Central Load Balancing Decision Module), tel que décrit par RADOJEVIC et ZAGAR (201 1), ne constitue pas
a proprement parler un algorithme d’équilibrage de charge. Il s’agit plutét d’'un composant externe qui vient
s’ajouter a une infrastructure centralisée préexistante afin d’optimiser dynamiquement 1’équilibrage de charge
en réponse a I’état réel du systéme.

Ce module s’inscrit néanmoins pleinement dans le paradigme de la répartition centralisée, dans la mesure ou
il agit en tant que controleur centralisé et que ses décisions influencent directement la distribution des requétes
a travers le systeme. Sa particularité réside dans sa capacité a interagir avec I’ensemble des composants du
systeme pour collecter des données, analyser leur état, et orchestrer des ajustements de maniére proactive.

Afin de remplir sa fonction, le module surveille divers indicateurs pertinents, tels que le trafic au niveau
des équilibreurs ainsi que I’utilisation des ressources matérielles, incluant serveurs physiques, processeurs,
mémoire vive, etc. A partir des données collectées, il procede a des calculs internes, destinés a évaluer les
déséquilibres potentiels ou réels. Il peut ensuite influencer les décisions des équilibreurs en leur transmettant
des directives spécifiques.

Par exemple, dans le cas d’un algorithme de type tourniquet, le module peut demander a exclure temporaire-
ment une ressource surchargée de la rotation, jusqu’a ce qu’elle retrouve un état normal. I surveille également
I’expérience utilisateur, mesurée principalement par le temps de réponse global d’une requéte (comprenant
I’envoi de la tache, son traitement, et le retour du résultat a 1’utilisateur). Une augmentation significative de ce
temps de réponse constitue un indicateur de dysfonctionnement, potentiellement 1ié a une surcharge ou a une
latence réseau. En réaction, le module peut réorienter dynamiquement la charge vers d’autres ressources plus

disponibles afin de restaurer la qualité de service.
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La Figure 2.10 illustre le fonctionnement général d’un systéme intégrant un module de décision central.
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FIGURE 2.10 — Schématisation d’un systeme doté d’un module de décision central d’équilibrage de charge.

Bien que I’action du module s’exerce en premier lieu sur les équilibreurs de charge, son champ d’interven-
tion s’étend également aux ressources elles-mémes, que 1’on désignera ici par le terme de serveurs virtuels. Un
serveur virtuel représente une instance logicielle capable de traiter des requétes, et s’exécute généralement sur
un serveur physique, lequel peut héberger plusieurs instances virtualisées identiques. Ce modele est conforme
a I’architecture web semi-centralisée décrite en Section 2.1.2.2.

Grace a la virtualisation, le module peut migrer dynamiquement des instances de serveurs virtuels d’un
serveur physique a un autre. Par ailleurs, il est en mesure de réallouer les ressources matérielles (processeur,
mémoire, etc.) entre les différentes instances selon les besoins observés.

La Figure 2.11 présente un exemple de migration. Le systtme comprend un module de décision centralisé,
un équilibreur de charge, ainsi que deux serveurs physiques, notés S P4 et S Pg. Chacun héberge deux serveurs
virtuels : SVa1, SVasz, SVpB1 et SVpso. Lorsque SV4; subit une dégradation de performance, le module dé-
cide de migrer SV vers S Ppg, dont les ressources sont suffisantes. Il procéde ensuite a une réallocation des
ressources de S P4 au bénéfice exclusif de SV 41, tandis que les ressources de S Pp sont réparties entre trois

instances : SVp1, SVpa et SV, (désormais migré).

2.3.2.2 Semi-centralisation

La semi-centralisation désigne les stratégies d’équilibrage de charge combinant des éléments de prise de dé-
cision centralisée et décentralisée, dans 1’objectif de tirer parti des avantages respectifs de ces deux approches.
Ce type de paradigme repose le plus souvent sur une organisation hiérarchique de la structure décisionnelle :
le systeme est alors composé de plusieurs contréleurs centraux, chacun responsable d’un sous-groupe de res-
sources ou de contrdleurs, formant une arborescence logique jusqu’aux unités de calcul. Dans la majorité des
cas, cette hiérarchie est préétablie. Toutefois, certains travaux, comme celui de STOUTAS et al. (2022) avec le
D3-Tree, proposent des mécanismes de maintien et d’adaptation dynamique de cette structure.

Les objectifs des stratégies hiérarchiques sont variés. Certaines cherchent a équilibrer la charge de travail

entre les ressources, tandis que d’autres visent a répartir équitablement les ressources entre différentes branches
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FIGURE 2.11 — Exemple de migration du serveur virtuel A2 depuis le serveur physique A vers le B par le
module de décision central d’équilibrage de charge en réponse a une latence de Al.

de I’arbre pour faciliter la distribution. Enfin, certaines approches combinent ces deux objectifs. A ce titre,
I’étude menée par PRIYA et GNANASEKARAN (2017) propose une classification de solutions couvrant ces
différentes configurations, avec, entre autres, des structures a deux (MEGHARAJ & MOHAN, 2013) ou trois
niveaux (S.-C. WANG et al., 2010).

Dans cette section, nous nous concentrerons particulierement sur le D3-Tree, une solution capable de main-
tenir dynamiquement un arbre binaire parfait servant de surcouche de routage des requétes vers les ressources
situées en feuilles. Nous aborderons ensuite une stratégie d’équilibrage paresseuse, qui ne déclenche la redis-

tribution des taches que lorsqu’un déséquilibre significatif est détecté a une échelle locale ou globale.

Arbre dynamique, distribué et déterministe [’arbre dynamique, distribué et déterministe (Dynamic Dis-
tributed Deterministic Tree, D3-Tree) (SIOUTAS et al., 2022) est une structure de données distribuée qui agit
comme une surcouche de contrdle au réseau de communication d’un systeme décentralisé. Son objectif est de
structurer et restreindre les communications entre ressources afin d’optimiser les transmissions d’information.
Ainsi, méme si le réseau physique sous-jacent est pleinement connecté, la surcouche limite les communications
aux liens jugés pertinents.

Dans le cadre des algorithmes étudiés, la surcouche prend la forme d’un arbre binaire parfait, ou chaque
nceud dispose exactement de deux fils et toutes les feuilles se trouvent a une méme profondeur, comme illustré
a la Figure 2.12 pour un arbre de hauteur 3. Le D3-Tree fournit une méthode distribuée permettant de main-
tenir dynamiquement cette structure d’arbre parfait au sein d’un réseau décentralisé. Celui-ci sert de canal de
routage des tiches vers les feuilles, lesquelles, a leur tour, répartissent les taches parmi les ressources qu’elles
regroupent. La structure est hiérarchique, dynamique et auto-gérée, avec des algorithmes déterministes garan-

tissant une complexité maximale de O(log(N)) pour toute opération, ot N est le nombre total de nceuds.
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FIGURE 2.12 — Exemple d’arbre binaire parfait de hauteur 3.

Pour appréhender le fonctionnement du D3-Tree, il est nécessaire de présenter au préalable son prédéces-
seur, le D2-Tree (Deterministic Decentralized Tree) (BRODAL et al., 2015), dont il constitue une extension.

Le D2-Tree a été congu pour 1’organisation et la recherche de données dans des réseaux de type pair-a-
pair. Il repose sur une architecture a deux niveaux. Le niveau supérieur est un arbre binaire parfait de taille
log(N), destiné a accélérer les recherches. Le niveau inférieur se compose de conteneurs (“buckets”), ¢’est-
a-dire d’ensembles de log(N') nceuds regroupés autour d’une feuille représentante dans 1’arbre supérieur. Les
conteneurs sont des listes doublement chainées, leur premier élément étant connecté directement a la feuille
correspondante.

Chaque nceud de I’ arbre maintient plusieurs types de connexions :

— Vers son pere et ses enfants;

— Vers ses voisins dans un parcours infixe (gauche, racine, droite) ;

— Vers la feuille la plus a gauche et la plus a droite de son sous-arbre ;

— Vers des nceuds du méme niveau avec des sauts exponentiels (2" -iemes voisins a gauche et a droite).
Ces connexions respectent des propriétés strictes : par exemple, si deux nceuds sont connectés, leurs peres le
sont également, et de méme pour leurs freéres gauches et droits.

La plage de données gérée par un nceud correspond a 1’union des plages de ses descendants. La navigation
dans I’arbre se fait donc efficacement par subdivisions successives (hiérarchie).

L’ arbre supporte diverses opérations décentralisées de maintien : lorsqu’un nouveau nceud rejoint le réseau,
il est intégré a un conteneur existant via une redirection effectuée par un nceud arbitraire. Lorsqu’un nceud est
supprimé, il est remplacé par I’un de ses voisins infixes. Les tables de routage sont mises a jour dynamiquement
pour conserver la cohérence structurelle.

Le D?-Tree assure également un équilibrage de la charge grace a des mécanismes de pondération. Chaque
nceud calcule un poids correspondant a la charge que doit gérer son sous-arbre, et un rééquilibrage est déclenché
si I’écart de densité (ratio entre le poids d’un nceud et la taille cumulée des conteneurs de son sous-arbre) entre
deux freres dépasse un certain seuil. Par ailleurs, un syst¢me d’extension et de contraction ajuste la hauteur de
I’arbre en fonction de la taille des conteneurs.

Ainsi, cette structure parvient a combiner centralisation de la recherche et décentralisation du maintien,
assurant une répartition équilibrée de la charge tout en tolérant une certaine dynamique dans le réseau. Ce-

pendant, le D2-Tree présente une fragilité importante face aux défaillances, notamment si une feuille tombe en
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panne : le conteneur qu’elle représente devient alors inatteignable. C’est précisément cette faiblesse que vient

corriger le D3-Tree.

Dans le D3-Tree, chaque feuille étend ses connexions aux conteneurs des feuilles référencées dans sa table
de routage (ses 2"-iemes voisins). Ainsi, un conteneur reste accessible méme si sa feuille représentante est

défaillante, et I’arbre peut étre réorganisé pour exclure dynamiquement les noeuds défaillants.

SIOUTAS et al. (2022) démontrent que cette amélioration renforce considérablement la robustesse du sys-

téme sans pour autant dégrader ses performances par rapport a la structure initiale.

Equilibrage de charge périodique hiérarchique L équilibrage de charge périodique hiérarchique (Periodic
Hierarchical Load Balancing) proposé par ZHENG et al. (201 1) a été concu pour améliorer les performances des
supercalculateurs de grande échelle. Cette approche vise a combiner les avantages des stratégies centralisées et
distribuées, tout en limitant leurs inconvénients : la faible scalabilité des premieres et les colits computationnels

élevés des secondes.

Le systéme repose sur une division des ressources en groupes autonomes, eux-mémes organisés en une
hiérarchie arborescente. Chaque groupe fonctionne de maniere indépendante selon un schéma centralisé lo-
calement, tout en s’insérant dans une structure globale décentralisée. Ainsi, chaque nceud de 1’arbre, qualifié
de chef de groupe (group leader) par les auteurs, est responsable de 1’équilibrage de charge dans son propre
sous-arbre, indépendamment des autres branches. Comme évoqué en Section 2.1.2.2, cette approche permet
de réduire les ressources mémoire et le temps d’exécution requis pour réaliser 1’équilibrage, chaque chef de

groupe ne gérant qu’un sous-ensemble limité de ressources.

Le terme “périodique” renvoie au fait que 1’équilibrage n’est pas continu, mais effectué ponctuellement,
lorsque cela est jugé nécessaire. Un rééquilibrage est déclenché si un déséquilibre de charge est détecté au sein
d’un sous-arbre. La détection repose sur une communication ascendante de la charge entre les noeuds : chaque
chef de groupe agrege les informations provenant de ses enfants pour évaluer 1’état global de son sous-arbre.
Un rééquilibrage est initié lorsque la charge d’un enfant diverge significativement de la moyenne du groupe,
a condition que le gain de performances attendu soit supérieur au coiit de 1’opération (collecte des données,

exécution de 1’algorithme, migration des taches).

Pour estimer ce gain, 1’algorithme s’appuie sur une forme de persistance des tiches : bien que leur durée ou
leur complexité exacte soit inconnue, les tdches ont tendance a avoir une structure ou un comportement similaire
au cours du temps. Le rééquilibrage s’appuie alors sur un mécanisme de jetons contenant les métadonnées des
taches, qui sont redistribués de maniere centralisée par chaque chef de groupe. Les tiches elles-mémes ne sont

déplacées qu’une fois la redistribution des jetons complétée, ce qui permet de limiter le coiit de communication.

Grace a cette architecture hiérarchique, 1’approche permet de réaliser des ajustements localement, tout en
conservant la capacité a réagir globalement a des déséquilibres plus étendus. Elle illustre ainsi un compromis
efficace entre centralisation et décentralisation, dans le but d’assurer un équilibrage de charge scalable, flexible

et performant.
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2.3.2.3 Décentralisation coopérative

La décentralisation coopérative regroupe les stratégies déployées dans des environnements distribués ol
I’ensemble des entités du systeme collaborent activement pour assurer I’équilibrage de charge. Ce mode de
fonctionnement repose sur le partage d’informations entre les ressources, telles que leur niveau de charge, leur
capacité de traitement, ou encore les métadonnées associées aux tiches.

En fonction du mécanisme de diffusion adopté, les ressources peuvent disposer d’informations locales,
issues de leur voisinage immédiat, ou d’informations globales, lorsque la propagation de 1’information est
congue pour couvrir I’ensemble du systeme. Sur la base de ces données, chaque ressource est en mesure de
prendre des décisions d’équilibrage de manieére autonome, sans supervision centralisée.

La communication entre ressources peut s’opérer selon plusieurs modalités :

— par communication indirecte ou environnementale, ol les entités modifient leur environnement commun

(par exemple via des dépots de traces ou de signaux) pour influencer les décisions futures;

— par diffusion structurée de I’information, a 1’aide de protocoles de communication dédiés ;

— ou encore par partage direct entre pairs, sous forme d’échanges explicites de données.

Ces mécanismes de partage peuvent aboutir soit a un consensus global, coordonnant I’ensemble des décisions,
soit a des prises de décisions locales, potentiellement indépendantes mais cohérentes grice a la coopération.

Dans la suite, nous nous intéresserons a trois algorithmes représentatifs de cette approche : I’optimisation
par colonies de fourmis et le comportement coopératif des abeilles appliqués a 1’équilibrage de charge en
temps réel par communication environnementale, ainsi qu’une version distribuée de 1’algorithme d’équilibrage
dynamique centralisé présenté précédemment, basé sur 1’obtention d’un consensus global par communication

directe.

Optimisation par colonies de fourmis en temps réel L optimisation par colonies de fourmis, que nous
avons étudiée précédemment, est une méthode d’optimisation au sens strict. Cependant, elle a été adaptée a des
fins d’équilibrage de charge décentralisé en temps réel (KATYAL & MISHRA, 2013 ; Lietal., 2011; L1U et al.,
2006).

Le probleme a résoudre est ici I’équilibrage des tiches sur les ressources d’un systeme décentralisé. Ce
systéme constitue 1’espace exploratoire des fourmis : chaque ressource représente une solution potentielle pour
le dép6t d’une tache. Les fourmis servent alors de “véhicule” aux tiaches, qu’elles déplacent de manicre sto-
chastique dans le systeme. Le déplacement est influencé non seulement par les phéromones déposées, mais
également par des informations heuristiques locales, telles que la capacité de la ressource, les taches en attente
ou I’état de charge des ressources voisines.

Les fourmis tendent a se diriger vers les ressources les plus susceptibles de traiter rapidement leur tache,
c’est-a-dire celles faiblement chargées ou plus performantes. L’exploration d’une fourmi prend fin dés qu’une
condition liée & la ressource courante est remplie, par exemple lorsque sa charge est inférieure a celle des
ressources voisines. Elle affecte alors sa tache a cette ressource, puis dépose des phéromones sur le chemin

emprunté. Comme dans ’algorithme d’origine, ces phéromones s’évaporent progressivement. Une fois leur
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tache délivrée, les fourmis disparaissent.

Cette communication indirecte via les phéromones permet aux tiches d’atteindre dynamiquement la res-
source la plus adaptée, et produit une auto-organisation coopérative du systeme. L’évaporation des phéromones
et I’utilisation d’informations heuristiques locales assurent a 1’algorithme une capacité d’adaptation aux varia-
tions de charge dans le systeme.

Une autre approche, complémentaire, vise a optimiser les communications entre ressources dans un en-
vironnement distribué dynamique, afin d’améliorer la migration des tiches. Les travaux de CARDON et al.
(2006) et DuTOT (2005) proposent un algorithme bio-inspiré appelé AntCO?2, qui combine optimisation par
colonies de fourmis et mécanismes de compétition. L’ objectif est de concilier minimisation des communica-
tions et équilibrage de charge, sans recourir a une fonction objectif explicite. L’ organisation émerge alors de
maniere autonome.

Le systeme est modélisé sous forme de graphe dynamique, ol les sommets représentent les ressources et
les arétes les communications. Chaque sommet constitue une colonie identifiée par une couleur. Des fourmis
partent de leur colonie et déposent des phéromones colorées le long de leur chemin. La quantité de phéromones
est déterminée dynamiquement et celles-ci s’évaporent avec le temps. La couleur dominante des phéromones
présentes sur les arétes d’un sommet définit sa propre couleur.

Lorsqu’une fourmi se déplace, elle privilégie les arétes ou la concentration de phéromones de sa propre
couleur est la plus élevée. Si cette concentration est trop faible, la fourmi meurt et une nouvelle nait ailleurs
dans le graphe (mécanisme de “mort et éclosion”). La compétition entre colonies conduit a une agrégation des
ressources communiquant intensivement, qui tendent a adopter la méme couleur. Cette structuration dynamique

du graphe favorise la migration optimale des tiches tout en réduisant les communications.

L’algorithme des abeilles en temps réel L algorithme des abeilles, présenté auparavant comme une méthode
d’optimisation stricte, a également été€ adapté a I’équilibrage de charge décentralisé en temps réel. La version
adaptée, nommée butinage des abeilles (Honeybee Foraging) (KATYAL & MISHRA, 2013 ; RANDLES et al.,
2010; SESUM-CAVIC & KUHN, 2010a, 2010b), modélise chaque ressource (nceud) du systeme sous forme
de fleur (file d’attente des tiches) et de ruche (systeéme de calcul local). Les fleurs contiennent du nectar (les
taches), que les abeilles transferent afin d’équilibrer la répartition entre les ruches, qui les traiteront ensuite.

Chaque ruche dispose de trois types d’abeilles : les butineuses (ou exploratrices), les suiveuses et les re-
ceveuses. Ces dernieres modélisent le traitement local du nectar. Les butineuses explorent le systeme pour
identifier une ruche partenaire avec laquelle échanger du nectar. Une fois la cible identifiée, les suiveuses réa-
lisent le transfert de taches entre les ruches.

Le déclenchement de la recherche d’une ruche partenaire dépend d’une politique libre. Il peut s’agir,
par exemple, d’un déclenchement par les noeuds surchargés, sous-chargés, ou encore en prévention par ceux
proches de la surcharge. En fonction de cette politique, les cibles seront choisies parmi les nceuds présentant
un état opposé a celui du nceud initiateur.

Lors de leur exploration, les butineuses choisissent leur direction a I’aide d’une régle de transition d’état

P;;, ol i et j désignent respectivement leur position actuelle et une destination possible. Cette regle, intro-
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duite par WONG et al. (2008), s’inspire du comportement naturel des abeilles qui effectuent une “danse” pour
indiquer les zones les plus riches en nectar (BIESMEIJER & SEELEY, 2005). Une butineuse ayant trouvé un par-
tenaire pertinent retourne a sa ruche et en partage les caractéristiques : qualité du partenaire, chemin emprunté,
distance, état des nceuds visités.
A chaque visite, la butineuse évalue la convenance du nceud rencontré via une fonction & (x), olt = est
une mesure de 1’état du nceud. Selon SESUM-CAVIC et KUHN (2010b), cette évaluation peut étre donnée par
cp/p

T = 75, ol cpestla complexité des tiches, p la puissance de calcul, et ch la charge du nceud. Plus z est

proche de 1, plus le partenaire est considéré comme adéquat.

La butineuse calcule ensuite une valeur de fitness f(z) = %, représentant le rapport entre la qualité
du partenaire et le colit d’acces. Si cette valeur est élevée par rapport a la fitness moyenne de la ruche (f;yche)s
la butineuse recrute des suiveuses pour transférer des tiches. Elle influence également les explorations futures.
En revanche, si sa fitness est faible, elle peut devenir suiveuse elle-méme.

Ce mécanisme d’exploration, d’évaluation et de recrutement induit une auto-organisation efficace du sys-
teme. Il permet une répartition dynamique des charges, adaptée aux capacités et aux besoins des nceuds a tout

moment.

Equilibrage de charge dynamique global distribué Nous nous intéressons  présent  la version décentra-
lisée de 1’équilibrage de charge dynamique introduite par ZAKI et al. (1996), précédemment présentée dans la
section consacrée aux algorithmes centralisés. Le principe fondamental de I’algorithme demeure identique, a
I’exception notable que le contrdleur central est ici répliqué sur I’ensemble des ressources.

Lors du déclenchement d’une synchronisation, qui survient dés qu’une ressource termine une tiche, chaque
ressource diffuse son profil de performance a I’ensemble des autres. Le colit de synchronisation se compose
alors d’une communication un-a-tous (déclenchement de la synchronisation) suivie d’une communication tous-
a-tous (diffusion des profils de performance entre toutes les ressources). Chaque ressource, disposant de la vue
complete de 1’état du systeme, peut ainsi calculer localement une nouvelle distribution des taches.

Si le bénéfice escompté de la redistribution des taches excede le colit de communication associé au transfert
des données, alors 1’équilibrage est effectivement déclenché. Chaque ressource détermine son rdle a partir
de la nouvelle distribution : une ressource identifiée comme émettrice (c’est-a-dire disposant d’un excédent
de charge) transfere directement ses tiches excédentaires a une ressource réceptrice (dont la charge cible est
supérieure a sa charge actuelle).

Cette approche repose donc sur un partage globalisé de I’'information et une coopération entre les res-
sources, impliquant une interconnexion complete du réseau. Un tel modele entraine un cofit communicationnel
potentiellement élevé, notamment dans les systemes de grande taille. Cependant, les auteurs soulignent que
cette solution offre, dans la plupart des cas, les meilleures performances en termes d’équilibrage et de temps de
réponse, comparée a la version centralisée.

A T’instar de la stratégie centralisée, les auteurs proposent également une seconde variante décentralisée.
Celle-ci reprend le méme mécanisme, mais appliqué au sein de groupes de ressources fermés. Ainsi, chaque

groupe procede a un équilibrage interne sans coordination avec les autres. Bien que cette méthode permette
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de réduire les cofits de communication, elle reste vulnérable aux déséquilibres globaux induits par 1I’absence

d’échanges inter-groupes, de la méme maniere que pour sa version centralisée en groupes.

2.3.2.4 Décentralisation non-coopérative

Les algorithmes décentralisés non coopératifs forment une classe de stratégies dans laquelle aucune co-
ordination explicite n’est établie entre les ressources du systeme. Les communications, lorsqu’elles existent,
sont minimales ou strictement locales, ce qui rend les décisions d’équilibrage enti¢rement autonomes et indé-
pendantes. Dans la majorité des cas, chaque ressource prend ses décisions en se basant exclusivement sur des
informations locales : son niveau de charge, sa file d’attente, ou son état d’inactivité.

Cette approche se retrouve notamment dans plusieurs mécanismes :

— les mécanismes de vol de travail (work stealing), dans lesquels une ressource inactive initie elle-méme

le transfert en récupérant du travail depuis une autre ;

— les mécanismes de partage de travail (work sharing), qui au contraire déleguent automatiquement les
nouvelles taches vers d’autres ressources des leur arrivée, sans attendre une demande ou une concerta-
tion;

— les algorithmes a seuil, ol les taches en exces sont transférées vers d’autres ressources, soit de maniére
aléatoire, soit vers des nceuds dédiés appelés puits (sinks), comme nous le verrons plus loin.

Dans ces systemes, la sélection de la ressource cible repose fréquemment sur un sondage aléatoire du

voisinage, sans garantie de charge optimale, mais avec 1’objectif de réactivité et de simplicité.

Dans la suite, nous étudierons trois algorithmes représentatifs de cette approche : la stratégie d’équilibrage
par vol de travail, un échantillonnage aléatoire biaisé, proposant un mécanisme de partage de taches intelligent,

et enfin une politique de déchargement distribuée fondée sur un seuil local dynamique.

Equilibrage par vol de travail Le vol de travail (work stealing) (BLUMOFE & LEISERSON, 1999) est un
algorithme décentralisé initialement introduit pour le calcul multi-threadé dans le cadre de la parallélisation
intra-processeur, c’est-a-dire entre les différents coeurs d’un méme processeur. Le principe est simple : lors-
qu’un cceur de processeur a épuisé sa pile de threads (tdches ou sous-tiches parallélisables), il tente de voler du
travail a un autre coeur encore actif.

Pour ce faire, chaque cceur maintient une structure de données appelée file préte (ready deque), qui fonc-
tionne comme une file a double extrémité : les nouveaux threads sont ajoutés par le bas, un cceur retire les
threads a traiter également par le bas, tandis que les autres cceurs peuvent voler un thread par le haut de cette
file.

Le traitement des threads suit trois comportements principaux :

— Création de sous-thread : le thread courant est replacé en bas de la file et le nouveau thread est exécuté

immédiatement.

— Fin du thread : le cceur récupere le thread suivant dans sa file, ou initie un vol si elle est vide.

— Blocage du thread : il est temporairement mis de coté, appliquant le comportement de fin de thread, et

réinséré en bas de la file une fois débloqué.
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Lorsqu’un ceeur devient inactif, il tente de voler un thread a un autre cceur, choisi uniformément au hasard.
S’il trouve une victime ayant une file non vide, il prend le thread le plus en haut. Sinon, il sélectionne un autre
ceeur et recommence. Ce mécanisme implique une interconnexion complete entre les ressources du systeme.

Ce modele présente de bonnes performances et réduit le nombre de migrations de tiches comparé a des
stratégies comme le partage de travail (work sharing), ol les threads sont immédiatement migrés des leur créa-
tion. Le vol de travail n’opere des transferts que lorsqu’ils sont strictement nécessaires, c’est-a-dire lorsqu’une
ressource devient inactive.

Ce modele a été étendu aux environnements distribués, notamment par K. WANG et al. (2014), pour s’adap-
ter a des applications a fort volume de données. Dans ces contextes, le simple vol de tiches pose un nouveau
défi : 1a localisation des données. Déplacer une tache peut impliquer un transfert massif de données, ce qui peut
annuler les bénéfices de I’équilibrage de charge.

Pour pallier ce probleme, les auteurs introduisent un vol de travail intelligent. Chaque nceud dispose désor-
mais de deux files : une liste locale, réservée aux taches devant étre exécutées localement en raison du poids de
leurs données, et une liste partageable, contenant les tiches a faible empreinte de données, donc transférables a
moindre coft.

Lorsqu’une tiche arrive sur un nceud, celui-ci estime le coiit de transfert des données associées. Si ce cofit
est inférieur a un seuil ¢, la tAche est placée dans la liste partageable. Sinon, elle est soit traitée localement, soit
redirigée vers un autre nceud mieux placé selon la localisation des données.

Le choix de la victime n’est plus purement aléatoire : un nceud inactif (voleur) parcourt un sous-ensemble
aléatoire de nceuds et choisit celui ayant le plus de tiches partageables. Un mécanisme de temporisation adap-
tative est aussi introduit : plus un nceud échoue a voler, plus il attend avant de réessayer. En cas de succes,
I’intervalle entre les tentatives est réinitialisé a une valeur faible.

Une politique de répartition flexible et sensible a la localité des données permet aux nceuds de rééquilibrer
leurs files en cas de surcharge. Un nouveau seuil ¢¢ est défini comme temps maximal d’exécution acceptable
pour la liste locale. Le temps d’exécution de la liste est estimé par rapport au débit (tdches par seconde) passé
du nceud. Si I’estimation dépasse ce seuil, les tAches du bas de cette file sont déplacées vers la liste partageable,
permettant leur redistribution.

Enfin, un systeme de stockage clé-valeur distribué est utilisé pour partager entre tous les nceuds les méta-

données des taches, incluant leurs dépendances et I’emplacement de leurs données.

Echantillonnage aléatoire biaisé L échantillonnage aléatoire biaisé (Biased Random Sampling) (KATYAL
& MISHRA, 2013 ; RAHMEH et al., 2008; RANDLES et al., 2010) repose sur une marche aléatoire dans un
graphe virtuel représentant les ressources du systéme. Il vise a équilibrer les charges tout en structurant les
communications de maniere décentralisée et dynamique.

Le systeme est modélisé comme un graphe orienté dont les sommets représentent les ressources. Ce graphe
est initialisé aléatoirement. Le degré entrant d’un sommet refléte sa capacité initiale : plus une ressource est
puissante, plus elle posseéde d’arétes entrantes. Les arétes sortantes sont déterminées indirectement, selon la

construction des autres arétes entrantes. Le degré entrant évolue au fil du temps et finit par refléter la disponi-
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bilité actuelle de la ressource.

Chaque ressource n’a connaissance que de son voisinage immédiat (entrées et sorties), ce qui permet une
gestion locale du graphe, par exemple via une table de routage.

Lorsqu’une tiche arrive, la ressource déclenche une marche aléatoire a travers le graphe. A chaque étape,
un voisin est choisi aléatoirement via une aréte sortante du sommet courant. La marche se limite & w = log(n)
sauts, ou n est le nombre total de ressources. Une fois la marche terminée, la tiche est affectée a la ressource
ayant la meilleure disponibilité (c’est-a-dire le degré entrant le plus élevé) parmi celles visitées. Ce choix
constitue le biais par rapport a un échantillonnage aléatoire simple.

Pour refléter cette affectation, la ressource cible supprime une de ses arétes entrantes, réduisant ainsi sa
disponibilité future. Une fois la tiche traitée, elle recrée une aréte entrante depuis la ressource qui avait initié
la marche. Cela augmente sa disponibilité et sa probabilité d’étre sélectionnée a nouveau.

Ce modele d’adaptation du graphe, combiné au biais dans la sélection des ressources, permet une auto-
organisation du systeme en fonction des charges. Il pourrait cependant &tre amélioré par I’ introduction d’autres
criteres de sélection : capacité réelle, géographie du réseau (latence), ou en le couplant avec un mécanisme de
clustering actif tel que proposé par SAFFRE et al. (2009), afin de regrouper les services similaires et optimiser

encore les parcours aléatoires.

Politique de déchargement distribuée basée sur un seuil La politique de déchargement distribuée basée
sur un seuil (Decentralized Threshold-based Offloading Policy), proposée par QIN et al. (2021, 2023a, 2023b),
s’inscrit dans le contexte du cloud computing mobile. L’architecture du systeéme repose sur une hiérarchie
composée de dispositifs mobiles a capacité de calcul limitée, susceptibles de recevoir des charges de travail, et
d’un ensemble de serveurs mutualisés disposant de ressources computationnelles substantielles.

Cette stratégie vise a décharger dynamiquement les tiches des appareils mobiles vers les serveurs, en parti-
culier lorsque les premiers sont en situation de surcharge. Chaque appareil mobile prend de manieére autonome
la décision de déléguer ou non une tiche, en se fondant sur un seuil propre maintenu localement. Deux méca-
nismes de mise a jour de ce seuil sont proposés, tous deux validés a la fois théoriquement et empiriquement
(via des simulations), comme étant efficaces en termes de performances globales du systeme.

