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General Introduction

General Introduction

The global financial system operates as a delicate equilibrium, where transparency and market
discipline are critical safeguards against instability. Yet, at its core, the banking sector remains
uniquely opaque, characterized by complex structures, asymmetric information, and high
leverage that obscure risk profiles and challenge regulatory oversight. This inherent opacity not
only exacerbates systemic vulnerabilities but also amplifies agency conflicts, moral hazard, and
risk-taking behaviors. As intermediaries in this opaque landscape, financial analysts play a
pivotal role in mitigating information asymmetries and enhancing market discipline. However,
their influence is not unequivocally stabilizing; analysts also have the potential to amplify

market volatility and risk-taking, particularly in highly opaque banking environments.

Despite significant advancements in financial research, key areas remain underexplored.
Traditional studies rely heavily on backward-looking metrics, which fail to capture the dynamic
and predictive risks associated with bank opacity. Additionally, while the structural differences
between market-driven systems like the U.S. and bank-driven systems like Europe are
acknowledged, their nuanced implications for bank risk-taking and systemic stability remain
insufficiently analyzed. Furthermore, the dual role of financial analysts—as both transparency
enhancers and potential drivers of volatility—has not been adequately examined, leaving

critical gaps in understanding how their behavior interacts with opacity to influence risk.

Moreover, while opacity and information asymmetry have long been recognized as
destabilizing forces in banking, their effects are even more profoundly magnified in the rapidly
evolving and highly interconnected FinTech markets. Indeed, the rapid digitization of financial
services has significantly improved accessibility and efficiency; however, it has also introduced
substantial vulnerabilities due to its inherent characteristics, including information asymmetry,
lack of transparency, and minimal regulatory oversight, which further exacerbate uncertainty

and instability.

This thesis examines these critical issues through three interconnected chapters, each
exploring distinct yet complementary dimensions of opacity, information asymmetry, and risk
in financial systems. The research is guided by the following questions: How does opacity

influence systemic risk and stability in banking, and what roles do financial analysts and
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dividend policies play in moderating or amplifying these effects? How do the characteristics
and motivations of financial analyst’s shape forecasting behaviors, and what implications do
these behaviors have for market discipline and career trajectories in global banking markets?
Finally, how can advanced metaheuristic techniques and machine learning frameworks be
leveraged to optimize credit risk management in the highly dynamic and opaque FinTech

sector?

The first chapter investigates the destabilizing effects of bank opacity on systemic stability,
introducing forward-looking measures—analysts’ forecast errors and dispersions—t0 capture
the dynamic risks associated with opacity. By analyzing publicly traded U.S. and European
banks from 2000 to 2020, this chapter provides a nuanced perspective on the opacity-risk nexus.
It highlights critical gaps in the literature, including the limitations of backward-looking metrics
that fail to capture dynamic risks, the underexplored dual role of financial analysts as
transparency enhancers and volatility amplifiers, and the lack of comparative analysis of
opacity's effects across distinct financial systems. The findings reveal that opacity significantly
undermines bank stability, with destabilizing effects most acute under conditions of
overvaluation and economic uncertainty, particularly in the U.S. Analyst coverage emerges as
a double-edged sword: while it enhances market discipline, it paradoxically amplifies risk in
highly opaque U.S. banks—especially smaller institutions—by intensifying reactions to
negative earnings signals. Dividend policies further complicate this dynamic, serving as
stabilizing signals when moderate but exacerbating opacity-driven risks when excessive. A
comparative analysis underscores distinct regional dynamics, with the market-driven U.S.
system exhibiting heightened sensitivity to opacity and analyst pressures, while the bank-driven
European system demonstrates more tempered responses.

The second chapter shifts the focus to the role of financial analysts, exploring how their
characteristics and career motivations shape earnings forecast accuracy across global banking
markets. Using data from the I/B/E/S Detail History Database, the study examines 516 publicly
traded banks across the U.S., Europe, and Asia from 2000 to 2023. The findings reveal
significant regional variations in forecasting precision and strategic behaviors. General and
bank-specific experience significantly enhance forecast accuracy, with the strongest effects
observed in the U.S. However, portfolio complexity produces contrasting effects: broader
coverage improves accuracy in the U.S. and Asia but increases errors in Europe due to
geographical diversification challenges. Boldness, often driven by career motivations, exhibits

regional nuances. In the U.S., experienced analysts leverage bold forecasts to signal expertise
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and advance their careers, while less experienced analysts herd to minimize risks. In Asia,
boldness consistently supports career progression across all experience levels, while in Europe,
early-career analysts use bold forecasts to gain visibility but often trade off accuracy for career

advancement.

The third chapter extends the analysis to the FinTech sector, where the destabilizing effects
of opacity and information asymmetry are most pronounced. It introduces the Evolutionary-
Based Ensemble Feature Selection Technique using Genetic Algorithms (EFSGA), an
innovative framework designed to address the limitations of traditional credit risk assessment
models in this rapidly evolving sector. Unlike conventional methods, EFSGA hybridizes
metaheuristic algorithms with machine learning to provide real-time, dynamic solutions for
managing credit risk in high-dimensional, imbalanced datasets. By incorporating
heterogeneous ensemble learning and optimizing classification thresholds using genetic
algorithms, the model significantly enhances predictive accuracy and interpretability. Tested
on FinTech lending datasets, EFSGA demonstrates a 23% improvement in application-specific
evaluation metrics, providing a transformative approach to credit risk management in an era of
heightened uncertainty and complexity. This dynamic framework is uniquely positioned to
address the challenges posed by FinTech markets, ensuring adaptability to evolving borrower

behaviors and macroeconomic conditions while meeting stringent regulatory requirements.

Together, these chapters provide a comprehensive examination of the destabilizing effects
of opacity and information asymmetry in banking and FinTech markets. By bridging traditional
banking challenges with innovative solutions for the FinTech era, this thesis offers actionable
insights for policymakers, regulators, and financial institutions, emphasizing the need for
dynamic, forward-looking strategies to mitigate systemic risks and enhance financial stability

in an increasingly interconnected global economy.
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Chapter 1

Opacity, Financial Analysts and Bank Risk:
Evidence from US and European Publicly Traded
Banks

This chapter is based on the working paper titled “Opacity, Financial Analysts, and Bank Risk:
Evidence from US and European Publicly Traded Banks.” An earlier version of this article was
presented at the AAP Region Workshop organized by the University of Bordeaux, December
2-3, 2021, and at the Ph.D. Seminar held at the University of Poitiers on November 24, 2022.
These events provided valuable opportunities to refine the research through insightful
discussions and feedback from esteemed participants.
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Abstract

This study rigorously examines opacity—captured through analyst forecast errors and
dispersion—and its destabilizing influence on bank stability across U.S. and European markets.
We delve into the intricate role of financial analyst pressure in moderating market discipline
within opaque banks and further analyze how dividend payout policies intersect with the Risk-
Opacity channel to shape sectoral stability. Leveraging an extensive dataset of publicly traded
banks from 2000 to 2020, we present four pivotal findings. First, we uncover that heightened
opacity markedly undermines bank stability, with destabilizing effects most acute under
conditions of elevated market overvaluation and economic uncertainty, particularly in the U.S.
market. Second, analyst coverage emerges as a nuanced force: while it often promotes market
discipline, it can paradoxically intensify risk in U.S. opaque banks—especially smaller
institutions—Dby heightening sensitivity to negative earnings signals, with a much weaker effect
in the EU. Third, the impact of analyst recommendations and revisions becomes pronounced
during heightened uncertainty, with negative signals compounding opacity-induced risk in U.S.
banks, while positive signals offer a more constrained stabilizing effect. The interplay between
opacity, adverse recommendations, and extensive analyst coverage exerts considerable pressure
on U.S. banks, driving asset price volatility that edges institutions closer to default thresholds
and underscores the disciplinary role of analyst coverage in aligning valuations with risk.
Lastly, we observe that excessive dividend payouts exacerbate opacity’s adverse effects on
stability, particularly within U.S. banks. This suggests that while dividend policies can signal
strength, overly aggressive distributions may erode resilience in opagque banking environments,
highlighting the critical balance between transparency and financial prudence in fostering
systemic stability. Overall, our findings highlight how opacity, analyst influence, and dividend
policies uniquely shape bank risk within market- and bank-driven financial systems, offering
key insights for enhancing systemic stability in an interconnected financial landscape.

JEL classification: G01; G14; G21; L11
Keywords: Bank opacity; Bank Risk; Financial Analysts; Market discipline; Dividend
Policy.
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1.1. Introduction

Bank opacity presents an enduring and fundamental challenge in contemporary financial
research, exerting a profound influence on risk management practices, systemic stability, and
regulatory frameworks. This inherent opaqueness arises from banks' unique asset and liability
compositions—distinguished by illiquid and often non-transparent assets, elevated leverage
ratios, and substantial insured liabilities—all of which intensify agency conflicts and moral
hazard issues (Morgan, 2002; Flannery et al., 2004; Dang et al., 2017). These complex features
elevate the cost of external funding and exacerbate systemic vulnerabilities, situating
transparency as a cornerstone in discussions of bank fragility and regulatory efficacy (Jones et
al., 2012; Bushman, 2016). Relative to other firms, banks exhibit a heightened opacity that
obscures accurate assessments of their intrinsic value and solvency (Morgan, 2002; Blau et al.,
2017), complicating efforts by external stakeholders to reliably gauge institutional soundness.
Regulatory interventions, such as Basel 111, have thus increasingly prioritized transparency and
market discipline as mechanisms to reinforce sectoral stability (Basel Committee on Banking
Supervision, 2013). The theoretical interface between opacity and market discipline emerges
as a central concern, as opacity inherently distorts risk-taking incentives and may ultimately
compromise financial stability (Demsetz & Lehn, 1985; Cordella & Yeyati, 1998; Boot &
Schmeits, 2000; Nier, 2005). Empirical studies substantiate the intrinsic connection between
opacity and heightened insolvency risks, underscoring how opacity amplifies systemic
fragilities across the banking landscape (Jones et al., 2012; Dewally & Shao, 2013a; Fosu et al.,
2017). Understanding this relationship is pivotal, necessitating an intricate examination of how
internal governance choices and external stakeholder perceptions coalesce to shape risk profiles
and transparency within the sector. Existing research, however, is constrained by its reliance on
backward-looking accounting disclosures, which are fundamentally limited in capturing the
dynamic and forward-looking risks associated with bank opacity (Nier, 2005; Nier & Baumann,
2006). This retrospective lens constrains our understanding of market discipline’s influence on
bank stability, particularly amid today’s increasingly complex and interconnected financial

gcosystems.

Addressing these limitations, this study introduces a novel approach, leveraging direct and
forward-looking metrics of opacity—specifically, analysts’ forecast errors and dispersions—t0
empirically evaluate opacity's impact on bank stability. These measures capture degrees of
uncertainty and disagreement among expert analysts, offering a refined and more predictive

assessment of banks' future economic trajectories. This approach allows for an investigation
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into how forecast dispersion and volatility reflect genuine uncertainty regarding banks'
prospective stability, particularly in response to negative earnings surprises®. A secondary, yet
equally critical, objective of this research is to examine the contribution of financial analyst
pressure as information intermediaries within the opaque banking sector and their potential to
influence market discipline. Specifically, we analyze how informational shocks stemming from
analysts' recommendations and earnings forecasts are interpreted by market participants and
the extent to which these shocks influence stock market performance. By evaluating the
predictive validity of analysts’ reports, we examine whether analysts serve as external monitors
that enforce discipline or if their coverage inadvertently drives banks toward riskier behaviors
to meet market expectations. Although existing studies suggest that analysts mitigate
information asymmetry by providing credible insights (Cheng & Subramanyam, 2008; Mansi
et al., 2011; Derrien et al., 2016; Kosaiyakanont, 2013), the complex, dualistic role they play
in banking remains underexplored. Our research thus delves into both the informational
efficiency of analyst insights and the potential pressures their coverage imposes, seeking to
clarify whether analysts reinforce market discipline or inadvertently act as catalysts for elevated
risk-taking?. In addition, this study explores the moderating influence of dividend payout
policies on the opacity-risk relationship. Dividend payments are frequently construed as signals
of financial strength, capable of conveying private information to the market and enforcing
discipline by aligning the interests of internal managers with external stakeholders
(Easterbrook, 1984; Jensen, 1986). While dividend distributions may constrain a bank's capital
reserves, they can simultaneously enhance market discipline by reducing informational
asymmetry (Onali, 2010). Despite their theoretical importance, the implications of dividend
policies on market discipline in opaque banking environments remain insufficiently examined.
By investigating how dividend payments interact with opacity in influencing risk, we endeavor

to shed light on the mechanisms that underpin bank stability.

Furthermore, recognizing the distinct regulatory and market-driven differences between the
U.S. and European banking sectors, this study conducts separate analyses for these regions. In

1 This study equates "analyst forecast error” with "earnings surprise," the difference between reported and expected
earnings, often based on analyst forecasts (Defond et al., 2001; Pinto et al., 2010). Negative values indicate
optimistic bias, while positive values suggest pessimism. A negative earnings surprise may lead market
participants to adjust expectations downward, increasing uncertainty about the firm’s value (Hayn, 1995).
Research on earnings surprises and stock returns shows positive surprises tend to increase trading volume, whereas
negative surprises generally result in stock price declines (Bamber, 1987; Kinney et al., 2002).

2 Notably, we examine how analysts intensify market reactions to negative earnings surprises for banks. This
investigation aims to deepen our understanding of the dual role financial analysts play—both as enhancers of
market discipline and as potential drivers of risk within the banking sector.
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the U.S., market dynamics and analyst scrutiny are typically more pronounced, while European
banks operate under more stringent regulatory oversight. These structural divergences imply
that the interplay between opacity, analyst influence, and bank stability may vary substantially
across these regions. To assess the robustness of our findings, we examine U.S. and European
subsamples, capturing the nuances of these financial ecosystems and their impact on risk-taking
behaviors and stability. In sum, this research addresses pressing gaps in the literature by
applying forward-looking measures of bank opacity, analyzing the complex role of financial
analysts, and assessing the moderating effects of dividend policies on risk across varied
regulatory landscapes. Through these multi-faceted inquiries, we aspire to advance our

understanding of market discipline, promoting a more resilient and transparent banking sector.

Our empirical analysis, based on a dataset of 341 publicly traded U.S. and European banks
spanning 2000 to 2020, uncovers critical insights that illuminate the opacity-risk nexus in
banking: First, our analysis shows that a high degree of opacity significantly undermines bank
stability®, with destabilizing effects—manifesting as reduced profitability and heightened
earnings volatility, leading to higher default risk—most evident in overvalued banks and under
conditions of elevated uncertainty*. Regionally, the destabilizing influence of opacity is more
severe in the U.S., although it remains present, albeit to a lesser extent, in the EU. This also
implies that analysts' earnings forecast dispersion and bias are effective proxies for opacity,
yielding substantial insights into future bank risk and earnings volatility, particularly with

stronger effects observed in the U.S.

Second, our findings highlight the complex role of analyst coverage in moderating risk-
taking, particularly among high-opacity banks. While analyst coverage generally enhances
market discipline and curbs excessive risk-taking globally®, its effect on opaque banks is highly
heterogeneous across regions. In the U.S., increased analyst coverage tends to amplify pressure
on opaque banks, often pushing them toward riskier behaviors, especially within smaller
institutions. Thus, heightened analyst coverage amplifies market reactions to negative earnings
surprises in highly opaque U.S. banks, intensifying the impact of opacity on risk-taking amid

strong market responses. In contrast, the European context reveals a more tempered dynamic:

3 This destabilizing effect of opacity is robust, persisting across various risk proxies and remaining significant even after
accounting for a wide array of both observable and unobservable bank characteristics.

4 These findings underscore the sensitivity of overvalued banks, as indicated by elevated market-to-book ratios, to negative
earnings surprises, likely driven by market expectations that surpass the bank’s actual financial strength. This suggests that
overvalued growth stocks tend to underperform value stocks following earnings disappointments, highlighting the risks
inherent in investor optimism.

5In the US market, greater analyst coverage has a pronounced disciplining effect on risk-taking, particularly among banks with
moderate perceived valuations, larger size, and higher volatility. The European market however, exhibits a weaker and more
inconsistent influence.
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analyst coverage moderately curtails risk-taking in smaller banks while marginally intensifying
risk for larger opaque institutions. This nuanced finding underscores the limited yet region-
specific moderating effect of analyst coverage on opacity-induced risk.

Our analysis highlights the robust predictive power of financial analysts' insights in
assessing default risk, particularly in the U.S. and notably during periods of elevated market
uncertainty®. Negative analyst signals—such as sell recommendations and downgrade
revisions—amplify opacity's destabilizing effects on U.S. banks, while positive
recommendations and upgrades provide some stabilization, though less significantly, and with
minimal impact in Europe. The interplay between opacity, negative-toned recommendations or
revisions, and high analyst coverage creates substantial pressure on opaque U.S. banks. The
heightened market pressure from analyst forecasts often drives asset price fluctuations that
potentially edge banks closer to default risk thresholds, emphasizing how extensive analyst
coverage can promote disciplined market behaviors by making bank valuations more
responsive to forecast shifts. Ultimately, this dual role of analysts—as both transparency
enhancers and volatility influencers—positions them as key players in shaping the opacity-risk

relationship within the banking sector.