La premiére méthode, dite de mise a jour distribuée du seuil (Distributed Threshold Update), repose sur une
combinaison de données locales propres a chaque appareil et d’une estimation globale de 1’état des serveurs. Les
données locales incluent, entre autres, la longueur de la file d’attente, la latence liée au déchargement de taches,
ainsi que la consommation énergétique. A chaque itération, le groupe de serveurs calcule une estimation de son
taux d’occupation global, fondée sur les seuils recus des appareils, puis diffuse cette information a I’ensemble
des dispositifs mobiles. Ces derniers 1’integrent, conjointement avec leurs propres données locales, dans un
probleme d’optimisation visant a déterminer le seuil de déchargement qui minimise leur cofit opérationnel. Ce
processus est itératif et se poursuit jusqu’a ce que la variation entre deux estimations successives de 1’occupation
des serveurs soit inférieure a une tolérance e. L’ objectif de cet algorithme est d’atteindre un équilibre distribué,
dans lequel aucun appareil n’a intérét a modifier unilatéralement son seuil.

La seconde approche, nommée mise a jour itérative du seuil (Iterative Threshold Update), suit un principe
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analogue, mais introduit une méthode d’optimisation incrémentale. Elle consiste a ajuster progressivement le
seuil de déchargement dans le but de minimiser une fonction de cofit propre a chaque appareil. Cette fonction
combine le temps de traitement local, le cofit d’utilisation des serveurs cloud, et I’état estimé du systéme. L’oc-
cupation des serveurs est inférée a partir des seuils des appareils a travers une probabilité de déchargement,
elle-mé&me dérivée du taux d’arrivée des tiches et de la longueur moyenne des files d’attente. L’algorithme
commence par une phase d’optimisation gourmande, visant une amélioration rapide, suivie d’ajustements in-
crémentaux (+1 ou -1 sur le seuil) réalisés a chaque itération. Ce processus se poursuit jusqu’a I’atteinte d’un
critere d’arrét prédéfini, tel qu'un nombre fixe d’itérations ou la stabilisation du seuil.

En définitive, cette politique établit un schéma de déchargement totalement décentralisé, ot chaque appareil
prend ses décisions localement, sans communication directe avec les autres dispositifs, ni coordination expli-
cite entre eux. Le seul échange d’information transite via les estimations globales fournies par le groupe de
serveurs (qui ne prend aucune décision), garantissant ainsi une scalabilité élevée du systeme et une réduction

substantielle de la surcharge de communication.

2.4 L’auto-organisation pour de la répartition dynamique

L auto-organisation est un phénomene trés présent dans les systemes naturels, et plus largement dans les
systeémes complexes (BOOLCHAND et al., 2005 ; HEYLIGHEN, 2009a, 2009b; ISAEVA, 2012; LEVIN, 2005).
Ces systemes sont souvent décrits comme se situant dans un état hors de 1I’équilibre (PRIGOGINE, 1978), po-
tentiellement dans certains cas au bord du chaos, ot une perturbation minime peut entrainer une transformation
drastique de leur configuration globale. Ce sont des systémes dissipatifs typiquement ouverts traversés par des
flux d’énergie, de matiere ou d’information qui échangent avec leur environnement.

L’ auto-organisation se définit comme 1’apparition de structures spontanées ou de comportements globaux
cohérents a partir d’interactions locales sans intervention externe ni controle centralisé. Ce caractere spontané
découle du fait qu’aucun agent (interne ou externe au systeéme) ne dirige ou ne coordonne explicitement le
processus : celui-ci émerge collectivement, via 1’agrégation non linéaire de causes locales. Ce mécanisme
permet 1’émergence de d’états ou de structures complexes imprévues a partir de regles simples (STROGATZ,
2024). Un corollaire fondamental est la robustesse structurelle. Dans un systéme suffisamment vaste, tout agent
peut étre retiré ou remplacé sans compromettre la dynamique globale.

11 s’agit d’un processus collectif, massivement parallele et distribué, dans lequel chaque agent du systeme
contribue également a I’organisation résultante. Les interactions s’effectuent d’abord localement, entre agents
voisins, tandis que les agents éloignés agissent de maniere indépendante. Cependant, une modification locale
peut se propager en cascade et affecter des zones éloignées, générant ainsi une cohérence a 1’échelle globale.
De plus, des perturbations aléatoires peuvent se produire, permettant au systeéme d’explorer de nouvelles tra-
jectoires .

La nature des interactions locales varie selon le domaine étudié. Par exemple, en physique, elles peuvent
prendre la forme de diffusions thermodynamiques ; en biologie, par des mécanismes de sélection naturelle ou de

rétroaction (positive ou négative) permettant une adaptation dynamique des agents. Ces interactions permettent
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au systeme de générer de 1’ordre a partir du désordre, qu’il soit d’origine locale ou globale.

Grace a leur caractere distribué, les systeémes auto-organisés se révelent hautement robustes face aux dé-
faillances locales et aux perturbations extérieures. L’ auto-organisation induit par ailleurs I’émergence d’un
attracteur dans I’espace des états du systéme : une région stable vers laquelle convergent spontanément les dy-
namiques du systeme, et au sein de laquelle les agents tendent a se stabiliser. Cette propriété restreint cependant
la liberté individuelle des agents a sortir de certains états une fois I’attracteur atteint.

On retrouve des dynamiques d’auto-organisation dans une grande diversité de disciplines. En biologie,
elles s’observent dans la morphogenese, 1’organisation cellulaire, les réseaux neuronaux, les écosystémes ou
encore dans les mécanismes évolutifs. En physique et chimie, elles apparaissent dans des processus tels que la
cristallisation, la magnétisation, ou les structures dissipatives. Dans les systeémes d’information, on les retrouve
dans I’architecture de I’internet, les réseaux de connaissances ou encore les automates cellulaires. Méme les
systémes économiques et sociaux, comme les marchés, les communautés de recherche (PERC, 2013) ou les
civilisations, présentent des comportements auto-organisés.

En raison de leur robustesse et de leur capacité a s’adapter dynamiquement, les systemes auto-organisés
sont explorés depuis les années 1990 comme modele pour 1’équilibrage de charge dans des environnements
distribués. WILLEBEEK-LEMAIR et REEVES (1993) proposent deux stratégies décentralisées reposant respec-
tivement sur des modeles de diffusion (les tiches s’écoulent des nceuds surchargés vers les sous-chargés) et
de gradient (les noeuds sous-chargés sollicitent du travail). JELASITY et al. (2004) démontrent 1’efficacité des
protocoles de bavardage pour répartir la charge de maniere efficace. Des approches explicitement basées sur
I’auto-organisation ont ensuite été proposées, comme celles de JIE HU (2006) et LAREDO et al. (2017), s’ins-
pirant respectivement de la diffusion d’un fluide (stabilisation) et de la dynamique du tas de sable (éboulement
des grains), pour modéliser la redistribution des taches. Ces méthodes reposent sur des interactions locales
dans le voisinage immédiat pour permettre au systeme global d’atteindre un équilibre de charge dynamique et
distribué.

Plusieurs des algorithmes présentés dans les sections précédentes relevent également de 1’ auto-organisation.
C’est notamment le cas des méthodes bio-inspirées, telles que 1’optimisation par colonies de fourmis ou le
comportement de recherche de nourriture des abeilles, qui utilisent des signaux locaux (stigmergie ou commu-
nication dansée) pour coordonner la répartition des taches en temps réel.

Méme les approches dites non coopératives peuvent manifester une forme d’auto-organisation. Le vol de
travail, par exemple, aboutit & une occupation continue des ressources par simple effet d’interaction locale.
L’échantillonnage aléatoire biaisé, de son c6té, permet un équilibrage spontané en acheminant les nouvelles

taches vers les ressources les moins chargées, sans coordination centrale.

2.5 Discussion des méthodes et des modeles

Dans ce chapitre, nous avons examiné les systemes d’équilibrage de charge a travers les principaux pa-

radigmes qui les structurent : I’environnement d’exécution, 1’architecture de contrdle, et le mode de prise de



50 CHAPITRE 2. EQUILIBRAGE DE CHARGE

décision. Nous avons également présenté différentes métriques d’évaluation permettant de mesurer leur effica-
cité et leur pertinence selon le contexte.

Le choix d’une stratégie d’équilibrage doit étre soigneusement réfléchi, en tenant compte a la fois (i)
des caractéristiques spécifiques de 1’environnement d’exécution et (ii) des objectifs de performance visés. Par
exemple, dans un contexte stable et bien maitrisé, une approche centralisée fondée sur des heuristiques simples
s’avere souvent suffisante, car elle permet une prise de décision rapide avec un cofit de communication réduit.
En revanche, dans un environnement dynamique, instable ou imprévisible, il est préférable de privilégier des
approches décentralisées capables d’adaptation face a I’évolution constante du systeme.

Les méthodes centralisées présentent généralement 1’avantage d’un faible cofit en communication et d’une
décision rapide, mais au prix d’un coiit computationnel élevé (du fait de la vue globale nécessaire) et d’une
fragilité structurelle liée au point de défaillance unique qu’est le contrdleur central. A 1’opposé, les méthodes
décentralisées répartissent la charge de décision entre les ressources, souvent via des mécanismes d’interac-
tion locale ou de coopération. Elles sont intrinsequement plus robustes, mais peuvent nécessiter un temps de
convergence plus long et un colit communicationnel accru.

Les approches hybrides, généralement fondées sur des architectures hiérarchiques, tentent de combiner
les avantages des deux paradigmes. Elles permettent une prise de décision plus rapide que les méthodes pu-
rement décentralisées tout en offrant une meilleure robustesse que les approches centralisées. Toutefois, leur
complexité de mise en ceuvre est significative, notamment lorsqu’elles doivent s’adapter dynamiquement a
I’évolution du systeme. Elles peuvent également entrainer une réduction des capacités de calcul disponibles,
une fraction des ressources étant mobilisée pour la gestion de 1’équilibrage lui-méme.

Comme nous 1’avons vu précédemment, les dynamiques d’auto-organisation offrent une alternative décen-
tralisée efficace pour atteindre un état d’équilibre global par le biais d’interactions locales. Ce type de systéme,
par sa robustesse intrinséque et sa capacité d’adaptation, est particulierement adapté aux environnements distri-
bués et dynamiques. C’est cette approche que nous avons choisie d’explorer dans le cadre des présents travaux.

Dans les chapitres a venir, nous nous concentrerons sur le modele du tas de sable introduit par Bak, Tang
et Wiesenfeld (BAK et al., 1987), ainsi que sur ses principales évolutions. Ce modele, fondé sur un automate
cellulaire a regles locales simples, est capable de générer des comportements complexes et émergents, en lien
direct avec les dynamiques d’auto-organisation.

Le tas de sable constitue une approche naturelle et dynamique de 1’équilibrage de charge : les cellules de
I’automate (modélisant les ressources de calcul) se déchargent spontanément sur leurs voisines deés qu’un seuil
local est dépassé. Les grains de sable, assimilables a des tiches, se déplacent ainsi dans 1’espace jusqu’a ce que
le systeme atteigne un état de stabilité globale.

Ce modele sera étudié en détail dans le chapitre suivant, ainsi que le phénomene dont il constitue 1’une
des manifestations emblématiques : la criticalité auto-organisée, étroitement liée aux propriétés adaptatives des

systémes complexes, et tout particulierement ceux issus de la nature.
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Les systemes complexes ont souvent des comportements émergents, issus d’interactions locales simples
entre leurs composants. Ces dynamiques peuvent engendrer des structures globales, une adaptation spontanée
ou encore des réponses qui semblent disproportionnées lors de perturbations minimes. Parmi les phénomenes
caractéristiques de ces systemes figure la notion de criticalité auto-organisée (Self-Organized Criticality, SOC)
(BAK, 1996). Elle décrit la tendance de certains systémes a évoluer naturellement vers un état critique, situé a
la frontiere entre ordre et chaos, ot une perturbation mineure peut déclencher des réactions majeures affectant
I’ensemble du systeéme. Ce phénomene a des implications profondes dans divers domaines, allant des neuros-
ciences a I’économie, aidant a expliquer des phénomenes tels que le fonctionnement cérébral (PLENZ et al.,
2021), les krachs boursiers (BIONDO et al., 2015) et d’autres événements de grande envergure (MARKOVIC &
GROS, 2014).

Cette dynamique d’auto-organisation peut s’ avérer tres intéressante dans le cadre de I’équilibrage de charge.

51
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Un tel systeme disposant d’une caractéristique de ce type pourrait étre capable de répartir dynamiquement la
charge par des mécanismes intrinseques, sans nécessiter une intervention externe. Ainsi, de nombreux systemes
naturels présentent les caractéristiques de la SOC. Ces dernieres leur permettent d’étre résilients et robustes en
présence de perturbations. Elle pourrait étre particulierement utile et efficace pour les systemes distribués,
pouvant étre sujets a des pannes, et ce malgré leurs topologies diverses. C’est pour cette raison que, dans ce
chapitre, une attention toute particuliere sera portée sur I’exploration du tas de sable (représentant majeur des
modeles de SOC) dans diverses topologies au travers de plusieurs études.

Dans ce chapitre, le concept de SOC sera tout d’abord introduit. Nous nous intéresserons ensuite aux
différents modeles de SOC, et plus particulierement au modele du tas de sable. Notre attention se portera ensuite
sur les topologies des systemes SOC et les impacts de ces dernieres sur leur dynamique. Nous poursuivrons
avec une analyse de la robustesse des systemes SOC, en mettant en lumiére comment leur capacité a s’auto-
organiser contribue a leur résilience. Pour terminer, nous verrons comment le modele du tas de sable, modele
de référence de la SOC, peut étre adapté a 1’équilibrage dynamique de charge, en exploitant ses propriétés

intrinseques pour optimiser la répartition des ressources dans des systeémes complexes.

3.1 Introduction a la criticalité auto-organisée

La criticalité auto-organisée, introduite en 1987 par Bak, Tang et Wiesenfeld (BAK et al., 1987), a été
illustrée a travers un automate cellulaire connu sous le nom de modele du tas de sable. Ce modele s’inspire des
dynamiques d’avalanches observées dans les milieux granulaires, et met en évidence comment des interactions
locales simples peuvent conduire un systeme vers un état critique global. Le modele du tas de sable simule des
grains de sable déposés aléatoirement sur les cellules d’une grille. Cette grille est de dimension 2 et régulicre.
Elle définit un espace discret formé de cases carrées et un voisinage pour chacune des cases de la grille. Lorsque
le nombre de grains sur un site dépasse un certain seuil, les grains basculent vers les sites voisins, provoquant
potentiellement une réaction en chaine ou une avalanche. Ce modele simple mais puissant capture 1’essence de
la SOC et a été largement étudié pour comprendre la dynamique des états critiques dans une vaste gamme de
disciplines.

En neurosciences, le concept de criticalité auto-organisée a contribué a la compréhension des avalanches
neuronales, définies comme des épisodes transitoires d’activité cérébrale suivant des distributions spatiales et
temporelles caractéristiques, suggérant un fonctionnement du cerveau a proximité d’un état critique (BEGGS
& PLENZ, 2003 ; HAHN et al., 2010; PLENZ et al., 2021). La topologie du réseau neuronal apparait comme
un facteur déterminant dans la régulation de ces dynamiques, les patterns de connectivité influengant direc-
tement la propagation et la stabilité des avalanches (BORNHOLDT & ROHL, 2003). Toute altération de cet
équilibre critique peut étre a I’origine de dysfonctionnements neurologiques majeurs, tels que les crises épilep-
tiques (MEISEL et al., 2012). Ainsi, le bon fonctionnement des systemes neuronaux dépend fondamentalement
de leur robustesse structurelle, qui assure la résilience face a de telles perturbations.

De méme, d’autres systemes complexes, tels que les systemes financiers et les réseaux électriques, dé-

pendent également de leur robustesse structurelle. Les systémes financiers présentent des dynamiques de prix
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endogenes et des krachs boursiers, reflétant I’état critique et les interactions réseau des participants au mar-
ché (BIONDO et al., 2015). Les systemes électriques révelent comment les pannes en cascade et les blackouts
peuvent étre déclenchés et atténués en comprenant les états critiques et la structure du réseau (SHENGWEI
MET et al., 2008). Dans ces deux contextes, le bon fonctionnement de ces systeémes dépend fortement de leur

topologie réseau.

3.2 Le tas de sable

La criticalité auto-organisée décrit un mécanisme universel par lequel les systemes complexes évoluent
naturellement vers un état critique, a la frontiere entre stabilité et chaos (BAK et al., 1988). Dans cet état,
de petites perturbations peuvent entrainer des événements en cascade de différentes amplitudes, suivant une
distribution en loi de puissance. La SOC a été observée dans une large gamme de systemes naturels et artificiels,
notamment les tremblements de terre, les feux de forét, 1’activité neuronale et les marchés financiers. Ces
systémes n’ont pas besoin d’étre finement ajustés pour atteindre la criticalité ; au contraire, ils s’ autorégulent par
des dynamiques intrinséques, faisant de la SOC un cadre convaincant pour comprendre certains comportements
émergents dans les systeémes complexes.

Le modele le plus emblématique illustrant 1a SOC est le tas de sable de Per Bak, Chao Tang et Kurt Wie-
senfeld (BAK et al., 1987), que nous aborderons en premier lieu. L’objectif des auteurs est de proposer une
modélisation simple de la SOC afin d’en étudier les dynamiques. Ce modele est considéré comme classique
en raison de sa capacité a démontrer comment des systeémes complexes peuvent évoluer vers un état critique
stable.

Plusieurs variantes ont depuis été proposées, notamment le modele du tas de sable dissipatif. Cette version,
que nous aborderons par la suite, explore d’autres dimensions du phénomene, en particulier I’impact des modi-
fications de la topologie sous-jacente du systéme. Etudier comment ces changements influencent la propagation
des avalanches permet d’ouvrir de nouvelles pistes de réflexion sur la résilience et I’adaptabilité des systemes
soumis a une criticalité auto-organisée.

Enfin, nous explorerons quelques autres modeles présentant des caractéristiques de SOC, comme la modé-
lisation de tremblements de terre, de feux de forét, ou encore d’avalanches neuronales, pour compléter cette
section. Ces modeles, bien que différents dans leur approche et ayant leur propre objectif, partagent un but

commun de mieux comprendre les mécanismes sous-jacents a 1’auto-organisation critique.

3.2.1 Le modele initial de Bak-Tang-Wiesenfeld

Le modele canonique proposé par Bak, Tang, et Wiesenfeld (BAK et al., 1987) est un automate cellulaire
défini sur une grille réguliere de dimension 2, généralement avec une configuration de voisinage de von Neu-
mann, ol chaque cellule interagit uniquement avec ses voisins immédiats. Dans cette configuration, chaque
cellule (ou nceud) de la grille peut contenir un certain nombre de “grains” qui peuvent “basculer” vers des sites

voisins lorsqu’un certain seuil est dépassé. La grille elle-m&me peut étre représentée comme un graphe, ou
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les nceuds correspondent aux cellules individuelles et les arétes représentent les connexions entre les cellules
voisines. La plupart des cellules ont quatre voisins dans une configuration de von Neumann, a 1I’exception de
celles situées sur les bords de la grille, qui en ont trois, et des cellules d’angle, qui n’en ont que deux.

La dynamique du tas de sable est régie par un ensemble de regles locales simples qui créent de I’instabilité
et génerent des mécanismes d’autorégulation. Chaque cellule a un seuil critique de quatre grains, ce qui signifie
que si une cellule accumule quatre grains ou plus, elle devient instable et “s’éboule”. Lors de cet événement
d’éboulement, la cellule distribue un grain a chacune de ses quatre voisines. Si une cellule voisine est située en
dehors de la grille, le grain tombe hors du systeme, ce qui fait du tas de sable un systeme ouvert. Des grains
sont ajoutés aléatoirement a la grille, et dés que I’ajout d’un grain fait dépasser le seuil d’une cellule, celle-
ci s’éboule, ce qui peut déclencher une réaction en chaine d’éboulements, connue sous le nom d’avalanche.
La Figure 3.1 propose une représentation visuelle de I’éboulement d’une cellule. Un grain est déposé sur une
cellule au bord de I’instabilité (3 grains), déclenchant un éboulement qui redistribue ses grains aux cellules

voisines.

(a) Configuration initiale. (b) Dépdt d’un grain au centre. (c) Eboulement du centre.

FIGURE 3.1 — Illustration d’un éboulement dans un tas de sable de taille 3x3. (a) La cellule centrale est
initialement au bord de I’éboulement. (b) Un grain est déposé dessus, provoquant I’instabilité du systeme.
(c) La cellule s’écroule et redistribue ses grains entre ses voisines.

Avec le temps, le systeme évolue vers un état critique ou des avalanches de tailles variées se produisent.
La distribution de ces tailles suit une loi de puissance correspondant au bruit rose, également appelé bruit
1/f. Celui-ci se caractérise par une densité spectrale décroissante en 1/ f, ce qui signifie que chaque octave
transporte la méme puissance (VOSS & CLARKE, 1975) : les basses fréquences (avalanches courtes) sont plus
prononcées qu’avec un bruit blanc, mais sans 1’exces d’inertie énergétique du bruit rouge. En revanche, le bruit
rouge (ou bruit brownien) présente une densité spectrale décroissante en 1/ f2, conduisant a une domination
encore plus forte des basses fréquences et a un signal de type marche aléatoire, comme décrit dans la littérature
sur les spectres de “red noise” (GILMAN et al., 1963).

Ce comportement est caractéristique des systemes présentant une SOC, ou les grands événements sont
rares, mais les petits événements sont fréquents. Notamment, le modele du tas de sable présente une invariance
d’échelle et une auto-similarité, ce qui signifie que les mémes motifs statistiques émergent indépendamment de
la taille du systeme ou du niveau de détail. Pendant une avalanche, aucun nouveau grain n’est ajouté tant que

le systéme n’est pas revenu a une configuration stable, garantissant que tous les événements d’éboulement sont
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terminés.

Le processus de simulation du tas de sable est le suivant : un grain est déposé aléatoirement sur la grille a
chaque cycle. Si cela rend une cellule instable (c’est-a-dire que le nombre de grains atteint 4), une avalanche
de durée indéterminée est déclenchée et résolue avant de passer au cycle suivant. Lors de 1’éboulement d’une
cellule, un grain est transmis & chacune des cellules voisines, et la cellule en question voit son nombre de grains
diminuer de 4. Ainsi, une cellule située en bordure, qui ne dispose pas de quatre voisines, fera disparaitre un
a deux grains du systeme pendant son éboulement. Ce mécanisme permet de stabiliser le systéme en évacuant

I’exces de grains. L’ Algorithme | propose un pseudo-code de ce processus.

Algorithm 1: Processus de simulation du tas de sable canonique

Input: G : grille
cycles : nombre de cycles de simulation

1 cycle +— 0
2 while cycle < cycles do
3 Dépot d’un grain sur une cellule aléatoire de G
4
/+ Gestion de 1’avalanche potentielle */
5 while au moins une cellule de G est instable do
6 foreach cellule de G do
/% Eboulement de la cellule */
7 if cellule.grains > 4 then
8 foreach voisine de cellule do
9 ‘ voisine.grains <— voisine.grains + 1
10 end
11 cellule.grains < cellule.grains - 4
12 end
13 end
14 end
15
16 cycle < cycle + 1

17 end

La figure 3.2 illustre un processus typique d’avalanche dans le modele du tas de sable, démontrant la réac-
tion en chalne qui se produit lorsqu’un grain est ajouté au systtme. Comme le montre 1’exemple, 1I’éboulement
initial de la cellule centrale se propage a ses voisines, pouvant provoquer une instabilité supplémentaire et en-
trainer une redistribution plus large des grains. De telles cascades illustrent la dynamique critique du modele,
ou de petites perturbations peuvent déclencher des événements a grande échelle. La nature en cascade des
avalanches dans le modele du tas de sable est une caractéristique de la criticalité auto-organisée, mettant en

évidence le comportement en loi de puissance et I’invariance d’échelle inhérents a de tels systemes.

Le modele de tas de sable BTW est considéré comme abélien car I’ordre dans lequel les événements d’ébou-
lement se produisent durant une avalanche n’affecte pas la configuration finale du systeme. Cette propriété est
essentielle pour simplifier la dynamique du modele et garantir la reproductibilité des résultats, indépendamment

de la séquence des éboulements.
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(b) Dépdt d’un grain au centre. (c) Eboulement du centre.

(d) Eboulement supplémentaire. (e) Dernier éboulement. (f) Configuration stable finale.

FIGURE 3.2 — Exemple d’une avalanche en trois étapes dans un tas de sable BTW de taille 3 x 3. Un grain est
ajouté a la cellule centrale dans la configuration stable initiale (a), ce qui la fait atteindre un seuil critique de
4 (b) et déclenche le début d’une avalanche. Les 4 grains de la cellule centrale sont redistribués a ses voisines
(c), provoquant une instabilité supplémentaire et éjectant un grain hors du systeme (d). L’avalanche se poursuit
(e) pour atteindre un nouvel état d’équilibre (f) apres I’éjection de deux grains supplémentaires.

3.2.2 Le tas de sable dissipatif

Le modele dissipatif du tas de sable conserve les mécanismes fondamentaux du fonctionnement original,
mais différe dans la maniere dont les grains sortent du systeéme. Contrairement au modele classique ou les grains
disparaissent lorsqu’ils tombent en dehors des limites du systéme depuis un nceud en bordure, les bords du
systéme sont ici fermés. Les grains disparaissent progressivement au fil de leurs déplacements dans le systeme
(BHAUMIK & SANTRA, 2013; GOH et al., 2003 ; MALCALI et al., 2006). A chaque transfert d’un grain d’un
nceud a un autre pendant une avalanche, il existe une probabilité € que le grain disparaisse. Le modele dissipatif
proposé dans (BHAUMIK & SANTRA, 2013) introduit une contrainte supplémentaire : la dissipation ne peut
se produire que lors de transferts vers des nceuds aléatoires préalablement sélectionnés, représentant ainsi les
bordures du modele canonique. Bien que cette probabilité e puisse étre définie de diverses manieres, elle est
généralement ajustée et fixée a I’avance, car elle influence directement la tension du systeme nécessaire pour
atteindre la SOC. En effet, la probabilité doit permettre au systeéme d’atteindre un état stationnaire, caractérisé
par I’équilibre entre le nombre de grains ajoutés et ceux dissipés. Le mécanisme de dissipation rend ces modeles
non conservatifs, en opposition au modele canonique.

L’introduction de la dissipation dans les modeles de tas de sable permet de mieux comprendre les phéno-
menes naturels oll la conservation stricte de la matiere ou de 1’énergie n’est pas respectée. Par exemple, dans
les systemes géophysiques tels que les tremblements de terre ou les glissements de terrain, une partie de I’éner-

gie est dissipée sous forme de chaleur ou d’autres formes non récupérables. En biologie, ces modeles peuvent
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étre utilisés pour étudier la propagation des signaux neuronaux, ol certains signaux peuvent étre perdus ou
atténués au cours de leur transmission. Un autre avantage des modeles dissipatifs est leur capacité a reproduire
des comportements critiques plus réalistes. En ajustant la probabilité de dissipation e, il est possible de modu-
ler la dynamique du systeme pour qu’il atteigne un état de SOC plus stable et robuste. Cela permet de mieux
comprendre comment les systemes naturels et artificiels peuvent s’adapter et évoluer face a des perturbations
externes. En outre, les modeles dissipatifs permettent d’explorer les transitions de phase et les points critiques
dans les systemes non-conservatifs. En variant la probabilité de dissipation, on peut observer des changements
dans les propriétés statistiques des avalanches, telles que leur taille et leur durée. Ces observations peuvent
fournir des informations précieuses sur la maniere dont les systemes complexes réagissent aux perturbations et

aux contraintes externes.

3.2.3 Autres modeles présentant de la SOC

Bien que le modele du tas de sable en soit le paradigme fondateur, il n’est pas le seul & manifester des
comportements relevant de la criticalité auto-organisée. D’autres modeles, qu’ils en soient directement dérivés
ou non, présentent également des signatures caractéristiques de la SOC (TURCOTTE, 1999). Nous détaillerons
quelques-uns de ces modeles dans cette section en nous intéressant aux modeles de tremblements de terre
d’Olami-Feder-Christensen, de percolation (incluant le modele de feux de forét), d’avalanches neuronales, et

pour terminer le Chip-firing game.

Modéle d’Olami-Feder-Christensen : 1’étude statistique des tremblements de terre montre que la croite
terrestre se comporte comme un systeme complexe et présente des dynamiques s’apparentant & de la SOC
(SORNETTE & SORNETTE, 1989), notamment par la présence de multiples lois de puissance dans les mesures.
Les auteurs de (OLAMI et al., 1992) qualifient les tremblements de terre de “paradigme le plus pertinent de
la criticalité auto-organisée”. Les recherches se sont donc naturellement orientées vers la modélisation des
séismes par des mécanismes de SOC. Olami, Feder et Christensen ont proposé une modélisation (OLAMI et al.,
1992) (modele OFC) basée sur une version simplifiée du modele ressort-bloc de Burridge-Knopoff (BURRIDGE
& KNOPOFF, 1967), qui modélise les tremblements de terre. Ce modele est un automate cellulaire ot chaque
cellule représente un bloc, les cellules étant reliées par des ressorts. Elles accumulent de 1’énergie jusqu’a
un seuil critique avant d’effectuer un “glissement”, exercant une force sur le voisinage via les ressorts. Les
voisins peuvent a leur tour dépasser le seuil critique et contribuer a la propagation, provoquant une avalanche
de réactions. Les interactions inter-cellules sont régies par des parametres, notamment 1’élasticité des ressorts.
Le modele OFC incorpore une dissipation de 1’énergie, rendant le modele non-conservatif et plus réaliste.
Les auteurs montrent que 1’exposant des lois de puissance observées est directement corrélé au coefficient de

dissipation.

Modeles de percolation et de feux de forét : les modeles de percolation sont généralement utilisés pour
modéliser et étudier la connectivité et la propagation dans des systemes désordonnés. Ils s’appliquent a divers

phénomenes, tels que la dynamique des fluides dans des milieux poreux, la conduction électrique dans des
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matériaux composites, ou encore la propagation des feux de foréts. Le principe de ces modeles repose sur la
génération d’un réseau (souvent une grille) ot chaque nceud, appelé site, peut étre occupé ou non selon une pro-
babilité. Au fil de la simulation, les sites changent d’état en fonction de leur voisinage. Les études se concentrent
principalement sur la formation de clusters de sites occupés lorsque I’état de certains sites est modifié. Il existe
un seuil critique de densité d’occupation, appelé seuil de percolation, au-dela duquel un cluster infini appa-
rait, signifiant une propagation de 1’occupation a travers tout le systeme. Certaines modélisations integrent des
mécanismes qui ajustent dynamiquement la probabilité d’occupation des sites pour amener spontanément le
systéme a proximité du seuil de percolation. C’est notamment le cas du modele de percolation auto-organisée
(Self-Organized Percolation) (ALENCAR et al., 1997), dont les auteurs comparent le comportement au concept
de SOC. Le modele de percolation dirigée (Directed Percolation) (VAZQUEZ & COSTA, 1999) est également
lié a 1la SOC. 1l integre une notion de direction dynamique pour la propagation, ainsi que des états absorbants.
Ces états apparaissent spontanément en fonction d’une probabilité de propagation des avalanches, parametre
du systeme, permettant a celles-ci d’étre finies. Une faible probabilité conduit tous les sites vers une inactivité
définitive, tandis qu’une probabilité suffisamment élevée peut entrainer une propagation continue.

Les modeles de percolation sont également utilisés dans 1’étude des feux de forét (DROSSEL & SCHWABL,
1992) a travers une extension du modele classique de percolation de sites, incluant un mécanisme spécifique
de déclenchement d’incendies. A chaque pas de temps, un arbre peut étre placé aléatoirement sur un site
vacant et, a intervalle régulier, une étincelle est déposée aléatoirement sur un arbre, provoquant ainsi un départ
d’incendie. Le feu ainsi déclenché se propage aux arbres situés sur les sites voisins, modifiant leur état en “en
feu” et générant un feu de forét, réaction en chaine assimilable a une avalanche. Cette propagation se poursuit
jusqu’a épuisement des arbres dans le voisinage immédiat du front d’incendie. Les arbres briilés disparaissent
alors, laissant leurs sites vides. Grace au processus continu d’ajout (plantation aléatoire) et de retrait (incendies)
d’arbres, le systeme s’auto-organise spontanément dans un état ou la taille des feux suit une distribution en loi

de puissance.

Modéles d’avalanches neuronales : les réseaux neuronaux ont été largement étudiés au cours des dernieres
décennies, et ils présentent des dynamiques de SOC résultant du mécanisme d’activation en cascade des neu-
rones (HESSE & GROSS, 2014 ; PLENZ et al., 2021). Plusieurs travaux, tels que (de ARCANGELIS et al., 2006
RYBARSCH & BORNHOLDT, 2014), proposent des modélisations de réseaux neuronaux pour capturer et ana-
lyser I’essence naturelle de la SOC dans ces réseaux.

Les auteurs de (de ARCANGELIS et al., 2006) ont développé un modele reproduisant la plasticité cérébrale.
Ce modele consiste en un réseau électrique ou les nceuds représentent des neurones et les liaisons, les synapses
entre neurones voisins. Chaque neurone possede un potentiel qui, lorsqu’il dépasse un seuil, est déchargé vers
les voisins proportionnellement au potentiel de chacune de ses liaisons. Un neurone ainsi déclenché retrouve
un potentiel nul et devient temporairement inactif, n’acceptant aucune charge de ses voisins. L’état des liaisons
est mis a jour a chaque pas de temps pour augmenter leur capacité lorsqu’elles sont utilisées et la réduire
lorsqu’elles ne le sont pas, jusqu’a atteindre une capacité nulle. Ces évolutions reproduisent le renforcement et

I’affaiblissement synaptique du cerveau, pouvant mener a la disparition des liaisons synaptiques. Les résultats
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obtenus avec ce modele montrent les lois de puissance caractéristiques de la SOC. Les auteurs de (RYBARSCH
& BORNHOLDT, 2014) proposent un modele minimal de réseaux neuronaux, visant a servir de base solide pour
des modeles plus complexes. Cette modélisation s’inspire des modeles de spins, dont le modele d’Ernst-Ising
est le plus connu : des électrons sont mis en réseau et disposent d’une orientation (spin : {%, —%}); I’état
suivant d’un électron dépend de son voisinage ainsi que de parametres externes tels que la température. Dans le
modele de réseau neuronal de (RYBARSCH & BORNHOLDT, 2014), les neurones (nceuds du réseau) possédent
un état booléen, et leur état a I’étape suivante dépend de I’état moyen de leur voisinage comparé a un seuil
critique d’activation. Ce seuil est maintenu localement au cours du temps : a chaque pas de temps, un neurone
a une probabilité d’augmenter son seuil égale a la moyenne de ses activations sur les V' derniers pas de temps,
V' correspondant au temps d’épuisement des neurones. Ce modele présente les signatures de la SOC, et les

résultats correspondent aux données expérimentales sur 1’activité corticale.

Chip-firing game : le Chip-firing game (BJORNER et al., 1991 ; MERINO, 2005) est un jeu solitaire ou des
jetons sont initialement empilés sur les sommets d’un graphe. Une étape du jeu consiste a sélectionner un
sommet possédant au moins autant de jetons que son degré et a faire “tirer”” un jeton vers chacun de ses voisins,
réduisant ainsi son nombre de jetons d’autant que son degré. Le jeu s’acheve lorsqu’aucun sommet ne dispose
plus d’assez de jetons pour étre “tiré”. Une partie de Chip-firing game, telle qu’illustré par la Figure 3.3,
peut étre comparée a une avalanche dans un modele de tas de sable (Figure 3.2). De plus, comme le tas de
sable, le Chip-firing game est abélien : une disposition initiale des jetons conduira invariablement a une méme
disposition finale, indépendamment de 1’ordre dans lequel les sommets sont “tirés”. En adoptant une perspective
plus large, le tas de sable peut étre considéré comme une configuration spécifique du Chip-firing game, ol tous
les sommets ont un degré de 4. Cependant, contrairement au tas de sable, qui est un systéme ouvert permettant
I’évacuation de I’exces de grains, le Chip-firing game est un systeéme fermé. Par conséquent, si le nombre initial
de jetons est trop élevé, la partie peut devenir infinie. La similarité des mécanismes du Chip-firing game avec

ceux du tas de sable en fait un modele présentant des caractéristiques de SOC.
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FIGURE 3.3 — Exemple d’une partie de Chip-firing game. A chaque étape, un nceud disposant d’au moins autant
de jetons que de voisins est sélectionné (nceud rouge). Il “tire” alors un jeton vers chaque voisin (nceuds bleus).
Ce processus est répété jusqu’a ce qu’aucun nceud ne détienne plus d’assez de jetons pour étre sélectionné.
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3.3 Topologies de réseau dans les systemes SOC

Alors que le modele classique du tas de sable de Bak-Tang-Wiesenfeld est généralement implémenté sur
une grille réguliere, de nombreux systemes réels présentant une SOC se produisent dans des réseaux com-
plexes (BASSETT & BULLMORE, 2006). Contrairement aux grilles régulieres, les réseaux complexes englobent
une large gamme de structures caractérisées par des motifs de connectivité différents, y compris des topolo-
gies de type petit-monde et sans échelle. Ces variations dans la structure du réseau peuvent avoir un impact
significatif sur I’émergence et les propriétés statistiques de la SOC, motivant des recherches approfondies sur
la maniere dont différentes topologies influencent les dynamiques de la SOC (BHAUMIK & SANTRA, 2013;
de ARCANGELIS & HERRMANN, 2002 ; GOH et al., 2003 ; KARMAKAR & MANNA, 2005 ; PAN et al., 2007).

Une approche notable consiste a transformer une grille réguliere en un réseau de type petit-monde par
recablage. Dans (BHAUMIK & SANTRA, 2013), une méthode de reconnexion est introduite, des arétes aléa-
toires sont ajoutées entre des paires de nceuds, modifiant ainsi la connectivité du réseau. Pour s’adapter a ce
changement structurel, le mécanisme d’expulsion des grains basé sur les bords est remplacé par un modele de
dissipation tel que présenté en Section 3.2.2. En revanche, la dissipation proposée par BHAUMIK et SANTRA
(2013) ne s’effectue qu’a partir de nceuds sélectionnés arbitrairement plutdt que pour n’importe quel déplace-
ment de grain. La probabilité de dissipation choisie correspond a la fréquence empirique d’éjection des grains
par les bordures du tas de sable canonique. De méme, PAN et al. (2007) étudient les graphes dirigés en mo-
difiant la destination des connexions sortantes, permettant a chaque nceud d’avoir un nombre variable d’arétes
entrantes tout en conservant exactement quatre arétes sortantes. Cette approche préserve les dynamiques du tas
de sable sans nécessiter de modifications supplémentaires. Une autre méthode, décrite par de ARCANGELIS
et HERRMANN (2002), incorpore également des ajouts aléatoires d’arétes mais les compense en supprimant
d’autres, garantissant que le degré moyen des nceuds reste a quatre. Malgré les variations de mise en ceuvre, les
trois études révelent une évolution commune : a mesure que les réseaux deviennent de plus en plus reconnectés,
les distributions en loi de puissance régissant les tailles des avalanches deviennent plus pentues, indiquant un
changement dans le comportement critique du systeme.

Au-dela des réseaux de type petit-monde, les réseaux sans échelle (Scale-Free Networks) (BARABASI &
ALBERT, 1999) ont également été étudiés dans le contexte de la SOC. Ces réseaux sont caractérisés par une
distribution de degrés hétérogene, ou quelques nceuds (hubs) ont une connectivité nettement plus élevée que
les autres. Cette caractéristique structurelle est couramment observée dans les systémes naturels et joue un
role crucial dans les dynamiques de la SOC. Les réseaux sans échelle ont été étudiés dans (GOH et al., 2003).
Les structures ont été générées en utilisant I’algorithme proposé dans (GOH et al., 2001), ol les arétes sont
ajoutées en fonction des poids des nceuds pour atteindre le degré moyen souhaité. Il est important de noter
que le modele du tas de sable est alors dissipatif pour préserver sa nature de systeme ouvert. La relation entre
I’exposant de degré du réseau sans échelle () et ’exposant de la distribution des tailles d’avalanches (1) est
examinée. L' étude montre que lorsque 2 < v < 3, ’exposant 7 suit la relation 7 = %1, tandis que pour
v > 3, T converge vers 1,5. La Figure 3.4 illustre ces différentes situations par quatre Zourbes représentant la

distribution des tailles des avalanches pour différents . Plus ~y est faible, plus 7 est élevé. Cela indique que



3.3. TOPOLOGIES DE RESEAU DANS LES SYSTEMES SOC 61

les réseaux avec une concentration plus élevée de hubs (plus faible ) présentent des longueurs de chemin plus
courtes et des distributions d’avalanches plus pentues, renforcant les observations précédentes des réseaux de

type petit-monde.

P (A)

FIGURE 3.4 —Figure 1 des travaux de GOH et al. (2003) illustrant la pente de la distribution des avalanches dans
des réseaux sans échelle de différents exposants de degré . Plus ~y est faible, plus la distribution est pentue :
v = oo (magenta [0), vy = 3 (bleu A), v = 2,2 (vert ), et v = 2 (rouge ). Lorsque v — oo, 7 — 1,5. La
fréquence des avalanches est exprimée en probabilité de parution par rapport a toutes les avalanche survenues.

Une approche alternative est explorée dans (KARMAKAR & MANNA, 2005), ou les réseaux sans échelle
sont intégrés dans une grille tout en maintenant des dynamiques de tas de sable conservatrices. En modifiant
le réseau pour minimiser les longueurs des liens, les réseaux sans échelle optimisés résultants présentent un
comportement multi-échelle similaire a celui des grilles a maillage carré. En revanche, les réseaux sans échelle
non optimisés ne montrent pas cette caractéristique, soulignant le role de la structure du réseau dans la déter-
mination des propriétés de la SOC. Ces résultats montrent collectivement que la topologie sous-jacente a un
impact profond sur les dynamiques du tas de sable, influengant non seulement la présence de la SOC mais aussi
ses propriétés statistiques.

L’influence de la topologie du réseau sur la SOC ne se limite pas aux modeles de tas de sable. D’autres sys-
temes de SOC, tels que le modele de tremblement de terre d’Olami-Feder-Christensen (OLAMI et al., 1992), ont
été étudiés sur diverses structures de réseau. Dans (LISE & PACZUSKI, 2002), les graphes aléatoires d’Erdos-
Rényi (ERDOS & RENYI, 1960) et les graphes évolutifs sont analysés. La différence essentielle entre ces deux
types réside dans la nature statique des graphes d’Erdos-Rényi par rapport a la réaffectation dynamique des
voisins dans les graphes évolutifs a chaque étape temporelle. L’étude montre que le comportement de SOC
est observé dans le modele d’Olami-Feder-Christensen sur les graphes d’Erdds-Rényi, avec un exposant de loi
de puissance de 7 ~ 1,65, indépendamment du fait que le systeme soit conservatif ou non. Cependant, dans
les graphes évolutifs, la SOC n’émerge que dans les systeémes conservatifs. Au final, I’étude suggere que des
interactions locales fixes, développant d’une corrélation spatiale, sont essentielles pour maintenir la SOC dans
les systemes non-conservatifs (dissipatifs).

Un exemple particulierement significatif de SOC dans un systéme en réseau est 1’architecture neuronale

du cerveau. Des études expérimentales ont montré que les réseaux neuronaux dans les couches superficielles
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du cerveau développent des motifs de connectivité préférentiels, formant souvent des structures ressemblant
a des réseaux sans échelle (BEGGS & PLENZz, 2003 ; EYTAN & MAROM, 2006; HAHN et al., 2010; PLENZ
et al., 2021). Ces réseaux contiennent des neurones “hubs” hautement connectés, qui s’activent avant le reste
du réseau, déclenchant des avalanches neuronales, une caractéristique de la SOC dans le cerveau. Notamment,
ces avalanches n’émergent qu’une fois le réseau complétement mature. En revanche, les systémes neuronaux
dépourvus de cette organisation préférentielle tendent a fonctionner dans un état supercritique, ou 1’activité se
propage de maniere incontrolable plutot que de s’autoréguler. De plus, il a été montré que I’équilibre entre les
neurones excitateurs et inhibiteurs est crucial pour maintenir le comportement de SOC dans le cerveau (EYTAN
& MAROM, 2006).

Ces études témoignent du role fondamental de la topologie du réseau dans la détermination des dynamiques
des systemes SOC. Qu’il s’agisse de modeles de tas de sable, de simulations de tremblements de terre ou de
réseaux neuronaux biologiques, la structure sous-jacente des interactions influence non seulement 1’émergence
de la SOC mais aussi son maintien face a des variations de structure. Comprendre ces effets fournit des infor-
mations sur le caractere transversal de la SOC a travers divers systémes et offre un cadre pour analyser I’impact

des changements structurels dans les réseaux complexes du monde réel.

3.4 Robustesse des systemes SOC

La robustesse des systemes SOC peut étre analysée selon deux perspectives complémentaires : d’une part,
les propriétés structurelles de la topologie du réseau sous-jacent, et d’autre part, les processus internes régissant
la dynamique du systeme. Ces deux aspects jouent un rdle crucial dans le maintien de la stabilité tout en

préservant 1’état critique nécessaire au comportement de la SOC.

3.4.1 Robustesse structurelle : organisations hiérarchiques et modulaires

Une stratégie courante pour renforcer la robustesse des systemes complexes consiste a intégrer des struc-
tures modulaires hiérarchiques. Dans ces réseaux, les nceuds ayant des interactions fréquentes sont regroupés en
modules, ou les connexions intra-modules sont plus denses que les connexions inter-modules. L’aspect hiérar-
chique apparait lorsque les modules eux-mémes forment des clusters de niveau supérieur, créant une structure
multi-couches qui équilibre la coordination locale et globale.

Ce type d’organisation a été largement étudié dans les systemes biologiques, en particulier dans les réseaux
neuronaux (MEISEL et al., 2012; S.-J. WANG & ZHOU, 2012). Le cerveau, par exemple, exploite la modula-
rité hiérarchique pour garantir a la fois I’efficacité et la résilience. Cette structure empéche les perturbations
locales de se propager de maniere incontr6lée, évitant ainsi les défaillances a grande échelle telles que celles
observées lors des crises épileptiques (MEISEL et al., 2012), ou le systéme passe d’un état de SOC a un régime
supercritique caractérisé par une propagation incontrdlée de 1’activité. Cependant, une structure excessivement
modulaire peut entraver la transmission globale de 1’activité, risquant de pousser le systeéme vers un état sous-

critique. Pour maintenir la criticalité, la modularité est couplée a une adaptabilité structurelle, un mécanisme
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également observé dans les systeémes neuronaux (MEISEL et al., 2012).

3.4.2 Robustesse dynamique : auto-adaptation et mécanismes de controle

Au-dela des considérations structurelles, la robustesse des systemes SOC provient également de méca-
nismes auto-adaptatifs qui régulent la dynamique du systeme. Les études sur les réseaux adaptatifs (GROSS
& BLASIUS, 2008 ; ROHLF & BORNHOLDT, 2009) montrent que la SOC peut émerger dans des systeémes ol
la connectivité évolue au fil du temps en fonction des interactions entre les nceuds. Ces réseaux présentent un
haut degré de résilience, car 1’auto-organisation réduit la dépendance aux conditions initiales et aux parametres
externes.

Une autre approche pour améliorer la robustesse consiste a contrdler la dynamique des avalanches afin
de prévenir les effondrements a 1’échelle du systeme (CAJUEIRO & ANDRADE, 2010). Une stratégie consiste
a déclencher de maniere préventive des avalanches locales dans les régions proches de 1’état critique, empé-
chant ainsi une accumulation excessive d’énergie qui pourrait conduire a des cascades a grande échelle. Deux

méthodes de sélection sont proposées pour déclencher ces avalanches préventives :

1. Sélection basée sur le degré : les nceuds ayant la plus forte connectivité sont surveillés, et lorsque I'un
d’eux approche du seuil critique, une avalanche est déclenchée. Cette méthode est tres efficace mais

nécessite une connaissance complete de la structure du réseau.

2. Sélection aléatoire : les noceuds sont choisis aléatoirement pour étre surveillés et faire I’objet d’interven-
tions, offrant une stratégie plus réalisable lorsque les informations sur I’ensemble du réseau ne sont pas

disponibles, bien que 1égerement moins efficace.

Ces résultats soulignent I’interaction entre la topologie du réseau et les mécanismes internes de régulation
dans le maintien de la SOC. Alors que la modularité hiérarchique assure une résilience structurelle, la connec-
tivité adaptative et le déclenchement contrdlé des avalanches garantissent une stabilité dynamique, empéchant

le systeme de dériver vers des états supercritiques ou sous-critiques.

3.5 Le tas de sable pour de I’équilibrage dynamique

Maintenant que nous avons exploré la criticalité auto-organisée et touché du doigt son potentiel, il est temps
de revenir sur notre sujet principal : I’équilibrage de charge. Il est tentant d’imaginer un systeéme d’équilibrage
présentant une telle dynamique pour auto-organiser de maniere décentralisée les taches entre ses ressources. La
question est alors : comment modéliser un systeme d’équilibrage présentant des dynamiques de SOC?

Bien que le tas de sable constitue un cadre conceptuel trés important, il ne reflete pas, malheureusement,
le fonctionnement réel d’un systéme de traitement de tiches. Si une analogie peut étre faite entre les grains
qui se déplacent et les taches cherchant une ressource disponible, le mécanisme d’expulsion des grains hors du
systeme (autorisant le retour a un état stable) n’est pas transposable a un systeme de traitement de tiches, dans

lequel chacune doit impérativement étre prise en charge.
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Afin de mieux représenter ce type de systeme, deux extensions du modele initial ont été proposées dans
des travaux antérieurs a cette these par LAREDO et al. (2012, 2014) : le tas de sable ordonnanceur et le tamis.
Ces deux modeles modifient le principe d’évacuation en introduisant une ouverture en surface, permettant un
traitement progressif des grains. Nous verrons que ces deux modeles démontrent des performances d’ordonnan-
cement au moins équivalentes, voire supérieures, a celles des solutions traditionnelles sur certains aspects. Les
études menées sur ces modeles soulignent le potentiel des modeles de type tas de sable pour gérer efficacement
la charge de travail dans des environnements dynamiques, tout en maintenant une qualité de service élevée et
une consommation énergétique optimisée.

Dans cette section, nous allons tout d’abord nous intéresser au tas de sable ordonnanceur. Puis, nous présen-
terons un systeme d’équilibrage et d’ordonnancement inspiré du modele du tas de sable et du modele précédent.
Enfin, nous terminerons cette section et ce chapitre par I’étude du modele du tamis, sur lequel se basent les tra-

vaux présentés au Chapitre 5.

3.5.1 Le tas de sable ordonnanceur

Le tas de sable ordonnanceur (Sandpile Scheduler) a été introduit dans (LAREDO et al., 2012) puis amélioré
dans (LAREDO et al., 2014), dans le but de proposer une solution d’équilibrage de charge dynamique adaptée
a des environnements décentralisés.

Ce modele vise a explorer dans quelle mesure les dynamiques issues de la criticalité auto-organisée peuvent
étre exploitées pour produire un équilibrage de charge efficace, en s’inspirant des mécanismes fondamentaux
du modele de tas de sable. Toutefois, ce dernier ne permet pas de simuler fidelement un systeme de traitement
de taches, ce qui justifie I’introduction de deux modifications majeures dans le tas de sable ordonnanceur : une
nouvelle approche du mécanisme d’évacuation des grains, et une gestion adaptée des avalanches.

Les grains ne peuvent plus étre évacués hors du systeme par les bordures. Chaque cellule est désormais
dotée d’une capacité de traitement, ce qui permet une prise en charge progressive des grains au fil du temps. De
plus, la taille des grains devient variable, introduisant ainsi une granularité plus fine dans la modélisation de la
charge de travail. Ce nouveau modele permet de faire un parallele direct entre le tas de sable ordonnanceur et

un systeme de traitement de tches, dont le Tableau 3.1 propose les correspondances.

Tas de sable ordonnanceur Systeme de traitement de taches

Grain de sable Tache a traiter

Taille de grain Durée de la tache
Cellule de 1’automate Unité de calcul

Vitesse de traitement Vitesse de calcul

to o0

Grains sur une cellule File d’attente de 1’unité de calcul

TABLE 3.1 — Correspondances entre le tas de sable ordonnanceur et un systeme de traitement de taches.

Chaque cellule de 1’automate est dotée d’un agent dont le rdle est de surveiller la charge de la cellule cor-
respondante ainsi que celle des cellules voisines. Lorsque la quantité de grains présente sur une cellule dépasse

le nombre total des grains dans son voisinage, I’agent déclenche un écroulement de la cellule et réaffecte des
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grains a ses voisines. L’une des voisines peut alors devenir instable a son tour, prolongeant ainsi 1’avalanche.
Ce mécanisme, en plus de reproduire les dynamiques de la SOC, permet un équilibrage efficace des grains dans
le systeme.

La notion de bordure n’étant plus pertinente en raison du nouveau paradigme d’évacuation des grains, le
tas de sable ordonnanceur a été étudié sur des structures de graphe petit-monde générées a partir d’un maillage
en anneau. Ces structures permettent d’explorer des configurations plus réalistes et adaptées aux systeémes de
traitement de tiches modernes.

Le tas de sable ordonnanceur a été testé avec le probleéme d’ordonnancement de sacs-de-taches (Bags-of-
Tasks scheduling problem) (I0SUP et al., 2008b), ot des ensembles de tiches a traiter en parallele sont envoyés
dans le systeme. Le modele démontre de meilleures performances (temps de traitement total, quantités de
traitements, nombre de migrations des tiches) sur des structures de type petit-monde que sur des maillages,
avec des résultats proches de I’optimalité. Cela s’explique par la capacité des avalanches a atteindre des zones
plus distantes de la structure pour disperser la charge, tandis que les avalanches restent locales dans un maillage.
De plus, le modele démontre une excellente capacité a gérer la charge dans des environnements hétérogenes,
ou les ressources (cellules) disposent de vitesses de traitement différentes. Enfin, le tas sa sable ordonnanceur
présente de meilleures performances que des systeémes d’équilibrage classiques comme 1’affectation aléatoire
ou le tourniquet (Round Robin).

En outre, le modele a été amélioré avec un protocole de bavardage (Gossip protocol) visant a réduire le
nombre de migrations des tiches, impactant ainsi la consommation énergétique du systeme. Plutot que de trans-
férer physiquement les taches durant les avalanches, seules quelques informations nécessaires sont transmises.
Une fois une configuration stable trouvée, les tiches sont effectivement déplacées vers leur ressource finale de
I’avalanche. Ce mécanisme permet de réduire considérablement I’impact énergétique 1ié au déplacement des

taches pour équilibrer le systeme.

3.5.2 Un ordonnanceur et équilibreur de charge décentralisé

Le systéme proposé par GASIOR et SEREDYNSKI (2017) constitue une approche décentralisée pour 1’ordon-
nancement et I’équilibrage de taches dans un environnement de cloud computing, s’inspirant des dynamiques
du modele de tas de sable et du tas de sable ordonnanceur. Ces travaux visent principalement a optimiser les
performances du systeme en réduisant le temps d’exécution des tiches. L’environnement considéré est sta-
tique et entierement connu a 1’avance : le nombre de ressources de calcul, leur puissance, le nombre de coeurs
disponibles, ainsi que les latences de communication entre ressources sont fixés.

Afin de distribuer les tiches au mieux, un mécanisme local aux nceuds déclenche la répartition des taches
a I’instar du modele du tas de sable. Cependant, la décision du déclenchement résulte d’une comparaison
de I’état local d’un nceud a son voisinage et non pas de son propre état uniquement, comme le tas de sable
ordonnanceur. Chaque nceud dispose d’une estimation de sa charge comparée au voisinage, déterminant son
état : surchargé, équilibré ou sous-chargé. Cette estimation est découpée en deux indicateurs : le temps de

complétion maximal des tiches en attente (C,4.) et le temps de calcul non utilisé (7). Le premier indicateur
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correspond a I’accumulation de tous les temps de complétion des tiches d’un nceud. Le second correspond,
suite a un ordonnancement local des tiches, au temps de calcul du nceud non utilisé par les tches jusqu’a leur
complétion totale. Un 7 a O signifie qu’aucune nouvelle tache ne peut étre ordonnancée sans violer les dates
limites de tiches présentes. Ainsi, un nceud est surchargé lorsque la différence entre Cy, 4, et CY2i5178 dépasse
un seuil fixé préalablement ou lorsque 7 = 0. Dans cet état, toute nouvelle tiche arrivant sur le nceud est
automatiquement redirigée vers un voisin, de méme que les taches locales ne pouvant étre traitées localement
dans le temps imparti. Un des nceuds voisins recevant 1’'une des tiches en exces peut alors devenir lui-méme
surchargé provoquant une réaction en chaine : une avalanche.

Bien que la consommation énergétique constitue un enjeu majeur dans les environnements de cloud com-
puting, elle n’est pas prise en compte dans ces travaux. De méme, la problématique de la surcharge globale du
systeme est ignorée, alors méme qu’une telle situation peut survenir a tout moment. Dans le cadre du méca-
nisme de répartition proposé, une surcharge implique un fonctionnement intensif : les taches continuent de se
déplacer dans le systéme jusqu’a ce qu’un état stable soit atteint, ou aucun nceud n’est surchargé. Ce processus

peut nécessiter une avalanche de grande ampleur, entrainant une consommation énergétique significative.

3.5.3 Le tamis

Le modele du tamis a été introduit dans (LAREDO et al., 2017), a I’'instar du tas de sable ordonnanceur, afin
d’examiner dans quelle mesure les dynamiques de criticalité auto-organisée peuvent favoriser un équilibrage de
charge efficace, en s’inspirant des mécanismes du tas de sable. La principale différence entre ces deux modeles
réside dans le fait que le tamis conserve les mécanismes du modele canonique d’automate cellulaire, et se
différencie également par le type d’environnement considéré pour le systeme.

Le tamis introduit une ouverture du systeme en surface, similaire au tas de sable ordonnanceur : les cellules
disposent d’une capacité de tamisage (vitesse de traitement) et les grains d’une taille donnée. Ces derniers
sont tamisés progressivement au fil du temps par les cellules. Il est donc possible d’établir un parallele entre
le tamis et un systeme de traitement, dont certaines correspondances ont été proposées précédemment dans
le Tableau 3.1. L’ Algorithme 2 présente le fonctionnement du tamis en pseudo-code. A chaque cycle, en plus
des étapes classiques du tas de sable (dépdt d’un grain et gestion de 1’instabilité), le tamis ajoute une étape de
tamisage.

La Figure 3.5 illustre le modele du tamis. Les grains sont déposés sur la grille, de maniere similaire au
modele du tas de sable. Cependant, si un grain se retrouve sur une cellule vide (par un dép6t ou une avalanche),
il entre en état de tamisage et ne participe plus aux mécanismes canoniques de 1’automate cellulaire. Selon sa
taille et la capacité de tamisage de la cellule, le grain sera progressivement tamisé et finira par sortir du systéme
(par le dessous de la grille). Par ce mécanisme, les grains passent progressivement au travers du systeme, tel
que le ferait du sable dans un tamis réel.

Ce nouveau modele introduit un paramétre crucial : la capacité de tamisage des cellules. A I'instar de la
probabilité de dissipation dans les modeles dissipatifs du tas de sable (Section 3.2.2), la capacité de tamisage

influence directement la dynamique des avalanches, notamment lorsque le systéme est de taille finie. En effet,
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Algorithm 2: Processus de simulation du tamis
Input: G : grille
cycles : nombre de cycles de simulation
1 cycle + 0
2 while cycle < cycles do

3 Etape 1 : dépdt d’un grain sur une cellule aléatoire de G
4 Etape 2 : gestion de I’avalanche potentielle
5
/* Tamisage des grains */
6 foreach cellule € G do
7 if cellule non vide then
8 ‘ Progression du tamisage des grains de la cellule
9 end
10 end
11
12 cycle < cycle + 1
13 end

Entrée \

{} ‘ Grain en attente

[l‘ Grain en traitement

\) Sortie

FIGURE 3.5 — Illustration du modele du tamis. Les grains clairs jouent le méme rdle que dans le tas de sable
canonique, tandis que les grains foncés, en train d’étre tamisés, n’influent plus sur les avalanches. L’ ouverture
du systeme se fait par le tamisage progressif des grains.

le traitement des grains s’effectuant au fil du temps (et non pendant les avalanches), plus la charge de grains
(nombre et/ou taille) augmente, plus des avalanches de treés grande échelle surviendront. Lorsque la charge
atteindra presque la capacité totale de tamisage du systéme par cycle, aucune configuration stable ne pourra plus
eétre atteinte. La capacité de tamisage joue donc un rdle déterminant dans la gestion de la charge et de la stabilité
globale du systeme. Dans le contexte d’un systeme de traitement de taches, une capacité de tamisage bien
calibrée permet de réguler le flux de taches et d’éviter les surcharges, assurant ainsi une répartition équilibrée
et efficace de la charge sur les ressources.

L’étude sur le tamis s’est concentrée sur sa capacité a trouver un compromis idéal entre consommation

énergétique, due a la puissance de calcul et a la quantité des ressources (cellules) du systeme, et la qualité de
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service (vitesse et quantité des taches traitées). Pour ce faire, ’étude a été menée dans un environnement a
structure de grille infinie : les ressources sont allumées et éteintes selon les besoins. Une ressource sans tache
(grain) est éteinte et s’allume lorsqu’elle recoit une tiche durant une avalanche. Les résultats ont démontré la
capacité du tamis a trouver un compromis quasi-optimal entre efficience énergétique et qualité de service.
Cependant, ces résultats concernent un systéme infini. Les systemes de calcul réels, bien qu’ayant des
capacités trés importantes, ne disposent pas d’un nombre infini de processeurs. Comme nous 1’avons vu, le
tamis en I’état ne permet pas de gérer une surcharge dans un environnement fini. C’est pourquoi, dans le

Chapitre 5, nous explorerons une maniere d’améliorer le tamis sur ce point.
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Comme nous 1’avons vu dans le chapitre précédent, la SOC, a travers le modele du tas de sable, est capable
de produire un équilibrage de charge efficace. La robustesse est un concept clé pour les systemes d’équili-
brage, définissant leur capacité a faire face a des défaillances inattendues. Il est donc important d’examiner la
robustesse du modele du tas de sable.

Bien que de nombreuses études aient exploré le développement de la SOC au sein de diverses structures
(Section 3.3), aucune, a notre connaissance, ne s’est penchée sur son comportement en contexte dégradé, ni sur
I’influence des topologies sur I’impact de cette dégradation. Une telle compréhension pourrait offrir des pistes
pertinentes pour renforcer la résilience des mécanismes d’équilibrage de charge face aux perturbations ou aux

défaillances.
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Ce premier travail vise a proposer un modele a la fois simple et pertinent pour I’analyse de la robustesse
dans les systemes SOC. Notre approche préserve la simplicité du modele original du tas de sable, tout en y
intégrant, de maniere cohérente, une diversité de topologies de réseau ainsi que des scénarios de défaillances
structurelles.