Beyond the impact of analysts, our findings suggest that while dividend payments generally
enhance bank stability, excessive payouts can magnify the adverse effects of opacity, thereby
reducing their stabilizing role and potentially contributing to greater instability. This
destabilizing effect of high dividend payouts is most pronounced in the U.S. but remains
significant, though somewhat less intense, within the EU. These insights emphasize the
importance of market dynamics, analyst influence, and regulatory context in shaping the
opacity-risk relationship across varied financial systems. The U.S. market-driven environment
fosters a heightened reactivity to analyst forecasts, often compelling banks to undertake riskier

actions to meet market expectations, particularly following negative earnings surprises’.

Despite extensive literature examining systemic differences in analyst forecasts, particularly
outside the banking sector, and numerous attempts to measure bank risk using public data, the

& Qur findings indicate that market reactions to analyst recommendations are significantly heightened for banks
characterized by elevated opacity and heightened uncertainty.

7 In these settings, the pressure to meet or exceed analyst expectations can lead to significant adjustments in bank
behavior. For instance, when market participants react strongly to earnings surprises—especially negative ones—
banks may feel compelled to take on additional risks to meet these elevated targets. This dynamic may not only
influence stock prices but also impact broader risk management practices within banks, with the intensity of such
reactions varying across different market structures.
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intermediary role of financial analysts in bridging market data and the interpretation of banking
risk has seen surprisingly limited scrutiny. This study offers several key contributions to address
this gap: First, we integrate research on banking opacity, market discipline, and financial
analyst influence to deliver a nuanced and comprehensive understanding of banks' risk-taking
behaviors. By adopting an interdisciplinary approach, this study addresses a critical gap,
offering insights into the complex interactions that shape bank stability in ways previously
underexplored. Second, we investigate the moderating role of financial analysts within the
opacity-risk nexus, examining whether an optimal level of analyst pressure exists that could
mitigate the adverse effects of opacity. This analysis challenges traditional views by introducing
a novel perspective on the dual role of analysts, positioning them as both information enhancers
and potential risk amplifiers. By exploring this duality, our research expands the boundaries of
existing literature on market discipline and information intermediation. Third, we conduct a
rigorous assessment of the impact of dividend payout policies on the opacity-risk relationship,
contributing meaningfully to ongoing regulatory discussions concerning the prudential role of
dividend policies in enhancing bank resilience. Our findings provide nuanced evidence on the
potential for dividend payouts to serve as a prudential mechanism counterbalancing opacity-
driven risks, offering actionable insights for policymakers in developing robust disclosure and
dividend frameworks. Finally, our research illuminates the divergent dynamics of opacity and
market discipline across distinct financial environments, specifically contrasting market-driven
with bank-driven systems. By revealing how these differing systems uniquely influence the
interaction between opacity and risk, we furnish regulators and market participants with critical
insights for devising tailored strategies that mitigate bank risk effectively within varied

contexts.

The remainder of the paper is structured as follows: Section 1. 2 presents a review of the
relevant literature. Section 1. 3 discusses the empirical estimation methods. Section 1. 4
describes the data and variables used in the study. Section 1. 5 presents the empirical results,
and Section 1. 6 concludes.

1.2. Related Work and Hypothesis Development

Extensive literature has explored the multifaceted dynamics between transparency, accounting
disclosures, stock performance, and risk-taking behaviors in the banking sector. These studies
underline the influence of country-level transparency measures on financial stability, while a

parallel stream investigates the role of financial analysts in promoting market discipline and the

10
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implications of dividend payout policies on bank risk. Drawing from these existing works, this
1. synthesizes key theories and empirical insights to support the development of three key
hypotheses relating to (i)bank opacity and risk-taking, (ii)the contribution of financial analyst
pressure as a potential moderator on the nexus between bank opacity and bank risk-taking
activities, (iii) we also control for the moderating effect of dividend payout policy on the

relationship between bank opacity and risk.

1.2.1. Bank Opacity, Risk and Earnings Volatility

Bank assets are typically regarded as opaque, raising significant concerns about the efficacy of
market discipline in curbing risk-taking behavior (Morgan, 2002; Flannery et al., 2013).
Theoretical frameworks suggest that opacity in the banking sector fuels risk-taking incentives,
as the difficulty of assessing a bank’s true risk profile leads to higher funding costs, which, in
turn, motivate riskier strategies (Fosu et al., 2017). This opacity-driven risk-taking is often
exacerbated by external observers’ limited visibility into banks’ internal monitoring and asset
quality, resulting in elevated interest rates on deposits and investments that reflect the perceived
level of risk (Cordella & Yeyati, 1998; Boot & Schmeits, 2000). In contrast, greater transparency
is seen to enhance market discipline, generally encouraging banks to adopt less risky behaviors.
The higher cost of capital associated with opacity creates a financial incentive for banks to take
on greater risks to offset these costs, positioning transparency as a benchmark for effective risk
management (Nier, 2005).

Prior research extensively documents the inefficiencies that arise from information
asymmetry in opaque institutions. These inefficiencies manifest in suboptimal investment and
financing decisions (Myers & Majluf, 1984; Diamond, 1991; Derrien & Kecskes, 2013),
elevated costs of capital (Kelly & Ljungqvist, 2012), and the erosion of market valuations
(Chung & Jo, 1996). Furthermore, opacity can encourage managerial opportunism, reduce
financial reporting quality, and lead to capital misallocation (Yu, 2008; Chen et al., 2015; Irani
& Oesch, 2013). Banks, especially those with high levels of opacity, may engage in financial
statement manipulation to smooth earnings, circumvent capital requirements, or minimize tax
liabilities. Such practices not only hinder private governance and regulatory oversight but also
pose substantial risks to stability and asset quality (Beatty & Liao, 2011; Bushman & Williams,
2012; Huizinga & Laeven, 2012). Empirical evidence consistently aligns with these theoretical
predictions. Fosu et al. (2017) demonstrate that opacity is closely linked to insolvency risks
among U.S. banks, and Jones et al. (2012) argue that opacity introduces systemic vulnerabilities

by increasing financial instability, price contagion, and amplifying systemic risk. Dewally and
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Shao (2013b) further emphasize that excessive opacity weakens market-based discipline,
diminishing market participants' ability to effectively constrain bank risk-taking. Recent studies
continue to explore these dynamics in various contexts. For example, lannotta and Kwan (2022)
find that unexpected loan loss provisions elevate bank opacity, thereby encouraging risk-taking
and diminishing performance. Similarly, Zheng and Wu (2023) demonstrate that during
financial crises, opacity leads to significant declines in bank valuation, contributing to systemic
instability. In emerging markets, Nguyen and Tran (2022) show that under conditions of
heightened uncertainty, opacity adversely affects bank stability and performance. These findings
highlight the importance of robust and reliable measures of opacity, which traditional
accounting-based indicators—focused on asset composition—often fail to capture fully due to
limitations such as vulnerability to managerial manipulation and lack of market-based
perspectives (Burks et al., 2017; Bushman et al., 2016; Jiang et al., 2016).

To overcome these limitations, some researchers advocate for the use of analysts' forecasts
as more dynamic, market-related indicators of disclosure quality. Analysts’ earnings forecasts
provide independent assessments of firm opacity and expected earnings volatility, with larger
forecast errors and greater forecast dispersion serving as indicators of higher opacity (Flannery
et al., 2004). Studies show that greater transparency reduces forecast dispersion, enhances
liquidity, and improves market efficiency (Roulstone, 2003). During the financial crisis, Anolli
et al. (2014) observed that forecast accuracy was especially crucial as stock price volatility
intensified amidst high uncertainty. Additionally, research on earnings surprises and stock
returns reveals that the variance between analyst estimates and actual earnings significantly
influences market reactions: Positive surprises correlate with increased trading volume, while
negative surprises are often associated with declines in stock returns (Bamber, 1987; Kinney et
al., 2002). Fosu et al. (2017) also used analysts' forecasts to assess opacity among U.S. bank
holding companies, confirming that forecast errors serve as effective proxies for bank opacity.
High forecast dispersion often signals elevated uncertainty about future cash flows and reflects
a lower quality of disclosures.

Building on this literature, we employ analysts’ forecast error and dispersion as proxies for
bank opacity to examine their influence on bank risk-taking and stability. This approach allows
us to capture market participants’ perceptions of opacity as they relate to banks' future

performance and volatility. Consequently, we propose the following hypothesis:

Hypothesis 1a: Opacity increases risk-taking behavior and exacerbates bank instability and

performance.
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This hypothesis tests the informational efficiency of analysts' earnings forecasts as forward-
looking indicators of opacity in banks. Specifically, it posits that banks with higher forecast
dispersion are more likely to engage in riskier behavior, which diminishes stability and
performance. Conversely, banks with greater transparency are expected to exhibit stronger

profit efficiency and lower volatility in earnings®.

1.2.2. The Role of Financial Analysts in the Nexus Between Bank Opacity and Risk

Financial analysts play a pivotal role in shaping market discipline through two primary
mechanisms: the coverage effect and the informational effect. Together, these mechanisms have
the potential to not only influence banks' visibility and market valuation but also modulate risk-

taking behaviors in the context of opacity within the banking sector.

(i) The Coverage Effect: Analyst coverage heightens a bank’s visibility and subjects it to
increased market scrutiny. As more analysts cover a bank, pressure mounts to meet or exceed
market expectations, creating dual and sometimes contradictory outcomes. On the one hand,
increased coverage can bolster market discipline, encouraging banks to adopt more prudent risk
management practices to align with investor expectations. On the other hand, excessive pressure
to perform can incentivize banks to undertake riskier strategies, particularly when reacting to
earnings surprises that shift market expectations. This duality reflects a delicate balance where
analyst coverage, while improving transparency, can also foster short-term pressures that drive
riskier behaviors as banks attempt to conform to heightened expectations.

(i) The Informational Effect: Financial analysts significantly enrich the informational
environment by providing earnings forecasts and issuing stock recommendations that range from
buy/strong buy to sell/strong sell. These outputs mitigate information asymmetry by offering
investors insights into a bank’s financial health and growth prospects, which can impact the
bank’s cost of capital, market valuation, and overall risk profile. By enhancing transparency,
analyst insights help investors form clearer perceptions of risk, which theoretically encourages

banks to adopt more transparent practices and align risk strategies accordingly.

8 Extension: The impact of opacity on risk-taking is moderated by market structures and market uncertainty, with
stronger effects in market-based financial systems compared to bank-based systems. This hypothesis posits that
market-driven systems, such as those in the U.S., are more sensitive to the effects of opacity, particularly under
conditions of market uncertainty. In contrast, bank-based systems, may see more moderated effects due to stronger
regulatory oversight.
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Prior research underscores the dual benefits of analyst coverage in reducing information
asymmetry and promoting shareholder monitoring, often lowering firms' cost of debt (Cheng
& Subramanyam, 2008; Mansi et al., 2011; Derrien et al., 2016). For instance, Fang (2007)
shows that firms with high analyst coverage are less inclined toward earnings management,
especially when covered by leading analysts. Similarly, Guo et al. (2018) demonstrate that
analyst coverage can influence firms’ investment strategies, while Hassan et al. (2021) highlight
that analyst coverage moderates the relationship between career concerns and loan costs. In the
banking sector, where the stakes of financial opacity are high, analysts' recommendations and
earnings forecasts are crucial in anticipating risk and bankruptcy measures. For example, Parnes
et al. (2010) find that changes in analyst reports yield insights into default risk, and Barniv et
al. (2020) reveal that alignment between recommendations and forecasts positively affects
market reactions. Furthermore, studies show that analyst recommendations are especially

valuable for banks facing elevated risk and high information asymmetry (Premti et al., 2016).

Given these dynamics, our second hypothesis explores the moderating influence of financial
analysts on market discipline and risk-taking behaviors within the opaque banking sector:

Hypothesis 2a: Higher analyst pressure enhances insights into default risk and shapes
market perceptions.

Hypothesis 2b: Higher analyst pressure moderates the marginal effect of opacity on bank
risk-taking.

These hypotheses rest on the premise that greater analyst coverage enhances the availability
of information to investors, making it increasingly challenging for banks to engage in opaque
practices without market scrutiny. Consequently, the informational pressure exerted by analysts
is expected to strengthen the information environment, improve transparency, and thereby
reduce risk-taking behaviors associated with opacity. This also underscores the predictive role
of analyst reports and their connection to bankruptcy risk measures, supporting the argument
that analysts’ recommendations are highly informative in evaluating bank stability and
influencing market dynamics. Moreover, we posit that stock prices respond to analyst
recommendations and revisions, impacting market-based return volatility and risk measures
like MZScore and TR. As such, the presence of robust analyst coverage may foster more
disciplined market behaviors by heightening the sensitivity of bank valuations to forecast

updates.

14



Chapter 1: Opacity, Financial Analysts and Bank Risk: Evidence from US and European Publicly Traded Banks

1.2.3. The Moderating Effect of Bank Dividend Payout Policy on Opacity and Risk

Dividend policies hold significant implications in the banking sector, often serving as critical
signals of financial strength, especially in opaque environments. Given the inherent complexities
of bank balance sheets, investors and stakeholders frequently look to the frequency and
magnitude of dividend payments to infer a bank’s financial health. In addition to being indicators
of stability, dividend policies are closely tied to capital adequacy and form an essential
component of robust risk management practices (Onali, 2010). The literature presents varying
perspectives on the role of dividends in promoting bank stability. While dividend payments can
serve as a stabilizing force, excessive payouts may also incentivize risk-taking behaviors (Tran,
2021). To understand the influence of dividend policies on bank risk, we consider two primary

mechanisms:

(i) Dividends-Stability Channel: Dividend payouts can limit a bank’s ability to retain
capital buffers, potentially increasing dependence on riskier assets and thereby eroding overall
stability (Kanas, 2013). When banks distribute a substantial portion of earnings as dividends,
they may reduce their capacity to absorb shocks, especially under volatile conditions. This can
intensify risk-shifting behaviors, as banks might turn to higher-risk investments to meet
profitability targets and shareholder expectations, particularly when deposit insurance premiums
mitigate downside risks (Acharya et al., 2009; Onali, 2010). During financial crises, banks
prioritizing dividend payouts may amplify systemic risks, as evidenced by institutions that
maintained dividends despite increased financial vulnerability (Floyd et al., 2015). However,
dividends can also impose a level of external monitoring, potentially curbing excessive

managerial risk-taking and imposing discipline on bank management (Onali, 2010).

(it) Dividends-Opacity Channel: Dividend payments can serve as a form of market
discipline by reducing the private benefits of control, thereby limiting the scope for earnings
management. In opaque banking environments, dividends signal a commitment to transparency
and act as a counterbalance to managerial discretion. Banks adhering to stable dividend targets
are generally less likely to engage in earnings manipulation, especially when payout restrictions
are tied to debt covenants or regulatory thresholds (Tran & Ashraf, 2018). Under this framework,
dividends help mitigate conflicts between insiders and external stakeholders, enforcing a form
of market-driven discipline that aligns management incentives with shareholder interests
(Easterbrook, 1984; Jensen, 1986). The Dividends-Opacity Channel thus posits that dividend
payments can serve as a prudential mechanism, reinforcing transparency and curbing

opportunistic behaviors.

15



Chapter 1: Opacity, Financial Analysts and Bank Risk: Evidence from US and European Publicly Traded Banks

This study examines the extent to which dividend policies impact bank risk-taking,
particularly by moderating the relationship between bank opacity and risk. The analysis focuses
on dividends as a potential prudential tool that facilitates external monitoring in opaque banking

environments. In this context, we propose two hypotheses:

Hypothesis 3a: Dividend payments enhance market discipline in banks and are associated

with greater stability.

Hypothesis 3b: The marginal effect of opacity on bank risk-taking is moderated by the extent

of dividend payments.

These hypotheses reflect the dual roles of dividends as signals of financial strength and as
mechanisms for market discipline. Specifically, we posit that regular dividend payments bolster
stability by fostering transparency and accountability, which may restrain excessive risk-taking
behaviors. Additionally, we hypothesize that the stabilizing influence of dividend payouts
diminishes when payout levels become excessive, potentially leading to increased risk as banks
deplete capital reserves. By assessing how dividends interact with opacity to influence risk-
taking, this study contributes to the broader discourse on the use of dividend policies as

prudential tools within regulatory frameworks aimed at promoting bank stability.

1.2.3.1. Furthered Considerations: Bank vs Market-driven Environments

Banking systems in Europe and the U.S. operate within distinct market structures and regulatory
frameworks, influencing how opacity—measured here through analyst forecast bias and
dispersion—affects risk. European banks may experience different risk dynamics than U.S.
banks, where market discipline plays a larger role in moderating risk-taking behavior. Given
these structural differences, the relationships between opacity, analyst pressure, and bank
stability are likely to vary across regions. To test these additional considerations, this study
analyzes how the proposed hypotheses apply in different market contexts, specifically
examining whether the impact of opacity, analyst pressure, and dividend policies on risk-taking

and bank performance diverges between bank-driven and market-driven environments.