Pour atteindre cet objectif, nous proposons deux modifications principales du modele canonique du tas de
sable : 1) un mécanisme de recablage permettant de générer un large éventail de topologies de réseau — allant
de grilles réguliéres jusqu’a des structures présentant divers degrés de randomisation et des caractéristiques de
petit monde — tout en maintenant un degré de nceud constant, et ii) une approche de simulation progressive
de la dégradation, dans laquelle la dynamique du tas de sable est étudiée a partir d’'un systeme pleinement
fonctionnel, puis soumise a une augmentation graduelle des défaillances de nceuds, jusqu’a ce que seuls 10%
d’entre eux restent opérationnels.

En fin de compte, notre étude vise a explorer les interactions entre la criticalité auto-organisée et les dé-
faillances structurelles au sein des réseaux complexes a travers le prisme du modele du tas de sable. En exami-
nant différentes structures de réseau (réseau en grille réguliere, réseaux de petit monde, réseaux aléatoires) et
différents scénarios de défaillance, nous cherchons a identifier des motifs et des principes qui peuvent améliorer

la conception de réseaux plus robustes et résilients.

4.1 Cadre d’étude de la robustesse structurelle

En s’appuyant sur les enseignements des études antérieures sur la criticalité auto-organisée et les topolo-
gies de réseaux, cette section présente le cadre utilisé pour analyser la robustesse structurelle du modele du tas
de sable Bak-Tang-Wiesenfeld. Si les recherches existantes ont largement étudié I’'influence des structures de
réseau sur le comportement SOC, la maniere dont ces systemes réagissent a une dégradation progressive de
leur architecture demeure une question encore pas ou peu explorée. Pour cela, nous introduisons deux méca-
nismes clés de modification de la topologie du systéme : un processus de recablage, qui nous permet d’explorer
les effets de la modification de la connectivité tout en maintenant un degré de nceud fixe, et un processus de
dégradation, qui supprime systématiquement des nceuds pour simuler des défaillances structurelles. Ces mo-
difications offrent un environnement contrdlé pour étudier 1’interaction entre la criticalité auto-organisée et la

robustesse du réseau.

4.1.1 Algorithme de recablage

La modification des topologies de réseau dans les modeles de SOC implique souvent des changements
structurels qui alterent des propriétés fondamentales telles que la régularité, la directionnalité des connexions
ou les mécanismes de dissipation. De nombreuses approches existantes introduisent de telles modifications,
rendant les modeles résultants non conservatifs et s’écartant du modele de tas de sable canonique. Pour préser-
ver le cadre original tout en permettant des altérations contrdlées, nous proposons un algorithme de recablage

qui maintient le degré des nceuds constant tout en introduisant progressivement de 1’aléatoire dans la topologie
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du réseau.

L’algorithme proposé, inspiré du principe de permutation de G. A. Croes (CROES, 1958), permet la transi-
tion d’une topologie de grille réguliere a une structure de type petit-monde (WATTS & STROGATZ, 1998), puis
aun réseau completement aléatoire. L’ algorithme prend en entrée le graphe et le nombre d’arétes a recabler. En
augmentant le nombre d’arétes recablées, nous ajustons systématiquement la structure du réseau sans modifier
les regles fondamentales régissant la dynamique du tas de sable, garantissant ainsi que tout changement observé

dans le comportement du systeme découle directement des altérations topologiques.

Algorithm 3: Recablage aléatoire d’arétes

Input: G : Graphe sur lequel appliquer le reciblage

m : Nombre d’arétes a recabler
1 while m > 1 do
2 Sélection aléatoire de deux arétes non-recablées et ne partageant pas de nceud {u,v} et {s,t} de G
3 Suppression des arétes sélectionnées de G
4 | Ajout des nouvelles arétes {u,t} et {s,0} 2 G
5 m<—m — 2
6 end

Soit G = (V, E)) un graphe non orienté, ot V' est I’ensemble des nceuds (sommets) et E est I’ensemble des
arétes. Chaque aréte e € F est définie comme une paire non ordonnée de nceuds {v;, v; } avec v;, v; € V.

L’algorithme 3 fonctionne comme suit : deux arétes, {u,v} et {s,t}, sont sélectionnées aléatoirement dans
E, ot u,v,s,t € V sont distincts. Comme illustré dans la Figure 4.1, I’algorithme échange ensuite un noeud
de chaque aréte, formant ainsi deux nouvelles arétes, {u,t} et {s,v}. Ce processus est répété 3 fois, olt m
est le nombre total d’arétes a reconnecter, garantissant que chaque aréte est modifiée une seule fois. De plus,
I’algorithme impose une contrainte empéchant la sélection d’arétes partageant un nceud commun, préservant

ainsi I’intégrité structurelle du réseau.

(a) Etape 1: (b) Etape 1: (c) Etape 2: (d) Etape 2:
Sélection des arétes a Permutation des arétes Sélection d’arétes Permutation des arétes
recabler sélectionnées additionnelles additionnelles

FIGURE 4.1 — Exemple de processus de recable d’une grille de taille 3 avec m = 4.

Les résultats obtenus avec cette méthode de recablage concordent avec les études précédentes sur les to-
pologies de réseau SOC. Comme le montre la Figure 4.2a, I’exposant de la loi de puissance de la distribution
des durées d’avalanche augmente avec le nombre de reconnexions, reflétant un changement dans la dynamique
des avalanches. Notamment, les changements les plus significatifs se produisent pour de faibles coefficients de

reconnexion, ce qui suggere que méme des altérations topologiques minimes peuvent influencer la dynamique
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du tas de sable.
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FIGURE 4.2 — Effets du recéblage d’une grille de taille 128 sur la dynamique du tas de sable.

Malgré le maintien d’un degré de nceud constant, la méthode de reconnexion proposée produit des résultats
similaires a ceux observés dans la littérature pour d’autres approches de reconnexion qui modifient le degré des
nceuds. Plus précisément, I’exposant de la loi de puissance augmente a mesure que la topologie passe d’une
structure réguliere & un réseau de type petit-monde, puis se stabilise lorsque la topologie de type petit-monde
évolue vers un réseau aléatoire.

Une augmentation de I’exposant de la loi de puissance se traduit par une occurrence plus élevée de petites
avalanches et une fréquence plus faible de grandes avalanches catastrophiques. Dans ce contexte, un exposant
de 1 correspond au bruit rose, tandis qu’un exposant de 2 est associé au bruit rouge. Selon les travaux fondateurs
de Bak, Tang et Wiesenfeld (BAK et al., 1987), une grille réguliere produit du bruit rose, tandis qu’une faible
quantité de recablage décale la dynamique des avalanches vers un bruit rosé, un état intermédiaire entre le bruit
rose et le bruit rouge.

D’un point de vue performance énergétique, 1’évolution des avalanches montre qu’un recdblage minime
permet de réduire le nombre de sauts effectués par les grains, et par conséquent, la consommation énergétique
due aux communications. La Figure 4.2b illustre qu’au début du recablage (5%), le nombre de grains déplacés
par les avalanches est divisé par 10 , atteignant une efficacité jusqu’a 17 fois supérieure lors d’un recablage
complet. Cela démontre une capacité accrue du systetme a s’auto-réguler comme le suggere 1’évolution de
I’exposant discuté précédemment.

Ces améliorations notables sont dues a la rapide diminution des distances dans la structure, caractéristique
des réseaux de type petit-monde. La Figure 4.3 montre une diminution abrupte de la distance séparant les
nceuds d’un bord du systeme. Cette réduction est particulierement remarquable pour les nceuds les plus éloignés
(courbe orange pointillée). Apres les premiers pourcentages de recablage, les distances moyennes et maximales
deviennent tres proches et faibles. Cela signifie que, quel que soit le nceud sur lequel se trouve un grain, il n’est

qu’a quelques sauts d’étre expulsé, optimisant ainsi le processus d’équilibrage de charge.



4.1. CADRE D’ETUDE DE LA ROBUSTESSE STRUCTURELLE

73

N w S (%] o)}
o o o o o

Distance du bord le plus proche

=
o

—— Moyenne
Maximum

40 60
Recablage (%)

80

FIGURE 4.3 — Effet du recablage d’une grille de taille 128 sur la distance séparant les nceuds d’un bord.
La premiere courbe (pleine bleue) correspond a la moyenne des distances, tandis que la deuxieéme courbe
(pointillée orange) présente les distances des noeuds les plus éloignées.

En ce qui concerne la densité de grains représentée dans la Figure 4.4, le processus de reconnexion entraine

seulement une 1égere diminution. Une densité de O indiquerait un tas de sable qui ne retient aucun grain dans

le systeme, tandis qu’une densité de 1 correspond a un systéme ou chaque nceud conserve constamment quatre

grains. La faible réduction de densité observée avec la reconnexion suggere que, bien que la structure du

réseau change, la capacité globale du systéme & maintenir une tension nécessaire a son auto-organisation reste

pratiquement inchangée.
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FIGURE 4.4 — Evolution de la densité de grains dans un tas de sable de taille 128 au fil du recablage.

4.1.2 Processus de dégradation

La structure supportant le modele de tas de sable est progressivement dégradée pour analyser sa robustesse.

Ce processus de dégradation se compose de deux étapes principales. Tout d’abord, une partie des nceuds est

retirée aléatoirement du graphe, réduisant ainsi la connectivité globale. Dans une deuxie¢me étape, les zones
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isolées qui émergent en raison de la suppression des nceuds sont identifiées et éliminées pour maintenir une

structure fonctionnelle. Ce processus est détaillé dans 1’ Algorithme 4.

Algorithm 4: Processus de dégradation
Input: G : Graphe initial

n : Nombre de nceuds a supprimer
Output: Graphe modifié apres dégradation
Etape 1 : Supprimer aléatoirement n nceuds de G

—

Etape 2 : Identifier et supprimer les clusters fermés
for chaque cluster dans G do
if cluster n’a pas de neeuds bordure then
Supprimer le cluster de G
end
end

IS T N7 S OV N

Etape 1 : Suppression des neeuds Un pourcentage défini de nceuds est retiré du systéme, calculé comme
une fraction de la taille totale du graphe. Cette suppression est effectuée aléatoirement tout en garantissant que
la structure résultante reste un cadre viable pour la dynamique du tas de sable. A mesure que les nceuds sont

supprimés, le graphe se divise naturellement en plusieurs composants séparés, appelés clusters.

Etape 2 : Suppression des clusters fermés Apres la premiére étape, certains clusters peuvent devenir com-
pletement isolés, ce qui signifie qu’ils n’ont pas de nceuds frontaliers. Cette situation pose probleme pour la
dynamique du tas de sable, car les grains piégés a I’intérieur de tels clusters circuleraient indéfiniment sans
pouvoir sortir du systeéme. Pour éviter ce probleme, les clusters qui ne contiennent pas au moins un nceud
frontalier, appelés clusters fermés, sont retirés du graphe. En revanche, les clusters ayant au moins un nceud
frontalier, appelés clusters ouverts, sont conservés, car ils permettent la dissipation des grains.

La Figure 4.5 illustre le processus de dégradation en deux étapes, qui commence par un graphe de base
initial et applique les deux étapes de dégradation : d’abord, des nceuds aléatoires sont supprimés, puis les
clusters fermés sont retirés. Pour démontrer I’impact non linéaire de la deuxieme étape sur la structure du
graphe, la Figure 4.6 présente plusieurs scénarios avec différents pourcentages de suppression de nceuds. A
mesure que la suppression de nceuds augmente, la deuxieme étape élimine progressivement les clusters fermés,

affectant ainsi de maniere significative la structure.

4.1.3 Cadre global : construction de graphe avec recablage et dégradation

Le cadre global pour I’analyse de la robustesse structurelle du modele du tas de sable comprend deux
étapes séquentielles. Tout d’abord, une grille initiale est générée. Optionnellement, la grille subit un processus
de recablage qui modifie la connectivité tout en préservant un degré constant des nceuds. Ensuite, le graphe
recéblé est modifié davantage en appliquant le processus de dégradation décrit précédemment.

En détail, le cadre fonctionne comme suit :

1. Génération de la grille : une grille de taille S x S est créée pour servir de structure fondamentale.
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FIGURE 4.5 — Exemple du processus de dégradation sur une grille de 16 x 16. (a) Structure initiale de la grille,
les carrés représentent les noeuds frontaliers et les cercles représentent les nceuds internes. (b) Premiere étape de
dégradation, 40% des nceuds sont supprimés, laissant des nceuds déconnectés d’une bordure (losanges rouges).
(c) Deuxieme étape de dégradation, les clusters fermés sont supprimés, laissant la structure restante divisée en
plusieurs clusters, chacun marqué par une couleur. Le plus grand cluster est mis en évidence avec des contours

en gras.
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FIGURE 4.6 — Exemple de trois scénarios de dégradation sur une grille de 16 x 16, illustrant I’impact non
linéaire de la deuxieme étape de dégradation. La figure met en évidence la maniere dont la suppression des
clusters isolés devient plus significative a mesure que le pourcentage de noeuds supprimés augmente.

2. Reconnexion : une fraction spécifiée des arétes est recablée, introduisant de 1’aléatoire dans la topologie

tout en maintenant un degré constant pour chaque nceud.

3. Dégradation : un pourcentage donné de nceuds est retiré du graphe reconnecté. Ensuite, les clusters

fermés (c’est-a-dire ceux qui manquent de nceuds bordures) sont supprimés, garantissant que la structure

restante supporte correctement la dynamique du tas de sable.

4. Ajustement du seuil : enfin, chaque noceud met a jour son seuil critique en fonction de son nombre

actuel de voisins (avec des ajustements supplémentaires pour les nceuds de bordure et d’angle) afin de

garantir la compatibilité avec le modele du tas de sable.
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4.2 Dispositif expérimental

Cette section présente la conception expérimentale utilisée pour évaluer le modele du tas de sable et sa
robustesse structurelle. Dans notre cadre, des simulations sont réalisées sur des grilles qui peuvent subir un
recablage optionnel suivi d’une dégradation. Les sous-sections suivantes décrivent les parametres de simulation
et les métriques utilisées pour évaluer a la fois le comportement dynamique des avalanches et le degré de

dégradation structurelle.

4.2.1 Parametres des simulations

Les expériences sont menées sur une grille de taille S = 128 x 128. Chaque simulation s’exécute sur un
total de 400 000 cycles, précédés d’une phase d’initialisation de 40 000 cycles pour permettre au systeme de
se stabiliser. A chaque cycle, un grain est ajouté aléatoirement, ce qui peut déclencher une avalanche lorsqu’un
nceud dépasse son seuil.

Les principaux parametres de simulation incluent :

— Taux de recablage (Rewiring Rate, RR) : la fraction des arétes qui sont reconnectées, variant de 0%

a 100% par incréments de 1%. Ce parametre permet 1’étude de la dynamique du tas de sable a travers
différentes topologies de réseau, allant d’une grille réguliere a des structures de type petit-monde et
aléatoires.

— Taux de suppression des neeuds (Nodes Removal Rate, NRR) : la fraction de nceuds supprimés pour

simuler la dégradation, variant de 0% a 90% par incréments de 1%.

— Moyennage : pour chaque combinaison de taux de reconnexion et de suppression des nceuds, les résul-

tats sont moyennés sur 25 simulations indépendantes, chacune utilisant une graine aléatoire différente.

Le Tableau 4.1 résume les parametres de simulation.

Nom Abréviation Valeur Définition
Grid size S 128 Taille initiale de la grille
Rewiring rate RR 0-100% Fraction des arétes recablées

Taux auquel les nceuds sont initialement supprimés lors de

Node removal rate NRR 0-90% N P .
la premiere étape de la dégradation

Simulation cycles cycles 400k Nombre total de cycles par simulation

Nombre de simulations indépendantes moyennées pour
Random seeds seeds 25 chaque combinaison de taux de reconnexion et de suppres-
sion des nceuds

TABLE 4.1 — Parameétres des simulations.

4.2.2 Outils d’analyse

Pour évaluer a la fois la performance dynamique du modele du tas de sable et la robustesse de sa structure
de réseau, nous utilisons les métriques suivantes :

— Densité des grains : le rapport entre le nombre total de grains et la capacité totale des nceuds. Une
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densité de 0 implique une absence de rétention de grains, tandis qu’une densité de 1 indique que chaque
nceud est a sa capacité maximale, autrement dit au bord de 1’éboulement.

— Mouvements des grains : le nombre total de transferts de grains (entre noeuds ou hors du systeme)
pendant les avalanches, servant d’indicateur pour 1’efficacité de stabilisation du systéme, ainsi que pour
la consommation énergétique liée a la communication des grains.

— Taille du graphe : le nombre de nceuds restants apres la dégradation.

— Clusters ouverts : le nombre de clusters qui restent viables (c’est-a-dire qui contiennent au moins un
nceud frontalier) apres le processus complet de dégradation.

— Ratio du cluster géant par rapport au graphe : le ratio du nombre de nceuds formant la plus grande
composante connexe du graphe dégradé par rapport au nombre total de nceuds restant. Plus le ratio est
faible, moins le cluster géant est significatif dans le graphe.

— Distance des nceuds d’une bordure : la distance minimale moyenne séparant les nceuds d’un nceud

bordure du systeme.

4.3 Etude illustrative

Maintenant que le cadre d’étude est posé, nous allons nous intéresser a quelques cas pratiques illustrant sa
mise en ceuvre. L’ objectif est de comprendre comment la structure générée évolue au cours de son recablage
et de sa dégradation, et comment cela peut impacter la dynamique du tas de sable. Les résultats numériques
seront présentés plus tard en Section 4.4. La structure que nous étudierons ici est une grille de taille 16. Nous
commencerons par examiner I’'impact du recablage seul, puis nous analyserons la dégradation seule. Enfin,

nous explorerons I’effet combiné des deux processus.

4.3.1 Recablage

La Figure 4.7 illustre 1’évolution des connexions dans la grille au fur et 8 mesure du recablage. On ob-
serve qu’avec un reciblage minime, produisant une structure de type petit-monde, de nombreux raccourcis
apparaissent déja. Ces raccourcis permettent de connecter des régions éloignées, réduisant ainsi considérable-
ment les distances. Au-dela de 30% de recdblage, le mélange des connexions est tel que la structure peut étre

considérée comme aléatoire.

Comme discuté en Section 4.1.1, le recablage influence la dynamique des avalanches dans le modele du
tas de sable. La Figure 4.8 propose une autre représentation de cette influence : le mouvement des grains sur
les nceuds. Plus un nceud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge.
Cette représentation montre que, a mesure que le recablage augmente, les nceuds sont utilisés de maniere plus
homogene. En revanche, lorsque la structure est dépourvue de raccourcis, le mouvement est principalement

concentré en son centre.
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FIGURE 4.7 — Evolution des connexions dans une grille de taille 16 aprés reciblage pour différents taux.
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FIGURE 4.8 — Carte de chaleur du mouvement des grains dans une grille de taille 16, avec et sans reciblage.
Plus un nceud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge. L’échelle est
indépendante d’une représentation a I’autre. Cela permet de voir que le recablage homogénéise le mouvement
des grains.

4.3.2 Dégradation

Pour ce qui est du processus de dégradation, son impact sur la structure a été introduit en Section 4.1.2
et illustré par les Figures 4.5 et 4.6. De maniere similaire a I’analyse du recablage, nous pouvons examiner
comment la dégradation influence I’utilisation des nceuds. La Figure 4.9 montre cette influence pour des grilles
o1 40%, 50%, et 60% des noeuds ont été initialement supprimés. On observe que, plus un nceud est éloigné d’une

bordure, plus il est emprunté par les grains, comme c’est le cas pour la grille initiale (Figure 4.8). Cependant,
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a mesure que la dégradation progresse, les plus gros clusters disposent de moins en moins de nceuds bordure
pour éjecter les grains, favorisant ainsi des avalanches relativement longues par rapport a leur taille. De plus,
ces clusters concentrent la majorité des grains en raison de leur taille. C’est pourquoi, comme le montre la
Figure 4.10, les rares nceuds bordure des plus gros clusters éjectent beaucoup plus de grains du systeme que les

autres.
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FIGURE 4.9 — Carte de chaleur du mouvement des grains dans une grille de taille 16 apreés dégradation. Plus un
nceud est emprunté par des grains au cours des avalanches, plus il est coloré en rouge. L’ échelle est indépendante
d’une représentation a I’autre. L’éclatement de la structure en de multiples petits morceaux diminue le nombre
de nceuds de bordure pour les clusters les plus gros, concentrant alors la majorité du mouvement.
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FIGURE 4.10 — Carte de chaleur de 1’éjection des grains pour une grille de taille 16 aprés dégradation. Plus un
nceud éjecte des grains au cours des avalanches, plus il est coloré en rouge. L’échelle est indépendante d’une
représentation a 1’autre.

4.3.3 Recablage et dégradation

Maintenant que nous avons étudié 1’impact des deux processus séparément, nous pouvons nous intéresser
a leur combinaison. La Figure 4.11 illustre 1’évolution d’une grille dont 50% des nceuds sont initialement sup-
primés. On observe que le nombre de noeuds supprimés lors de la deuxiéme étape du processus de dégradation
diminue presque de moitié avec seulement 20% de recablage. De plus, un cluster (réellement) géant, essentiel
a la bonne auto-régulation du systeme a grande échelle, apparait. En revanche, lorsqu’il n’y a pas de recablage,

aucun cluster ne se démarque réellement, tous étant d’une taille trés modeste.
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FIGURE 4.11 — Evolution de la structure d’une grille de taille 16 dont 50% des nceuds sont supprimés, sans
recéble puis avec un recablage de 10 et 20%. La premiéere ligne illustre 1’évolution du nombre de clusters fermés
(identifiés par des losanges rouges pour leurs nceuds), tandis que la seconde montre les clusters restants une
fois le processus de dégradation complet.

Ces processus de recablage et de dégradation offrent un cadre d’étude puissant pour analyser comment
la SOC, a travers le modele du tas de sable, se comporte dans une multitude de structures. Maintenant que
nous avons les clés de compréhension de ces processus et de leurs impacts, nous pouvons analyser comment le

modele du tas de sable et sa structure y réagissent.

4.4 Analyse des résultats

Cette section propose une analyse complete des résultats des simulations. Les expériences évaluent deux
aspects clés : la robustesse structurelle de diverses topologies de réseau face a la dégradation et 1’évolution de la
dynamique du tas de sable en réponse a ces changements structurels. Nous commencerons par examiner la ma-
niere dont les différentes structures de réseau introduisant du recablage se détériorent, puis nous poursuivrons
avec le comportement dynamique du modele du tas de sable dans ces structures. La discussion finale résume

les principales conclusions et leurs implications.
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4.4.1 Robustesse des différentes structures

La robustesse du réseau, telle que définie par DEKKER et COLBERT (2004), fait référence au nombre mi-
nimum de suppressions de nceuds nécessaires pour déconnecter un réseau. Dans notre cadre d’étude du tas de
sable, le réseau se dégrade progressivement jusqu’a s’effondrer complétement. Les grilles sont particuliere-
ment vulnérables aux défaillances structurelles. Notre objectif est de maximiser le nombre de nceuds conservés
dans un seul cluster connecté pendant cette dégradation, retardant ainsi le début d’une fragmentation rapide
et étendue. Cette approche améliore la tolérance aux pannes du réseau, non pas en empéchant les premieres
scissions, qui surviennent tot, mais en retardant la rupture critique en de nombreux petits clusters. A cette fin,
nous appliquons la technique de recablage, détaillée dans la Section 4.1.1, pour renforcer la robustesse face a
la dégradation.

La Figure 4.12 illustre 1’évolution structurelle pour différents taux de recablage pendant la dégradation.
Pour la grille réguliere (RR=0%), un seuil critique apparait entre 30% et 40% de suppressions de nceuds, au-dela
duquel commence I’effondrement. Ce point est marqué par un écart abrupt de la taille du graphe par rapport
a I'indicateur de dégradation linéaire (ligne pointillée rouge dans la Figure 4.122a). Le réseau se fragmente
alors en de nombreux petits clusters, dont plusieurs manquent de nceuds frontaliers et sont ensuite supprimés
(Figure 4.12b). Simultanément, la dominance de la composante géante diminue (Figure 4.12c), reflétant la
désintégration en composantes plus petites et moins significatives.

De maniere remarquable, m&me un recablage minimal améliore considérablement la robustesse. Le seuil
d’effondrement est repoussé de 10 a 20%, permettant finalement au réseau de supporter jusqu’a 60% de sup-
pressions de nceuds avant une fragmentation critique. Cette amélioration découle de la perturbation des mé-
triques de distance originales du réseau par le recéblage, raccourcissant les chemins, en particulier vers les

nceuds bordures (Figure 4.12d), et améliorant ainsi la connectivité et la stabilité face a la dégradation.

4.4.2 Evolution de la dynamique du tas de sable

Les changements dans la topologie du réseau modifient naturellement le comportement du modele du tas
de sable canonique, affectant particulierement sa capacité a maintenir la criticalité auto-organisée a mesure que
la structure subit une dégradation. Cette sous-section examine comment la dynamique du modele évolue avec
des suppressions progressives de nceuds pour différents taux de recablage, en se concentrant sur des métriques
clés telles que la densité de grains et le nombre total de mouvements des grains. En analysant ces métriques, il
devient évident que la reconnexion non seulement renforce la robustesse structurelle, mais faconne également
la performance du modele sous contrainte. La Figure 4.13 illustre cette progression : la Figure 4.13a met en
évidence les changements de densité de grains, et la Figure 4.13b illustre le nombre total de mouvements de
grains pour chaque configuration de réseau.

Dans une grille sans recablage (RR = 0%), le début de la dégradation déclenche une réponse en deux
phases. A mesure que la proportion de nceuds supprimés approche environ 40%, les chemins entre les nceuds
et les points de sortie deviennent plus longs, augmentant le temps que les grains passent dans le systeme. Ce

parcours prolongé entraine une augmentation des mouvements de grains (Figure 4.13b), atteignant jusqu’a 51
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FIGURE 4.12 — Evolution de I'impact de la dégradation sur différentes structures avec un taux de reciblage
allant de 0 a 100% par incréments de 10%.
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FIGURE 4.13 — Evolution de I’impact de la dégradation sur la dynamique du tas de sable pour des structures
avec un taux de recablage allant de 0 a 100% par incréments de 10%.

fois la valeur de base a environ 42% de suppression de nceuds, accompagnée d’une 1égere augmentation de la
densité de grains (Figure 4.13a). Cependant, une fois que le réseau dépasse ce seuil, la fragmentation en clusters
ouverts plus petits réduit brusquement les longueurs des chemins, entrainant une diminution des mouvements
de grains et de la densité. A ce stade, le systeme perd la tension nécessaire pour maintenir la SOC, et les
avalanches a grande échelle ne se produisent plus.

L’introduction du recablage modere ces effets, retardant le point auquel le réseau subit une fragmentation
brutale. Des routes plus courtes vers les points de sortie distribuent les grains de maniere plus uniforme pendant
une période plus longue, maintenant des niveaux plus élevés de mouvements de grains (Figure 4.13b) et de
densité (Figure 4.13a) plus en avant dans le processus de dégradation. La connectivité améliorée augmente le
seuil d’effondrement d’au moins 15% de suppressions de nceuds supplémentaires par rapport a la grille sans
recable. Les taux de recablage intermédiaires (par exemple, de 10% a 90%) produisent un gradient de résultats,
avec des fluctuations plus prononcées de la densité et des mouvements a mesure que le taux de reciblage
augmente. Globalement, le recablage s’avere bénéfique pour préserver la SOC et ralentir la transition vers un

état fragmenté et sous-critique.

4.4.3 Discussion

Cette étude fait progresser la compréhension de la robustesse structurelle et de la criticalité auto-organisée
dans les réseaux complexes en examinant le modele du tas de sable de Bak-Tang-Wiesenfeld a travers diverses
topologies et scénarios de dégradation. Notre analyse révele des éléments clés sur la robustesse des réseaux, la
dynamique des avalanches et le maintien de 1’état critique, avec des implications pour les systemes technolo-

giques et biologiques.

Robustesse des réseaux : Les résultats montrent que les grilles régulieres maintiennent le comportement

de SOC jusqu’a un taux de défaillance des nceuds de 30 a 40%, tandis que les réseaux avec un recablage
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minimal (par exemple, 10% de reconnexion) tolérent jusqu’a 55% de pertes de nceuds avant une fragmen-
tation critique. Cette disparité souligne le rdle crucial de la structure topologique dans I’amélioration de la
résilience. Les propriétés de « petit monde » introduites par le recablage, telles que la réduction des longueurs
de chemin et I’amélioration de la connectivité, refletent des caractéristiques observées dans des systemes réels
résilients. Par exemple, dans les réseaux de processeurs, ou des défaillances de nceuds (processeurs) ou de liens
(connexions) peuvent survenir en raison de problemes matériels, I’adoption de telles topologies pourrait retar-
der la défaillance du systeme, offrant une stratégie pratique pour concevoir des infrastructures technologiques

tolérantes aux pannes, comme les systemes de calcul distribué ou les réseaux énergétiques.

Dynamique des avalanches : Le recablage maintient I’état critique pendant une dégradation prolongée en
améliorant I’efficacité de la redistribution des grains induite par les avalanches, comme en témoignent une den-
sité de grains plus élevée et des mouvements de grains optimisés (Section 4.4.2). Cette efficacité réduit I’énergie
nécessaire a la stabilisation du systéme. Dans ce contexte, les topologies recablées minimisent les mouvements
de grains inutiles, similaires a la réduction des cofits de communication entre les cceurs ou les noeuds d’un
réseau informatique. Un tel comportement suggere des applications potentielles dans la distribution dynamique
de la charge de travail, ou la réorganisation des connexions pourrait réduire la consommation d’énergie lors des

transferts de données, améliorant ainsi la durabilité des systemes informatiques.

Maintien de I’état critique : La capacité des réseaux reconnectés a préserver la SOC au minimum jusqu’a
55% de défaillances de nceuds met en lumiere leur potentiel pour la gestion des pannes dans les systémes
a haute criticité, tels que les dispositifs embarqués ou les réseaux en temps réel. Lorsqu’un nceud tombe en
panne, les topologies recablées facilitent un réacheminement rapide, atténuant la dégradation des performances
ou la perte de données. La criticalité prolongée réduit I’énergie nécessaire pour retrouver la stabilité apres une
perturbation, diminuant ainsi la dépendance aux mécanismes de redondance. Dans les réseaux de processeurs,
cela pourrait prolonger la durée de vie des composants et optimiser 1’utilisation de 1’énergie en évitant des

opérations de récupération excessives, en ligne avec les objectifs d’efficacité et de résilience.

Connexions avec le fonctionnement cérébral et les crises épileptiques : Les résultats résonnent avec la
SOC dans les systemes biologiques, notamment les réseaux neuronaux du cerveau. Les avalanches neuro-
nales, une caractéristique de la SOC, permettent un traitement efficace de 1’information dans les cerveaux
sains (BEGGS & PLENZ, 2003 ; HAHN et al., 2010). Cependant, des perturbations structurelles, analogues aux
défaillances de nceuds dans ce modele, peuvent déstabiliser cet équilibre, poussant le systeme vers un état su-
percritique, comme observé lors des crises épileptiques (MEISEL et al., 2012). L’observation que les grilles
régulieres s’effondrent a 30-40% de perte de nceuds est parallele a la maniere dont une déconnexion neuro-
nale excessive peut déclencher une activité incontrélée. Inversement, la robustesse accrue des réseaux recablés
suggere que le maintien d’un équilibre topologique, similaire a la modularité hiérarchique du cerveau (S.-J.
WANG & ZHOU, 2012), pourrait retarder de telles transitions. Cette analogie implique que les enseignements

tirés du modele du tas de sable pourraient aiguiller vers des stratégies pour stabiliser les réseaux neuronaux,
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potentiellement en atténuant les crises épileptiques en préservant une connectivité critique.

Implications Plus Larges : L’effondrement brutal des métriques de SOC au-dela de seuils critiques (par
exemple, 55% de perte de nceuds dans les réseaux recablés) indique que, bien que les modifications topolo-
giques renforcent la résilience, des limites structurelles inhérentes persistent. Cela souleve des questions sur
les transitions vers des états chaotiques ou sous-critiques dans les systemes artificiels et naturels. Par exemple,
dans les réseaux électriques, le dépassement d’un seuil de défaillance pourrait conduire a des pannes en cas-
cade (SHENGWEI MEI et al., 2008), tandis que dans les réseaux financiers, cela pourrait précipiter des krachs
boursiers (BIONDO et al., 2015). Ces résultats fournissent ainsi un cadre pour anticiper et gérer de tels points
de basculement a travers les domaines.

En résumé, cette étude non seulement éclaire I’interaction entre la topologie et la résilience de la SOC,
mais établit également un lien entre les perspectives théoriques et les applications pratiques. En soulignant les
paralleles avec le fonctionnement cérébral et les systemes technologiques, elle met en lumiere la pertinence

universelle de ces principes et ouvre la voie a des avancées interdisciplinaires.

4.5 Conclusion

Cette étude explore ’interaction entre la criticité auto-organisée (SOC) et la robustesse structurelle dans
les réseaux complexes, en utilisant le modele du tas de sable de Bak-Tang-Wiesenfeld comme cadre d’analyse.
En examinant les effets de la topologie du réseau et de la dégradation sur le comportement de la SOC, nous
découvrons des mécanismes qui améliorent la résilience dans divers systemes.

Nos principales contributions sont les suivantes :

1. Robustesse structurelle améliorée : les grilles régulieres maintiennent la SOC jusqu’a un taux de dé-
faillance des nceuds de 30 a 40%, tandis que les réseaux avec un recablage minimal (10%) supportent
jusqu’a 55% de pertes de nceuds. Cela démontre que de petits ajustements topologiques renforcent

considérablement la résilience, offrant un modele pour la conception de réseaux tolérants aux pannes.

2. Dynamique des avalanches optimisée : le recablage réduit les longueurs moyennes des chemins pour
la redistribution des grains, retardant I’effondrement structurel et maintenant une densité de grains plus
élevée pendant la dégradation. Cette efficacité préserve 1’état critique, reflétant les comportements adap-

tatifs dans les systemes naturels et artificiels.

3. Gains d’efficacité énergétique : la réduction des mouvements de grains dans les réseaux recablés dimi-
nue I’énergie nécessaire a la stabilisation, un principe applicable a la minimisation de I’utilisation des
ressources dans les systeémes technologiques comme les réseaux de processeurs ou les réseaux élec-

triques.

4. Pertinence dans le monde réel : les résultats ont des implications pratiques pour les infrastructures cri-

tiques, par exemple, I’amélioration de la tolérance aux pannes dans les systemes informatiques, et les
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systemes biologiques, comme la stabilisation des réseaux neuronaux pour prévenir les crises épilep-

tiques. Cette double applicabilité souligne 1’universalité de la résilience de la SOC.

5. Orientations de recherche : I’étude met en lumicre le potentiel des réseaux auto-adaptatifs qui se recon-
nectent dynamiquement en réponse aux pannes, ouvrant la voie a I’exploration future de stratégies de

résilience en temps réel.

Ces contributions révelent que la topologie du réseau est un levier crucial pour maintenir la SOC sous
contrainte structurelle. En exploitant un recblage minimal, nous pouvons concevoir des systemes capables de
supporter des perturbations importantes tout en optimisant 1’ utilisation de 1’énergie, une découverte pertinente
pour des domaines tels que la distribution d’énergie, les neurosciences, et dans notre cas 1’équilibrage de charge.
A I’avenir, I’étude des mécanismes auto-adaptatifs pourrait encore améliorer les modeles de SOC, permettant
aux réseaux de maintenir de maniere autonome leur robustesse et leur efficacité dans des applications telles que
les réseaux intelligents ou les protheses neurales. Ce travail fournit ainsi une base pour construire des systemes

complexes résilients et durables, capables de prospérer face a I’adversité.
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Le modele de tamis, dans sa version initiale présentée en Section 3.5.3, constitue une modélisation a la fois
simple et efficace d’un systeme de traitement de taches. Il a démontré sa capacité a équilibrer dynamiquement
la charge de travail et a traiter efficacement les tiches qui lui sont confiées. Toutefois, comme évoqué précé-
demment, ce modele a été étudié dans un environnement infini, ce qui ne reflete pas les contraintes réelles
d’un systeme de traitement, ot le nombre de ressources est limité.

Dans ce chapitre, nous introduisons une évolution du modele : le tamis auto-adaptatif. L’ objectif principal
de ce nouveau modele est de rendre le tamis adaptatif, afin qu’il soit capable de fonctionner durablement dans un
systéme contraint en taille, tout en préservant sa décentralisation. Nous montrerons, a travers différentes études,
que les mécanismes d’adaptation proposés permettent au systeéme de faire face au travail qui lui est soumis tout
en conservant ses propriétés d’auto-organisation, en particulier lorsqu’il est soumis a une surcharge continue.

Nous commencerons par discuter de 1’introduction explicite des contraintes de taille dans le modele, des
problématiques qu’elles soulevent, ainsi que des leviers intrinséques au modele que nous mobilisons pour y
répondre. Nous nous intéresserons ensuite a une premiere amélioration portant sur les seuils critiques dyna-
miques, avant d’aborder la modélisation de 1’évolutivité des capacités de tamisage au niveau cellulaire. Nous
présenterons et analyserons ensuite deux mécanismes d’adaptation de ces capacités : un modele basé sur un
calcul d’entropie locale, et un modele fondé sur un protocole de bavardage. Enfin, ces deux approches seront

comparées afin d’évaluer leurs performances respectives dans différents contextes de charge.

5.1 Un environnement limité pour le tamis

Afin d’introduire la contrainte de limitation des ressources, 1’automate cellulaire n’évolue plus dans une
grille classique comme c’était le cas jusqu’a présent, mais dans une topologie toroidale. Cette configuration
suppose que les bords de la grille sont connectés entre eux, formant une surface continue équivalente a celle
d’un tore. Ce choix permet d’éliminer les effets de bord en uniformisant le voisinage des cellules, et ainsi
de simuler un espace homogene, fini en nombre de cellules mais sans frontieres, dans lequel chaque cellule
possede exactement le méme nombre de voisines.

Si I’environnement du tamis devient limité, la charge que peut gérer le systeme est bornée par sa capacité
de traitement globale. Une charge excédant ce seuil provoquera une avalanche qualifiée d’infinie; c’est-a-dire
que le systeme sera trop saturé pour trouver une répartition stable de la charge, et I’avalanche se poursuivra in-
définiment, entrainant une dépense énergétique importante et un blocage des simulations. La problématique de
la gestion de la surcharge est donc soulevée pour le modele initial du tamis. Nous explorerons ici deux options
intrinséques au modele permettant d’y répondre : le seuil critique d’éboulement et la capacité de tamisage des
cellules.

Le seuil critique est un parametre sensible, car il définit la quantité de grains qu’une cellule peut retenir
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avant de s’ébouler. Une valeur trop élevée peut completement annuler le déclenchement des avalanches, et par
conséquent, tout mécanisme d’auto-organisation dans le systeme. Le seuil critique ne peut donc pas étre fixé a
une valeur élevée a priori. Une approche adaptative semble plus adéquate pour le faire évoluer et ainsi controler
les avalanches. Cependant, 1’adaptation de ce parametre seul ne ferait que repousser le probleme. En effet, si
le systeme n’est pas en mesure d’évacuer le surplus de grains, contréler les avalanches n’y changera rien et
le seuil critique ne fera qu’augmenter au cours du temps. Il est donc nécessaire de s’intéresser également a la
capacité de tamisage des cellules.

Une premiere approche consisterait a augmenter substantiellement la capacité des cellules afin de rendre
le tamis capable de traiter n’importe quelle quantité de grains. Toutefois, une telle augmentation arbitraire
va a I’encontre de I’objectif d’optimisation de ’efficience énergétique du systeme. De plus, comme discuté
en Section 3.5.3, la capacité de tamisage influence directement la dynamique des avalanches. Une capacité
trop élevée induit un traitement tres rapide des grains et donc une réduction, voire une absence, de la tension
nécessaire a 1’auto-organisation du systeme. Une fois encore, une approche adaptative semble préférable, afin
de maintenir la capacité de traitement des cellules a un niveau optimal, permettant de traiter la charge tout en
maintenant la tension nécessaire a I’équilibrage.

En définitive, pour rendre le tamis plus robuste et résilient, nous avons choisi la voie de 1’adaptation com-
binée de ses parametres en fonction de la charge. L’ objectif est de produire ce comportement d’auto-adaptation
de maniere émergente, en complément de 1’auto-organisation naturelle apportée par les mécanismes du tas de

sable. Nous allons explorer dans les sections suivantes différentes modélisations de cette auto-adaptation.

5.2 Seuil critique dynamique

Le seuil critique dynamique est une stratégie inspirée des travaux de QI et PFENNINGER (2015), visant a
contrdler les avalanches en modifiant dynamiquement le seuil d’éboulement des cellules touchées par une ava-
lanche. L’ objectif est d’augmenter la rétention des grains par les cellules lors d’avalanches de grande ampleur,
afin de ralentir leur propagation. En revanche, lors d’avalanches plus modestes, les seuils tendent a retrouver
une valeur plus basse, permettant ainsi la survenue de nouvelles avalanches importantes. Nous proposons ici
une version simple, bien qu’efficace, d’adaptation du seuil critique.

Nous commencerons par proposer une modélisation du seuil critique dynamique, en détaillant les principes
et mécanismes qui le régissent. Dans un second temps, ce modele sera mis a I’épreuve au travers de différents
scénarios expérimentaux, afin d’illustrer concrétement ses effets sur la dynamique des avalanches et la stabilité

du systeme.

5.2.1 Modélisation

Le mécanisme du seuil critique dynamique s’incorpore a I’intérieur des avalanches. A chaque étape d’une
avalanche, une cellule qui recoit au moins deux grains de ses voisines et devient instable voit son seuil in-

crémenté de 2. En revanche, si elle ne recoit qu’un grain et que diminuer son seuil ne la rendra pas instable,



90 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

celui-ci est décrémenté de 1, jusqu’a un minimum correspondant au nombre de cellules voisines, soit 4 dans

notre étude sur une grille définie par un voisinage de von Neumann.

La valeur d’incrémentation doit étre plus élevée que celle de la décrémentation afin que I’augmentation des
seuils ne soit pas immédiatement compensée par la baisse, sans quoi le mécanisme serait inefficace. De plus,
les conditions annexes au nombre de grains recus sont nécessaires afin de mieux contrdler la modification du
seuil.

Pour le cas de I'incrémentation, si celle-ci se produit deés qu’une cellule recoit au moins deux grains, les
seuils ne feraient qu’augmenter continuellement au fil du temps. La seconde partie de la condition restreint
I’augmentation du seuil uniquement lorsque c’est nécessaire, c’est-a-dire lorsqu’il y a un mouvement consé-
quent et que 1’ajout de grains rend la cellule instable. Pour la diminution du seuil, imposer que la cellule ne soit
pas instable apres la décrémentation permet de conserver un seuil qui évite de poursuivre 1’avalanche, et ainsi
freiner sa propagation. Sans cette condition, les seuils ne feraient qu’augmenter et diminuer en permanence,
relangant des avalanches qui devaient se terminer.

L’ Algorithme 5 propose un pseudo-code du seuil critique dynamique : a chaque étape d’une avalanche du
tas de sable canonique (Algorithme 1), une étape de mise a jour du seuil est effectuée. Bien que simple, ce

mécanisme a des effets a plusieurs niveaux dans le systeme.

Algorithm 5: Gestion d’une avalanche avec seuil critique dynamique

Input: G : grille

1 while au moins une cellule de G est instable do

/% Eboulement des cellules instables */
2 foreach cellule de G do
/% Eboulement de la cellule */
3 if cellule.grains > cellule.seuil then
4 foreach voisine de cellule do
5 ‘ voisine.grains <— voisine.grains + 1
6 end
7 cellule.grains < cellule.grains - 4
8 end
9 end
10
/* Mise a jour du seuil */
1 foreach cellule de G do
12 if cellule a recu au moins 2 grains and cellule est instable then
13 | cellule.seuil < cellule seuil + 2
14 else if cellule a recu exactement 1 grain and réduire le seuil ne rend pas cellule instable then
15 ‘ cellule.seuil < max(4, cellule.seuil - 1)
16 end
17 end
18 end

D’abord, I’auto-adaptation du seuil critique affecte partiellement le déclenchement des éboulements. L’ aug-
mentation du seuil d’une cellule permet de retarder momentanément son instabilité. Par exemple, une cellule

disposant de 2 grains et qui en recoit 2 devrait s’ébouler, mais 1’augmentation de son seuil a 6 la maintient
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stable. Toutefois, le mécanisme d’augmentation du seuil n’empéche pas completement les éboulements ; une
cellule proche de I’éboulement (grains = seuil — 1) s’éboulera tout de méme si elle regoit un, trois ou
quatre grains. En outre, la diminution du seuil permet aux cellules de retrouver progressivement et de maniere

contrdlée leur état initial pour garantir que de nouvelles avalanches puissent survenir & I’avenir.

Ensuite, I’augmentation progressive des seuils permet aux cellules d’absorber de plus en plus de grains
lors d’avalanches de grande ampleur, réduisant ainsi leur durée et leur propagation. Ce mécanisme s’avere
particulierement pertinent dans le contexte du tamis en environnement limité, ou il est impératif que les ava-
lanches trouvent une issue autre que 1’éjection de grains, comme c’est le cas dans le modele canonique du tas
de sable. Grace a cette auto-adaptation des seuils, le tamis est capable de stocker temporairement une surcharge
de grains, avant de retrouver un comportement d’auto-organisation performant des que les cellules ne sont plus

saturées.

Ainsi, le seuil dynamique permet d’éviter des éboulements lorsque le nombre de grains impliqués dans
I’avalanche est élevé, amortissant les avalanches de grande ampleur, tout en permettant des éboulements néces-
saires a I’auto-organisation. La Figure 5.1 illustre quelques-unes de ces situations. La cellule colorée en jaune

devrait normalement s’ébouler deux fois, mais grace au seuil dynamique, la seconde est évitée.

(a) (b) (©)

(d) (e)

FIGURE 5.1 — Illustration de 1’évolution du seuil critique d’éboulement d’une cellule durant une avalanche.
Trois grains arrivent sur la cellule jaune (a), augmentant son seuil critique (Sc) et son nombre de grains (G7) et
faisant s’ébouler la cellule (b). L’avalanche se poursuit et un nouveau grain arrive (c), faisant diminuer le seuil
(d), puis deux nouveaux grains tombent sur la cellule. Elle finit par se stabiliser grace au seuil dynamique (e).
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5.2.2 Cas d’étude

Nous soumettons ici le mécanisme de seuil critique dynamique a une série de quatre scénarios, afin d’illus-
trer son impact sur la propagation des avalanches. Chaque scénario consiste en 1’observation d’une avalanche
résultant d’une configuration initiale spécifique, représentant un niveau de charge donné dans le systeme. Pour
chaque scénario, nous mesurons la durée (nombre d’étapes) et I’amplitude (nombre de cellules impliquées) de

I’avalanche résultante, en comparant les comportements avec et sans le mécanisme de seuil critique dynamique.

Les scénarios sont d’abord présentés, puis les résultats analysés.

5.2.2.1 Présentation des scénarios

Comme le mécanisme de seuil critique dynamique ne concerne pas uniquement le tamis mais s’applique
au modele du tas de sable en général, trois des quatre scénarios proposés se déroulent dans un tas de sable

canonique de taille 128 x 128 = 16 384 cellules.

Scénario 1 Le systeme est au bord de 1’éboulement généralisé : chaque cellule est initialisée avec exactement
3 grains. Un grain supplémentaire est ensuite ajouté a une cellule choisie aléatoirement afin de déclencher une

avalanche.

Scénario 2 Le systéme est initialisé dans un état critique : chaque cellule recoit aléatoirement entre 3 et 5
grains, suivant une distribution uniforme (moyenne de 4 grains). Environ % des cellules se trouvent donc en
état critique. Aucun grain supplémentaire n’est ajouté, I’avalanche pouvant étre déclenchée spontanément du

fait de I’instabilité globale.

Scénario 3 Le systéme est dans un état plus modéré : chaque cellule est initialisée avec 2 ou 3 grains de
facon aléatoire et uniforme. Six grains supplémentaires sont ensuite ajoutés aléatoirement pour déclencher une

avalanche. Ce scénario illustre un cas plus proche d’un fonctionnement opérationnel courant.

Scénario 4 Le systeme est fermé et largement saturé : la structure de la grille est rendue torique, supprimant
ainsi les bordures et uniformisant le nombre de voisins pour chaque cellule. Dans ce cas, il devient impossible
d’évacuer les grains en exces vers 1’extérieur, ce qui empéche une dissipation naturelle de I’instabilité. Cette
configuration simule le comportement du tamis dans un espace limité, ce qui nous intéresse particulierement
puisque, dans ce contexte, le tamisage n’intervient qu’apres la fin des avalanches.

Chaque cellule est initialisée avec entre 4 et 10 grains (distribution uniforme). Dans une telle configura-
tion, le modele canonique (sans seuil dynamique) ne peut atteindre la stabilité, toutes les cellules étant en état
critique. Ce scénario vise donc a évaluer la capacité du seuil dynamique a stabiliser une configuration qui,

autrement, conduirait a des avalanches infinies.
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5.2.2.2 Résultats des scénarios

La Figure 5.2 propose une comparaison de la dynamique des avalanches d’un tas de sable canonique avec
et sans seuil critique dynamique pour les scénario 1 a 3. Dans I’ensemble de ces configurations, 1’introduction
du seuil dynamique permet de réduire significativement 1I’ampleur (nombre de cellules impliquées) ainsi que la
durée des avalanches.

Ce phénomene est confirmé par la Figure 5.3, qui présente la distribution des durées d’avalanches sur
une simulation de 400 000 cycles. Bien que la distribution globale soit peu altérée, ce qui traduit une auto-
organisation toujours fonctionnelle, on observe une légere augmentation des avalanches de durée moyenne, ce
qui traduit un meilleur amortissement des pics critiques.

Le Tableau 5.1 propose une analyse quantitative complémentaire, en comparant non seulement les durées
des avalanches, mais aussi les seuils critiques moyens atteints a la fin de chacune d’entre elles, pour les scénarios
évoqués. Le quatrieme scénario y est inclus. Dans la configuration du quatrieéme scénario, I’ introduction du seuil
critique dynamique permet au systeme de se stabiliser en 1450 itérations, alors que le modele canonique ne peut
pas atteindre une stabilité. De maniere notable, dans toutes les situations simulées, le seuil critique moyen final

observé est supérieur de quasiment deux unités a la charge moyenne initiale des cellules.

Seuil critique Scénario 1 Scénario 2 Scénario 3 Scénario 4
dynamique Durée | Seuil | Durée | Seuil | Durée | Seuil | Durée | Seuil
Sans 165 4 7145 4 467 4 Infinie 4
Avec 134 4,9 161 5,8 232 4,25 1450 8,8

TABLE 5.1 — Durée de I’avalanche et seuil critique moyen des cellules d’un tas de sable canonique de taille 128
pour les trois scénarios de la Figure 5.2. Un quatrieme scénario est proposé : la structure est rendue toroidale
(disparition des bords pour éjecter les grains) et les cellules sont remplie de 4 a 10 grains chacune.

En définitive, le mécanisme simple qu’est-ce le seuil critique dynamique constitue une solution efficace
pour contenir les avalanches de grande ampleur tout en préservant la dynamique d’auto-organisation du sys-
teme. Cependant, cette stratégie d’élévation des seuils critiques ne fait que retarder le probleme fondamental de
la surcharge dans le tamis : sans évacuation des grains adéquat, les seuils ne feront qu’augmenter indéfiniment,
menagant a terme I’efficacité du systeme. Nous aborderons dans les sections suivantes les approches d’adapta-
tion complémentaires concernant les capacités de tamisage des cellules, visant a évacuer dynamiquement les

exces de charge de maniere autonome.

5.3 Modélisation de la capacité de tamisage dynamique

Jusqu’a présent, la capacité de tamisage des cellules était définie de maniere fixe et invariable. Dans le
modele présenté en Section 3.5.3, les cellules dépourvues de grains sont considérées comme éteintes, leur
capacité de tamisage étant alors nulle. Ce mécanisme est conservé dans les modeles adaptatifs étudiés dans
les sections suivantes. Toutefois, afin de permettre 1’évolution dynamique des capacités, il devient nécessaire

de distinguer deux notions fondamentales : la capacité latente de tamisage, sujette a adaptation, et la capacité
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(a) Scénario 1 : toutes les cellules sont proches de 1’éboulement (3 grains) et un grain est ajouté a une cellule aléatoire.
Le nombre de cellules touchées par I’avalanche est drastiquement réduit, en plus d’avoir une durée plus faible, grace au
seuil dynamique.
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Etape de I’avalanche

(b) Scénario 2 : les cellules ont de 3 & 5 grains (de maniére aléatoire et uniforme); 2 des cellules sont en état critique.
L’avalanche de trés grande ampleur est trés rapidement amortie (161 itérations) et le nombre de cellules touchées par
I’avalanche est drastiquement réduit griace au seuil dynamique.
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(c) Scénario 3 : les cellules sont initialisées avec 2 ou 3 grains de maniere aléatoire et uniforme, et six grains sont
ajoutés a des cellules aléatoires pour déclencher une avalanche. De méme que pour le scénario 1, le nombre de cellules
impactées est tres largement réduit et la durée de 1’avalanche est ici divisée par deux grace au seuil critique dynamique.

FIGURE 5.2 — Effet du seuil dynamique sur la dynamique des avalanches dans un tas de sable canonique de
taille 128. Trois scénarios sont proposés : (a) toutes les cellules sont au bord de 1’éboulement et 1 grain est
déposé pour créer de I’instabilité ; (b) % des cellules sont dans un état critique ; (c) les cellules sont initialisées
avec 2 ou 3 grains de manicre aléatoire et uniforme, puis six grains sont ajoutés pour provoquer une avalanche.

effective, représentant la “puissance réelle” de traitement exercée a un instant donné.

Chaque cellule est ainsi caractérisée par une capacité latente de tamisage, qui évolue de maniere dynamique

au fil du temps selon des regles d’adaptation locales, indépendamment de I’état d’ occupation de la cellule. Cette
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FIGURE 5.3 — Distribution des durée des avalanches dans un tas de sable canonique de taille 128 pour une
simulation de 400 000 cycles. La distribution n’est que 1égerement modifiée avec le seuil dynamique.

capacité latente représente le potentiel intrinseque de traitement de la cellule. Lorsqu’une cellule recoit un grain,
sa capacité latente devient active, donnant lieu a une capacité effective de tamisage correspondant a I’intensité
réelle du traitement exercé.

En I’absence de grain, la capacité effective de tamisage est nulle : bien que la capacité latente soit présente,
elle n’est pas mobilisée. La valeur minimale de la capacité latente est fixée a 1, traduisant I’activation auto-
matique d’une cellule dés réception d’un grain, qu’il y ait eu adaptation préalable ou non. Cette modélisation
permet de reproduire fidelement le comportement du tamis présenté précédemment : dans ce cas, la capacité
latente est constante (valeur 1), et la capacité effective est égale a 1 si la cellule est occupée, sinon 0.

Cette distinction entre capacité latente et capacité effective présente deux avantages majeurs :

1. Indépendance vis-a-vis de I’occupation : la capacité latente peut évoluer méme en I’absence de grains,
ce qui permet aux cellules de conserver et faire croitre leur potentiel de traitement pour les phases futures

d’occupation, sans réinitialisation systématique au minimum lors de la libération d’un grain.

2. Estimation énergétique locale : la capacité effective constitue un indicateur de la consommation éner-
gétique réelle associée au traitement des grains. A I’inverse, la capacité latente représente la consom-

mation potentielle si la cellule était pleinement sollicitée.

Cette distinction sera exploitée dans la suite du chapitre, ou la capacité effective de tamisage sera utilisée

comme mesure de performance énergétique locale des différents modeles d’adaptation proposés.

5.4 Adaptation des capacités par entropie locale

Le principe de 1’adaptation par entropie locale est de monitorer le mouvement des grains a 1’échelle des
cellules du tamis, afin que chacune prenne une décision quant a sa capacité de tamisage. Le but est de détecter
une surcharge (impliquant un mouvement conséquent) pour que les cellules adaptent leur capacité de tamisage
de maniere décentralisée. Une étape de mise a jour des capacités vient alors se positionner a chaque cycle entre

la gestion de 1’avalanche et le tamisage des grains, comme proposé en pseudo-code dans 1’ Algorithme 6.
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Nous allons d’abord discuter de 1’objectif de cette entropie et de la maniere dont elle se mesure, puis nous
explorerons deux utilisations qui en sont faites pour adapter les capacités de tamisage des cellules. Nous verrons
ensuite comment sont déterminés les parametres de ces approches. Enfin, nous les comparerons pour n’utiliser

que la meilleure pour la suite du chapitre.

Algorithm 6: Processus de simulation du tamis auto-adaptatif par entropie locale
Input: G : grille
cycles : nombre de cycles de simulation

1 cycle + 0
2 while cycle < cycles do
3 Etape 1: dépdt d’un grain sur une cellule aléatoire de G
4 Etape 2 : gestion de I’avalanche potentielle
5
/+ Auto-adaptation des cellules */
6 foreach cellule € G do
7 Calcul de I’entropie locale de cellule
8 Mise a jour de la capacité latente de tamisage de cellule
9 end
10
11 Etape 4 : tamisage des grains
12 cycle < cycle + 1
13 end

5.4.1 DL’entropie locale

Ce que nous qualifions d’entropie dans le modele du tamis correspond a une mesure du mouvement des
grains au sein du systéme. Une entropie faible traduit un systeme organisé, dans lequel les grains parviennent
naturellement & s’équilibrer sans nécessiter d’avalanches. A I’inverse, une entropie élevée signale un désordre
transitoire, ou les grains doivent étre redistribués par des avalanches pour atteindre un état stable. L’entropie
constitue donc une métrique pertinente pour détecter les situations de surcharge, caractérisées par une intensi-
fication du mouvement granulaire.

Afin d’établir une valeur de référence, nous nous appuyons sur le modele du tas de sable canonique, reconnu
pour sa capacité a maintenir un équilibre auto-organisé a la limite du chaos. Ce systéme évacue les grains des
que nécessaire, empéchant toute surcharge prolongée, tout en conservant une dynamique granulaire suffisante
pour 1’auto-organisation. Nous définissons ainsi une entropie de référence pré-surcharge a partir des cellules
les plus sollicitées (typiquement celles au centre du tas de sable). Cette entropie est exprimée comme le ratio

entre le nombre total de grains regus et la durée de la simulation :

nombre de grains tombés

E = 5 -
ref durée de la simulation

Elle représente la fréquence moyenne de chute des grains sur une cellule par cycle. Dans le cadre du modele

canonique, cette valeur atteint : F,..; ~ 0,3.
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FIGURE 5.4 — Illustration des différents états du systeéme en fonction du mouvement par rapport a la comparai-
son des entropies locale et de référence.

Dans le tamis auto-adaptatif, chaque cellule effectue un suivi local de son entropie au fil du temps. Elle
enregistre, sur une fenétre glissante des n derniers cycles, le nombre de grains qu’elle a regus, et calcule sa

valeur d’entropie locale selon :

nombre de grains enregistrés

Elocale = n

Une valeur de Ej,cq;. = 1 indique qu’en moyenne, la cellule regoit un grain a chaque cycle. Nous désignerons
cette fenétre d’observation comme la fenétre d’entropie.

La comparaison entre Ejocqic €t Fror permet alors d’ajuster dynamiquement les capacités de tamisage :

— Si Ejpcate > Erey, la cellule est soumise a une activité anormalement élevée, symptome d’une sur-
charge locale. Il est donc nécessaire d’augmenter sa capacité de tamisage pour faciliter I’évacuation des
grains.

— Inversement, si Ejocqate < Erey, la cellule participe insuffisamment a I’auto-organisation, ce qui peut
signaler une surcapacité. Dans ce cas, réduire sa capacité permet de réengager cette cellule dans la
dynamique d’équilibrage du systeme.

L’entropie de référence joue donc le role de cible idéale : elle incarne le compromis entre 1’auto-organisation
nécessaire a I’équilibrage du systéme et le tamisage global, assurant un fonctionnement optimal du tamis auto-
adaptatif. La Figure 5.4 illustre visuellement ces différents scénarios, mettant en évidence les zones de sous- et

de sur-utilisation par rapport a cette référence.

5.4.2 Méthode naive

Nous introduisons ici une version naive d’adaptation utilisant I’entropie locale définie précédemment. L’ ob-
jectif de cette approche est d’offrir une premiere implémentation simple et accessible, permettant d’évaluer le

potentiel de la stratégie d’adaptation sans recourir a des mécanismes complexes.



98 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

Cette version, baptisée méthode “+1 -1”, repose sur une régle élémentaire : chaque cellule décide, a chaque
cycle, d’augmenter ou de diminuer sa capacité latente de tamisage en fonction de sa propre entropie locale.
Trois cas de figure sont distingués :

— Ejocale > Erey 1 1a cellule incrémente sa capacité latente de 1, en réponse a une activité granulaire

supérieure a la normale;;

— FEiocale < Erey : la cellule décrémente sa capacité latente de 1 (avec un minimum fixé a 1), reflétant

une sous-utilisation locale;

— Ejocale = Erey :1a cellule est en équilibre, aucune modification n’est apportée.

Le pseudo-code de ce mécanisme est présenté dans 1’ Algorithme 7.

Algorithm 7: Adaptation par entropie locale : méthode “+1 -1”

Input: cellule : cellule a adapter
E,.cy : entropie de référence

FElocate < cellule.entropie()
if Ejocate > Erey then
‘ cellule.capacitéLatente <— cellule.capacitéLatente + 1
else if £),cq1e < Eref then
‘ cellule.capacitéLatente <— max(1, cellule.capacitéLatente - 1)
end

=T T SR S

L’ application de cette stratégie engendre une variation en “vague” de la capacité latente d’une cellule au
fil du temps, comme ’illustre la Figure 5.5. Par exemple, pour une fenétre d’entropie de taille 10, la capacité
n’augmente que lorsque plus de 3 grains sont observés dans cette fenétre (Eiocate > Erey), €t décroit lorsque
ce nombre tombe en dessous de 3 (Ejpcate < Eref).

Cette dynamique locale, appliquée a 1’échelle globale du tamis, permet une adaptation collective : plusieurs
cellules ajustent simultanément leurs capacités pour évacuer les grains responsables d’une surcharge ponctuelle.
Cette réaction coordonnée favorise un retour a 1’équilibre dans les zones instables. Nous verrons, dans les
résultats présentés en fin de section, que ce mécanisme permet au tamis de s’ajuster efficacement et que la

capacité de tamisage moyenne des cellules suit de pres la quantité de grains injectée a chaque instant.

5.4.3 Méthode proportionnelle

La seconde stratégie d’adaptation reposant sur I’entropie locale en affine I’exploitation en y intégrant une
notion de proportionnalité. Contrairement a la méthode “+1 -1 qui ajuste la capacité latente par paliers dis-
crets, cette version ajuste directement la capacité a la quantité de grains effectivement observée dans la fenétre
d’entropie.