1.3. Econometric Specification and Methodology

In the preceding discussion, we established the relationship between bank risk-taking, stability,
and future stock returns with respect to bank-specific factors such as opacity, analyst coverage,

dividend payout policy, and bank business models. Drawing on this framework and controlling
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for other variables, as outlined in Beck et al. (2013), we model bank risk-taking, stability, and
future stock returns as functions of bank-level opacity (derived from analysts’ forecast errors
and dispersion), analyst pressure (including coverage, recommendations, and revisions), and

dividend payout policy. The general econometric model is specified as follows:

Risk ;, = a + R Opacity; ;1 + z;n 1pkAnalyst_Pressure kit—1 T Y DIV_Policy ;1 +
Z:zl pnControls,;, + &

1)
where Risk represents bank risk, as explained in Section 1. 4.1, while Opacity serves as a
proxy for bank opacity, derived from analysts’ forecast errors and dispersion. Analyst_Pressure
encompasses proxies such as analyst coverage, recommendations, and revisions, whereas
DIV_Policy reflects the bank’s dividend payout policy. Controls include additional control
variables as defined in Section 1. 4. The parameters S, p, and y are the coefficients to be
estimated. The variable m indicates the number of variables within the Analyst Pressure
category, ranging from 1 to 4, and p represents the number of control variables, ranging from 1

to 7. The error term ¢ is assumed to have a mean of zero and a constant variance c2.

To account for potential nonlinearities in the effects of opacity, analyst pressure, and

dividend payout on bank risk-taking, we reformulate Eq. (1) as follows:

m
Risk ;. = a + 80pacity;,_, + E prAnalyst_Pressurey ;.1 +Y DIVpycy e T
k=1

m
( z HeAnalyst_Pressurey ;.4 + a DIVpolicy” L )”‘Opacityi,t_1 +
k=1 o

Z:zlfpnControlsn,it + &
)
In this formulation, the interaction term captures the non-linear effects of analyst pressure
and dividend policy on opacity's impact on bank risk-taking. This approach allows us to
comprehensively assess how these variables, both individually and interactively, influence bank

risk-taking and stability.
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1.4. Measurement and Data

1.4.1. Measuring Bank Risk

To assess bank risk and profitability, we compute several accounting-based indicators.
Profitability is measured using the Return on Assets (ROA), defined as the ratio of net income
to total assets. For bank risk-taking, we utilize the standard deviation of the return on assets
(SDROA), calculated over a rolling window of three years ([t—2, t]). A higher SDROA indicates
greater risk-taking. Additionally, we employ the Z-Score as a proxy for bank default risk,

computed as proposed by Boyd and Graham (1986):

EQUITY;, + + MROA;,
a,(ROA)

Z — Score; =
3)
where MROA represents the three-year rolling average of ROA, EQUITY is the ratio of
total equity to total assets, and o, (ROA) denotes the standard deviation of ROA over the same
rolling window. The Z-Score is a well-established measure of bank soundness or solvency,
with lower values indicating a higher probability of failure®. For further granularity, we
decompose the Z-Score into ZLSCORE (leverage risk) and Z2SCORE (asset risk), as detailed
by Goyeau and Tarazi (1992) and Lepetit et al. (2008). This decomposition allows us to discern
whether changes in the Z-Score are driven by asset risk or leverage risk. We also incorporate
the market-based Z-Score (MZScore) into our risk proxies for a more comprehensive analysis°.
We complement these accounting-based measures with market-based indicators, particularly
for listed banks, as accounting variables may not fully reflect sudden shifts in bank profit
volatility and overall risk*'. We estimate systematic and idiosyncratic risks using the market
model:
Rt = a+ PRy + &,

(4)

% e.g., Lepetit and Strobel, (2013); Kéhler, (2015); Mollah et al., (2016); Mergaerts and Vennet, (2016).

10 The Market-based ZScore is calculated using the formula: MZScore = 100 + (Return/std(Return)), where Return
and std(Return) are expressed as percentages. Return is the mean of daily bank stock returns over a calendar year.
The MZScore standardizes how much a stock’s return deviates from its average performance in relation to its
volatility.

1 The literature utilizes various risk measures, including beta and the standard deviation of residuals from a
regression of daily stock returns on market portfolio returns (Rozeff, 1982; Li & Zhao, 2008; Hoberg & Prabhala,
2009). Other common risk measures include the standard deviation of stock returns or the residuals from a
regression of excess returns on the three Fama and French (1992) factors.
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Where Ri; represents the daily return on the stock of bank i, and Rm¢ is the daily return of
the Local Market Index (LI). For our sample of U.S. and European banks, we utilize 26 Local
Market Indexes, as detailed in Appendix A, sourced from Thomson Reuters DataStream.
Following established methodologies (e.g., Pathan, 2009), systematic risk (BETA) 12 is
captured by the estimated coefficient B, while total risk (TRi) is represented by the annual
standard deviation of the bank's daily stock returns. For robustness, we measure default risk
using Merton’s distance to default (DD) and default probability (PD), derived from the option
pricing model of Black and Scholes (1973) and Merton (1974). The formulas for distance-to-
default (DD) and default probability (PD) are as follows:

VAit O-ZA,it
ln(Lit )+<rf— 5 >><T

04,it VT

DD;, =
()

PD=1-N(DD)
(6)

where VAt is the market value of the bank’s assets, L it is the book value of debt, T is its
maturity, rr is the risk-free interest rate (10-year Government Bond Yields: Main (Including
Benchmark) for the Euro Area & US, Percent, Monthly), and o a is the volatility of the bank’s
assets. DD is computed as the number of standard deviations between the expected asset value
at maturity T and debt threshold and the PD, defined as the probability of the asset value below
denotes the relation with liability threshold at the end of the time horizon T. Details on the
computation of Merton’s distance to default (DD) are provided in Appendix B. Additionally,
we consider Price Volatility (Price_VOL) as a measure of a stock's annual price fluctuation
from its mean. For example, a stock with 20% price volatility indicates a historical variation of

+20% from its average annual price.

Fig. B.1 in Appendix B displays the distribution of key bank risk measures, including
solvency and profitability (Z-Score, SD ROA, Total Risk) and market and credit risk metrics
(Beta, Price Volatility, Distance to Default).

12 Systematic Risk (Beta, B): Beta measures the relationship between a stock's volatility and the overall market's
volatility. This coefficient is calculated using the percentage changes in price over a period of 23 to 35 consecutive
month-end data points, compared to a local market index. Beta indicates the extent to which a security's return
tends to move in tandem with the overall stock market.
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1.4.2. Measuring Opacity using Analyst EPS Forecasts

In this section, we outline the construction of our opacity measures. Our approach builds on the
intuition provided by Morgan (2002), Flannery et al. (2004), Anolli et al. (2014), and Fosu et
al. (2017), which suggests that increased uncertainty about an institution's future tends to reduce
the accuracy of EPS forecasts. Accordingly, we use these proxies as our measures of opacity in
this study. Specifically, we measure analysts’ forecast error as the absolute value of the
difference between the mean analysts’ forecasts and the corresponding firm-year’s actual
earnings per share (EPS), deflated by the share price at the end of the period:

AEPS;, — FEPS;,
Price;,

FE — EPS;, =

()

This alternative measure of opacity is calculated as the standard deviation of analyst
forecasts of earnings per share (EPS), scaled by the share price at the end of the period. It
represents the level of disagreement or dispersion among analysts regarding future EPS

estimates, providing insight into the uncertainty and variation in market expectations:

o(FEPS ;)

Forecast Dispersion ;, = Price
it

(8)
where FEPS; . represents the average of all earnings forecasts for bank i in fiscal year t;

AEPSi,t is the actual earnings per share for bank i in fiscal year t; and Pricei,tis the share price

of bank i at the end of fiscal year t.

1.4.3. Measuring Analyst Pressure: Coverage Effect

Analyst coverage is primarily quantified by the number of analysts monitoring a bank in the
prior year (t—1). Additionally, we use the natural logarithm of analyst coverage to capture
potential changes over time. To account for the possibility that analyst coverage is
endogenous—where larger banks or those with higher returns on assets (ROA) are more likely
to attract analysts (Das et al., 2006; Lee and So, 2017)—we consider several factors influencing
analyst coverage. These factors include firm size, past performance, growth, external financing
activities, and business volatility, all of which may also influence a bank’s profitability and risk
(Bhushan, 1989; Dechow & Dichev, 2002; Kasznik, 1999). To address this potential
endogeneity, following Yu (2008) and Lee and So (2017), we create an alternative measure

called Residual_Coverage. This variable is derived as the residual from a regression of Analyst
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Coverage on Bank Size (measured as the natural logarithm of assets) and Past Performance

(measured as lagged ROA), controlling for year-fixed effects:

Analyst Coverage;, = a + f1Bank Size;,_, + f2BPast Performance;,_, +
Year Dummies + &;;

9)
The residuals from this model, labeled as Residual_Coverage, serve as an alternative proxy for

analyst coverage®®.

1.4.4. Measuring Analyst Pressure: Informational Effect

To assess the predictive ability and perceived value of analyst reports—especially
recommendations—by market participants, we use proxies based on the distribution of
consensus recommendation levels and changes. Specifically, we include Recommendation
Consensus (REC_Con), with values ranging from 1 for "Strong Buy" to 5 for "Strong Sell,"
and Recommendation Revisions, capturing the frequency of upgrades (REC_Rev_Up) and
downgrades (REC_Rev_Dn). For easier interpretation, we express recommendation
distributions as percentages of favorable, non-favorable, and hold recommendations, along with

dummy variables for buy and sell recommendations (e.g., REC_BUY, REC_SELL).

1.4.5. Measuring Bank Dividend Payout

We measure Dividend Payout Per Share (%) by dividing Stock Dividends Per Share by
Earnings Per Share and multiplying the result by 100. To ensure robustness, we include an
additional proxy: Growth in Dividend Yield, calculated by dividing Dividends Per Share by the
Market Price at Year-End and multiplying by 100. These metrics provide a comprehensive view

of dividend distribution and yield growth for analysis.

1.4.6. Control Variables

Our econometric models incorporate several bank-specific control variables that are expected
to impact profitability and risk. We include the natural logarithm of total assets (SIZE) and the
ratio of equity to total assets (EQUITY2A) to account for bank size and capitalization,
respectively. Larger banks, benefiting from diversification and economies of scale, may achieve

higher profitability through non-interest-generating activities (Hughes et al., 2001). However,

13 The results remain consistent across all tests, whether using the raw number of analysts, the natural logarithm,
or residual coverage as the measure.
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their complexity may increase agency costs, potentially reducing profitability (Berger et al.,
1987). Regarding risk, large banks can diversify more effectively, potentially lowering the risk
(Demsetz & Strahan, 1997), but may also engage in riskier behavior due to too-big-to-fail
policies (Galloway et al., 1997). Credit risk is measured by the ratio of non-performing loans
to gross loans (NPL), which includes loans that are non-accrual or overdue by 90 days or more.
To capture differences in business models, we use the ratio of net noninterest income to total
assets (NI12A), following Kohler (2015). Banks with higher noninterest income typically face
increased risk and lower risk-adjusted profitability (Stiroh, 2004; Lepetit et al., 2008;
Demirguc-Kunt & Huizinga, 2010; Altunbas et al., 2011). Non-interest income can also be
more volatile, potentially destabilizing banks (Liikanen, 2012). We also consider the ratio of
deposits to total assets (DEPOSITS), as banks with higher deposit ratios may take on greater
risk, especially when deposits are insured, which reduces depositor incentives to monitor bank
activities (Demirguc-Kunt & Detragiache, 2002; Barth et al., 2004). To account for
macroeconomic conditions, we include the real GDP growth rate (GDPgr) and the inflation
rate, as higher GDP growth is generally associated with increased profitability (Molyneux &
Thornton, 1992; Albertazzi & Gambacorta, 2009) and reduced risk (Beltratti & Stulz, 2012;
Distinguin et al., 2013).

1.4.7. Data Collection and Preprocessing

We collected consolidated balance sheets, income statements, and market data from the
Thomson Reuters Datastream database, including daily and monthly stock prices and local
market indices. Analyst-related data, such as forecasts, recommendations, and coverage, were
retrieved from the Institutional Brokers Estimate System (I/B/E/S), while macroeconomic
variables were sourced from Federal Reserve Economic Data (FRED). Our initial sample
comprised 987 publicly traded commercial banks from the U.S. and Europe, covering 2000 to
2020. We focused on listed banks due to the availability of detailed market data (e.g., market
value of assets, dividends) and comprehensive balance sheet information. To refine the sample,
we filtered for “primary quotes only” and applied sector-specific criteria (GICS sectors: Banks;
TRBC sectors: Banking services, Banks, and Investment banking and brokerage services),
yielding 845 listed commercial banks (591 in the U.S. and 254 in Europe). We then excluded
bank-year observations with negative values for interest income, non-interest income, or stock
prices to prevent noise or spurious correlations. Banks without analyst coverage were also
excluded, and each bank holding company was required to have at least three consecutive years

of data to ensure robustness. After merging datasets and removing incomplete observations, our
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final sample consisted of 341 banks across 25 countries in the U.S. and Europe, spanning the
years 2000 to 2020. To mitigate the impact of outliers, we applied winsorization to continuous
bank-level variables at the 1% and 99% levels.

1.4.8. Summary Statistics and Correlation Matrix

Table 1. 1 provides an overview of the variables used in this study, along with their summary
statistics. The mean ZScore, an inverse measure of risk-taking, is 66.95, indicating that, on
average, profits would need to decline approximately 66 times before the average bank faces
default. The ZScore exhibits high variability (SD = 67.87), with a range from 3.3 to 326.3,
highlighting significant heterogeneity across banks. The average risk-adjusted profit is 6.9, while
risk-adjusted capital averages 59.8, indicating that bank stability largely relies on capitalization.
Both metrics display substantial variability. For market-based risk measures, the mean values
are as follows: total risk (1.89%), systematic risk (0.8), market-based ZScore (55.17), and
distance to default (1.26). Most market measures show moderate variability, though the distance
to default has greater fluctuations. The two opacity measures, analysts’ forecast error (0.24) and
forecast dispersion (0.12), reveal high variability, with maximum values of 8.27 and 2.55,
respectively. The average analyst recommendation consensus is 2.56, indicating a balance

between buy and hold recommendations, with an average of seven analysts covering each bank.

Table 1. 2 presents the correlation matrix for key explanatory variables. Overall, correlation
coefficients are low, with some notable relationships between bank size (Log(Assets)), Equity
(equity-to-assets ratio), and analyst coverage. To address multicollinearity, we orthogonalized
Equity and Analyst coverage concerning Log(Assets). The summary statistics and pairwise
correlations suggest our sample does not suffer from significant outliers or limited variability.
The correlation between Opacity F_Er (forecast error) and Coverage is 0.0672, suggesting a
weak positive relationship, indicating that opacity may persist despite higher analyst coverage.
This could be due to analyst herding, where analysts converge on similar predictions, leading to
high forecast error despite greater coverage, especially in opaque environments. The correlation
between Opacity F_Er and Opacity FD (forecast dispersion) is 0.439, indicating that banks
with higher forecast error (i.e., more opacity) also tend to have greater forecast dispersion,
reinforcing the notion that opacity increases uncertainty among analysts. The correlation
between DIV_Payout and Opacity F_Er is slightly negative at -0.026, suggesting that banks
with higher dividend payouts tend to have marginally lower opacity, aligning with the
Dividends-Opacity Channel, where dividend payments impose market discipline. However, the
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relationship is very weak, suggesting additional factors may influence opacity. Non-performing
loans (NPL) show a weak positive correlation with both Opacity F_Er (0.1543) and Opacity FD
(0.1111), indicating that banks with higher credit risk are likelier to engage in opaque practices,
possibly to obscure underlying issues. Inflation and GDP growth show minimal correlation with
opacity (measured by forecast error and dispersion), suggesting that macroeconomic conditions

have little impact on the accuracy or consistency of analysts' predictions in this sample.

Additionally, Table B2 in Appendix B provides the correlation matrix for risk and opacity
variables, detailing their significance levels and further illustrating the relationship between
opacity and bank risk-taking behavior. We also explore the relationship between opacity and
risk-taking by plotting detrended measures of opacity, derived from analysts’ forecast error and
dispersion, against detrended risk-taking, represented by the Z-score. The scatter plots with fitted
trend lines in Figures 1 and 2 illustrate a negative correlation between bank opacity and risk-

taking.
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Table 1.1 Variables Definition and Summary Statistics

Variable Description

Dependent variables Obs Mean Std. Dev. Min Max

SDROA Three-year rolling-window standard deviation of the return on assets (%) 5780 0.38 0.53 0.00 3.25

ZScore ZScore = (MROA+ Equity)/SDROA, Equity is the ratio of total equity to total assets, MROA is the three- 5780 6695 67.88 337 326.66
year rolling window average of ROA

Z1Score Measure of leverage risk. Z1Score = Equity/SDROA 5,780 59.87 60.87 3.33 29284

Z2Score Measure of bank asset risk. Z2Score = ROA/SDROA 5780 6.98 741 -053 3470

MZScore Market based Z§cgre. 100+ (mean of daily stock return within a calendar year(%) /standard deviation of daily 5750 5518 3128 000 41314
stock returns within a calendar year (%)

TR Market based bank risk defined as the standard deviation of daily stock returns within a calendar year (%) 5780 1.86 1.37 0.00 8.57

BETA Systematic risk.Shows the relationship between the volatility of the stock and the wvolatility of the market. 5780 0.84 0.57 -1.24 2.92

Price_VOL Ameasure of astock's average annual price movement to a high and low from a mean price for each year. 5780 2315 7.26 589 4752

DD mert Bank dl_stance to default, calculated using the 'mertonByTimeSeries' method. For further details, refer to 5780 125 1008 -3318 8053
Appendix B.

PD_mert Bank probability of default, calculated using the ‘'mertonByTimeSeries' method. 5,780 0.52 0.42 0.00 1.00

Variables Of Interest

Analysts Forecasts and Recommendations
Measure of Opacity:1Y_FWD_EPS_Forecast_Error: This is calculated as the absolute value of the difference

Forecast Error between the mean analyst forecast of earnings per share (EPS) and the actual EPS, scaled by the share priceat 5,780  0.24 1.05 0.00 8.27
the end of the period.

. . This alternative measure of opacity is calculated as the standard deviation of analyst forecasts of earnings per

Forecast Dispersion share (EPS), scaled by the share price at the end of the period. 5780 012 0.36 0.00 285

Forecast_Optimism The d'ummy'varl'abl.e is equal to qne |f the dlfferepce betv.veen Actyal earnings and forecasted earnings is 5780 146 672 995 3912
negative which indicates overestimation or negative earning surprise.

Coverage Analyst_Cowverage :Number of analysts per bank 5780 7.8 9.05 0.00  46.00

REC_Con Recommendation consensus (average), 1 = Strong buy, 5 = Strong sell, 5,780 2.56 0.52 1.00 5.00

REC_Rev_Dn Recommendations revisions Downgrade :NO. OF RECMND DOWN (revision) 5780 0.17 0.54 0.00 7.00

REC_Rev_Up Recommendations revisions: NO. OF RECMND UP(revision) 5780 0.14 0.46 0.00 5.00

REC_Cons_ BUY % REC BUY % 5,780 3852 30.01 0.00 100.00

REC_Cons_ HOLD % REC HOLD % 5,780 53,55 2946 0.00 100.00

REC_Cons_ SELL % REC SELL% 5780 793 1494 0.00 100.00

REC_BUY Dummy variable equal to one for buy, moderate buy, and strong buy recommendations; zero otherwise. 5780 0.73 0.44 0.00 1.00

REC_SELL Dummy variable equal to one for sell, moderate sell, and strong sell recommendations; zero otherwise. 5780 0.11 0.31 0.00 1.00

DIV_Payout Dividend Payout Per Share (%) :Dividends Per Share / Earnings Per Share * 100 5,780 32.07 2270 0.00 91.50

DIV Yield Stock Performance Ratio,Dividend Yield - Close, Dividends Per Share / Market Price-Year End * 100 5780 239 1.82 0.00 9.09

Control Variables

DEPOSITS Ratio of customer deposits to total assets (%) 5,780 7055 1519 2479 89.87

EQUITY2A Ratio of Equity % Total Assets 5,780 10.05 3.50 2.88 2348

SIZE Natural logarithm of total assets 5780 9.90 0.91 7.73 1253

NI2A Ratio of net noninterest income to total assets (%) 5780 1.39 1.38 0.00 29.22

NPL Non-Performing Loans % Total Loans 5780 246 3.55 0.01 23.63

. o . . .

MTBV I\/.Ia.rket to Book Value of equity c‘:ipltal(@) proxy for Franchise Value, The market value of equity capital 5780 13270 6508 19.00 378.00
divided by total book value of equity capital* 100

GDPgr GDP growth (annual %) 5,780 1.62 220 -579 6.2

Inflation Inflation, consumer prices (annual %) 5780 1.94 124 -069 6.36

Table 1.1 describes the variables used in the analysis, with summary statistics including observations,

mean, standard deviation,

minimum, and maximum values. Variables are categorized into Dependent Variables, Variables of Interest, and Control

Variables.
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Table 1.2 Correlation Matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 Opacity_F_Er 1
2 Opacity_FD 0.439 1
3 Cowverage 0.0672 0.0118 1
4 REC_Consensus  0.0068 0.0406 0.0732 1
5 REC_Rev_Dn 0.0354 0.0413 0.2604 0.093 1
6 REC_Rev_Up 0.0654 0.0726 0.3024 0.0229 0.2155 1
7 DIV_Payout -0.026 -0.1023 0.0898 0.1385 0.003 0.0044 1
8 NPL 0.1543 0.1111 0.142 0.0518 0.1309 0.1532 -0.1813 1
9 SIZEnew -0.0227 -0.0065 0.0149 -0.1561 0.0063 0.0243 -0.0419 0.0188 1
10 EQUITY2A -0.0709 -0.0455 -0.1195 -0.0737 -0.1595 -0.1474 -0.0034 -0.073 -0.0889 1
11 NI2A 0.1693 0.0442 0.1175 0.0355 0.0354 0.0569 0.0376 0.1177 -0.1341 0.1313 1
12 DEPOSITS -0.1244 -0.072 -0.2708 -0.063 -0.2104 -0.2141 -0.0745 -0.0819 -0.0972 0.3333 -0.1267 1
13 GDPgr -0.0496 -0.029 0.0015 0.0451 -0.027 -0.0096 -0.0277 -0.1277 -0.1659 0.0614 0.0092 0.0585 1
14 Inflation -0.0157 -0.0208 -0.113 0.054 -0.0345 -0.0298 -0.0603 -0.154 -0.214 0.0607 0.0692 0.0147 0.2723 1

Table 2 displays the correlation matrix for key explanatory variables available in Table 1.

Scatter Plot of Detrended Opacity and InZScore
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Fitted values ‘

Fig. 1.1: Scatter plot of detrended opacity and risk-taking.
This figure shows a scatter plot of detrended opacity,
measured by analysts’ earnings forecast dispersion, in
relation to bank risk-taking.

Scatter Plot of Detrended Opacity and InZScore
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Fig. 1.2: Scatter plot of detrended opacity and risk-taking.
This figure shows a scatter plot of detrended opacity,
measured by analysts’ earnings forecast error, in relation
to bank risk-taking.
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1.5. Empirical Findings and Analysis

This section presents the core empirical results from estimating Eq. (1), incorporating bank- and
year-fixed effects to address unobserved heterogeneity. Subsequent sections provide robustness
checks and marginal effect analyses derived from Eq. (2) to validate the stability and reliability

of findings.

1.5.1. Opacity, Analyst Influence, and Bank Risk Taking

In this section, we explore the influence of bank opacity, analyst coverage, and dividend policies
on risk profiles, with model specifications evolving from opacity-only analysis to the inclusion
of analyst pressure and dividend variables. Table 1. 3 presents the empirical results for Eq. (1),
where we test the validity of using analyst forecast errors and forecast dispersion as proxies for
bank opacity. We also examine the effects of these opacity measures, along with analyst pressure
and dividend payout policies, on bank risk profiles. We begin with Models 1 and 7, where bank
risk-taking is explained solely by opacity. In both models, the coefficient on opacity is negative
and statistically significant at the 1% level, providing strong support for Hypothesis 1: Opacity
increases risk-taking behavior and reduces profit efficiency among banks. In Models 2 and 8,
we extend the analysis by including traditional determinants of bank risk-taking. We further
control for analyst pressure, specifically the coverage effect, in Models 3 and 9. Additionally,
we control for analysts' informational effect through their recommendations and revisions in

Models 4-5 and 10-11. Finally, we introduce the dividend payout ratio in Models 6 and 12.

Across all model specifications, the coefficient on opacity remains negative and statistically
significant at the 1% level. The results suggest that a one-unit increase in opacity leads to at least
a 4.9% increase in bank risk-taking. In fully specified models (Models 6 and 12), a one standard
deviation increase in opacity corresponds to a 6-15% rise in bank risk-taking. Our results indicate
that analysts’ earnings forecast dispersion and bias are informative about future bank
profitability and risk, supporting the notion of analysts' informational efficiency as a forward-

looking proxy for measuring opacity in banks.

The coefficient on the coverage index is positive in Models 3-6 and 9-12, indicating that
increased analyst coverage is associated with reduced bank risk-taking. Specifically, in Models
9 and 12, a one standard deviation increase in analyst coverage is associated with a 7.4-8%
decrease in risk-taking, with this effect being statistically significant at the 1% level. This
supports our second hypothesis: Higher Analyst Coverage disciplines banks from risk-taking.
Higher analyst coverage is generally associated with lower default risk and less risk-taking,
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therefore it has a mitigating effect on risk. Models 4-6 and 10-12 reveal a significant, negative
relationship between analyst recommendations (REC_CON) and default risk. Specifically, sell-
oriented recommendations (higher REC_CON values) are associated with elevated default risk,
as indicated by the negative and significant coefficients in the ZScore models. These findings
reinforce the predictive power of analyst recommendations in signaling bankruptcy risk,
highlighting that analysts can effectively identify banks with higher risk levels. The association
of sell recommendations with increased bank risk indicates that analysts accurately recognize
and communicate risks to the market, underscoring their informative role in predicting bank
stability and influencing market dynamics. For recommendation revisions, Models 5-6 and 11-
12 indicate that downgrade revisions are significantly associated with higher bank risk,
particularly when the initial recommendation is "sell" or "strong sell.” Conversely, while
upgrade revisions are associated with higher bank solvency when the initial recommendation is
"buy" or "moderate buy," their effect is not strong or statistically significant. This suggests that
downgrade revisions carry greater weight in signaling risk, whereas upgrade revisions offer a
weaker and less consistent signal regarding bank stability.

The dividend payout ratio is positively and significantly correlated with bank solvency. A
one standard deviation increase in the dividend payout ratio corresponds to a 12.6-12.7%
improvement in bank stability, supporting our third hypothesis that dividend payments enhance
market discipline and contribute to higher bank stability. This suggests that banks distributing
more profits to shareholders through dividends tend to exhibit greater stability and are less
likely to engage in aggressive risk-taking, reinforcing dividends as signals of financial health
and prudent management. These results align with the broader literature, which often views
stable dividend policies as indicators of strong financial discipline.

Among control variables, a higher non-performing loan (NPL) ratio significantly increases
risk, indicating a negative effect on stability. Bank size has a positive and significant effect,
suggesting that larger banks are generally more stable. Similarly, the equity-to-assets ratio
positively impacts stability, as higher equity levels bolster solvency. The net non-interest
income to assets variable, however, is not significant, showing no clear association with
stability in our sample. The deposits-to-assets ratio has a slight negative effect, indicating that
higher deposit levels may marginally increase risk. Additionally, GDP growth positively and
significantly impacts stability, suggesting that economic growth supports bank resilience, while
inflation shows no significant relationship with stability.
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Table 1.3: Opacity and Bank Risk-Taking-Fixed Effect Estimation Results

Dependent Variable: In(Z-Score)

Analyst Forecast Error Analyst Forecast Dispersion
@ 2 3 () (©) (6) @] ®) ) (10) (1) (12)
Opacity -0.206%**  -0.148*** 0,149*** _0.145%** . 160*** -0.149%** -0.0849** -0.0747*** -0.0730** -0.0692** -0.0707** -0.0600**
(-5.95) (-4.69) (-4.77) (-4.60) (-4.76) (-4.49) (-2.55) (-2.61) (-2.59) (-2.52) (-2.49) (-2.33)
Coverage 0.0103***  0.0102***  0.0118***  0.0103*** 0.00979*** 0.00971*** 0.0114*** 0,00991*** 0.00951***
3.67 3.58 4.39 3.77 3.43 3.35 4.15 3.57 3.24
REC_Con -0.147%% -0.128%x -0.147%% -0.132%%%
(-4.39) (-3.66) (-4.33) (-3.71)
REC_Rev_Dn -0.0557**  -0.0466** -0.0491**  -0.0404*
(-2.58) (-2.15) (-2.24) (-1.83)
REC_Rev_Up -0.0445 -0.0488* -0.0440*  -0.0488*
(-1.65) (-1.71) (-1.69) (-1.76)
DIV_Payout 0.00559*+*+* 0.00556***
5.93 5.82
NPL -0.0744%** _0,0747%** -0.0730*** -0.0695*** -0.0643*** -0.0773** _Q,0777*** -0.0759*** -0,0728*** -0.0675***
(-8.20) (-8.23) (-8.19) (-7.67) (-7.40) (-8.53) (-8.54) (-8.48) (-8.00) (-7.72)
SIZEnew 0.488***  0.483***  (.438***  (580%**  (.576%** 0515  0.510%**  0.464**  (.613***  (.596%**
5.07 5.05 4.65 5.93 5.8 5.32 5.29 49 6.1 5.93
EQUITY2A 0.0460%**  0.0459%**  0.0452%**  0,0491***  (.0499*** 0.0463***  0,0461***  0.0455%**  0,0492%**  (.0499***
6.34 6.39 6.51 6.56 6.88 6.27 6.31 6.43 6.43 6.75
NI2A -0.0418*  -0.0392 -0.0388 -0.0353 -0.0361 -0.0427 -0.0403 -0.0399 -0.0361 -0.037
(-1.67) (-1.58) (-1.58) (-1.41) (-1.45) (-1.63) (-1.54) (-1.54) (-1.31) (-1.35)
DEPOSITS -0.00340** -0.00354** -0.00395** -0.00288*  -0.00298* -0.00332** -0.00345** -0.00385** -0.00277*  -0.00288
(-1.98) (-2.12) (-2.29) (-1.77) (-1.66) (-1.98) (-2.12) (-2.28) (-1.74) (-1.63)
GDPgr 0.0883***  0,0867***  0.0861***  0.0803***  (0.0829*** 0.0891***  0.0876***  0.0870***  (0.0814***  (.0838***
14.59 14.24 14.35 13.46 13.6 14.67 14.34 14.45 13.62 13.73
Inflation -0.00391  0.000575  0.00443 0.0041 0.0114 -0.00249 0.0018 0.00566 0.00539 0.0128
(-0.30) 0.04 0.34 0.31 0.87 (-0.19) 0.14 0.44 0.42 0.99
_cons 3.768%F*%  3.632%%*  BEG7ARR  3Q5@kAk B AGJuk 3 G7gkkk 37314 3.604%%* 35330k 3033wk 3403wk 3 GRgk
449.07 25.35 27.09 25.85 26.17 21.51 709.01 25.34 26.93 25.7 25.78 21.43
Observations 5775 5775 5775 5775 5435 5435 5775 5775 5775 5775 5435 5435
Number of banks 340 340 340 340 340 340 340 340 340 340 340 340
R-square 0.0196 0.151 0.154 0.16 0.156 0.171 0.00726 0.147 0.15 0.156 0.149 0.165

This table presents fixed-effects estimation results based on Equation (1), evaluating the impact of opacity on bank risk-
taking, proxied by the natural logarithm of the Z-Score (default risk). Opacity is quantified using analysts’ forecast error
(absolute deviation of mean forecasts from actual EPS, scaled by share price) and forecast dispersion (standard deviation of
EPS forecasts, scaled by share price). Analyst coverage is measured as the number of analysts covering a bank in year ttt.
Additional proxies include Recommendation Consensus (REC _Con) and Recommendation Revisions (upgrades:
REC_Rev_Up, downgrades: REC_Rev_Dn). Dividend payout (DIV_Payout) is calculated as Stock Dividends Per Share
divided by Earnings Per Share. Control variables include bank size (log of total assets, SIZE), equity-to-assets ratio
(EQUITY2A), non-performing loans ratio (NPL), net non-interest income to assets ratio (NI12A), deposits-to-assets ratio
(DEPOSITS), GDP growth (GDPgr), and inflation. Robust standard errors are clustered at the bank level. ***, ** and *
indicate significance at the 1%, 5%, and 10% levels, respectively.

1.5.1.1. Alternative Measures for Analyst Coverage

We examine alternative metrics for analyst coverage, including logarithmic transformations and
residual-based measures, to assess coverage effects independently of bank size and performance,
ensuring robustness against endogeneity. Ln_Coverage accounts for potential nonlinear effects
over time, while Residual Coverage isolates analyst attention independent of bank size and past

performance, addressing endogeneity concerns. By regressing analyst coverage on bank size
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(log of total assets), past performance (lagged ROA), and year-fixed effects, we derive Residual
Coverage as the unexplained variation. As shown in Appendix C (Tables C1 and C2), these
alternative proxies remain positive and statistically significant against default risk measures,
reinforcing our main findings. This consistency confirms that greater analyst scrutiny is linked

to higher default risk, supporting our hypothesis.

1.5.1.2. Threshold Effects of Dividend Payout and Analyst Coverage on Stability

While moderate dividend payouts have been historically linked to improved bank solvency and
enhanced market discipline, a closer examination reveals a more nuanced relationship at higher
payout levels. As shown in Table 1.4, when the dividend payout ratio exceeds the 75th
percentile, the coefficient shifts to negative territory, indicating a departure from the expected
stabilizing effect. This reversal suggests that beyond a certain threshold, excessive dividend
distributions may weaken a bank’s financial resilience. While attractive to shareholders, large
dividend payouts can deplete the capital buffer that banks need to effectively manage risks. As
internal resources shrink, banks may resort to riskier investment strategies to sustain
profitability and meet shareholder demands. Consequently, rather than reinforcing market
discipline, excessive dividends could incentivize risk-taking behaviors that ultimately
jeopardize financial stability**. The analysis shows that the negative effect of opacity on the Z-
Score lessens with higher analyst coverage, with the opacity coefficient dropping from -0.225
below 50% coverage to -0.117 above 50% (Table 1.4, columns 4-5). This suggests that
increased analyst scrutiny improves the information environment, reducing opacity’s adverse
impact on bank risk. Additionally, REC_Con coefficients strengthen in columns 5-7, indicating
that negative recommendations ("'sell”) have a more pronounced impact on bank stability with
coverage above 75%, implying that higher coverage amplifies market reactions to negative

recommendations, potentially driving riskier behaviors or exacerbating vulnerabilities in banks.