Plus précisément, lorsque 1’entropie locale dépasse la référence, la cellule adopte comme nouvelle capacité
latente le nombre de grains enregistrés sur la fenétre d’observation. Ce mécanisme permet une adaptation plus
rapide et plus précise, en alignant immédiatement la capacité au niveau de stress local observé, tout en stabili-
sant cette valeur aussi longtemps que I’activité reste cohérente. Ainsi, la capacité peut légerement décroitre si

le nombre de grains diminue, tout en restant supérieur au seuil de déclenchement.
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FIGURE 5.5 — Exemple de I’adaptation naive par entropie locale d’une cellule avec une fenétre d’entro-
pie de taille 10. Lorsque I’entropie locale (courbe rouge) dépasse la référence de 3 grains (barre rose;
Erer = 1—?’0 = 0,3), la capacité de la cellule (courbe bleue) augmente de 1 a chaque cycle jusqu’a ce que I’entro-
pie locale retourne en dessous de la référence. La capacité diminue alors, produisant une réaction en “vague”.

La réduction des capacités, quant a elle, obéit a une logique distincte. Plutdt que d’opérer des décréments
progressifs, la cellule réinitialise sa capacité latente des qu’elle devient vide, c’est-a-dire lorsqu’aucun grain
ne transite par elle. Cette approche offre un délai naturel de vidange, permettant aux cellules de résorber la
surcharge avant de retrouver un mode de fonctionnement minimal. On peut faire ici le parallele avec les sys-
temes de traitement de tAches : une ressource (cellule) qui n’a plus de file d’attente (grains) revient a un état
énergétiquement sobre, avec une capacité minimale (fixée a 1 dans notre étude).

La stratégie peut donc se résumer par les trois regles suivantes :

— Fiocale > FErey i la cellule fixe sa capacité latente au nombre de grains enregistrés dans sa fenétre

d’entropie;

— Ejocate < Erey :1a cellule conserve sa capacité latente actuelle;

— Cellule vide : la cellule réinitialise sa capacité latente au minimum fixé a 1.

Le pseudo-code correspondant est présenté dans I’ Algorithme 8.

Algorithm 8: Adaptation par entropie locale : méthode proportionnelle

Input: cellule : cellule a adapter
E,.y : entropie de référence

Eiocate < cellule.entropie()
if cellule.grains = 0 then
| cellule.capacitéLatente < 1
else if ), cqic > E’ref then
| cellule.capacitéLatente < > cellule. fenétreEntropiei]
end

D i AW N =

A la différence de la méthode “+1 -1, cette version proportionnelle induit une évolution contrdlée et ré-
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active des capacités latentes, comme illustré en Figure 5.6. La capacité augmente instantanément a un niveau
modéré lorsque Ejocaie > Erey, puis se maintient stable tant que la surcharge persiste. Dés que la cellule se
vide, elle retrouve immédiatement sa capacité minimale, préte a répondre a une nouvelle sollicitation.

Ce cycle d’augmentation et de réinitialisation, appliqué collectivement, permet au tamis de maintenir une
capacité effective moyenne étroitement corrélée a la proportion de grains injectée. Nous montrerons dans la

suite de cette section que cette stratégie assure une adaptation fluide et efficace du systeme.
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FIGURE 5.6 — Exemple de I’adaptation proportionnelle par entropie locale d’une cellule avec une fenétre
d’entropie de taille 10. Lorsque 1’entropie locale (courbe rouge) dépasse la référence de 3 grains (barre rose;
Erer = 1—30 = 0,3), la capacité de la cellule (courbe bleue) se fixe au nombre de grains enregistrés a chaque
cycle jusqu’a ce que I’entropie locale retourne en dessous de la référence. La capacité est réinitialisée lorsque
la cellule devient vide au cycle 16.

5.4.4 Détermination des parametres de I’entropie locale

Les stratégies d’adaptation fondées sur 1’entropie locale reposent sur deux parametres essentiels : 1’entropie
de référence et la taille de la fenétre d’observation (ou fenétre d’entropie). Le premier, initialement fixé a ;.. 7,
découle d’une estimation empirique réalisée a partir du modele canonique du tas de sable. Toutefois, cette
valeur de référence n’est pas universellement optimale et peut varier selon la taille de la fenétre utilisée pour le
calcul de I’entropie locale.

Le choix de ces deux parametres conditionne 1’équilibre global du systéme entre trois objectifs cruciaux :

— une capacité de tamisage appropriée face aux sollicitations;

— une consommation énergétique contenue, en évitant des surcapacités inutiles ;

— une répartition homogene de I’activité entre les cellules, évitant que certaines deviennent des points de

congestion ou de faiblesse.
En effet, dans un systeme décentralisé tel que le tamis, il est souhaitable que ’ensemble des cellules soient

sollicitées de maniere équitable. Une cellule surdimensionnée par rapport aux autres agirait comme un puits,



5.4. ADAPTATION DES CAPACITES PAR ENTROPIE LOCALE 101

absorbant une part disproportionnée des grains, ce qui I’expose davantage a 1’usure ou a des pannes, et nuit a
la robustesse globale du systeme.

Afin de calibrer les stratégies d’auto-adaptation par entropie locale, il est donc nécessaire d’explorer un
espace de valeurs pour ces deux parametres, en évaluant leur influence sur le comportement du systeme. Cette
étude paramétrique vise non seulement a optimiser les performances de chaque stratégie, mais aussi a garantir

des conditions équitables de comparaison entre les différentes approches d’adaptation proposées dans ce travail.

5.4.4.1 Cadre d’étude

Afin d’évaluer I’'impact des parametres d’adaptation, nous menons une étude systémique des performances
du tamis auto-adaptatif en faisant varier les deux composantes clés : I’entropie de référence F,.. ¢ et la taille de
la fenétre d’entropie. L’entropie de référence est explorée autour de sa valeur canonique (0,3), dans un intervalle
allant de 0,05 a 0,45 par pas de 0,05. Quant a la fenétre d’entropie, sa taille varie de 5 a 20 cycles observés. Des
fenétres plus longues introduiraient une inertie excessive dans la détection des changements, ce qui limiterait
la réactivité du systeme aux déséquilibres locaux.

L’ objectif de cette étude est d’identifier les couples { E,.; ; fenétre d’entropie} qui permettent une réac-
tion juste et maitrisée du systéme face aux sollicitations, en assurant un compromis entre réactivité, efficacité
énergétique et égalité d’utilisation des cellules. Chaque couple de parametres est évalué selon quatre criteres
principaux :

— Capacité de tamisage moyenne : moyenne, sur toute la simulation, des capacités effectives de tamisage
des cellules. Elle doit se rapprocher de la proportion de charge injectée dans le systéme afin d’assurer
un équilibre sans surdimensionnement inutile.

— Capacité de tamisage maximale moyenne : moyenne des capacités effectives maximales de tamisage
observée parmi les cellules pendant la simulation. Une valeur élevée indique une disparité de la réaction
des cellules, ce qui va a I’encontre de I’uniformisation recherchée.

— Nombre d’avalanches “infinies” : une avalanche est considérée comme infinie si elle excede 500
cycles, seuil basé sur la durée maximale observée dans un tas de sable de méme dimension que le tamis,
augmenté d’une marge de sécurité. Une telle avalanche est interrompue pour préserver la progression
de la simulation.

— Consommation énergétique : somme des mouvements de grains provoqués par les avalanches et des
capacités de tamisage effectives des cellules au cours de la simulation, exprimée en pourcentage de la
consommation optimale. Cette consommation optimale est celle d’un systeme parfaitement statique,
sans mouvement, et distribuant équitablement la charge.

L’évaluation repose sur une série de simulations durant chacune 100 000 cycles, précédés d’une phase
d’initialisation de 10 000 cycles. Chaque scénario est répété 100 fois afin de lisser les variations dues a 1’aléa.
Le tamis étudié est de taille fixe (32 x 32 = 1024 cellules), et a chaque cycle, un grain est injecté aléatoirement
dans la grille. Deux types de politiques d’injection de charge sont testés :

— Politiques fixes : la taille des grains reste constante pendant la simulation, choisie parmi 2048, 3072 et
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4096, soit 2 a 4 fois la taille du tamis.
— Politiques fluctuantes :
B Charge sinusoidale : variation périodique entre 2048 et 4096, sur une période de 50 000 cycles.
B Charge aléatoire avec pics : base gaussienne centrée sur 2048 avec un écart-type de 768, associée
a des pics brusques.

Pour cette derniere politique, la taille minimale des grains est bornée a 1 pour éviter des charges nulles ou
négatives. Chaque cycle a une probabilité P,;. = 2,5 - 1072 de déclencher un pic de charge durant 50 a 150
cycles. Ces pics consistent en une charge uniforme aléatoire entre 9216 et 11264, soit de 9 a 11 fois la taille
du systeme. La Figure 5.7 illustre une réalisation typique sur 10 000 cycles. La taille moyenne des grains sous

cette politique est de 3633,4, ce qui implique une capacité optimale par cellule de 3?3;’ f ~ 3,55. Pour garantir

I’équité de la comparaison entre stratégies, une méme instance de charge aléatoire est utilisée pour chaque

méthode évaluée.
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FIGURE 5.7 — Exemple des tailles de grain générées avec la politique aléatoire sur 10000 cycles.

Enfin, la capacité latente minimale de chaque cellule est fixée a 1, et toute cellule inactive (ne traitant aucun
grain) entre en mode veille, sans consommation d’énergie (capacité effective). La consommation énergétique

optimale pour une simulation donnée est définie comme :
consommation = capacité cellule optimale x nombre de cellules x durée de simulation

Par exemple :

— Pour une taille de grain constante de 2048 : consommation = 2,048 - 108.

— Pour la politique aléatoire avec pics : consommation = 3,633 - 108.

Comme nous le verrons ci-apres, les modeles d’adaptation ajustent les capacités de tamisage au nécessaire.
La consommation induite par le tamisage correspond donc a la consommation optimale. Les différences dans

la consommation totale ne correspondent alors qu’a la consommation associée aux avalanches (déplacements
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des grains). Nous conservons tout de méme 1’implication du tamisage afin de pouvoir, dans le futur, comparer

ces modeles avec d’autres qui proposeront des résultats d’adaptation potentiellement différents.

5.4.4.2 Adaptation naive

Les premiers résultats indiquent que 1’adaptation naive fonctionne de maniere systématique, indépendam-
ment du couple de parametres { E,. ; fenétre d’entropie} utilisé. La capacité moyenne de tamisage des cellules
s’ajuste correctement a la taille des grains injectés : elle atteint approximativement 2 pour des grains de taille
2048, 3 pour 3072, et 4 pour 4096. Le Tableau 5.2 résume ces résultats en indiquant, pour chaque taille de
grain, les valeurs minimales et maximales de capacité moyenne atteinte pour I’ensemble des couples. L’écart
observé est tres faible, ce qui traduit une robustesse du modele d’adaptation naive par entropie locale, quel que

soit le réglage de ses parametres.

Capacité moyenne minimale | Capacité moyenne maximale

Taille de grain

Seuil fixe | Seuil dynamique | Seuil fixe | Seuil dynamique
2048 1,999 1,977 2 2
3072 2,999 2,965 3,001 3
4096 3,999 3,953 4,002 4

TABLE 5.2 — Capacité moyenne atteinte par les couples { F,..f; fenétre d’entropie} selon la taille des grains
injectés dans le tamis avec adaptation naive par entropie locale, avec et sans seuil critique dynamique. Pour
chaque taille, les valeurs minimales et maximales des couples sont proposées.

Cependant, au-dela de la faisabilité de I’adaptation, la qualité des performances varie considérablement
d’un couple de parameétres a 1’autre. Nous nous concentrons donc sur le cas le plus contraignant, correspondant
a une taille de grain de 4096, afin d’évaluer finement la pertinence des réglages. La Figure 5.8 propose deux
cartes de chaleur pour chaque couple de parametres : la capacité maximale atteinte par des cellules et le nombre
d’avalanches infinies survenues. Une tendance se dégage des résultats : tous les couples pour lesquels E,..y >
0,25 présentent des avalanches infinies, tandis que les capacités maximales atteintes sont les plus élevées pour
les couples ayant ..y < 0,25.

Cette opposition illustre une forme d’inertie excessive dans le mécanisme d’adaptation lorsque 1’entropie de
référence est faible, combinée a une fenétre d’observation large. Dans ce cas, tres peu de grains suffisent a dé-
clencher une augmentation de capacité, et ces événements étant étalés sur une longue fenétre, ils s’accumulent
durablement, méme si la situation se stabilise.

Par ailleurs, bien que la capacité moyenne du systéme se stabilise autour de 4, les pics locaux peuvent étre
extrémement hétérogenes. Certaines cellules atteignent des valeurs jusqu’a 11 fois supérieures a I’ objectif, tan-
dis qu’une majorité reste au minimum. Ainsi, les couples viables (sans avalanche infinie) ne le sont qu’au prix
d’une surcapacité ponctuelle extréme, ce qui révele un déséquilibre dans la répartition de I’effort de tamisage.

L’introduction du seuil critique dynamique (en plus de I’adaptation des capacités de tamisage) ne remet pas
en cause la capacité du systeme a s’adapter : la capacité moyenne reste alignée avec la taille des grains injectés,

comme le confirme de nouveau le Tableau 5.2.
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FIGURE 5.8 — Résultats de I’adaptation naive par entropie locale pour chaque couple { E,. ; fenétre d’entro-
pie} pour une taille de grains a quatre fois la taille du systeme.

La Figure 5.9 compare alors les performances des couples de parametres avec cette nouvelle stratégie, selon
les deux mémes criteres que précédemment. Trois observations ressortent :
— le nombre d’avalanches infinies a drastiquement diminué de maniere générale ;
— davantage de couples deviennent viables, c’est-a-dire exempts d’avalanches infinies ; les autres en pré-
sentent tres peu;
— la capacité maximale atteinte augmente globalement, en particulier lorsque la fenétre d’entropie est
large.
Ces résultats traduisent un gain de robustesse important grace a I’adaptation conjointe des capacités et des
seuils, malgré une légere hausse des valeurs maximales de capacité. Comme dans le cas sans seuil dynamique,
les couples viables correspondent a ceux ayant les capacités maximales les plus élevées, indiquant que la

résilience du systéme repose toujours en partie sur une surcapacité locale.
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FIGURE 5.9 — Résultats de 1’adaptation naive par entropie locale avec seuil critique dynamique pour chaque
couple { E,.; fenétre d’entropie} pour une taille de grains a quatre fois la taille du systéme.

Notons que les couples avec une fenétre d’entropie de taille 5 restent systématiquement non viables, malgré

I’ajout du seuil critique dynamique. Ce comportement s’explique par une durée de réaction faible du systeme.
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La courte fenétre empéche 1’accumulation d’observations significatives, rendant I’augmentation des capacités
plus difficile. En revanche, la diminution de capacité reste tres sensible aux variations ponctuelles. Ce déséqui-
libre se reflete dans les mesures de capacité maximale : les cellules fluctuent trop rapidement, sans atteindre
des valeurs suffisantes pour compenser les pics de charge, ce qui ralentit 1I’évacuation des grains et accroit
I’instabilité.

Enfin, la Figure 5.10 présente la consommation énergétique du systeéme avec et sans seuil critique dyna-
mique. L’ajout de 1’adaptation des seuils permet de réduire considérablement le colit énergétique associé aux
mouvements de grains, rapprochant la majorité des couples viables de la consommation optimale théorique. Les
couples déja viables sans seuil dynamique ne sont que peu affectés, ce qui souligne leur efficacité intrinseque

dans I’équilibrage entre tamisage et auto-organisation.
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FIGURE 5.10 — Consommation énergétique du tamis utilisant 1’adaptation naive par entropie locale, avec et
sans seuil dynamique, pour chaque couple { F,.. s ; fenétre d’entropie} pour une taille de grains a quatre fois la
taille du systeme. La consommation est exprimée en pourcentages par rapport a la consommation optimale.

Sur la base de I’ensemble des criteres d’évaluation (absence d’avalanches infinies, faible capacité maxi-
male, faible consommation), plusieurs couples de parametres se démarquent. Le couple {0,25; 11} a été retenu
comme référence pour la suite des comparaisons. Il est robuste, présente 1’'une des capacités maximale les plus
faibles parmi les couples viables et présente une consommation maitrisée. Ce couple sera utilisé comme point

de comparaison entre les deux méthodes d’auto-adaptation par entropie locale développées dans cette étude.

5.4.4.3 Adaptation proportionnelle

Comme pour la méthode naive, 1’auto-adaptation proportionnelle se révele pleinement fonctionnelle, comme
en témoignent les résultats du Tableau 5.3. La capacité moyenne de tamisage des cellules augmente avec la taille
des grains injectés dans le systéme, et les variations entre les couples de parametres sont faibles. Cela indique
une robustesse du mécanisme d’adaptation proportionnelle, quelles que soient les valeurs de E,.. ¢ et de la taille
de la fenétre d’entropie.

Nous focalisons 1’analyse sur la situation la plus contraignante, correspondant a une taille de grains de

4096, a I’aide des données présentées dans la Figure 5.11. Bien que la qualité de 1’adaptation reste sensible
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Capacité moyenne minimale | Capacité moyenne maximale

Taille de grain

Seuil fixe | Seuil dynamique | Seuil fixe | Seuil dynamique
2048 1,996 1,996 2,001 2
3072 2,99 2,981 3,001 3
4096 3,984 3,962 4 4,001

TABLE 5.3 — Capacité moyenne atteinte par les couples { F,..f; fenétre d’entropie} selon la taille des grains
injectés dans le tamis avec adaptation proportionnelle par entropie locale, avec et sans seuil critique dynamique.
Pour chaque taille, les valeurs minimales et maximales des couples sont proposées.

aux parametres, comme dans le cas de la méthode naive, les écarts de performance entre les meilleurs et les
pires couples sont nettement moindres ici. Cela traduit un meilleur contréle des capacités de tamisage, indé-
pendamment des réglages choisis. Ce comportement est particulierement visible dans les mesures de capacité
maximale atteinte : les pics restent systématiquement inférieurs a 15 pour la majorité des couples. A I'inverse,
la méthode naive dépasse souvent ce seuil. De plus, un plus grand nombre de couples est viable, et la majorité

des couples restants ne provoque que peu d’avalanches infinies.
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FIGURE 5.11 —Résultats de I’adaptation proportionnelle par entropie locale pour chaque couple { E,.. ¢ ; fenétre
d’entropie} pour une taille de grains a quatre fois la taille du systeme.

Malgré ces résultats globalement meilleurs, la méthode proportionnelle présente un désavantage lors de
la sélection des parametres optimaux : les capacités maximales atteintes sont directement corrélées aux pa-
rametres, en particulier au produit E,..; x fenétre. Prenons par exemple le couple {0,2; 16}, I'un des plus
performants. Lentropie locale nécessaire pour augmenter la capacité est ici de [0,2 x 16] = 4, ce qui est pré-
cisément la capacité cible. Les cellules oscillent entre des capacités de 1 et 4, pour maintenir une entropie
locale autour de F..¢. Si la tension s’accroit, davantage de grains sont observés, entrainant une augmentation
proportionnelle de la capacité. Ainsi, le choix des parametres optimaux dépend fortement de la charge injectée
dans le systeme lorsque celle-ci est constante. La Figure 5.12 montre que les couples minimisant la capacité

maximale sont ceux pour lesquels :

taille des grains
FE,or x fenétre| = ————
[Eres x fenétre] taille du systeme
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Cette relation rend le dispositif expérimental inadapté a la sélection d’un couple générique de parametres, car

il est trop dépendant de la charge.
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(a) Taille de grains : 2048. (b) Taille de grains : 3072.

FIGURE 5.12 — Capacités maximales atteintes avec 1’adaptation proportionnelle par entropie locale pour
chaque couple { ;.5 ; fenétre d’entropie} pour une taille de grains de deux et trois fois la taille du systeme.

Pour dépasser cette limitation, nous avons placé le systeme dans une situation de charge fluctuante : la taille
des grains injectés varie selon une sinusoide. Les résultats, présentés dans la Figure 5.13, révelent plusieurs
tendances majeures :

— La structure des résultats est tres proche de celle obtenue avec des grains de taille fixe de 4096.

— Peu d’avalanches infinies apparaissent, méme chez les couples non optimaux.

— Avec l'introduction du seuil critique dynamique (Figure 5.14), presque tous les couples deviennent

viables. Seuls quelques cas isolés présentent une unique avalanche infinie.

— Les capacités maximales atteintes sont globalement inférieures a celles obtenues sans le seuil dyna-

mique.
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FIGURE 5.13 —Résultats de I’adaptation proportionnelle par entropie locale pour chaque couple { ;. ¢ ; fenétre
d’entropie} pour une taille de grains sinusoidale.

Un autre point notable est que la consommation énergétique devient presque indépendante des parametres,

une fois le seuil dynamique activé (Figure 5.15). Comme pour la méthode naive, les couples viables (ou quasi-
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FIGURE 5.14 — Résultats de 1’adaptation proportionnelle par entropie locale avec seuil critique dynamique
pour chaque couple { E,..; ; fenétre d’entropie} pour une taille de grains sinusoidale.

viables) maintiennent une consommation énergétique faible et stable, méme sans ajustement dynamique du
seuil. Cela suggere une capacité intrinseque a équilibrer le traitement des grains excédentaires avec la tension

nécessaire a I’auto-organisation, sans recours excessif aux ressources.
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FIGURE 5.15 — Consommation énergétique du tamis utilisant I’adaptation proportionnelle par entropie locale,
avec et sans seuil dynamique, pour chaque couple { E,. ; fenétre d’entropie} pour une taille de grains sinusoi-
dale.

En considérant I’ensemble des criteres (viabilité, limitation des pics de capacité, faible consommation éner-

gétique), le couple{0,25; 14} a été retenu comme référence pour la méthode proportionnelle. Ce couple est :

— est viable dans les scénarios avec ou sans seuil dynamique,
— présente 1'une des capacités maximales les plus faibles,

— et produit I’une des consommations énergétiques les plus basses, y compris sous charge fluctuante.

Il sera utilisé pour comparer les deux approches d’adaptation par entropie locale dans la suite de I’étude.
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5.4.5 Comparaison des méthodes

Bien que des indices aient déja suggéré la supériorité de la méthode proportionnelle d’adaptation par en-
tropie locale, nous procédons ici a une comparaison directe entre les deux approches. Les parametres retenus
sont {0,25; 11} pour la méthode naive et {0,25; 14} pour la méthode proportionnelle, chacun représentant
un couple optimal selon les analyses précédentes. Toutes les expériences ont été réalisées dans des conditions

identiques a celles utilisées pour la sélection des parametres.

Le Tableau 5.4 présente, pour différentes tailles de grains et scénarios de charge, la capacité maximale at-
teinte par les cellules ainsi que la consommation énergétique du systéme. Les résultats montrent que la méthode
proportionnelle consomme légerement moins d’énergie que la méthode naive, avec une consommation proche
de I’optimum, et maintient une capacité de tamisage maximale systématiquement deux a trois fois inférieure,

ce qui traduit une adaptation plus fine et maitrisée.

Taille de grain Méthode E,.; | Fenétre d’entropie | Capacité max. | Consommation
2048 Naive 0,25 11 16 102,06%
Proportionnelle | 0,25 14 6 100,1%
3072 Naive 0,25 11 21 102,49%
Proportionnelle | 0,25 14 8 100,1 %
4096 Naive 0,25 11 26 102,55%
Proportionnelle | 0,25 14 9 100,33%
. . Naive 0,25 11 23 102,63%
Sinusoide
Proportionnelle | 0,25 14 7 100,17 %
L Naive 0,25 11 24 103,15%
Aléatoire
Proportionnelle | 0,25 14 8 101,18 %

TABLE 5.4 — Comparaison des couples de parametres sélectionnés pour les méthodes d’adaptation par entropie
locale pour les différentes tailles de grain.

Les Figures 5.16 et 5.17 illustrent 1’évolution de la capacité moyenne du systeéme en réponse a des charges
dynamiques : une charge sinusoidale (Figure 5.16), et une charge aléatoire comportant des pics de surcharge
(Figure 5.17). Dans chaque graphique, la courbe bleue représente la taille du grain injecté (normalisée par

rapport a la taille du systeme), tandis que la courbe orange montre la capacité moyenne de tamisage du systeme.

Les résultats mettent en évidence des différences notables. La méthode naive géneére une réponse instable
et tres fluctuante, ce qui reflete une forte sensibilité du systeme aux variations de charge. La méthode propor-
tionnelle, en revanche, assure une adaptation progressive, lissée et robuste, méme face a des charges extrémes.
En particulier, le scénario avec pics montre que le systéme proportionnel encaisse des surcharges importantes

sans réaction excessive, ce qui témoigne d’un mécanisme de régulation efficace et durable.

Sur ’ensemble des criteres (capacité maximale, stabilité, consommation énergétique, et résilience face
aux charges fluctuantes) la méthode proportionnelle s’avere nettement supérieure a la méthode naive pour

I’adaptation basée sur I’entropie locale.
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FIGURE 5.16 — Evolution de la capacité de tamisage d’un tamis de taille 32 pour les deux méthodes d’adapta-
tion par entropie locale pour une taille de grain sinusoidale. Les valeurs sont normalisées par rapport a la taille
du systeme. Par exemple, une valeur de 3 correspond réellement a 3072.

17.5 —— Taille de grain —— Taille de grain
—— Capacité mesurée 10 ~—— Capacité mesurée

15.0 ‘
R A S H” .
7.5 i |

\r 0 ‘uuw w\"‘”' 1 L) e A
5.0

2

2.5
0.0 APDEY e | Ly L b N TP T 0 i 2 il I

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Cycles Cycles
(a) Méthode naive. (b) Méthode proportionnelle.

FIGURE 5.17 — Evolution de la capacité de tamisage moyenne des cellules d’un tamis de taille 32 pour les deux
méthodes d’adaptation par entropie locale pour une taille de grain aléatoire avec des pics de grosse surcharge.
Les valeurs sont normalisées par rapport a la taille du systeme.

5.5 Adaptation des capacités par protocole de bavardage

L’adaptation par protocole de bavardage constitue une nouvelle stratégie permettant d’ajuster dynamique-
ment les capacités de tamisage des cellules. A I’instar de la méthode fondée sur Ientropie locale, elle exploite
le mouvement des grains comme indicateur d’activité, mais adopte une approche plus directe, sans mesure
explicite ni traitement statistique. Cette stratégie repose sur la combinaison de deux mécanismes déja présentés
et introduit un troisieme élément clé : la communication de I’état “bordure” entre cellules, rendue possible par
la propagation d’avalanches locales.

Dans un premier temps, nous détaillons le fonctionnement de 1’algorithme et ses mécanismes internes.
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Nous analysons ensuite les dynamiques d’adaptation induites par cette approche, apres avoir posé le cadre

méthodologique de I’étude.

5.5.1 Modélisation

L’ algorithme est initialisé en affectant aléatoirement 1’état “bordure” a une faible portion des cellules du ta-
mis. Ces cellules, considérées comme sources de 1’état, conservent définitivement ce statut, méme en 1’absence

de grains. Leur nombre doit rester limité afin d’éviter une surréaction du systeme au moindre mouvement.

Lors d’une avalanche, toute cellule recevant un grain depuis une voisine en état “bordure” adopte ce nouvel
état et incrémente sa capacité de tamisage de 1, suivant un principe analogue au seuil critique dynamique. A
I’instar de I’adaptation proportionnelle par entropie locale, une cellule vidée de ses grains réinitialise sa capacité
a sa valeur minimale (1) et perd I’état “bordure”, sauf si elle fait partie des cellules sources. Ainsi, les cellules
sans €tat conservent un fonctionnement minimal, mais continuent a participer aux avalanches, contribuant

pleinement a 1’auto-organisation du systeme.

Ce mécanisme permet un engagement progressif des cellules dans 1’adaptation en fonction de la tension
présente dans le systeme. Plus les avalanches sont fréquentes, plus 1’état “bordure” se propage, et plus les ca-
pacités de tamisage augmentent collectivement. Inversement, la perte de I’état “bordure” permet de désengager
les cellules lorsque la charge diminue, maintenant ainsi un régime général de tamisage adapté i la demande. A
I’échelle d’une cellule, la capacité de tamisage oscille dynamiquement selon I’activité locale, produisant une

capacité moyenne globale proportionnelle a I’intensité du flux de grains injectés.

Contrairement aux méthodes par entropie locale, I’adaptation par protocole de bavardage n’introduit pas de
phase dédiée dans le cycle de simulation. Le mécanisme est intégré directement a la gestion des avalanches, a

la maniere du seuil critique dynamique. L’ Algorithme 9 en présente le pseudo-code détaillé.

La Figure 5.18 illustre la distribution spatio-temporelle de I’état “bordure” dans un tamis de taille 32, selon

différentes tailles de grains :

— A 50% de la capacité du tamis (512), la tension est quasi inexistante, les avalanches rares, et seules
quelques cellules proches des sources adoptent bricvement 1’ état.

— A 100% de la capacité (1024), la tension devient significative : 1’état “bordure” est transmis a I’ensemble
du tamis, bien que principalement autour des cellules sources.

— Pour une charge a 200% (2048), la propagation est massive : la majorité des cellules sont “bordure”
environ la moitié du temps.

— Enfin, a 400% (4096), les avalanches deviennent omniprésentes et la quasi-totalité des cellules sont en

état “bordure” quasi permanent.

L’évolution de la présence de 1'état “bordure” reflete donc la réponse adaptative du systeme. Etant donné
que chaque acquisition de cet état s’accompagne d’une augmentation de la capacité de tamisage, cette dyna-

mique de propagation implique 1’augmentation des capacités des capacités de tamisage des cellules.
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Algorithm 9: Auto-adaptation par protocole de bavardage : incorporation dans les avalanches

Input: G : grille

/x Gestion d’une avalanche */
1 while au moins une cellule de G est instable do

2 foreach cellule de G do
/% Eboulement de la cellule */
3 if cellule.grains > 4 then
4 foreach voisine de cellule do
5 voisine.grains <— voisine.grains + 1
6
/+ Communication de 1’état bordure et incrémentation de la
capacité */
7 if cellule est “bordure” then
8 Communication de 1’état “bordure” a voisine
9 voisine.capacité = voisine.capacité + 1
10 end
1 end
12 cellule.grains < cellule.grains — 4
13 end
14 end
15 end

5.5.2 Cadre d’étude

Le cadre d’étude pour 1’évaluation de 1’adaptation par protocole de bavardage est calqué sur celui défini
pour I’adaptation par entropie locale (voir Section 5.4.4.1). Cependant, le panel de tailles de grain des les
politiques fixes est élargi, s’étendant de 256 a 4096, afin d’explorer des régimes de sous-charge. En outre,
I’initialisation du protocole de bavardage est réalisée avec seulement 1% des cellules définies comme sources
de I’état “bordure”, afin d’introduire une hétérogénéité minimale dans le systéme initial.

Les métriques d’analyse utilisées pour évaluer I’efficacité de cette stratégie sont identiques a celles em-
plyées pour I’adaptation par entropie locale. Deux métriques complémentaires sont toutefois introduites pour
caractériser plus finement le comportement du systéme :

— Densité : mesure le nombre moyen de grains présents sur les cellules, normalisée par le seuil critique
d’éboulement. Une densité égale a 1 signifie que toutes les cellules sont a un grain de s’ébouler, repré-
sentant un état de tension maximale ol le systéme est plein.

— Taux d’utilisation des cellules : correspond au rapport entre le nombre de cycles pendant lesquels une
cellule traite un grain et la durée totale de la simulation. Un taux égal a 1 indique que la cellule a été

sollicitée en continu, ce qui refléte un niveau élevé d’activité.