14 As a robustness check, we used an alternative proxy for dividends, specifically the dividend yield, and the
results remain consistent with the main indicator, which is the dividend payout ratio.
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Table 1.4: Threshold Effects of Dividend Payout and Analyst Coverage on Stability.

Dependent Variable: In(Z-Score)

Dividend Payout Ratio Analyst Coverage Dividend_Yield
(€] (@) (©) @ ®) (6) U] (8 ©
< 50th% > 50th% > 75th% < 50th% > 50th% > 75th% < 50th% > 50th% > 75th%
Opacity -0.129%**  -0.114** -0.0981* -0.225%**  -0.117*%**  -0.115*** -0.121***  -0.231***  -0.146**
(-2.79) (-2.37) (-1.96) (-5.15) (-3.49) (-2.88) (-3.06) (-2.89) (-2.29)
Dividend_Payout 0.0108***  0.00205  -0.00599** 0.00576*** 0.00524*** 0.00571*** 0.204***  -0.0510*** -0.0830***
4.33 1.37 (-2.57) 3.57 4.74 3.84 -5.33 (-3.20) (-3.85)
Coverage 0.0141**  0.00515*  0.00716* 0.0382 0.0123***  0.00908* 0.0105**  0.00665**  0.0101***
321 1.81 1.86 0.95 3.81 1.94 2.31 2.39 2.99
REC_Con -0.165*** -0.0972* -0.0563 -0.0966* -0.198***  -0.221*** -0.150*** -0.102* -0.0589
(-3.68) (-1.78) (-0.72) (-1.95) (-4.12) (-3.54) (-3.29) (-1.97) (-0.96)
_cons 3.443%**  3211*%**  3.820*** 3.695%**  3763***  3.881*** 3.388***  3547***  3.264***
22.02 6.97 5.7 15.74 15.31 11.28 -20.34 -8.67 -6.16
Control Variables yes yes yes yes yes yes ves yes yes
Observations 2725 2710 1361 2192 3243 1554 2700 2576 1390
Number of banks 308 319 263 264 281 172 306 315 272
R-square 0.179 0.126 0.102 0.219 0.171 0.163 0.183 0.168 0.178

This table presents the fixed-effect estimation results based on Eqg. (1), analyzing the impact of opacity on bank
stability, with a focus on the moderating effects of dividend payout ratio, analyst coverage. Bank risk-taking is
proxied by the natural logarithm of the Z-Score. Opacity is quantified using analysts’ forecast error (absolute
deviation of mean forecasts from actual EPS, scaled by share price) and forecast dispersion (standard deviation of
EPS forecasts, scaled by share price). The analysis is segmented by different thresholds of dividend payout ratios
(<50%, >50%, >75%), analyst coverage (<50%, >50%, >75%), and dividend yield (<50%, >50%, >75%). All
estimations include time-fixed effects, and robust standard errors clustered at the bank level are displayed in
parentheses. Statistical significance is indicated by ***, ** and * for the 1%, 5%, and 10% levels, respectively.
Control variables are included but not shown for brevity.

1.5.1.3. Employing Market-Based Risk Metrics for Robustness

To capture rapid risk fluctuations, this analysis incorporates market-based metrics such as total
risk and systematic risk alongside traditional accounting measures, offering a more dynamic
perspective on opacity’s impact. The heightened market pressure stemming from analyst
forecasts can induce a more volatile market environment, with frequent fluctuations in asset
prices potentially bringing banks closer to their default thresholds. We hypothesize that stock
prices respond to analyst recommendations and revisions, impacting market-based return
volatility and risk measures like MZScore and TR. Additionally, we decompose ZScore into
Z1Score (risk-adjusted capital) and Z2Score (risk-adjusted profit) alongside market-based risk
measures introduced in Section 1.4.1. Table 1.5 shows that across models (1-3) and (7-9) for
ZScore, Z1Score, and Z2Score, the opacity coefficient is consistently negative and significant
at the 1% level, supporting Hypothesis 1 that higher opacity correlates with increased bank risk-
taking. Models (4) and (10) with MZScore yield similar results, confirming robustness. For total
risk (TR) and earnings volatility (SDROA) in models (5-6) and (11-12), opacity remains
positively associated with bank risk. These findings consistently indicate that higher opacity,

measured by forecast error or dispersion, aligns with increased profit volatility and overall risk,
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suggesting that opaque banks, less transparent to investors, often adopt riskier financial

strategies, heightening vulnerability to instability.

Analyst coverage shows a positive relationship with default risk proxies (ZScore, Z1Score,
MZScore) while negatively associated with risk-taking proxies (SDROA and TR), though not
significant for asset risk (Z2Score). This implies that higher analyst coverage generally
enhances market monitoring, reducing default risk and curbing risk-taking behaviors. Analyst
recommendations (REC_CON) show a negative correlation with default risk proxies and a
positive association with risk-taking proxies, meaning sell-oriented recommendations align
with higher default risk and risk-taking behaviors. Downgrade revisions (Rec_REV_Dn)
negatively correlate with default risk and increase volatility, especially with sell
recommendations. In contrast, upgrade revisions (Rec_REV_Up) show no significant link to
risk-taking, suggesting stronger market reactions to negative recommendations. These findings
indicate that analyst recommendations and revisions significantly influence stock prices,
affecting market-based return volatility and risk measures such as MZScore and TR. Finally,
Dividend payout ratios positively correlate with default risk proxies while showing a negative
relationship with risk-taking proxies. Excessive payouts, however, turn this coefficient
negative, suggesting that moderate payouts improve stability, whereas excessive payouts may

increase risk.

Our analysis using alternative risk proxies reveals that diversification into non-interest
income-generating activities increases risk-taking, as evidenced by SDROA, aligning with
findings by DeYoung and Roland (2001) and Stiroh (2004a, b, 2006). Higher non-performing
loans are also positively associated with risk, indicating that banks with greater credit risk
exhibit lower stability. Moreover, larger banks and those with higher equity ratios are generally
less risky, whereas banks with a higher deposits-to-assets ratio are more likely to engage in

excessive risk-taking.
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Table 1.5: Opacity and Bank Risk — Employing Alternative Risk Metrics for Robustness

Analyst Forecast Error Analyst Forecast Dispersion
Dependent Variable:
1) @] ) 4 ) (6) (U] (8) ) (10) (11) (12)
ZScore Z1Score Z2Score MZScore SDROA TR ZScore Z1Score Z2Score MZScore SDROA TR
Opacity -0.149*** -0.140%** -0.394*** -0.0481*** 0.0826*** 0.189*** -0.0600** -0.0539** -0.228*** -0.0327** 0.0192 0.0873*
(-4.49) (-4.44) (-4.70) (-2.81) 3.71 3.48 (-2.33) (-2.16) (-3.32) (-2.26) 1.29 1.73
Coverage 0.0103*** 0.0115*** 0.00559 0.00751***  -0.00351** -0.0140*** 0.00991*** 0.0111%** 0.00423 0.00738***  -0.00335** -0.0135***
3.77 419 1.09 6.07 (-2.38) (-3.99) 3.57 4 0.82 5.98 (-2.23) (-3.77)
REC_Con -0.128*** -0.112%** -0.261*** -0.0704*** 0.0677*** 0.154%** -0.132%** -0.116%*** -0.264*** -0.0699*** 0.0714%** 0.158***
(-3.66) (-3.28) (-3.93) (-4.47) 335 -3.28 (-3.71) (-3.35) (-3.88) (-4.45) -3.47 337
REC_Rev_Dn -0.0466** -0.0505** -0.00442 -0.00479 0.00976 0.0528 -0.0404* -0.0448** 0.0149 -0.0022 0.00693 0.0445
(-2.15) (-2.34) (-0.10) (-0.35) 0.98 1.4 (-1.83) (-2.03) 0.32 (-0.16) 0.68 1.2
REC_Rev_Up -0.0488* -0.0522* 0.0266 0.00602 -0.00471 -0.0113 -0.0488* -0.0525* 0.0314 0.0077 -0.00361 -0.012
(-1.72) (-1.82) 0.38 0.55 (-0.28) (-0.36) (-1.76) (-1.87) 0.46 0.7 (-0.23) (-0.37)
DIV_Payout 0.00559***  0.00510*** 0.0156*** 0.00187***  -0.00280***  -0.00490*** 0.00556***  0.00509*** 0.0153*** 0.00183***  -0.00285***  -0.00483***
5.93 5.49 8.44 3.54 (-5.36) (-3.28) 5.82 5.4 8.29 3.52 (-5.36) (-3.25)
NPL -0.0643*** -0.0571%** -0.173*** -0.0357*** 0.0340*** 0.0864*** -0.0675*** -0.0601*** -0.181*** -0.0363*** 0.0358*** 0.0904***
(-7.40) (-7.14) (-8.78) (-7.14) -6.87 651 (-7.72) (-7.44) (-9.00) (-7.28) -7.13 6.73
SIZEnew 0.576*** 0.545%** 0.924*** 0.492%** -0.254*** -0.614*** 0.596*** 0.564*** 0.977*** 0.503*** -0.266*** -0.640***
58 5.56 551 8.62 (-4.73) (-2.90) 593 5.69 5.88 8.86 (-4.91) (-3.04)
EQUITY2A 0.0499*** 0.0533*** 0.0224* 0.0136*** 0.00236 -0.0284*** 0.0499*** 0.0533*** 0.0228** 0.0137*** 0.00242 -0.0285***
6.88 7.07 1.95 421 0.55 (-3.19) 6.75 6.96 1.97 4.22 0.55 (-3.16)
NI2A -0.0361 -0.0404 0.0313 0.0116 0.0374** -0.0381* -0.037 -0.0413 0.0304 0.0101 0.0382** -0.0372
(-1.45) (-1.52) 0.82 1.18 2.2 (-1.88) (-1.35) (-1.43) 0.82 1.04 2.07 (-1.54)
DEPOSITS -0.00298* -0.00238 -0.0102*** 0.00328 0.00194** 0.00616 -0.00288 -0.00229 -0.0100*** 0.00325 0.00188** 0.00605
(-1.66) (-1.15) (-5.67) 113 2.12 0.72 (-1.63) (-1.13) (-5.51) 1.13 2.09 0.71
GDPgr 0.0829*** 0.0818*** 0.0985*** 0.0663*** -0.0377*** -0.180*** 0.0838*** 0.0827*** 0.101*** 0.0669*** -0.0382*** -0.181***
13.6 13.61 9.14 2255 (-9.25) (-20.04) 1373 13.75 9.17 22.85 (-9.38) (-19.97)
Inflation 0.0114 0.00109 0.0940%*** -0.0329*** -0.00627 0.0647*** 0.0128 0.00253 0.0957*** -0.0325*** -0.00751 0.0632***
0.87 0.09 3.79 (-5.10) (-0.85) 434 0.99 0.2 3.99 (-5.17) (-1.03) 4.36
_cons 3.578*** 3.370%** 1.834*** 3.724%** 0.083 1.559** 3.563*** 3.355%** 1.794%** 3.720%** 0.0916 1.578**
21.51 18.12 7.6 16.77 0.85 2.37 21.43 18.08 7.43 16.95 0.93 2.41
Observations 5435 5440 5440 4936 5440 5440 5435 5440 5440 4936 5440 5440
Number of banks 340 340 340 340 340 340 340 340 340 340 340 340
R-square 0.171 0.164 0.216 0.239 0.143 0.196 0.165 0.158 0.212 0.24 0.134 0.192

This table presents fixed-effect estimation results based on Eq. (1), examining the impact of opacity, measured through analyst
forecast error and forecast dispersion, on various banking risk metrics. Dependent variables include ZScore, Z1Score, Z2Score,
MZScore, SDROA, and TR across two models (Analyst Forecast Error and Analyst Forecast Dispersion). Time-fixed effects are
included in all estimations, and robust standard errors clustered at the bank level are reported in parentheses. Statistical significance
is indicated by ***, ** and * for 1%, 5%, and 10% levels, respectively.

1.5.1.4. Contextual Drivers of Bank Risk: Impacts of Valuation, Volatility, and Size

This analysis addresses how variables like optimism valuation, indicated by market-to-book
value, volatility, and bank size, modulate the opacity-risk relationship, highlighting conditions
where opacity exerts a stronger influence on bank risk. The analysis first focuses on the role of
a bank's Market-to-Book Value (MTBV) ratio in assessing how perceived valuation affects the
relationship between risk and opacity, measured by analyst forecast error. The MTBV ratio
serves as a proxy for market optimism or potential overvaluation, revealing discrepancies
between perceived and intrinsic value®®. For banks with MTBV ratios below and above the
median, opacity has a statistically significant negative effect on the Z-score, indicating that

increased opacity undermines bank stability (Table 1.6, Models 1 and 2). Specifically, for banks

15 Prior research links the book-to-market (BTM) effect to earnings announcements, showing that investor
optimism often leads to the mispricing of growth stocks, which then face larger price reversals after disappointing
earnings (La Porta et al., 1997; Skinner & Sloan, 2002; Billings & Morton, 2001).
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with above-median MTBV ratios, the impact of opacity on risk-taking is more pronounced,
suggesting that the detrimental effect of opacity is amplified for banks perceived as overvalued.
This heightened vulnerability likely stems from investor optimism and elevated market
expectations exceeding the bank's actual financial resilience. These findings align with
valuation models in the accounting literature, which indicate that overvalued growth stocks tend
to underperform value stocks following earnings disappointments (Ohlson, 1995; Rees, 1997,
Collins et al., 1999). Overall, the results suggest that opacity has a greater negative impact on
bank stability when perceived market valuations are higher, likely due to market pressure and

heightened expectations exacerbating the risks associated with opaque practices.

To further explore how market uncertainty shapes the opacity-risk dynamic, we examine the
effects of opacity under different levels of stock price volatility, dividing the sample into low-
and high-volatility groups'®. Results from Model 4 in Table 1. 6 show that opacity has a
consistently positive and statistically significant effect on risk-taking at the 1% level in high-
volatility environments. This implies that in uncertain conditions, opacity drives banks toward
riskier behavior, with a one-standard deviation increase in opacity linked to a 12.2% rise in
risk-taking. In more stable, low-volatility contexts, however, the relationship between opacity
and risk weakens, suggesting that the destabilizing impact of opacity intensifies as market

uncertainty increases.

Finally, we investigate the influence of bank size on the opacity-risk relationship by
categorizing banks into small and large groups based on the median of total assets'’. In Models
5 and 6, opacity exhibits a significantly negative association with bank stability, particularly
among smaller banks. This suggests that smaller institutions are more susceptible to the adverse
effects of opacity, underscoring the heightened vulnerability of smaller banks to opacity-driven
risk. Beyond opacity, the data reveal that the disciplining impact of Analyst coverage on bank
risk-taking is stronger for larger banks. Moreover, the favorable analyst recommendations
(BUY/Strong Buy) correlate positively with bank stability in high-uncertainty periods,
highlighting the critical role of market perceptions shaped by analysts when uncertainty is

heightened. Additionally, dividend payouts demonstrate a consistently positive association with

16 Price volatility, calculated as the annual deviation from mean stock price, serves as a proxy for market
uncertainty.

17 Bank size is measured by the natural logarithm of total assets, with a mean of 9.96, a standard deviation of 0.97,
and a median of 9.735. The sample is split into small banks (below the median) and large banks (above the median)
to evaluate how the opacity-risk relationship differs across bank sizes.
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bank solvency across all models, especially when volatility is high, underscoring dividends as

a stabilizing force even as other risk factors fluctuate.

Table 1. 6: Contextual Drivers of Bank Risk: Impacts of Valuation, Volatility, and Size

Dependent Variable:: In(Zscore)

Analyst Forecast Error

(€] 2 ©) ) ©) (6)
Market to Book Value (MTBV) Price _ Volatility SIZE
<Median >Median <Median >Median <Median >Median
Opacity -0.116*** -0.250%** -0.185** -0.117%** -0.233%** -0.0934**
(-3.62) (-4.22) (-2.39) (-3.58) (-5.29) (-2.55)
Coverage 0.00844%*** 0.00899** 0.0103** 0.00998*** 0.00492 0.00819***
29 2.17 2.45 3.33 -0.63 -3.17
REC_BUY 0.189*** 0.0922** -0.026 0.356*** 0.132** 0.0989**
3.36 1.99 (-0.58) 5.71 2.23 2.01
DIV_Payout 0.00352*** 0.00394*** 0.00219 0.00404*** 0.00720*** 0.00479***
-3.35 -2.94 -1.63 -3.59 451 4.4
_cons 2.7947%** 2.729%** 3.889*** 2.372%** 3.088*** 2.135%**
22.32 7.26 9.48 14.42 7.8 7.43
Control Variables yes yes yes yes yes yes
Observations 2815 2620 2680 2755 2673 2762
Number of banks 322 335 315 292 209 237
R-square 0.178 0.212 0.0802 0.229 0.216 0.15

This table presents fixed-effect estimation results based on Eq. (1), exploring how bank opacity (measured through
analyst forecast error) influences bank risk, as represented by the ZScore, across different contextual drivers: Market-
to-Book Value (MTBV), Price Volatility, and Size. Each contextual variable is split at the median, showing effects
in lower (<Median) and higher (>Median) segments. Key variables include Opacity, Coverage, REC_BUY, and
Dividend Payout. Time-fixed effects are included in all estimations, and robust standard errors clustered at the bank
level are shown in parentheses. Statistical significance is indicated by ***, ** and * for 1%, 5%, and 10% levels,
respectively. Control variables are included but not shown for brevity.

1.5.1.5. Interactions between Analyst Coverage, Dividend Policies, and Bank Risk

We explore the non-linear dynamics between opacity and risk, focusing on how the interplay
between analyst pressure and dividend policies affects risk profiles under varying conditions.
Table 1. 7 presents the results from Eqg. (2), which captures this non-linearity. To validate our
findings, we conduct several robustness checks: Models 1 and 7 exclude control variables to
assess their impact, while Models 2-6 gradually introduce bank-specific control variables.
Subsequently, Models 3-4 and 9-10 incorporate Dividend Payout and Analyst
Recommendation variables, along with their interactions with opacity. Models 5, 6, 11, and 12
include all variables for a comprehensive analysis. Additionally, we provide results using both

coverage proxies (Coverage and Ln_Coverage) to ensure robustness.

The main focus is the interaction between opacity—measured through analyst forecast error
and dispersion—and analyst pressure (Coverage), as well as Dividend Payout adjustments. The
coefficient for opacity remains negative and statistically significant at the 1% level across
models. The interaction between opacity and Coverage is positive and statistically significant

at the 10% level. However, the marginal effect of opacity, derived from analysts’ forecast
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dispersion, does not reach statistical significance, indicating a weak moderating effect of
analyst coverage on the opacity-risk relationship. Conversely, a reduction in analyst coverage
may amplify the risk-taking incentives associated with opacity, providing limited support for
Hypothesis 2b, which posits that higher analyst pressure (through information and coverage)
moderates the impact of opacity on risk-taking. Although a moderating effect of analyst

pressure is observed, its economic significance remains modest.

To further illustrate these results, Table 1. 8 presents the marginal effects calculated using
Eq. (2) based on Models 5, 6, 11, and 12 from Table 1. 7. Panel 1 of Table 1. 8 shows that the
marginal effect of opacity, as derived from analysts’ forecast error, is —0.1835 at the 25th
percentile of the Coverage proxy. This effect decreases by 67% to —0.1095 at the 90th percentile
of the Coverage index, translating into a 7.2 percentage point reduction in opacity-induced risk-
taking. These results indicate that bank opacity is more likely to escalate the risk profile when
analyst coverage is low. The moderating role of dividend payout adjustments in the opacity-
risk-taking relationship suggests that excessive dividend payout ratios have a modest
accentuating effect. In Table 1. 7, the interaction between opacity (based on analysts’ forecast
dispersion) and dividend payout adjustments is negative and statistically significant at the 5%
level in Models 11 and 12. The joint significance of opacity and dividend payout adjustments,
as highlighted in Panel 2 of Table 1. 8, suggests that the adverse impact of opacity is slightly
intensified by increased dividend payout adjustments. These results challenge Hypothesis 3b,
which proposed that the marginal effect of opacity on bank risk-taking would be moderated by
the extent of dividend payments. Specifically, opaque banks paying excessive dividends tend
to engage in greater risk-taking, highlighting the need for stronger market discipline. Thus,
excessive dividend payouts amplify the detrimental effects of opacity on banking stability,
particularly when opacity is measured using analysts’ forecast dispersion, underscoring the

economic significance of this evidence.

Finally, we assess whether analyst recommendation tone (e.g., buy) moderates the opacity-
risk relationship by interacting opacity with the buy recommendation variable. Although the
coefficient is positive, it does not reach statistical significance. Expanding the analysis, we
explored the effects of recommendation tone (positive vs. negative) and recommendation
revisions (upgrades and downgrades) on the opacity-risk relationship. As shown in Table C3
in Appendix 3, the results reveal no significant coefficients across models, with a minor
exception: upgrade recommendations exhibit a weak moderating effect at the 10% significance

level in models 5 and 10.
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Table 1.7 Interactions between Analyst Coverage, Dividend Policies, and Bank Risk

Analyst Forecast Error

Analyst Forecast Dispersion

Dependent Variable:: In(Zscore)

Ln_Coverage

Ln_Coverage

(6] @ (©)] O] ®) (6) U] ®) 9) (10) (11) (12)
Opacity -0.232%* % -0.168***  -0.139%**  -0.170***  -0.178***  .0.215*** -0.103**  -0.0797**  -0.0494***  -0.0890**  -0.0699**  -0.0728**
(-6.03) (-5.36) (-4.31) (-4.73) (-4.48) (-5.12) (-2.30) (-2.55) (-2.66) (-2.36) (-2.30) (-2.07)
Coverage 0.00984***  0.0100***  0.0111***  0.0110***  0.0100*** 0.0413 0.00984***  0.0102***  0.0104***  0.0105***  0.0103*** 0.0448*
-3.33 -3.16 -3.76 -3.73 -3.16 -1.55 -3.43 -3.31 -3.49 -3.53 -3.35 -17
Opacity X Coverage 0.00247* 0.00214* 0.00202* 0.0315%** 0.0019 0.0016 0.0000809 0.00181
-1.76 -1.79 -1.79 -2.65 -0.96 -1.06 -0.05 -0.1
DIV_Payout 0.00480***  0.00491***  0.00483*** 0.00491***  0.00500*** 0.00475***  0.00533***  0.00475*** 0.00531***  0.00540***
-5.24 -5.17 -5.26 -5.17 -5.25 -5.16 -5.72 -5.15 -5.71 -5.81
REC_Buy 0.131%** 0.131*** 0.122%** 0.124%** 0.123*** 0.132%** 0.131%** 0.126*** 0.126*** 0.124%**
-3.32 -3.31 -3.06 -3.1 -3.04 -3.31 -3.29 -3.16 -3.17 -31
Opacity X DIV_Payout -0.000283 -0.000272 -0.000375 -0.00401** -0.00388**  -0.00394**
(-0.51) (-0.52) (-0.73) (-2.48) (-2.40) (-2.40)
Opacity X Rec_BUY 0.0387 0.0296 0.0291 0.0396 0.0297 0.0294
-1.53 -1.28 -1.26 -1.61 -0.93 -0.85
_cons 3.695*** 3.365*** 3.351%* 3.357***  3.365%** 3.389%** 3.658*** 3.335%** 3.314%x* 3.333%** 3.318%** 3.335%**
-154.32 -21.31 -21.12 -21.1 -21.3 -21.14 -160.19 -20.99 -20.49 -20.93 -20.47 -20.19
Control Variables no yes yes yes yes yes no yes yes yes yes yes
Observations 5775 5775 5775 5775 5775 5775 5775 5775 5775 5775 5775 5775
Number of banks 340 340 340 340 340 340 340 340 340 340 340 340
R-square 0.0242 0.126 0.126 0.126 0.127 0.125 0.011 0.12 0.123 0.121 0.123 0.121

This table presents the fixed-effect estimation results, based on Eq. (2), examining the impact of opacity on bank risk-taking,
with a focus on interaction effects between opacity, analyst pressure, and dividend payout policies. The dependent variable is
In(ZScore), and the analysis includes time-fixed effects in all estimations. Robust standard errors clustered at the bank level are
shown in parentheses. Statistical significance is denoted by ***, ** and * for 1%, 5%, and 10% levels, respectively. Notes:
The Wald y? test indicates the significance of interaction terms as follows: for Opacity x Coverage, Model 5: 3.19 (P=0.0742),
Model 6: 7.02 (P=0.008); for Opacity x DIV_Payout, Model 5: 0.27 (P=0.6052), Model 11: 5.74 (P=0.0166). The interaction
term of Opacity x REC_BUY is not significant; additional tests are provided in Appendix C, Table C.3.

Table 1. 8: Marginal Effects of Opacity, Analyst Pressure and Dividend Payout Policy

Dependent Variable: In(Z-Score)
All

25th% 50th% 75th% 90th% Change (25th-90%) Based on

Panel 1

Coverage (In) index at: 0.693 1.386 2.197 3.04

Forecast Error -0.1835*** -0.1617*** -0.1361*** -0.1095*** -0.0741*** Table 7, Column 6
-6.07 -5.88 -4.99 -3.59

Forecast Dispersion -0.1765*** -0.1752*** -0.1737*** -0.1722*** -0.0043 Table 7, Column 12
-3.37 -3.51 -3.39 -3.04

Panel 1-a

Coverage index at: 2 4 9 21

Forecast Error -0.1608*** -0.1568*** -0.1466*** -0.1223*** -0.0385* Table 7, Column 5
-5.34 -5.33 -5.18 -4.04

Forecast Dispersion -0.1727%** -0.1725%** -0.1721*** -0.1711%** -0.0015371 Table 7, Column 10
-3.37 -3.41 -3.46 -3.19

Panel 2

Dividend Payout index at: 15 32 46 60

Forecast Error -0.1519*** -0.1582%** -0.1634*** -0.1690*** 0.0170565 Table 7, Column 6
-5.55 -5.8 -5.61 -5.16

Forecast Dispersion -0.1093*** -0.1752*** -0.2299*** -0.2886*** 0.1793** Table 7, Column 12
-4.22 -3.51 -3.2 -3.01

Table 8 presents the marginal effect analysis based on results from Table 8, examining how variations in analyst
coverage and dividend payout impact the relationship between opacity and bank risk, measured by Forecast Error and
Dispersion. Marginal effects are calculated at the 25th, 50th, 75th, and 90th percentiles of each interacted variable,
while other interacted variables are held at their median values. Panel 1 shows the marginal effects of Coverage (In) on
opacity, Panel 1-a details coverage index levels, and Panel 2 focuses on Dividend Payout index levels. Standard errors
are shown in parentheses. Statistical significance is denoted by ***, ** and * for the 1%, 5%, and 10% levels,

respectively.
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1.5.2. Comparative Analysis: Opacity-Risk Dynamics Across Bank vs. Market-Driven
Financial Systems

This section compares the opacity-risk relationship in bank-driven European and market-driven
U.S. financial systems, examining how these distinct environments shape the effects of analyst
influence and opacity. Our analysis evaluates whether opacity, driven by analyst forecast errors
and dispersion, impacts bank stability differently in these environments. Specifically, we test if
analyst pressure and opacity have distinct effects on risk-taking and bank performance in the
bank-driven European context versus the market-driven U.S. environment. European banks
may exhibit different risk dynamics compared to U.S. banks, where market-based mechanisms
like analyst coverage and shareholder activism play a more prominent role in influencing risk

behaviors.

1.5.2.1. Differences in Analyst Properties and Risk Profiles

We provide a comprehensive comparative analysis of U.S. and European banks, highlighting
how differences in opacity, analyst coverage, and risk factors align with varying regulatory and
market structures. This analysis leverages separate regressions on analysts' forecast errors and
forecast dispersion as proxies for bank opacity in each region, quantifying how opacity impacts
risk and profitability differently under distinct regulatory environments and market forces. Key
findings, summarized in Table D1 (Appendix D), reveal the following distinctions:

Analyst Properties: U.S. banks display lower average opacity levels, with analyst forecast
error and forecast dispersion averaging 0.09 and 0.08, respectively, in contrast to European
banks, which show higher averages of 0.6 and 0.2. The greater standard deviation in Europe
(1.8 t0 0.5) compared to the U.S. (0.3 to 0.8) further underscores the higher variability in opacity
measures across European banks. Additionally, an optimism index highlights this regional
disparity, with U.S. banks averaging 0.6 versus 3.47 for European banks, indicating greater
optimism and forecast volatility in Europe. European banks also attract more analyst coverage,
averaging 11.92 analysts per bank compared to 5.26 for U.S. banks, and face more frequent
recommendation revisions, including a higher proportion of negative ratings, such as "Sell" and
"Moderate Sell," relative to their U.S. counterparts.

Risk Profiles: U.S. banks exhibit greater financial stability, with an average Z-Score of
75.37 compared to 46.15 for European banks, likely due to stronger profitability, more robust
equity buffers, and a more resilient post-crisis recovery. European banks, however, demonstrate
higher price volatility (25.60 versus 22.16 in the U.S.) and a greater systematic risk, with a
BETA of 1.01 compared to 0.77 for U.S. banks, indicating greater sensitivity to market
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fluctuations. Additionally, the distance to default (DD_mert) averages 1.88 in the U.S.,
significantly higher than -0.16 in Europe, reflecting a lower default risk profile among U.S.
banks.

Bank level Variables: Regarding control variables, U.S. banks display a greater reliance on
deposits (76.3% vs. 56.35% in Europe) and maintain stronger equity-to-assets ratios (10.84%
vs. 8.10%), suggesting enhanced capitalization and liquidity. In contrast, European banks report
higher net non-interest income relative to assets (1.89% vs. 1.18%) and face elevated credit
risk, as evidenced by higher average non-performing loans (4.52% vs. 1.62%). U.S. banks also
show a higher market-to-book value (136.05% vs. 124.43%), indicating a stronger perceived
investor optimism. In terms of dividend payouts, European banks report higher and more
variable ratios (33.59% vs. 31.45% for U.S. banks), reflective of economic volatility and
regulatory differences across regions. In contrast, U.S. banks exhibit more stable dividend

distributions, underscoring a steady approach to maintaining shareholder value.

Fig. D1 in Appendix D illustrates the annual trends in Analyst Forecast Error, Forecast
Dispersion, Analyst Dynamics, and Dividend Payout Adjustments for European and U.S. banks
over the period 2004-2020, providing a comparative view of these variables across the two
regions. Correspondingly, Table D2 presents the correlation matrix for risk and opacity
variables, including significance levels for U.S. and European subsamples, further clarifying
the relationships between these variables across different banking environments.

1.5.2.2. Information, Analyst, Dividend Distribution and Risk-taking — U.S. vs. Europe
This section explores how opacity, analyst influence, and dividend policies distinctly affect
bank risk within the U.S. and European banking environments, each marked by unique regional
risk dynamics. Table 1. 9 presents a comparative analysis using key proxies, such as opacity
(measured by analyst forecast error and forecast dispersion), analyst coverage, and dividend
policies, and examines their impact on various indicators of risk, profitability, and earnings
volatility (e.g., ZScore, Z1Score). This analysis highlights the differential effects of these
factors across U.S. and European markets, providing insights into how regional characteristics
shape the risk profiles of banks in these financial systems.

The results for both subsamples align with the global trend in Section 1.5.1, showing that
higher bank opacity correlates with increased instability and return volatility in both the US and
EU. Across models (1-4 & 7-10), opacity consistently shows a negative and significant
relationship with Z-Score, indicating elevated risk. In models (5-6 and 11-12), opacity is also

positively associated with risk-taking and earnings volatility. The effect is more pronounced in
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the US, where opacity has a larger negative coefficient and higher significance (e.g., -0.307 in
column 1 for Z-Score), suggesting that opacity drives greater instability in US banks compared
to EU banks (e.g., -0.0924 in column 1). However, opacity measured by analyst forecast
dispersion appears to be a less effective indicator of earnings volatility in the European market
(models 11 & 12). Overall, these findings demonstrate that higher opacity not only increases
bank instability in both regions but also encourages riskier financial strategies due to reduced

transparency, which obscures true risk levels from investors and the market.

The findings for analyst coverage mirror the global trend, with a slightly stronger effect in
the US. Higher coverage generally correlates with lower insolvency risk and reduced risk-
taking in both US and EU banks, as increased analyst attention enables better market monitoring
of risk profiles. While stabilizing in both regions, analyst coverage has a more pronounced
impact on bank stability in the US, highlighting regional differences in market response to
analyst information. Analyst recommendation consensus aligns with the overall trend, where
more sell-oriented recommendations (higher REC_Con values) are associated with higher
default risk in both US and European banks, indicated by negative coefficients in the ZScore
models. However, REC_Con has a weaker and less consistent effect on stability and earnings
volatility in the EU. This implies that sell recommendations effectively highlight banks with
higher default risk while also being positively associated with risk-taking, suggesting that banks
receiving sell recommendations may adopt riskier strategies, possibly to counter negative
market sentiment. Analyst recommendation revisions show similar effects in both US and
European banks, consistent with the full sample. Downgrades are associated with higher risk,
particularly in the US, while upgrades do not show a significant link to risk. For both US and
European banks, higher dividend payouts correlate with lower default risk and reduced risk-

taking, reflecting improved stability.

In the US, dividend payouts are more strongly associated with ZScore (e.g., 0.00697 in
column 1), suggesting greater stability, while EU coefficients are lower (e.g., 0.00354),
indicating a milder effect. This difference may be due to varying regulatory and market

dynamics, with European banks generally paying more volatile dividends than US banks.