5.5.3 Analyse de I’adaptation

A P’instar de ’adaptation par entropie locale, 1’adaptation par protocole de bavardage s’avére pleinement
fonctionnelle. Le Tableau 5.5 présente les résultats obtenus pour plusieurs scénarios de charge, en termes de

capacités moyennes et maximales, consommation énergétique et nombre d’avalanches infinies. Les résultats
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(a) Taille de grain : 512. (b) Taille de grain : 1024.
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FIGURE 5.18 — Taux de présence de I’état “bordure” sur les cellules d’un tamis de taille 32 utilisant 1’adaptation
par protocole de bavardage pour différentes tailles de grain. Le taux correspond au ratio entre le nombre de
cycles ou chaque cellule est en état “bordure” par rapport a la durée totale de la simulation. Une valeur a 1
signifie que la cellule a été “bordure” durant toute la simulation. C’est notamment le cas des cellules sources
de I’état (1% des cellules) en rouge foncé.

montrent que les capacités de tamisage s’ajustent de maniere efficace, avec des valeurs maximales modérées,

une consommation énergétique proche de I’optimal, et aucune avalanche infinie, quel que soit le scénario

considéré.
Taille de grain | Capacité moyenne | Capacité maximale | Avalanches infinies | Consommation
2048 2 8 0 100,36%
3072 3 11 0 100,15%
4096 3,99 14 0 99,81%
Sinusoidale 3 11 0 100,15%
Aléatoire 3,59 14 0 101,14%

TABLE 5.5 — Résultats de 1’adaptation par protocole de bavardage dans un tamis de taille 32. Chaque ligne
correspond a un scénario de charge. Les trois premiers sont des tailles de grain fixes de 2048, 3072 et 4096.
Le dernier est une taille fluctuante qui suit une sinusoide oscillant entre 2048 et 4096 sur une période de 50000
cycles.

La réactivité élevée de cette méthode permet une augmentation rapide des capacités locales, ce qui réduit
fortement la tension dans le systéme, en comparaison au tas de sable canonique ou aux modeles d’adaptation

précédents. Comme le montre le Tableau 5.6, lorsque que la taille des grains injectés est supérieure ou égale
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a la taille du systeme, la tension reste faible, le systeme n’étant méme pas rempli a moitié. Cela se traduit par
une réduction significative du nombre et de la durée des avalanches, qui ne dépassent plus dix étapes. Ainsi, les
redistributions massives de grains sont évitées, tout comme les avalanches infinies, rendant inutile I’'usage du

seuil critique dynamique.

Taille de grain 256 | 512 | 1024 | 2048 | 4096
Densité 0,01 | 0,07 | 0,41 | 0,34 | 0,40
Cellules “bordures” 50% du temps 0 0 0 95% | 100%

TABLE 5.6 — Densité de grains et taux de cellules ayant 1’état “bordure” au moins 50% du temps dans un tamis
de taille 32 utilisant I’adaptation par protocole de bavardage pour différentes tailles de grain. Une densité de 1
signifie que toutes les cellules sont a 1 grain de s’ébouler, tandis que 0 signifie que le systeme est vide.

Dans les scénarios de sous-charge (taille de grain inférieure a 1024), la tension est quasi nulle, les cellules
ayant le temps de traiter chaque grain avant d’en recevoir un autre. Le pic de densité est atteint a 1024, ce qui
correspond exactement 2 la capacité de traitement du syst®me en un cycle. A cette valeur, le systéme opere a
la limite entre sous-charge et surcharge, générant treés peu d’avalanches. Dans cette configuration, 1’adaptation
des capacités ne s’active que marginalement, comme en témoigne un taux nul de cellules en état “bordure” au

moins 50% du temps. Cela suffit néanmoins a préserver le systeme d’une surcharge.

A partir d’une taille de grain de 2048, I’adaptation s’active de maniere globale, presque toutes les cellules
adoptant une capacité accrue au moins la moitié du temps. Ce déclenchement global, bien que modeste (aug-
mentation de capacité d’une unité seulement), réduit la tension en permettant a certaines cellules de surpasser
temporairement les besoins, tandis que d’autres demeurent a un niveau minimal d’activité. Pour 4096, une taille
de grain plus élevée, davantage de mouvement est requis pour atteindre les capacités de tamisage nécessaires,

ce qui entraine une reprise de I’augmentation de la densité.

Malgré une tension généralement faible, les petites avalanches locales permettent une redistribution des
grains, assurant une utilisation quasi complete du systeme des que la taille des grains est au moins égale a celle
du systeme. Comme le montre la Figure 5.19, le taux d’utilisation des cellules reste élevé pour ces cas, tandis

qu’en sous-charge, il est proportionnel a la charge injectée, soit 200, = 25% et 212 = 50%.

L’adaptation par protocole de bavardage montre également une bonne capacité a suivre des charges dyna-
miques. La Figure 5.20a illustre I’évolution de la capacité de tamisage moyenne face a une charge sinusoidale,
démontrant une adaptation continue et fluide a la variation de la taille des grains. On observe cependant une
phase transitoire amortie d’environ 10 000 cycles, caractéristique de cette méthode, correspondant a une oscil-
lation autour de la valeur cible avant stabilisation. Ce phénomene est systématiquement observé, indiquant que

le temps d’initialisation de cette approche est plus long que celui des méthodes basées sur 1’entropie locale.

Enfin, la Figure 5.20b met en évidence la résilience du protocole de bavardage face aux charges aléatoires
et aux pics inattendus. Bien que la capacité de tamisage moyenne oscille en réponse aux variations, cette oscil-
lation reste modérée et centrée autour de la capacité optimale (environ 3,55), garantissant ainsi une réactivité

efficace sans exces.
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FIGURE 5.19 — Taux d’utilisation des cellules d’un tamis de taille 32 utilisant 1’adaptation par protocole de
bavardage pour différentes tailles de grain. Le taux correspond au ratio entre le nombre de cycles ou chaque
cellule traite un grain par rapport a la durée totale de la simulation. Une valeur a 1 signifie que la cellule a été
utilisée durant toute la simulation.
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FIGURE 5.20 — Evolution de la capacité moyenne de tamisage dans un tamis de taille 32 utilisant 1’adaptation
par protocole de bavardage. La taille des grains, relative a la taille du systeme, est sinusoidale et aléatoire.
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5.6 Comparaison des méthodes

Dans cette section, nous allons comparer les deux stratégies d’adaptation des capacités : 1’adaptation pro-
portionnelle par entropie locale couplée au seuil dynamique, et I’adaptation par protocole de bavardage. Le
cadre d’étude sera d’abord posé. Puis nous comparerons les deux méthodes pour les scénarios de charge que
nous avons déja étudié pour les méthodes séparées : différentes charges fixes et charge fluctuante. Nous nous
intéresserons ensuite aux performances des méthodes pour un scénario de charge réelle. Enfin, nous discuterons

des avantages et des inconvénients de chaque méthode.

5.6.1 Cadre d’étude

Le cadre d’étude pour comparer les deux approches d’adaptation des capacités de tamisage du tamis se
divise en deux. La premiere partie, trés similaire & ce que nous avons déja vu précédemment, concerne les
scénarios de charge fixes et fluctuantes pour lesquels le systeme est constamment surchargé. La seconde partie

concerne le cas du scénario de charge réelle.

5.6.1.1 Charge fixe et charge fluctuante

Pour les scénarios de charge fixe et fluctuante, le cadre d’étude demeure identique a celui employé dans
I’étude individuelle des deux méthodes d’adaptation. Cependant, de nouvelles métriques viennent complé-
ter celles utilisées précédemment, et la consommation énergétique ne correspond désormais plus qu’aux ava-
lanches, tout en étant exprimée en ratio par rapport a la consommation totale du systeme. Les nouvelles mé-
triques sont les suivantes :

— Consommation énergétique des avalanches : cumul de tous les mouvements de grains pendant les
avalanches. Cette consommation est exprimée en ratio par rapport a la consommation totale (tamisage
et avalanche).

— Indice de Jain : mesure de 1’égalité de la répartition des grains sur les cellules. Nous utilisons ici la
version simple de I’indice (Equation 2.1), adaptée au contexte dans lequel les capacités de tamisage
sont en constante évolution et ou la file d’attente de grains est courte. Bien que le tamis auto-adaptatif
soit concu pour gérer la surcharge plutdt que pour garantir un équilibrage parfait de la charge, cette
métrique fournit une indication sur 1’état du systeme apres la surcharge. Une valeur de 1 indique une
répartition parfaite.

— Débit : moyenne du nombre de grains tamisés a chaque cycle de simulation. Une valeur a 1 indique
qu’en moyenne, un grain est traité et retiré du systeéme a chaque cycle.

— Durée de vie d’un grain : nombre de cycles qu’un grain passe dans le tamis, entre son introduction
dans le systeme et son tamisage complet. Cette métrique reflete le temps de réponse du systéme, notion
évoquée au Chapitre 2, et peut étre interprétée comme un indicateur de qualité de service.

Enfin, les parametres spécifiques a chaque méthode sont les suivants :

— I’adaptation par entropie locale utilise le couple de parametres {0,25; 14} ;
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— T’adaptation par protocole de bavardage est initialisée avec 1% de cellules sources de 1’état “bordure”.

5.6.1.2 Charge réelle

La charge réelle utilisée dans ce scénario est extraite du projet Grid Workload Archive IOSUP et al. (20082),
qui met a disposition les traces d’exécution de divers systemes de calcul distribués. Les détails relatifs a la
provenance de ces données, ainsi que leur format, sont présentés en Section B.2.2 de I’ Annexe B, dédiée a la
reproductibilité des expériences. Dans le cadre de ce travail, nous exploitons plus précisément les traces des
systemes AuverGrid, NorduGrid et SHARCNET.

Etant donné la longueur totale des traces (allant de plusieurs mois 2 plusieurs années, donc des dizaines de
millions de secondes), nous restreignons notre étude a une fenétre de deux semaines d’activité, soit 1 209 600
secondes (cycles). Contrairement aux précédentes études ol un seul grain était injecté par cycle, plusieurs
taches peuvent ici &tre soumises simultanément, ce qui rapproche ce scénario des modeles de type sac-de-
taches abordés en Section 3.5.1.

Afin de mettre les mécanismes d’adaptation a I’épreuve, la taille du tamis est volontairement réduite a 100
cellules (grille toroidale de 10 x 10), soit un nombre de ressources bien inférieur a celui des centres de calcul
étudiés (475, 2000 et 6828). Cela est justifié par I’observation que ces systémes sont rarement utilisés a pleine
capacité, comme le montrent les analyses statistiques accompagnant les traces.

Les simulations s’exécutent jusqu’a ce que le tamis soit vide, apres I’injection des grains correspondant aux
taches des 1 209 600 secondes a partir des dates de début suivantes :

— AuverGrid : ler avril 2006

— NorduGrid : ler janvier 2006 ;

— SHARCNET : ler septembre 2006.

Ces dates correspondent a des périodes durant lesquelles de nombreuses taches ont été soumises aux systemes.

L’ objectif de ce scénario est d’évaluer la capacité du tamis auto-adaptatif a gérer une charge réelle, selon
les deux méthodes d’adaptation des capacités de tamisage. Pour ce faire, le fonctionnement idéal des centres
est simulé a partir des traces, en considérant que chaque tiche est affectée a un processeur unique de capacité 1,
lequel disparait une fois la tiche terminée. Ce fonctionnement de référence permet d’évaluer les performances
du tamis adaptatif selon les métriques suivantes :

— Temps total d’exécution (rmakespan) : durée nécessaire pour tamiser 1’ensemble des grains insérés,

jusqu’a ce que le systeme soit vide.

— Consommation d’énergie : somme des capacités effectives utilisées et des déplacements de grains,

exprimée en pourcentage de la consommation de référence dérivée des traces.

— Capacité de tamisage globale : capacité de tamisage totale (somme des capacités effectives) de toutes

les cellules a chaque cycle, représentant la “puissance instantanée” du systeme.

Les parametres restent identiques aux études précédentes : {0,25; 14} pour 1’adaptation par entropie locale,
et une seule cellule (soit 1%) initialement en état “bordure” pour le protocole de bavardage.

Enfin, la nature des charges (potentiellement plusieurs grains injectés a chaque cycle) rend nécessaire le
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couplage systématique des deux approches avec le seuil critique dynamique. Celui-ci permet d’amortir les pics
de soumission simultanée et d’éviter les avalanches prolongées lorsque le systéme est temporairement saturé.

Dans ce cadre, les avalanches ne sont plus limitées a une durée maximale de 500 itérations.

5.6.2 Scénarios de charge fixe et fluctuante

Les résultats sont synthétisés dans les tableaux complémentaires 5.7 et 5.8. Le premier tableau rassemble
les mesures pour la phase opérationnelle des simulations (100 000 cycles apres initialisation ; 1 grain est injecté
a chaque cycle) : la capacité de tamisage moyenne et maximale, la consommation d’énergie liée aux avalanches
et I’indice de Jain. Le second tableau, pour une simulation compléte (phase d’initialisation de 10 000 cycles;
phase opérationnelle de 100 000 cycles avec injection de grains, et phase de vidange complete du systeme), ne
propose plus la capacité moyenne et I’indice de Jain qui deviennent des métriques non pertinentes a cause des
phases d’initialisation et de vidange. En revanche, le débit est ajouté.

Comme nous 1’avons déja observé dans les études précédentes menées de maniere individuelle, les deux
méthodes d’adaptation des capacités de tamisage sont fonctionnelles et permettent au systeme de répondre
efficacement a la charge. Néanmoins, quelques différences apparaissent lorsqu’elles sont mises en comparaison

directe, comme le montrent les résultats synthétisés dans le Tableau 5.7.

Taille P Capacité Consommation | Indice
. Méthode .
de grain Moyenne | Maximale | des avalanches | de Jain
2048 Entropie locale 2 6 0,21% 0,7
Prot. de bavardage 2 8 0,04% 0,51
3072 Entropie locale 3 8 0,2% 0,72
Prot. de bavardage 3 11 0,03% 0,55
4096 Entropie locale 4 9 0,31% 0,72
Prot. de bavardage 3,99 14 0,03% 0,58
. . Entropie locale 3 7 0,23% 0,71
Sinusoide
Prot. de bavardage 3 11 0,03% 0,54
L. Entropie locale 3,58 8 0,25% 0,71
Aléatoire
Prot. de bavardage 3,59 14 0,03% 0,54

TABLE 5.7 — Comparaison des méthodes d’auto-adaptation selon la tailles des grains injectés dans le tamis.
Les résultats concernent les 100 000 cycles de simulation apres initialisation, pour lesquels un grain est injecté
dans le tamis a chaque cycle. La capacité de tamisage moyenne doit étre au plus proche de W, soit

. . . . . . .. systeme’
2, 3,4, 3 et 3,55 pour les tailles proposées. Une capacité de tamisage maximale faible indique une adaptation
plus homogene et contrdlée. La consommation des avalanches représente la quantité d’énergie dépensée par les
avalanches par rapport a la consommation totale (avalanches et tamisage). Plus I’indice de Jain est proche de

1, plus I’équilibrage des grains sur les cellules est intéressant.

Sur le plan des capacités de tamisage, les deux approches atteignent des valeurs moyennes tres similaires et
nécessaires, quels que soient les scénarios. Cependant, 1’adaptation par protocole de bavardage tend a pousser
localement les capacités plus haut, ce qui entraine un tamisage hétérogene; c’est-a-dire que certaines zones
du systéme sont en sur-tamisage tandis que d’autre sont en sous-tamisage par rapport a I’objectif, bien qu’a

I’échelle du systeme, la capacité de tamisage soit au nécessaire. A 1’inverse, I’adaptation par entropie locale a
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un meilleur contrdle de 1’ajustement des capacités.

Cette dynamique a des conséquences sur les mécanismes d’organisation du systeme. La plus grande réacti-
vité du protocole de bavardage impacte significativement la tension interne, limitant les déplacements de grains
et donc les avalanches. Par conséquent, la consommation énergétique liée aux avalanches est nettement plus
faible avec cette méthode qu’avec celle basée sur I’entropie locale. Cela dit, dans les deux cas, cette compo-
sante énergétique demeure treés marginale comparée a celle induite par le tamisage lui-méme. La consommation
énergétique totale, majoritairement définie par le tamisage, reste ainsi trés proche du nécessaire pour les deux
stratégies, avec des différences négligeables.

En ce qui concerne I’équilibrage de la charge, mesuré a 1’aide de I’indice de Jain, 1’adaptation par entro-
pie locale s’avere plus efficace. La tension interne maintenue dans le systeéme favorise une répartition plus
homogene des grains a travers les cellules. A I’inverse, la méthode par protocole de bavardage, en réduisant
fortement les avalanches, aboutit a une répartition de la charge plus locale et fragmentée, particulierement entre
zones éloignées. Cela ne pose pas de probleme dans un contexte de surcharge constante, ou la majorité des res-
sources sont sollicitées. En revanche, dans un scénario a fortes fluctuations, avec alternance de pics et de phases
de sous-charge, cette fragmentation peut entrainer une sous-utilisation partielle du systeme.

Cette hétérogénéité, tant au niveau des capacités de tamisage que du niveau de charge, permet au protocole
de bavardage de bénéficier d’un temps d’exécution total réduit. Il en résulte un débit légerement supérieur a
celui obtenu avec I’approche par entropie locale, comme le montre le Tableau 5.8. Les débits mesurés restent
inférieurs a 1, dans la mesure ou I’entiereté de la simulation (incluant les phases d’initialisation et de vidange)

est prise en compte.

Talll(? Méthode Cap.ac1te Consommation Débit
de grain maximale | des avalanches
2048 Entropie locale 6 0,2% 0,88
Prot. de bavardage 7 0,04% 0,93
3072 Entropie locale 6 0,2% 0,83
Prot. de bavardage 10 0,03% 0,9
4096 Entropie locale 7 0,3% 0,79
Prot. de bavardage 13 0,03% 0,88
. . Entropie locale 6 0,23% 0,71
Sinusoide
Prot. de bavardage 10 0,03% 0,79
Aléatoire Entropie locale 7 0,24% 0,75
Prot. de bavardage 12 0,03% 0,82

TABLE 5.8 — Comparaison des méthodes d’auto-adaptation selon la tailles des grains injectés dans le tamis.
Les résultats concernent les simulations completes : phase d’initialisation (10 000 cycles), phase opérationnelle
avec injection de grains (100 000 cycles), et phase de vidange complete du systeme. Une capacité de tami-
sage maximale faible indique une adaptation plus homogene et contrdlée. La consommation des avalanches
représente la quantité d’énergie dépensée par les avalanches par rapport a la consommation totale (avalanches
et tamisage). Le débit correspond au nombre moyen de grain tamisé (sortant du systeme) a chaque cycle. Un
débit élevé indique un tamisage plus rapide.

Par ailleurs, la mesure des capacités de tamisage maximales sur I’entiereté de la simulation présente une
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baisse des valeurs. Cela est dii a I’inactivité majoritaire des cellules pendant I’initialisation et a leur inacti-
vité progressive durant la vidange. La consommation associées aux avalanches reste toutefois pratiquement
inchangée et demeure trés marginale, malgré la présence de la phase d’initialisation qui tend a faire surréagir
le systeme avant que 1’adaptation ne le stabilise, en particulier pour le protocole de bavardage.

Enfin, du point de vue de la qualité de service, mesurée par la durée de vie des grains (cf. Figure 5.21), des
différences significatives apparaissent. Dans les deux approches, aucun ordonnancement n’est appliqué locale-
ment pour les opérations de tamisage, et le déplacement des grains repose sur une dynamique de type marche
aléatoire. Dans ce cadre, la tension plus forte induite par I’entropie locale, qui favorise un bon équilibrage,
a ici un effet négatif : les grains peuvent €tre repoussés et circuler longtemps dans le tamis avant d’atteindre
une cellule préte 2 les traiter, ce qui augmente leur durée de vie. A I'inverse, dans le protocole de bavardage,
les grains se déplacent peu et attendent généralement peu (équivalent du tamisage d’un a trois grains) avant
d’étre tamisés. La qualité de service est ainsi nettement supérieure avec cette méthode, les grains étant traités

de maniere plus fluide et rapide.
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FIGURE 5.21 — Durée de vie des grains dans un tamis de taille 32 selon chaque méthode d’adaptation des
capacités de tamisage pour la charge sinusoidale. Chacune présente des valeurs aberrantes non présentes sur le
graphique pour la lisibilité : jusqu’a 35000 pour la premiere, et jusqu’a 15000 pour la seconde.

D’apres cette étude, le choix de la meilleure modélisation de I’adaptation des capacités de tamisage dépend
des objectifs. Sil’on souhaite de la parcimonie dans I’utilisation des ressources, 1’adaptation par entropie locale
offre de meilleurs résultats. En revanche, si I’on s’intéresse plutdt a la qualité de service, 1’adaptation par

protocole de bavardage propose de bien meilleures performances.

5.6.3 Scénario de charge réelle

Comme le montre le Tableau 5.9, les deux méthodes d’adaptation des capacités de tamisage sont capables de
faire face efficacement a des charges issues de systemes réels, avec une consommation énergétique globalement
équivalente a celle dérivée des systemes de calcul dont proviennent les traces.

Sur la trace AuverGrid, I’approche par protocole de bavardage parvient a reproduire un temps total d’exé-

cution tres proche de la référence, voire légerement inférieur. L’ adaptation par entropie locale, en revanche,
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Trace Systeme Temps d’exécution Consommation
des avalanches
Référence 1418433 0%
AuverGrid Entropie locale 1565105 0,013%
Prot. de bavardage 1407 797 0,003 %
Référence 6371 445 0%
NorduGrid Entropie locale 2099 109 0,294%
Prot. de bavardage 1407 116 0,013%
Référence 4711420 0%
SHARCNET Entropie locale 4 899 089 0,171%
Prot. de bavardage 1920970 0,021 %

TABLE 5.9 — Résultats des méthodes d’auto-adaptation pour les traces AuverGrid, NorduGrid et SHARCNET.

nécessite environ 10% de cycles supplémentaires pour parvenir au traitement complet de la charge. Cela dit,
cette différence n’impacte pas significativement la consommation d’énergie, les deux approches maintenant une
dépense énergétique quasiment identique a celle des systemes de référence. La Figure 5.22 illustre la réaction
des modeles pour cette trace. On observe que pour le tamis auto-adaptatif, peu importe la méthode d’adaptation,

il ajuste organiquement sa capacité de tamisage globale pour suivre les pics de charge.
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FIGURE 5.22 — Evolution de la capacité de tamisage globale des systémes pour la trace d’ AuverGrid.

Les traces NorduGrid et SHARCNET présentent une dynamique de soumission de taches différente. La
quantité de charge injectée est généralement trés faible, interrompue par des pics soudains et brefs, contrai-
rement a la trace AuverGrid qui présente une charge plus continue ponctuée de hausses modérées. De plus,
des durées de taches beaucoup plus longues sont présentes. Cette dynamique a pour effet d’activer violemment
les mécanismes d’adaptation, exploitant la tension élevée induite par ces pics pour augmenter rapidement les
capacités de tamisage. Le tamis parvient alors a traiter les grains beaucoup plus rapidement que les systemes
d’origine, tout en revenant rapidement a un état de veille, ce qui explique que la consommation énergétique
totale demeure tres proche de celle de référence.

Les Figures 5.23 et 5.24 illustrent 1’évolution de la capacité de tamisage du systéme pour les traces Nordu-
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Grid et SHARCNET. Les cycles au-dela de 2 millions ont été tronqués, car ils n’apportent pas d’information
significative : la capacité y décroit progressivement. Par ailleurs, 1’axe des ordonnées est représenté en échelle

logarithmique afin de faciliter la lecture, rendue difficile par les réactions violentes observées ponctuellement.
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FIGURE 5.23 — Evolution de la capacité de tamisage globale des systemes pour la trace de NorduGrid. La
capacité de tamisage est affichée en échelle logarithmique.
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FIGURE 5.24 — Evolution de la capacité de tamisage globale des systeémes pour la trace d¢ SHARCNET. La
capacité de tamisage est affichée en échelle logarithmique.

Lorsque la capacité se stabilise autour de 100 (c’est-a-dire en 1’absence ou en présence d’une adaptation
minimale), le tamis auto-adaptatif réagit de maniere satisfaisante. En revanche, les pics de charge soudains
(visibles dans les données de référence par des sauts brusques) forcent le systeme a ajuster ses capacités, ce
qui provoque des réactions particulierement marquées. C’est notamment le cas pour I’adaptation par proto-
cole de bavardage, qui atteint une capacité globale de 60 000 (soit 600 par cellule) sur la trace SHARCNET.
Ces réactions brutales entrainent une vidange rapide du tamis, suivie d’une chute abrupte des capacités avant
I’apparition d’un nouveau pic. La méthode basée sur 1’entropie locale, bien qu’elle génere également des pics

d’adaptation importants, produit des ajustements plus modérés. Cette modération se traduit notamment par un
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temps de traitement 1égerement plus élevé que la référence sur la trace SHARCNET.

L’adaptation plus limitée produite par I’entropie locale s’explique par les caractéristiques intrinseéques de
la méthode : la mesure de I’entropie étant effectuée sur une fenétre temporelle courte, la réaction adaptative
s’affaiblit rapidement une fois le pic de charge passé. Une fois stabilisé par le seuil critique dynamique, le
systeme présente une capacité de tamisage réduite, insuffisante pour achever rapidement le traitement des
grains restants. A I'inverse, le protocole de bavardage conserve les capacités élevées atteintes pendant le pic,
permettant de maintenir un régime de traitement plus intense jusqu’a compléete vidange du tamis. En outre, dans
un tel contexte, les performances de la méthode par entropie locale dépendent totalement de ses parametres
puisqu’il définissent la capacité d’adaptation minimale ([ E,. x fenétre]).

Les surréactions bréves mais intenses soulignent un aspect fondamental du décalage entre la conception
du tamis auto-adaptatif et les pratiques des systemes réels. Alors que le tamis est pensé pour s’adapter a une
surcharge constante, les systeémes de calcul sont, eux, dimensionnés pour fonctionner en sous-charge, afin de
pouvoir absorber des pics de demande. Lorsque le nombre de cellules du tamis est équivalent au nombre de
processeurs des systemes de référence, aucune avalanche ni adaptation n’est observée, les ressources étant
suffisantes pour absorber la charge.

Les systemes réels ayant une puissance limitée par le matériel, nous avons introduit une limitation arbitraire
de la capacité de tamisage par cellule, fixée a 20, soit 2000 pour le systeme complet afin d’aller un peu plus
loin. Le Tableau 5.10 présente les résultats obtenus pour NorduGrid et SHARCNET, la trace AuverGrid n’étant

pas affectée par cette contrainte.

Trace Systeme Temps d’exécution Consommation
des avalanches
Référence 6371 445 0%
NorduGrid Entropie locale 2275 380 0,313%
Prot. de bavardage 1261919 0,031%
Référence 4711420 0%
SHARCNET Entropie locale 5108 906 0,191%
Prot. de bavardage 2075012 0,133%

TABLE 5.10 — Résultats des méthodes d’auto-adaptation pour les traces NorduGrid et SHARCNET avec une
limitation de capacité de tamisage a 20.

Avec cette limitation de capacité, 1’adaptation par entropie locale montre des temps d’exécution légere-
ment accrus, en raison du phénomene déja évoqué : une capacité d’adaptation insuffisante apres les pics de
surcharge. Pour le protocole de bavardage, les résultats sont plus nuancés : la trace SHARCNET montre une
légere dégradation, mais sur la trace NorduGrid, le temps d’exécution est inférieur a celui observé sans limita-
tion. Ce phénomene s’explique par une tension plus élevée et plus homogene dans le systeme, qui favorise une
meilleure répartition des grains et une utilisation plus réguliere des cellules.

Dans I’ensemble, quelle que soit la méthode, la consommation énergétique associée aux avalanches pour
I’équilibrage de la charge reste marginale, y compris en présence de cette contrainte matérielle.

En outre, ces résultats font écho a I’étude de la section précédente : 1’adaptation par entropie locale est axée



124 CHAPITRE 5. LE TAMIS AUTO-ADAPTATIF

sur la parcimonie de 'utilisation des ressources, tandis que 1’adaptation par protocole de bavardage offre une

bien meilleure qualité de service.

5.7 Conclusion

Dans ce chapitre, nous avons introduit et étudié¢ une évolution du modele du tamis, lui-méme dérivé du
modele du tas de sable de Bak, Tang et Wiesenfeld : le tamis auto-adaptatif. Cette évolution vise a doter le
tamis de capacités d’adaptation, lui permettant de fonctionner efficacement dans un environnement limité, a
I’image des systemes de traitement réels. Deux mécanismes principaux ont été intégrés au modele : les seuils
critiques dynamiques et les capacités de tamisage adaptatives.

Le premier mécanisme, fondé sur 1’ajustement dynamique des seuils critiques d’éboulement, permet au
systéme de stocker temporairement davantage de grains afin de stopper des avalanches qui, autrement, seraient
interminables. Cette régulation a également pour effet de réduire drastiquement I’ampleur des avalanches, c’est-
a-dire le nombre de cellules impliquées. Ces résultats contribuent non seulement a la faisabilité du modele
dans un environnement limité, mais aussi a la réduction de la consommation énergétique liée aux processus
d’avalanches pour redistribuer les grains de sable.

Le second mécanisme concerne 1’adaptation dynamique de la capacité de tamisage des cellules, de maniere
a permettre au systéme de s’ajuster face 2 n’importe quel niveau de charge. A cette fin, deux approches ont été
proposées : I’adaptation par entropie locale, et 1’adaptation par protocole de bavardage.

L’adaptation par entropie locale, fondée sur une mesure locale du mouvement des grains, offre des perfor-
mances proches de I’optimal dans les scénarios de surcharge constante. En revanche, elle ne surpasse pas les
références dans les scénarios a charge réaliste, du fait de 1a mesure du mouvement sur une fenétre glissante. Elle
présente toutefois une gestion fine et contrdlée des capacités, avantageuse pour des environnements maitrisés.

L’adaptation par protocole de bavardage affiche également des performances quasi-optimales en surcharge
constante, tout en obtenant des temps d’exécution significativement réduits face aux charges réalistes. Cepen-
dant, sa grande réactivité réduit la tension locale dans le systéme, ce qui peut conduire a une moins bonne
répartition de la charge.

Dans les deux cas, les méthodes proposées permettent au systeme de s’ajuster de maniere décentralisée,
et de réaliser efficacement le tamisage selon la charge soumise. L’adaptation par entropie locale offre une
meilleure parcimonie de I’ utilisation des ressources, tandis que 1’adaptation par protocole de bavardage propose
une meilleure qualité de service.

Néanmoins, I’approche par entropie locale présente une limite notable : elle nécessite une calibration préa-
lable des parametres, soit a partir d’une analyse post-mortem, soit en disposant d’une connaissance anticipée de
la charge. Elle offre ainsi une adaptation précise mais présentant une certaine rigidité, bien qu’elle soit capable
de gérer des charges aléatoires comme nous 1’avons vu. A ’inverse, dans un contexte de charge incertaine et
s’il n’est pas possible de conduire une étude post-mortem, 1’adaptation par protocole de bavardage constitue

une solution plus souple et robuste, capable de maintenir les performances sans connaissance a priori.
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Conclusion

Les systemes numériques sont généralement surdimensionnés afin de pouvoir encaisser les pics de charge,
ce qui entraine bien souvent une consommation énergétique excédentaire. Les performances globales d’un tel
systeme dépendent notamment de la qualité de I’équilibrage de la charge, en particulier dans des contextes de
ressources limitées. C’est dans cette perspective que nous avons cherché, au cours de ces travaux, a concevoir
des mécanismes capables d’optimiser la consommation énergétique tout en préservant la qualité de service,
méme en conditions de surcharge.

Nous avons d’abord étudié les grands paradigmes de 1’équilibrage de charge, en abordant les environne-
ments d’exécution, les architectures concernées ainsi que les modes de prise de décision afin de pouvoir situer
notre travail. Nous avons également passé en revue quelques métriques d’évaluation des algorithmes et analysé
en détail certains mécanismes spécifiques. Les approches auto-organisatrices se sont révélées particulierement
intéressantes en raison de leur robustesse naturelle, de leur parcimonie, et de leur capacité d’adaptation locale
via des interactions entre ressources, les rendant bien adaptées a des environnements décentralisés, dynamiques
et de grande échelle.

Inspirés par les mécanismes d’auto-organisation présents dans la nature, nous nous sommes ensuite penchés
sur le concept de criticalité auto-organisée, un état dynamique au bord de 1’équilibre entre ordre et chaos. Ce
principe a été étudié a travers le modele du tas de sable, et I’'une de ses variantes, le tamis, démontrant des
capacités prometteuses en termes d’équilibrage distribué.

Notre premiere contribution porte sur I’étude de la robustesse de la criticalité auto-organisée dans le mo-
dele du tas de sable canonique. Pour cela, nous avons proposé un cadre expérimental original, intégrant : (i) un
nouvel algorithme de recablage, permettant de conserver le fonctionnement du modele canonique ; (ii) un algo-
rithme de dégradation progressive de la structure sous-jacente, simulant des défaillances matérielles. Ces outils
nous ont permis d’analyser le comportement du systeme sur différentes topologies, allant de grilles régulieres
a des graphes aléatoires ou de type petit-monde, ainsi que leurs variantes dégradées. Les résultats montrent
que les structures faiblement régulieres, notamment les petits-mondes, permettent une circulation plus efficace
de I’énergie et retardent significativement 1’effondrement du systéme, suggérant pourquoi de telles structures

émergent plus naturellement dans les systémes biologiques ou sociaux.
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Plus largement, la robustesse structurelle ouvre la voie a des applications plus concretes dans plusieurs
domaines ou les environnements sont partiellement défaillants, dynamiques ou difficiles a contréler. On peut
citer notamment :

— les réseaux de capteurs sans fil, sujets a des pertes fréquentes de nceuds ou de liens;

— les systémes pair-a-pair ou blockchains, ot la topologie est évolutive et décentralisées ;

— les infrastructures informatiques tactiques ou embarquées, utilisées en environnement dégradé (militaire

ou spatial par exemple);

— les réseaux neuronaux biologiques ou bio-inspirés, ol la plasticité structurelle est naturelle ;

— les systemes d’équilibrage de charge distribués, dans le cloud ou a la périphérie (edge computing), ou

des machines peuvent apparaitre et disparaitre sans coordination centrale.

En résumé, cette étude démontre que la dynamique du tas de sable peut servir de fondement a des méca-
nismes de régulation distribuée efficaces, méme lorsque la structure sous-jacente est instable ou fragmentée, ce
qui constitue un atout fort pour le design de systemes autonomes robustes.

La seconde contribution concerne 1’extension du modele du tamis a des environnements finis, ou le nombre
de ressources est limité. Ce contexte souleve un enjeu critique : la gestion de la surcharge. Dans le modele
classique, une charge excessive entraine une saturation du tamis, provoquant une explosion de la consommation
énergétique liée au mécanisme d’équilibrage (avalanches) sans réel bénéfice.

Pour répondre a cette limitation, nous avons introduit le tamis auto-adaptatif, intégrant deux mécanismes
décentralisés : une adaptation du seuil critique d’éboulement des cellules, et une adaptation des capacités de
tamisage (puissance locale des ressources). Ces adaptations sont déclenchées localement, a partir des mouve-
ments de grains observés, permettant une réaction intrinseque du systéme aux variations de charge. Le seuil
critique dynamique permet d’amortir les avalanches en autorisant temporairement I’accumulation de grains sur
les cellules, réduisant ainsi la consommation associée. Pour 1’adaptation des capacités, deux stratégies ont été
développées : 1'une basée sur I’entropie locale (mesure du désordre), I’autre sur un protocole de bavardage.

Les deux méthodes se sont révélées efficaces pour faire face a tous les types de charges (constantes, fluc-
tuantes ou réelles) en maintenant une consommation proche de 1’optimum, c’est-a-dire juste suffisante pour
absorber la charge. Le protocole de bavardage, sans parametre, présente 1’avantage de la simplicité et de la
robustesse. L’approche par entropie locale, quant a elle, permet une adaptation plus fine et contrdlée, au prix
d’un réglage de parametres.

En résumé, ces travaux ouvrent la voie a une gestion énergétique intelligente et décentralisée, fondée sur
des principes naturels d’auto-organisation. IIs démontrent que des modeles simples, bien congus, peuvent offrir
une robustesse structurelle, une adaptabilité dynamique, et une efficacité énergétique dans des environnements

complexes, sans recours a une supervision centralisée.

Perspectives

Plusieurs pistes peuvent étre envisagées pour prolonger et approfondir ces travaux. Nous présentons ici

quelques perspectives de recherche.
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Seuil critique dynamique Le mécanisme d’adaptation des seuils critiques actuel ne permet une diminution
de ces seuils que lorsqu’une avalanche de faible intensité survient. Cela peut conduire a une situation o, si la
charge dans le systeme diminue, les seuils restent durablement élevés en 1’absence d’avalanches, celles-ci étant
justement inhibées par les seuils élevés. Ce blocage dynamique limite la capacité du systéme a retrouver un bon
niveau d’auto-organisation. Il serait ainsi pertinent d’introduire un mécanisme de décrément temporel, faisant
décroitre progressivement les seuils s’ils n’ont pas été modifiés depuis un certain temps, rétablissant ainsi la

plasticité nécessaire a une adaptation continue.

Capacités de tamisage adaptatives Les mécanismes d’adaptation des capacités de tamisage ont principa-
lement été évalués dans des scénarios de surcharge constante. Il serait intéressant d’étendre ces expérimen-
tations a des charges plus réelles, notamment des charges intermittentes, corrélées ou bruitées, afin d’évaluer
la robustesse des modeles dans des contextes plus proches du fonctionnement de systeémes numériques réels.
Nous avons également introduit de fagon préliminaire une limitation arbitraire des capacités pour simuler les
contraintes matérielles d’un systeme physique. Cette contrainte mériterait d’étre approfondie, tant du point de

vue de sa modélisation que de son impact sur la dynamique globale du tamis auto-adaptatif.

Consommation énergétique Sur le plan des mesures de performance, notre modélisation de la consomma-
tion énergétique reste tres simplifiée. Ce choix assumé a permis de se concentrer sur la dynamique du systéme,
mais il s’éloigne du comportement réel des ressources de calcul, dont la consommation n’évolue pas linéaire-
ment avec la puissance mobilisée. Une modélisation plus fine de la consommation énergétique, par exemple
inspirée de profils de consommation de CPU, permettrait de mieux distinguer les performances des différents
mécanismes d’adaptation. Dans ce cadre, il est probable que la stratégie du protocole de bavardage, qui induit
des pics plus marqués de capacité, s’avere moins efficaces que I’approche basée sur 1’entropie locale, en termes

de rendement énergétique global.

Avalanches avec tabou Un mécanisme de déplacement avec tabou a été brievement exploré au cours de nos
travaux, bien qu’il n’ait pas été présenté dans ce document. Ce mécanisme intervient lors de la propagation
des avalanches, en orientant la réaffectation des grains vers les cellules voisines les plus stables, c’est-a-dire
celles qui ont tendance a donner peu de grains. L’ objectif est d’éviter de réinjecter de la charge dans une
cellule instable, susceptible de s’ébouler & nouveau, et de privilégier les cellules relativement sous-chargées
pour améliorer la stabilité locale. Un facteur aléatoire est intégré dans la sélection des cellules receveuses afin
de maintenir une diversité dans les chemins empruntés par les grains, évitant ainsi la formation de canaux
rigides dans le systeme.

Les premiers résultats expérimentaux obtenus suggerent que ce mécanisme présente plusieurs avantages
notables :

— il réduit le nombre total de déplacements de grains sans perturber 1’état de criticalité auto-organisée ;

— il produit un équilibrage quasi parfait de la charge entre les cellules;

— il améliore nettement la robustesse du tamis sans mécanismes d’adaptation, lui permettant de supporter
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une charge allant jusqu’a sa taille moins un, sans déclencher d’avalanche infinie, contre environ 97%
de sa taille sans déplacement avec tabou.
Ce mécanisme s’annonce donc particulierement prometteur et mériterait une étude approfondie, tant sur le plan
de son intégration aux autres mécanismes adaptatifs que sur celui de son impact global sur la performance du

systeme.

Qualité de service Le modele du tamis, y compris dans sa version adaptative, ne prend pas en compte 1’an-
cienneté des grains dans les files des cellules. Cela peut entrainer un délai du traitement de grains anciens, en
particulier lors des avalanches, et dégrader la qualité de service. Un mécanisme d’ordonnancement pourrait étre
introduit pour favoriser le traitement des grains les plus anciens.

Dans cette méme optique, il serait pertinent de limiter le nombre de déplacements d’un grain afin d’éviter
qu’il soit constamment repositionné en fin de file. Cela pourrait se faire via une organisation en deux files,
comme 1’algorithme de vol de travail étudié au Chapitre 2 : une file contenant les grains devenus immobiles, et
une autre pour ceux encore déplacables. La cellule prioriserait alors la premiere pour sélectionner les grains a
tamiser. Des regles spécifiques pourraient toutefois permettre le redéploiement exceptionnel de grains normale-
ment fixes, notamment en cas de surcharge locale. Un tel mécanisme influencerait nécessairement la dynamique

des avalanches, et donc I’état d’auto-organisation du systeéme, ce qui en fait un sujet d’étude a part entiere.

Structure sous-jacente Les expérimentations menées ont été limitées a des structures de grille réguliere
de taille modérée, en raison du colit des simulations. Il serait pertinent d’étudier le comportement du tamis
auto-adaptatif dans des structures non réguliéres (petit monde, aléatoires, sans échelle, etc.) ou de plus grande
dimension. Il serait notamment possible de coupler les résultats du Chapitre 4, consacré a la robustesse du tas
de sable, avec les mécanismes du tamis auto-adaptatif pour évaluer leur efficacité dans des environnements plus

hétérogenes ou dégradés.

Concrétisation du modele Enfin, bien que le tamis auto-adaptatif soit un modele abstrait, ses mécanismes
pourraient étre formalisés dans un cadre applicatif concret. Un exemple pertinent serait celui des services cloud,
ol la variation de la demande est absorbée par la création ou la suppression de répliques de services. Dans ce
contexte, chaque réplique peut étre assimilée a une unité de capacité de tamisage, contrainte par les ressources
physiques du serveur. Une telle formalisation rapprocherait le modele des systemes réels de gestion d’élasticité,
et permettrait d’exploiter les bénéfices des principes d’auto-organisation et de criticalité dans la conception de

systeémes numériques autonomes et résilients.

Asynchronicité des avalanches L’ensemble des études menées dans ce travail repose sur un cadre de simula-
tion synchrone. Cela signifie que lorsqu’une avalanche se déclenche, la simulation est suspendue et I’avalanche
est intégralement traitée jusqu’a ce que le systeme retrouve un état stable, avant de reprendre son évolution
normale. Or, les systémes réels ne fonctionnent pas de maniere aussi séquentielle : le traitement des taches

et I’équilibrage de charge s’y déroulent de maniere parallele et continue. Adopter un paradigme d’avalanches
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asynchrones reviendrait a faire évoluer profondément le cadre d’étude, car les avalanches pourraient alors se
superposer et interagir, rendant leur mesure (durée, amplitude) et leur analyse bien plus complexes. De plus, le
traitement simultané des taches interférerait directement avec la dynamique des avalanches, modifiant ainsi les
mécanismes d’équilibrage de charge.

Le paradigme asynchrone a été envisagé des les débuts de ce travail. Cependant, en raison de son éloigne-
ment conceptuel par rapport au modele canonique du tas de sable, nous avons choisi de le mettre temporaire-

ment de coté. Il constitue néanmoins une piste de recherche essentielle, nécessitant une attention approfondie.
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Annexe A

Résumé des expériences

Cette annexe propose une synthese des expériences menées dans le cadre des travaux présentés dans le

document. Les Tableaux A.l et A.2 rassemblent respectivement la synthese des expériences du Chapitre 4 sur

la robustesse du tas de sable et du Chapitre 5 sur le tamis auto-adaptatif. Les expériences sont présentées dans

I’ordre d’apparition dans les chapitres.

Expérience Objectif Méthodologie Résultats Référence
Recablage du FEtudier I'impact de Recablage aléatoire L’aléatoire améliore Section 4.1.]
tas de sable I’aléatoire dans la progressif de la struc- le fonctionnement du

structure sur la dyna- ture sous-jacente modele

mique du modele
Reciblage et FEtudier I'impact de la  Reciblage et dégrada- Le reciblage permet Section 4.4

dégradation
du tas de
sable

dégradation et du re-
cablage de la structure
sur la robustesse du
modele

tion progressive de la
structure sous-jacente

de repousser d’envi-
rons 20% de “pan-
nes” le seuil d’effon-
drement

TABLE A.1 — Synthese des expériences sur la robustesse du tas de sable (Chapitre 4).
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mique

avalanches du tas de
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Expérience Objectif Méthodologie Résultats Référence
Cas d’étude Etudier I’'impact  Simulation d’ava- Réduction de I’ampli- Section 5.2.2
du seuil du seuil critique lanches avec diffé- tude et de la durée
critique dyna- dynamique sur les rentes configurations des avalanches; ava-

Paramétrisation Déterminer le Simulations de 144 - Adaptation naive : Section 5.4.4
de lentropie meilleur couple couples pour des {0,25;11}
locale de parametres pour tailles de grain fixes - Adaptation prop. :
les deux méthodes et fluctuantes {0,25; 14}
Comparaison  Etudier les perfor- Simulations de tailles Meilleurs  contrle  Section 5.4.5
des méthodes mances des deux de grain fixes et fluc- et performances par
par entropie méthodes proposées tuantes; comparaison [’approche  propor-
locale numérique tionnelle

Etude du pro-
tocole de ba-

Etudier les perfor-
mances du protocole

Simulations de tailles
de grain fixes et fluc-

Adaptation fonction-
nelle et réactive; peu

Section 5.5.3

vardage de bavardage pour tuantes; analyse nu- de mouvements

I’adaptation mérique
Comparaison = Comparer les ap- Analyse numérique L’entropie locale est Section 5.6
des stratégies proches d’adaptation du comportement plus parcimonieuse

d’adaptation

pour déterminer la
meilleure

pour des scénarios de
charge fixe, fluctuante
et réaliste

dans 1’utilisation des
ressources; Le pro-
tocole de bavardage
offre une meilleure
qualité de service

TABLE A.2 — Synthese des expériences sur le tamis auto-adaptatif (Chapitre 5).



Annexe B

Reproductibilité des expériences

Dans cette annexe, nous proposons la marche a suivre pour pouvoir reproduire nos expériences a 1’aide
du code produit pour nos travaux. Nous verrons dans un premier temps ou récupérer le code et les données
utilisées. Ensuite, nous présenterons en détails les données issues de systemes réels utilisés pour les expériences
de la Section 5.6. Puis, Enfin, nous verrons comment utiliser le code mis a disposition pour reproduire les

expériences.

B.1 Accessibilité du code et des données

Le code est entierement disponible en open source sous licence MIT. 1l est trouvable sur le dépot Git
suivant : https://git.litislab.fr/pheleine/self-adaptive-sand-sieve. Le dépot comprend tout le code Java du projet,
ainsi que les archives contenant les traces d’exécution des systemes réels. Le code est entierement documenté
afin de faciliter son utilisation. En outre, des scripts Bash sont également inclus, permettant de lancer des

expériences en série (batchs) plutdt qu'une a la fois via les classes Java exécutables.

B.2 Les traces d’exécution de systemes réels

Dans cette section, nous nous intéressons aux données de systemes réels que nous avons utilisé pour les ex-
périences du Chapitre 5 sur le tamis auto-adaptatif, afin de comparer les deux approches d’adaptation proposées

dans nos travaux (Section 5.6).

B.2.1 Informations générales

La charge réelle utilisée dans les expériences est extraite du projet Grid Workload Archive (I0SUP et al.,
2008a), dont les contributeurs ont mis a disposition des traces de charge de travail réelles anonymisées issues
de plusieurs centres de calcul, dans un objectif de recherche et de validation expérimentale. Les données sont
accessibles librement a cette adresse : https://atlarge-research.com/gwa.html (derniére consultation en juillet

2025).
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Plus précisément, nous utilisons dans nos expériences les traces provenant des systémes suivants :

— AuverGrid : infrastructure située en Auvergne, composée de 5 clusters totalisant 475 processeurs;

— NorduGrid : systeme distribué dédié a la recherche académique dans les pays nordiques, comprenant

75 clusters et environ 2000 processeurs ;

— SHARCNET : réseau de calcul de haute performance localisé en Ontario (Canada), constitué de 10

clusters pour un total de 6828 processeurs.

Les traces fournies couvrent différentes périodes : 1’année 2006 pour AuverGrid, de 2003 a 2006 pour
NorduGrid, et de 2005 a 2007 pour SHARCNET. Parmi les nombreuses informations disponibles, deux champs
nous intéressent particulicrement : la date de soumission et le temps d’exécution de chaque tiche. Les taches
dont le temps d’exécution est nul (annulées avant traitement) sont écartées de nos expériences.

Toutes les valeurs temporelles sont exprimées en secondes, ce qui permet un alignement direct avec les
cycles de simulation de nos expériences : une seconde de la trace équivaut a un cycle de simulation du tamis
auto-adaptatif. Chaque tiche est ainsi assimilée a un grain, dont la date de soumission correspond au cycle
d’injection dans le tamis, et dont le temps d’exécution représente la taille. La date de soumission étant exprimée
en nombre de secondes écoulées depuis le ler janvier 1970, il est possible de filtrer les tiches par période et de

fixer arbitrairement le cycle 0.

B.2.2 Accessibilité des données et leur utilisation

Dans un souci de conservation et de disponibilité des données, les fichiers utilisés au cours de ce travail
sont fournis dans le dépot, en complément du code source. Ils sont regroupés dans une archive compressée
nommée datasets. zip, située & la racine du dépdt. Par ailleurs, des fichiers d’analyse des traces (également
disponibles sur le site https://www.atlarge-research.com/gwa.html) sont inclus afin de fournir des informations
complémentaires sur les données utilisées.

Pour pouvoir exploiter ces données dans les simulations, il convient de décompresser 1’archive, puis de

placer son contenu dans le répertoire de ressources du projet Java, a I’emplacement suivant :
src/main/resources/datasets/

Une fois en place, les fichiers seront automatiquement chargés par les programmes utilisant la politique de

taille de grain fondée sur des données réelles.

B.3 Structure du code

Le code Java développé pour ce travail est organisé en quatre packages principaux, chacun jouant un réle

spécifique dans I’architecture logicielle. Nous présentons ci-dessous un apercu de leurs fonctions respectives.

Package gnuplotOut : Ce package fait office d’interface avec le logiciel de visualisation Gnuplot. Il per-

met d’exporter les valeurs mesurées pour différentes métriques vers des fichiers, ainsi que de générer automa-
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tiquement les scripts Gnuplot nécessaires a la production de graphiques a la fin des simulations. Ces scripts

peuvent ensuite étre modifiés manuellement si besoin.

Package configuration : Ce package contient I'infrastructure permettant de gérer les configurations
des simulations et le paramétrage du tracage des métriques. Le systéme de configuration a été congu de
maniere générique et extensible, notamment grace a ’utilisation de la réflexivité en Java. La classe centrale
Configuration permet de charger dynamiquement tout un ensemble d’entrées de la forme clé=valeur,
que ce soit a partir d’un fichier (une entrée par ligne) ou d’un tableau (arguments du programme Java). La
spécialisation de cette classe permet de définir des attributs qui seront automatiquement initialisés lors du char-

gement des parametres grace a la correspondance entre la clé d’une entrée et le nom d’un attribut.

Package sandPileModels : Ce package regroupe I’ensemble des modeles du tas de sable et leurs va-
riantes présentées dans ce manuscrit. La classe SandPileModel, congue pour étre étendue, constitue la
base de tous les modeles implémentés. Le package inclut également les différentes stratégies d’éboulement
(ToppleStrategy), définissant la fagcon dont les grains sont redistribués aux voisines d’une cellule lors
de son effondrement. Plusieurs stratégies sont disponibles dans la classe utilitaire ToppleStrategies. Le
comportement utilisé dans les expériences présentées repose sur la stratégie ToppleStrategies.DEFAULT,

qui distribue un grain par voisine.

Package simulation: Ce package centralise tout ce qui a trait a la conduite des simulations expérimen-
tales. Il fournit des simulateurs permettant de tester les modeles et de mesurer les différentes métriques. Par
ailleurs, il propose une architecture générique pour la gestion des métriques via la classe Met ric<T>, incluant

le stockage de leurs mesures, leur agrégation et leur export pour tragage via le package gnuplotOut.

B.4 Utilisation du code

Dans cette section, nous verrons comment utiliser les programmes proposés pour mener a bien les expé-
riences. Avant de pouvoir utiliser le code, il est nécessaire de préparer I’environnement d’exécution ainsi que
les fichiers de configuration, en fonction du programme que 1’on souhaite exécuter. Nous verrons également
comment utiliser les scripts Bash fournis, qui permettent d’automatiser le lancement de séries d’expériences

(batchs).

B.4.1 Préparation de I’environnement

Tout d’abord, I’exécution du programme nécessite que Java, en version 21 ou supérieure, soit installé sur la
machine. Le projet étant géré avec Maven, ce gestionnaire de projet doit également &tre installé. Maven permet
notamment de gérer automatiquement les dépendances externes, dont GraphStream, une bibliotheque utilisée
pour construire les diverses structures sur lesquelles les modeles de tas de sable (canonique ou dérivés) sont

exécutés. GraphStream peut étre consultée a 1’adresse suivante : https://graphstream-project.org/.
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L’exécution du projet avec Maven se fait par la commande suivante :
mvn exec:java —-Dexec.mainClass="[programme]" -qg

Il faut remplacer [programme] par le nom complet de la classe exécutable. Par exemple, le programme de

simulation du tas de sable canonique est :
litis.ri2c.heleine.paulin.selfAdaptiveSandSieve.SimulationSandPile

Tous les programmes mis a disposition ont la méme base de nom. Seul le suffixe change selon le programme

désiré. Si le passage des parametres se fait via les arguments, il faut ajouter I’option suivante :
-Dexec.args="paraml=valeurl param2=valeur2"

La spécification des parametres est abordée en détails dans la section suivante.

B.4.2 Les programmes et leurs parametres

Plusieurs programmes exécutables sont mis a disposition a la racine sel fAdaptiveSandSieve. Cinq
nous intéressent ici, dont un récapitulatif est proposé dans le Tableau B.1. Ils partagent tous un méme en-
semble de parametres de base regroupés dans le Tableau B.2. Chaque entrée de configuration prend la forme

clé=valeur.

Programme Description

SimulationSandPile Simulation du tas de sable canonique dans différentes
topologies

SimulationNaiveLESASS Simulation du tamis auto-adaptatif basé sur 1’entropie

SimulationProportional LESASS locale

SimulationGossipSASS Simulation du tamis auto-adaptatif basé sur le protocole
de bavardage

GraphExamples Génération des visuels de I’étude illustrative du reca-
blage et de la dégradation

TABLE B.1 — Récapitulatifs des programmes mis a disposition.

B.4.2.1 Programme de simulation du tas de sable canonique

Le programme SimulationSandPile permet de simuler le tas de sable canonique sur différentes topo-
logies. Il est notamment utilisé pour mener les expériences du Chapitre 4, consacrées a I’étude de la robustesse
du modgle.

Ce programme simule le tas de sable sur des structures potentiellement recablées et/ou dégradées, selon
les parametres définis. Les parametres utilisés sont ceux décrits dans le Tableau B.2, auxquels s’ajoute un
parametre spécifique : uniqueRewire=[Integer]. Il permet de ne simuler qu’un seul taux de recablage
a la fois, tout en conservant une arborescence de fichiers de sortie identique a celle d’une exécution multi-taux
(par exemple 0-100). 11 est particulierement utile pour les expériences a recablage fin (par paliers de 1%), sans

dégradation (résultats Section 4.1.1), afin de limiter la consommation mémoire et les ressources en threads.
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Clé Type de valeur  Définition

gridSize Integer Taille d’un c6té de la grille carrée

neighborhood String Nom du voisinage utilis€é pour générer la grille :
vonneumann ou moore

cycles Integer Nombre de cycles de la simulation

useInitCycles Boolean Définit si 10% de cycles d’initialisation (exempts de
mesures) sont ajoutés au début de la simulation ou non

toppleStrategy String Nom de la stratégie d’éboulement des cellules utilisée :
default

dynamicThreshold Boolean Définit si le seuil critique dynamique (5.2) sera utilisé
ou non

simultaneousThreads Integer Nombre max. d’expériences exécutées en parallele

seeds Integer Nombre d’expériences indépendantes simulées et
moyennées

initialRandomSeed Long Graine aléatoire initiale définissant I’aléatoire de toutes

les expériences

rewireStart Integer Valeur de 0 a 100 représentant le pourcentage de reca-
blage initial de la grille

rewireStop Integer Valeur de 0 a 100 représentant le pourcentage de reca-
blage de la grille maximal qui sera fait

rewireStep Integer Finesse de 1la progression du recdblage de
rewireStart a rewireStop

removeRate Integer Valeur de 0 a 100 représentant le pourcentage de cel-
lules supprimées durant la premicre phase du processus
de dégradation (Section 4.1.2)

TABLE B.2 — Parametres généraux des programmes de simulation.

Les parametres peuvent étre spécifiés directement en ligne de commande lors de I’exécution du programme,
ou bien listés dans un fichier de configuration, configs/simulationConfigs/sandpile.config
(depuis la racine du dépdt), qui sera utilisé par défaut en I’absence d’arguments.

Un script Bash, sandPile_simulations. sh, situé a la racine du projet, permet de lancer I’ensemble
des expériences portant sur la robustesse du tas de sable. Il est a noter que les simulations sont longues (plusieurs
jours) avec les parametres par défaut, en raison du volume d’expériences (25 expériences simultanées pour

chaque couple recablage-dégradation).

B.4.2.2 Parametres des politiques de taille des grains du tamis

De nouveaux parametres, spécifiques au fonctionnement du tamis, viennent s’ajouter a ceux présentés dans
le Tableau B.2. Ils concernent la politique d’évolution de la taille des grains injectés dans le tamis au cours du
temps.

Cing politiques distinctes sont proposées, chacune disposant de ses propres parametres. Les clés associées a
ces parametres sont systématiquement préfixées par grainsSizePolicy, afin d’en faciliter I’identification
et I'utilisation. Par exemple : grainsSizePolicy.name=constant. L’ensemble des parametres relatifs

a ces politiques est détaillé dans le Tableau B.3.
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Taille constante
Clé Type de valeur  Définition
name String Nom de la politique a utiliser : constant
constSize Integer Taille constante des grains au fil de la simulation
Taille sinusoidale
Clé Type de valeur  Définition
name String Nom de la politique a utiliser : sinusoid
start Integer Valeur de départ de la sinusoide (moyenne de la fonc-
tion)
amplitude Integer Fluctuation de la taille autour de start
period Integer Nombre de cycle que dure une vague complete de la
sinusoide
Taille incrémentale
Clé Type de valeur  Définition
name String Nom de la politique a utiliser : incremental
step Integer Valeur de départ et d’incrémentation
every Integer Nombre de cycle avant une incrémentation
Taille aléatoire avec pics
Clé Type de valeur  Définition
name String Nom de la politique a utiliser : random-spike
gaussianAvg Integer Valeur moyenne de la base aléatoire
gaussianStdDev Integer Ecart-type des valeurs de la base aléatoire
pSpike Double Probabilité de déclenchement d’un pic a chaque cycle
spikeDurationMin Integer Durée minimum d’un pic de charge
spikeDurationMax Integer Durée maximum d’un pic de charge
spikeMin Integer Taille de grain minimum durant un pic
spikeMax Integer Taille de grain maximum durant un pic
Taille réelle
Clé Type de valeur  Définition
name String Nom de la politique a utiliser : dataset
datasetName String Nom du dataset : auvergrid, nordugrid ou
sharcnet
startTime Long Date en secondes du début de simulation dans la trace :
- AuverGrid : 1143849600L (ler avril 2006)
- NorduGrid : 1136073600L (ler janvier 2006)
- SHARCNET : 1157068800L (ler septembre 2006)
maxArrivalCycle Long Durée en secondes observée dans la trace

TABLE B.3 — Parametres des politiques de taille de grains.

B.4.2.3 Programmes de simulation du tamis auto-adaptatif : entropie locale

Les programmes SimulationNaiveLESASS et SimulationProportionallESASS permettent
de simuler un tamis auto-adaptatif basé respectivement sur la méthode par entropie locale naive (voir Sec-

tion 5.4.2) et sur la méthode proportionnelle (voir Section 5.4.3). La majorité des parametres décrits précédem-
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ment dans les Tableaux B.2 et B.3 sont a utiliser pour ces simulations. A noter que les paramétres relatifs au
recéblage et a la dégradation ne sont pas utilisés dans ce cadre. Deux parametres supplémentaires, spécifiques

a I’adaptation par entropie locale, doivent étre fournis conformément au Tableau B.4.

Clé Type de valeur  Définition

entropyWindow Integer Taille de la fenétre d’entropie utilisée pour calculer
I’entropie locale (Ejocqie) des cellules

entropyRef Double Entropie de référence (E,..y) utilisée pour prendre les
décisions d’adaptation des cellules

TABLE B.4 — Parametres spécifique aux méthodes par entropie locale.

Les parametres peuvent étre spécifiés directement en ligne de commande lors de 1’exécution, ou bien placés

dans un fichier de configuration situé a I’emplacement suivant, relatif a la racine du dépot :
/configs/simulationConfigs/sandsieve.config

Ce fichier est utilisé par défaut si aucun argument n’est fourni.

Enfin, un script Bash lesass_simulations. sh, situé a la racine du projet, permet de lancer auto-
matiquement les expériences du Chapitre 5. Ce script prend en parametre le nom du programme a exécuter :
SimulationNaiveLESASS ou SimulationProportionalLESASS. Il est important de noter que ce
script ne permet de lancer qu’une seule politique de taille des grains a la fois. Pour modifier la politique utilisée,
il faut éditer le script en commentant la ligne d’arguments de la politique désactivée, et en décommentant celle

de la politique souhaitée.

B.4.2.4 Programme de simulation du tamis auto-adaptatif : protocole de bavardage

Le programme SimulationGossipSASS permet de simuler un tamis auto-adaptatif basé sur le proto-
cole de bavardage, tel que présenté dans la Section 5.5. Ce programme exploite les parametres généraux listés
dans les Tableaux B.2 et B.3, a I’exception de ceux relatifs au reciblage et a la dégradation, qui ne sont pas pris
en compte. Aucun parametre spécifique supplémentaire n’est requis pour ce modele.

Les parametres peuvent étre spécifiés directement en ligne de commande lors de I’exécution, ou bien placés

dans un fichier de configuration situé a I’emplacement suivant, relatif a la racine du dépot :
/configs/simulationConfigs/sandsieve.config

Ce fichier est utilisé par défaut si aucun argument n’est fourni.
Etant donné qu’il n’existe pas de variations de parametres propres a ce modele a explorer, aucun script Bash
dédié a I’exécution en batch n’est fourni. L’exécution du programme se fait donc manuellement, via ligne de

commande ou a I’aide d’un fichier de configuration adapté.

B.4.2.5 Génération des illustrations du recablage et de la dégradation

Le programme GraphExamples est utilisé pour générer les visuels présentés dans 1’étude illustrative du

recéblage et de la dégradation (Section 4.3). Il produit des représentations visuelles d’une grille réguliere de



152 ANNEXE B. REPRODUCTIBILITE DES EXPERIENCES

taille 16, modélisée a I’aide de la bibliotheque GraphStream. Les visuels sont générés pour différents niveaux
de dégradation (suppression de nceuds), allant de 0% a 90% par paliers de 5%, et pour des taux de recablage
allant de 0% a 100% par paliers de 10%. Le programme ne nécessite aucun parametre d’entrée et peut étre

exécuté directement.
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