The regional differences in the impact of control variables on risk and volatility indicators
reveal that consistent with the global trend, larger banks and those with higher equity ratios
tend to be less risky, while higher non-performing loans are positively associated with risk,
indicating that banks with greater credit risk are less stable. In the US, a higher deposits-to-

assets ratio is linked to lower stability (ZScore) in line with the global sample but is also
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associated with reduced total risk and a higher market-based ZScore. Conversely, in Europe, a
higher deposits-to-assets ratio does not correlate with stability (ZScore) but is linked to higher
total risk. Consistent with global results, regional analysis shows that banks with greater
reliance on non-interest income exhibit higher risk-taking, with the effect being more
pronounced for US banks. These findings align with Stiroh (2004) for US banks and Lepetit et
al. (2008) for European banks.
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Table 1.9: Opacity, Analyst Pressure, and Bank Risk — U.S. vs. Europe

Analyst Forecast Error Analyst Forecast Dispersion
Dependent Variable:
Panel A: US (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
ZScore Z1Score Z2Score MZScore SDROA TR ZScore Z1Score Z2Score MZScore SDROA TR
Opacity -0.307*** -0.277*** -0.913*** -0.102*** 0.212%** 0.382%** -0.325%** -0.290** -0.826***  -0.0998*** 0.146** 0.284***
(-4.75) (-4.54) (-6.73) (-4.73) -3.92 5.12 (-2.66) (-2.55) (-3.59) (-312) -2.01 -3.08
Coverage 0.0292*** 0.0299*** 0.0449** 0.0258*** -0.00693 -0.0460*** 0.0290***  0.0297*** 0.0451** 0.0259*** -0.00725 -0.0465***
2.88 2.97 2.49 6.44 (-1.27) (-3.49) 2.82 2.92 2.37 6.37 (-1.30) (-3.46)
REC_Con -0.119%** -0.106** -0.210%* -0.0732***  (0.0913*** 0.190%** -0.116*** -0.103** -0.207** -0.0728***  0.0924*** 0.191***
(-2.71) (-2.55) (-2.53) (-3.81) 3.85 3.55 (-2.73) (-2.55) (-2.52) (-3.81) 3.94 3.57
REC_Rev_Dn -0.0739* -0.0756** -0.107 -0.0393* 0.00411 0.149** -0.0733* -0.0752** -0.104 -0.0389* 0.00304 0.147**
(-1.9) (-2.02) (-1.46) (-1.78) -0.19 -2.38 (-1.90) (-2.02) (-1.36) (-1.74) 013 231
REC_Rev_Up -0.0585 -0.0584 -0.0585 -0.00349 0.0156 0.0195 -0.067 -0.066 -0.0836 -0.00624 0.0214 0.03
(-1.33) (-1.38) (-0.66) (-0.18) -0.58 -0.35 (-1.50) (-1.49) (-0.92) (-0.32) -0.78 -0.53
DIV_Payout 0.00697***  0.00645***  0.0178*** 0.00122*  -0.00350*** -0.00629*** 0.00683***  0.00633***  0.0177*** 0.00121*  -0.00362*** -0.00645***
55 5.23 6.82 172 (-4.50) (-3.03) 5.34 5.12 6.74 1.69 (-4.60) (-3.09)
NPL -0.140%** -0.128*** -0.334***  -0,0733***  0.0674*** 0.161*** -0.143*** -0.131%** -0.347***  -0.0746***  0.0713*** 0.167***
(-7.91) (-8.04) (-7.98) (-6.63) -6.42 -5.92 (-8.22) (-8.32) (-8.41) (-6.76) -6.93 6.2
SIZEnew 0.514*** 0.513*** 0.808*** 0.471%** -0.155%** -0.402** 0.531*** 0.529*** 0.875*** 0.476*** -0.177%** -0.437**
4.73 4.77 4.36 8.43 (-2.90) (-2.22) 4.76 4.82 4.44 8.43 (-3.20) (-2.42)
EQUITY2A 0.0457*** 0.0485*** 0.0075 0.0131*** -0.00046 -0.0312*** 0.0457***  0.0485*** 0.00814 0.0131*** -0.000774  -0.0317***
7.62 8.38 0.66 321 (-0.13) (-3.03) 7.62 8.41 0.71 3.16 (-0.21) (-3.03)
NI2A -0.0359 -0.0366 0.0314 0.0202 0.0558** -0.0733* -0.0363 -0.0369 0.0292 0.0199 0.0568** -0.0717*
(-1.20) (-1.12) -0.64 -0.93 -2.47 (-1.73) (-1.24) (-1.15) -0.59 -0.91 -2.54 (-1.69)
DEPOSITS -0.00869**  -0.00708*  -0.0210***  0.0114*** 0.00222 -0.0319*** -0.00790** -0.00638 -0.0190***  0.0116*** 0.00187 -0.0326***
(-2.23) (-1.79) (-3.33) 522 -1.13 (-6.17) (-2.04) (-1.63) (-2.98) 5.26 -0.95 (-6.21)
GDPgr 0.108*** 0.108*** 0.121%** 0.0827***  -0.0441***  -0.225*** 0.110*** 0.109*** 0.126*** 0.0833***  -0.0451***  -0.226***
-13.13 -13.48 -8.37 -27.64 (-8.27) (-20.74) -13.2 1351 -8.49 -27.61 (-8.18) (-20.85)
Inflation 0.00418 -0.00198 0.0621***  -0.0262*** 0.000951 0.0436** 0.00443 -0.0018 0.0650***  -0.0258***  -0.000551 0.0413**
-0.32 (-0.15) -2.82 (-3.44) -0.14 -2.59 -0.34 (-0.14) -3.03 (-3.44) (-0.08) -251
_cons 4.067*** 3.788*** 2.706*** 2.996*** -0.012 4.719%** 4.005%** 3.733%** 2.531%** 2.976*** 0.0256 4.788***
12.56 11.4 5.04 15.12 (-0.07) 10.09 12.52 11.35 4.64 14.85 0.15 10.12
Observations 3869 3872 3872 3547 3872 3872 3869 3872 3872 3547 3872 3872
Number of banks 242 242 242 242 242 242 242 242 242 242 242 242
R-square 0.261 0.255 0.307 0.347 0.22 0.283 0.259 0.253 0.293 0.345 0.203 0.276
Analyst Forecast Error Analyst Forecast Dispersion
Dependent Variable:
Panel B: EU (1) (2) (3) 4 (5) (6) ) (8) (9) (10) (11) (12)
ZScore Z1Score Z2Score MZScore SDROA TR ZScore Z1Score Z2Score MZScore SDROA TR
Opacity -0.0924***  -0.0904***  -0.205*** -0.0323** 0.0364** 0.131** -0.0357***  -0,0320** -0.171%** -0.0275** 0.00701 0.0737
(-3.01) (-3.02) (-2.85) (-2.17) -2.05 -2.33 (-3.12) (-2.62) (-4.33) (-2.56) -0.88 -16
Coverage 0.00793***  0.00913***  -0.000462  0.00485***  -0.00272*  -0.00878*** 0.00763***  0.00885***  -0.00149 0.00474***  -0.00263*  -0.00826**
291 3.38 (-0.10) 4.34 (-1.89) (-2.67) 2.78 3.24 (-0.31) 4.28 (-1.81) (-2.47)
REC_Con -0.111* -0.087 -0.292** -0.0133 0.0224 -0.024 -0.116* -0.0926 -0.281** -0.0108 0.026 -0.0223
(-1.84) (-1.40) (-2.60) (-0.55) -0.59 (-0.29) (-1.89) (-1.47) (-2.47) (-0.45) -0.67 (-0.28)
REC_Rev_Dn -0.0473** -0.0518** 0.00593 0.0076 0.0187* 0.0133 -0.0425* -0.0473* 0.0235 0.0105 0.0173* 0.00467
(-2.03) (-2.18) -0.11 -0.52 -1.91 -0.33 (-1.78) (-1.94) -0.43 -0.73 -1.74 -0.12
REC_Rev_Up -0.044 -0.0487 0.0554 0.00978 -0.0108 -0.0175 -0.0432 -0.0483 0.067 0.0124 -0.0103 -0.0211
(-1.39) (-1.50) -0.68 -0.82 (-0.60) (-0.48) (-1.36) (-1.48) -0.82 -1.01 (-0.58) (-0.53)
DIV_Payout 0.00354***  (0.00320**  0.0103***  0.00353*** -0.00178*** -0.00695*** 0.00333**  0.00301**  0.00932***  0.00341*** -0.00174*** -0.00654***
2.65 2.36 418 5.55 (-3.29) (-3.59) 2.44 2.17 3.99 5.61 (-3.09) (-3.50)
NPL -0.0356***  -0.0294***  -0.104***  -0.0189***  0.0203***  0.0482*** -0.0376***  -0.0313***  -0.109***  -0.0192***  0.0210***  0.0511***
(-3.57) (-3.31) (-4.39) (-4.07) -3.32 -3.55 (-3.71) (-3.45) (-4.46) (-4.12) -3.38 -3.69
SIZEnew 0.404* 0.326 0.402 0.204 -0.209 -0.00933 0.414* 0.334 0.451 0.229* -0.21 -0.0297
-1.74 -1.39 -0.98 -1.61 (-1.62) (-0.02) -1.74 -1.39 111 -1.85 (-1.62) (-0.07)
EQUITY2A 0.0496***  (.0538*** 0.0284 0.0113** 0.017 -0.0260** 0.0491***  0.0532*** 0.0303 0.0125** 0.0174* -0.0260*
-2.91 -3.03 -1.17 -2.08 -1.64 (-2.02) -2.83 -2.95 -1.27 -2.32 -1.66 (-1.96)
NI2A -0.03 -0.0387 0.0252 0.0159 0.0114 -0.0387 -0.0299 -0.0387 0.0274 0.0149 0.0115 -0.039%4
(-0.93) (-1.17) -0.54 -1.35 -0.52 (-1.40) (-0.86) (-1.09) -0.63 -1.27 05 (-1.26)
DEPOSITS -0.00358 -0.00339 -0.0129***  -0.000619 0.00129 0.0157*** -0.00351 -0.00332 -0.0129***  -0.000692 0.00125 0.0156***
(-1.49) (-1.23) (-4.77) (-0.37) 121 -3.29 (-1.47) (-1.20) (-4.82) (-0.43) 117 331
GDPgr 0.0408*** 0.0379***  0.0566***  0.0303***  -0.0242***  -0.0921*** 0.0424***  0.0394***  0.0598***  0.0311***  -0.0249***  -0.0942***
-4.83 -4.53 -3.83 -8.44 (-3.61) (-8.49) -5.04 -4.75 -3.82 -8.68 (-3.74) (-8.39)
Inflation -0.0344 -0.0476 0.0524 -0.0481*** 0.00314 0.0935*** -0.0342 -0.0472 0.0476 -0.0480*** 0.00267 0.0945***
(-1.16) (-1.63) -0.89 (-4.71) -0.17 -3.13 (-1.16) (-1.63) -0.85 (-5.00) -0.14 331
_cons 3.475%** 3.247%%* 2.103*** 3.902*** 0.155 1.328*** 3.460*** 3.234%** 2.050*** 3.885%** 0.158 1.354%**
14.53 12.52 5.31 34.32 1.01 3.54 14.36 12.39 5.17 34.83 1.03 3.61
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1566 1568 1568 1389 1568 1568 1566 1568 1568 1389 1568 1568
Number of banks 98 98 98 98 98 98 98 98 98 98 98 98
R-square 0.106 0.0983 0.19 0.176 0.112 0.21 0.0999 0.0921 0.204 0.183 0.108 0.208

This table presents fixed-effect estimation results, based on Eq. (1), examining the impact of opacity on bank risk-taking for publicly listed banks in the
U.S. (Panel A) and Europe (Panel B). The analysis considers the influence of analyst pressure and dividend policies, capturing regional variations in the
opacity-risk relationship. Each model incorporates time-fixed effects to account for temporal dynamics. Robust standard errors, clustered at the bank
level, are reported in parentheses. Statistical significance is indicated by ***, ** and * at the 1%, 5%, and 10% levels, respectively.
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1.5.2.3. Threshold Effects of Dividend Policies and Analyst Pressure

Expanding on global findings, this section evaluates if excessive dividend payouts and
extensive analyst coverage contribute similarly to risk dynamics in both regions. As detailed in
Table 1. 10, both regions mirror the global trend from Section 1. 5.1.2: Moderate dividend
payouts support stability, while excessive payouts (columns 3 and 9) reduce resilience. Unlike
the global sample, subsample analysis reveals that the negative effect of opacity on Z-Score
intensifies with greater analyst coverage, particularly in the US (Table 1. 10, columns 4 and 5).
Consistent with the global trend, higher analyst coverage amplifies the impact of
recommendations (columns 4, 5, and 6). This suggests that increased coverage may intensify
market reactions to negative recommendations, driving riskier behaviors or amplifying
vulnerabilities in banks—though this effect is not significant in the European market.
Additionally, positive recommendations, when accompanied by higher coverage, are linked to

reduced risk.

Table 1. 10: Threshold Effects of Dividend Payouts and Analyst Coverage

Dependent Variable: In(Z-Score)

US Banks European Banks
Dividend Payout Ratio Analyst Coverage Dividend Payout Ratio Analyst Coverage
(1) (2 ®3) 4 (5) (6) (7 (8) (9) (10) (11) (12)
<50th%  >50th% > 75th% <50th%  >50th% > 75th% <50th%  >50th% > 75th% <50th%  >50th% > 75th%
Opacity -0.203***  -1.111%**  -1.279%** -0.212*%**  -0.367**  -0.377* -0.0683  -0.0577*  -0.117** -0.0701  -0.0869**  -0.0486
(-4.05) (-6.32) (-3.80) (-5.17) (-2.26) (-1.89) (-1.19) (-1.70) (-2.19) (-1.32) (-2.52) (-1.03)
Dividend_Payout 0.0133*** 0.0000911 -0.00458*  0.00441** 0.00894*** 0.00977***  -0.000374  0.00274  -0.0105*  0.00591***  0.00244 0.00225
4.2 0.06 (-1.75) 2.06 6.22 4.59 (-0.10) 1.03 (-1.92) 2.88 1.53 1.02
Coverage 0.0425***  0.00366 0.00433 0.105%  0.0284***  (0.0418*** 0.00651  0.00600**  0.0118** -0.0103 0.00213  -0.00308
2.8 0.28 0.23 176 2.61 3.23 1.63 21 2.42 (-0.61) 0.46 (-0.31)
REC_Con -0.136**  -0.0585 -0.0249 -0.0291  -0.244***  -0.370%** -0.163** -0.163 -0.189 -0.216***  -0.0694 -0.0251
(-2.31) (-1.04) (-0.31) (-0.54) (-4.05) (-3.90) (-2.20) (-1.39) (-1.21) (-2.66) (-0.91) (-0.23)
_cons 4.233***  3545%** 4 615%** 3.915%**  4.206***  3.156*** 3.358***  3141%**  4.833*** 3.695%**  3782%** 4127+
10.48 7.71 7.21 8.02 11.06 5.29 13.26 4.86 5.34 10.36 11.28 7.69
Control Variables yes yes yes yes yes yes yes yes yes yes yes yes
Observations 1934 1935 972 1504 2365 1047 730 764 367 760 806 3%
Number of banks 215 225 188 160 210 111 92 92 77 98 98 93
R-square 0.263 0.253 0.233 0.247 0.299 0.347 0.126 0.0865 0.101 0.114 0.104 0.198

This table presents the fixed-effect estimation results based on Eq. (1), analyzing the impact of opacity on bank stability, with
a focus on the moderating effects of dividend payout ratio, analyst coverage for publicly listed banks in the U.S. (Columns 1-
6) and Europe (Columns 7- 12). The analysis is segmented by different thresholds of dividend payout ratios (<50%, >50%,
>75%), analyst coverage (<50%, >50%, >75%), and dividend yield (<50%, >50%, >75%). All estimations include time-fixed
effects, and robust standard errors clustered at the bank level are displayed in parentheses. Statistical significance is indicated
by *** ** and * for the 1%, 5%, and 10% levels, respectively. Control variables are included but not shown for brevity.

43



Chapter 1: Opacity, Financial Analysts and Bank Risk: Evidence from US and European Publicly Traded Banks

1.5.2.4. Contextual Influences of Volatility, Valuation, and Size on Opacity-Risk in the
U.S. and Europe

This part delves into how valuation, volatility, and size create regional disparities in the opacity-
risk relationship, underscoring contextual differences in bank risk responses. The results in
Table 1. 11 indicate that, consistent with global findings, opacity significantly increases risk-
taking in the US sample under high-volatility and optimism overvaluation conditions, with
banks being particularly sensitive to valuation pressures and market uncertainties (columns 1-
2 and 5-6). In contrast, European banks exhibit a weaker response to opacity under similar
elevated market-to-book value and high-volatility conditions (columns 3-4 and 7-8). Across
both regions, consistent with the global trend, the impact of opacity is more pronounced in
smaller banks, where opacity exacerbates risk-taking to a greater extent than in larger banks
(columns 9-12). US smaller banks, in particular, demonstrate the highest risk sensitivity. In
contrast, for European banks, the effect of opacity on risk does not vary significantly with bank

size, suggesting a more moderated impact across different size segments*é.

Table 1. 11: Contextual Influences of Volatility, Valuation, and Size on Opacity-Risk — U.S. vs. Europe

Dependent Variable:: In(Zscore)

Analyst Forecast Error

(€] @) (©) 4 ®) (6) 0] (®) ©) (10) (11 (12)
Market to Book Value (MTBV) Price _ Volatility SIZE
uUs EU uUs EU Us EU
<Median >Median <Median >Median <Median >Median <Median >Median <Median >Median <Median >Median
Opacity -0.191***  -0.858***  -0.0667*  -0.184*** -0.363*  -0.241*** -0.145***  -0.0357 -0.265***  -0.319**  -0.109** -0.0850***
(-4.12) (-4.31) (-1.85) (-4.26) (-1.87) (-4.33) (-2.74) (-0.86) (-4.81) (-2.10) (-2.14) (-2.76)
Coverage 0.0622%** 0.0152 0.00275 0.00908** 0.0204 0.0386**  0.00749**  0.00584* -0.0166 0.0378***  0.00264 0.00537*
4.25 0.98 0.88 211 1.29 2.57 224 1.86 (-0.54) 357 0.67 1.99
REC_BUY 0.0706 0.0763 0.296%** -0.0323 -0.0178 0.294%** -0.0152 0.321** 0.132* 0.0791 0.061 0.105
111 1.44 2.96 (-0.35) (-0.36) 3.98 (-0.15) 255 1.95 1.33 0.51 121
DIV_Payout 0.00403***  0.00592***  0.00253 0.00204 0.00285*  0.00614***  0.00121 0.00262* 0.00604***  0.00861*** 0.00552**  0.00271**
2.61 4.03 1.66 0.95 1.74 3.83 0.58 191 3.01 5.29 2.09 21
_cons 3.114%%% 4.095%** 2.453%**  3.534%** 4.356%**  2.839%%*  2.718%F*  2.366%** 4.258%* % 3108%F  2.776%*  1.628%%*
8.13 8.79 14.45 8.23 10.43 7.8 4.62 12.72 9.02 9.2 9.8 5.13
Control Variables yes yes yes yes yes yes yes yes yes yes yes yes
Observations 2003 1866 821 745 1910 1959 768 798 1888 1981 764 802
Number of banks 229 242 91 96 227 213 94 87 164 179 60 61
R-square 0.245 0.295 0.149 0.139 0.114 0.332 0.0862 0.129 0.267 0.253 0.0937 0.229

This table presents fixed-effect estimation results based on Eq. (1), analyzing how opacity (measured through analyst forecast
error) impacts bank risk (ZScore) under varying contexts: Market-to-Book Value (MTBV), Price Volatility, and Size. Each
contextual factor is divided at the median, comparing effects in lower (<Median) and higher (*Median) segments across U.S.
and European banks. The primary variables include Opacity, Coverage, REC_BUY, and Dividend Payout. Time-fixed effects
are applied in all models, with robust standard errors clustered at the bank level shown in parentheses. Statistical significance
is denoted by ***, ** and * for 1%, 5%, and 10% levels, respectively. Control variables are included but omitted from the
table for brevity.

8 In line with the global trend, analyst coverage in the US exerts a stronger disciplining effect on risk-taking
among larger banks with higher volatility and lower MTBYV ratios, whereas the European market displays a weaker
and inconsistent impact. Favorable analyst recommendations (BUY/Strong Buy) are positively correlated with
bank stability during high-uncertainty periods in both regions; in the US, this effect is more pronounced for smaller
banks, while in Europe, it is stronger for banks with lower MTBYV ratios.
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1.5.2.5. Interactions and Extensions: Analyst Coverage, Dividend Policies, and
Opacity-Risk _ U.S. vs. Europe

Building on prior analysis (Section 1. 5.1.5), this section assesses the nuanced role of analyst
coverage and dividend policies as moderators in the opacity-risk nexus across regional
systems®®. Tables 1.12 and 1.13 present the marginal effects of analyst coverage on the risk-
taking behavior of opaque banks in the US and Europe, segmented by bank size. Table 1. 14
further details the statistical significance of these effects at varying levels of analyst coverage.
For US banks, the results indicate that higher analyst coverage amplifies risk-taking among
opaque banks, particularly in those with greater forecast dispersion (Table 1. 12, models 5 and
7; Table 1. 13, model 4). This effect is most pronounced in smaller banks, as shown in Table 1.
13 (models 2 and 5) and confirmed by marginal analysis in Table 1. 14 (Panel 1, columns 2, 4,
and 5). In contrast, the effect for European banks is weaker and varies by bank size. Higher
analyst coverage increases risk-taking among larger opaque banks (Table 1. 13, models 9 and
12), while for smaller European banks, analyst coverage exerts a modest moderating influence
on risk-taking (Table 1. 13, models 8 and 11). Panel 3 (EU) in Table 1. 14 further confirms the
relatively weak amplifying role of analyst coverage on risk for larger EU banks.

These findings challenge Hypothesis 2b, which suggests a moderating role for analyst
coverage in the opacity-risk relationship across different market structures and bank sizes.
While analyst coverage typically enhances banks’ visibility and subjects them to greater market
scrutiny—potentially promoting market discipline and encouraging prudent risk
management—this effect is not consistent for high-opacity banks across regions. In the global
sample, analyst coverage exerts only a weak moderating impact on the opacity-risk nexus.
However, when examining subsamples based on distinct financial market structures, we find
that higher analyst coverage increases pressure on opaque banks, especially in the US. This
pressure appears to drive riskier behaviors, as banks may take on additional risk to meet analyst
expectations, particularly in markets with strong reactions to earnings surprises. This effect is
most pronounced in smaller US banks, where analyst pressure significantly heightens risk-
taking. In contrast, the European market shows a less consistent impact: analyst coverage exerts
a weak moderating influence on risk-taking in smaller banks but amplifies risk for larger opaque
banks. Regarding dividend policy, the results suggest that excessive dividend payouts slightly

accentuate risk-taking in both regions, consistent with the global trend. In Europe, however,

9 In our global sample, we observed a weak moderating role of analyst coverage and an accentuating role of
dividend payout adjustments on the opacity and risk-taking relationship; here, we assess whether this effect
varies across different financial markets.
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this effect is significant when opacity is measured by analyst forecast dispersion (Table 1. 13,
columns 1, 4, 7, and 8). Panel 2 and 4 of Table 1. 14 show that increased dividend payouts
modestly intensify the adverse impact of opacity, particularly when measured by forecast
dispersion, highlighting the economic significance of this relationship for bank stability. Lastly,
we examine the moderating effect of positive analyst recommendations (REC_BUY) on the
relationship between opacity and bank risk. In the U.S. sample, this interaction is significant,
especially under conditions of high forecast dispersion and among smaller banks (see Table 1.
12, columns 5 and 7; Table 1. 13, columns 4 and 5).

To further explore the influence of recommendation tones (positive/negative) and revisions
(upgrades/downgrades) on the opacity-risk relationship for both U.S. and European banks, we
refined our analysis (refer to Table F1 in Appendix F). The findings indicate that negative
recommendations (e.g., "Sell"™) and downgrade revisions significantly exacerbate the adverse
effects of opacity on bank stability, particularly in forecast dispersion models (columns 4, 7,
and 8). Conversely, positive recommendations and upgrade revisions exhibit a favorable
moderating impact (columns 5, 6, and 10). No significant results were found for European
banks in this regard. We extended our analysis by assessing the interaction between opacity and
different recommendation tones, focusing on the role of increased analyst coverage. Results
from the U.S. sample (Panel A, Table F2) reveal that higher analyst coverage significantly
amplifies the effects of negative recommendations and downgrade revisions on bank risk, as
evidenced by significant coefficients in models using forecast dispersion (columns 6 and 7).
These findings suggest that heightened analyst coverage under high-opacity conditions
exacerbates risk-taking behaviors and increases vulnerabilities in U.S. banks. In contrast, for
European banks, upgrade recommendation revisions accompanied by higher analyst coverage

only weakly moderate the risk of opaque banks (Panel B, Table F2, columns 4 and 8).
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Table 1. 12: Interactions: Analyst Coverage, Dividend Policies, and Opacity-Risk — U.S. vs. Europe

Analyst Forecast Error

Analyst Forecast Dispersion

Dependent Variable:: In(Zscore)

Ln_Coverage

Ln_Coverage

us EU us EU us EU us EU
O] 2 (©) 4 ©) (6) M ®)
Opacity -0.0984 -0.113*** -0.019 -0.144*** -0.0239 -0.0316** -0.0831 -0.0223
(-0.90) (-2.72) (-0.18) (-2.75) (-0.24) (-2.09) (-0.96) (-0.82)
Opacity X Coverage -0.00889 0.00126 -0.114 0.0207 -0.133*** -0.000613 -0.408** -0.01
(-0.51) -1.22 (-1.14) -1.6 (-4.10) (-0.40) (-2.44) (-0.65)
Opacity X DIV_Payout -0.0115%** -0.000105  -0.0117*** -0.000154 -0.0238***  -0.00214**  -0.0262***  -0.00220**
(-2.88) (-0.27) (-3.10) (-0.40) (-4.03) (-2.38) (-4.69) (-2.39)
Opacity X REC_BUY -0.0335 0.0114 -0.0721 0.0111 0.395%** 0.0109 0.386*** 0.017
(-0.29) 0.44 (-0.67) 0.44 3.05 0.52 3.03 0.83
Coverage 0.0232** 0.00792** 0.025 0.0599* 0.0278***  0.00828*** 0.0453 0.0658**
2.34 2.47 0.51 191 2.95 2.66 0.92 212
DIV_Payout 0.00532***  0.00427***  0.00538***  0.00437*** 0.00507***  0.00451***  0.00548***  0.00461***
4.35 2.95 4.42 3.01 4 3.33 4.32 3.38
REC_BUY 0.127*** 0.0988 0.144%*= 0.0963 0.0855** 0.0991 0.103** 0.0953
2.79 131 3.17 1.28 2.01 133 2.4 1.28
_cons 3.852%** 3.253%** 3.903*** 3.231%** 3.713%** 3.206*** 3.738*** 3.174%*
11.74 17.04 11.7 17.27 11.39 16.54 11.26 16.52
Control Variables yes yes yes yes yes yes yes yes
Observations 4111 1664 4111 1664 4111 1664 4111 1664
Number of banks 242 98 242 98 242 98 242 98
R-square 0.206 0.0951 0.205 0.0938 0.222 0.0917 0.215 0.0896

This table presents fixed-effect estimation results based on Eq. (2), assessing how opacity influences bank risk-taking,
focusing on the interaction effects of opacity with analyst coverage, dividend payout policies, and REC_BUY. The dependent
variable is In(ZScore), analyzed separately for U.S. and European banks across both Analyst Forecast Error and Analyst
Forecast Dispersion models. Time-fixed effects are included in all estimations, with robust standard errors clustered at the
bank level in parentheses. Statistical significance is indicated by ***, ** and * for 1%, 5%, and 10% levels, respectively.
Control variables are included but not displayed for brevity.

Table 1. 13: Analyst Coverage, Dividend Policies, and Opacity-Risk —Segmentation by Bank Size

Analyst Forecast Error

Analyst Forecast Dispersion

Analyst Forecast Error

Analyst Forecast Dispersion

Dependent Variable:: In(Zscore) Size_US Size_US Size_EU Size_EU
All <Median >Median All <Median >Median All <Median >Median All <Median >Median
(1) @ (©) (O] ) (6) Q) ®) (9) (10) (11) (12)
Opacity -0.019 -0.00422 0.0334 -0.0831 -0.141 0.815 -0.144%** -0.167* -0.0692* -0.0223 -0.111%** 0.0314
(-0.18) (-0.03) 0.09 (-0.96) (-1.07) 1.28 (-2.75) (-1.68) (-1.92) (-0.82) (-4.15) 114
Opacity X Ln_Coverage -0.114 -0.471%** 0.0456 -0.408** -0.563*** -0.659* 0.0207 0.0355 -0.0219*** -0.01 0.0356 0.0300*
(-1.14) (-5.53) 0.25 (-2.44) (-4.83) (-1.76) 16 1.47 (-2.76) (-0.65) 112 (-1.80)
Opacity X DIV_Payout -0.0117*%**  -0.0116***  -0.0247*** | -0.0262***  -0.0171***  -0.0387*** -0.000154  -0.000489  0.000980* | -0.00220**  -0.0017 0.00372
(-3.10) (-2.84) (-3.86) (-4.69) (-2.77) (-4.97) (-0.40) (-0.69) -1.77 (-2.39) (-1.34) (-1.25)
Opacity X REC_BUY -0.0721 0.116 -0.425 0.386*** 0.418* -0.0176 0.0111 0.0135 0.0153 0.017 -0.0189 0.0213
(-0.67) 0.88 (-1.59) 3.03 19 (-0.08) 0.44 0.29 0.54 0.83 (-0.27) 1.22
Ln_Coverage 0.025 0.0188 0.0389 0.0453 0.0206 0.0663 0.0599* -0.00258 0.0694** 0.0658**  -0.00588  0.0696**
0.51 0.27 0.51 0.92 0.3 0.86 191 (-0.07) 221 2.12 (-0.15) 2.35
DIV_Payout 0.00538***  0.00407**  0.00780*** | 0.00548*** 0.00361* 0.00787*** 0.00437***  0.00545*  0.00350** | 0.00461***  0.00534*  0.00414***
4.42 2.08 4.99 4.32 176 4.98 3.01 -1.87 -2.54 3.38 -1.87 -3.1
REC_BUY 0.144%** 0.143** 0.143** 0.103** 0.110* 0.117%* 0.0963 0.103 0.1 0.0953 0.0887 0.114
3.17 2.17 2.49 2.4 176 2.06 1.28 -0.82 -11 128 -0.7 -1.24
_cons 3.903*** 4.156%** 3.383%** 3.738%** 4.082%** 3.214%** 3.231%** 2.964*** 1.616™** 3.174%*  2.045%F* ] GEZrE*
117 8.68 9.4 11.26 8.77 8.86 17.27 -10.42 -4.97 16.52 -10.44 -4.53
Control Variables yes yes yes yes yes yes yes yes yes yes yes yes
Observations 4111 2050 2061 4111 2050 2061 1664 825 839 1664 825 839
Number of banks 242 169 179 242 169 179 98 64 61 98 64 61
R-square 0.206 0.223 0.201 0.222 0.225 0.219 0.0951 0.0929 0.197 0.0917 0.0913 0.19
Wald ¢ 131 30.59 0.06 5.96 23.36 311 2.55 217 7.62 0.42 125 3.24
P- Value 0.235 0.000 0.805 0.0146 0.0000 0.0778 0.1104 0.1407 0.0058 0.5187 0.2643 0.0717

This table provides fixed-effect estimation results based on Eqg. (2), examining how opacity affects bank risk-taking with a focus
on interaction effects involving analyst coverage, dividend payout policies, and REC_BUY. The dependent variable is In(ZScore),
analyzed for U.S. and European banks, segmented by bank size (below and above the median). Both Analyst Forecast Error and
Analyst Forecast Dispersion models are presented. Time-fixed effects are applied in all estimations, and robust standard errors
clustered at the bank level are shown in parentheses. Statistical significance is indicated by ***, ** and * for 1%, 5%, and 10%
levels, respectively. Control variables are included but omitted from the display for conciseness.
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Table 1. 14: Marginal Effects: Analyst Coverage and Dividend Policies on Opacity-Risk

Nexus —by Bank Size

Dependent Variable: In(Z-Score)

us Change
25th% 50th% 75th% 90th% 25%-90% Based on
Panel 1 SIZE
Coverage (In) index at: 1.38 1.94 2.39 3.04
Forecast Error -0.518***  -0.565*** -0.661***  -0.74*** 0.221  Table 13, Column 1
-5.36 -4.85 -3.65 -3.05
<Median  -0.248*** -0.574*** -0.765*** -0.901***  0.65***  Table 13, Column 2
-2.68 -6.01 -6.79 -6.97
>Median  -1.065%**  -1.04*** -1.019*** .0.99*** -0.08  Table 13, Column 3
-5.26 -7.09 -6.99 -4.65
Forecast Dispersion -0.908***  -1.074%**  -1.419%** -1702***  0.794**  Table 13, Column 4
-5.29 -5.63 -5 -4.45
<Median  -0.319*** -0.709*** -0.937*** -1.099***  (.781*** Table 13, Column 5
-2.21 -4.56 -5.23 -5.46
>Median  -1.447*** -1.816*** -2.114***  -2.54*** 1.093*  Table 13, Column 6
-6.34 -6.41 -5.17 -4.07
Panel 2
Dividend Payout index at: 17 31 44 57
Forecast Error -0.419%**  -0.582***  -0,73*** -0.882*** 0.463*** Table 13, Column 1
-4.26 -4.61 -4.48 -4.3
Forecast Dispersion S0.77F%% -1.136%%% -1.469%*%*  -1.809***  1.04***  Table 13, Column 4
-4.37 -5.58 -5.93 -5.95
Dependent Variable: In(Z-Score)
EU Change
25th% 50th% 75th% 90th% 25%-90% Based on
Panel 3 SIZE
Coverage (In) index at: 1.79 2.48 3.14 3.34
Forecast Error -0.112%** -0.096***  -0.08*** -0.072*** -0.04  Table 13, Column 7
-3.7 -3.69 -3.18 -2.74
<Median  -0.126*** -0.106***  -0.082* -0.064 -0.062  Table 13, Column 8
-2.62 -2.37 -1.77 -1.26
>Median  -0.066*** -0.081*** -0.095*** -0.099*** 0.033*** Table 13, Column 9
-3.78 -4.51 -4.79 -4.82
Forecast Dispersion -0.098***  -0.106*** -0.114*** -0.118*** 0.02  Table 13, Column 10
-3.23 -3.54 -3.33 -3.13
<Median  -0.135*** -0.115**  -0.091* -0.073 -0.062  Table 13, Column 11
-2.61 -2.58 -1.9 -1.18
>Median  -0.127*** -0.145*** -0.164*** -0.171***  0.044* Table 13, Column 12
-1.29 -1.51 -1.69 -1.75
Panel 4
Dividend Payout index at: 5 34 50 72
Forecast Error -0.092%**  -0.098***  -0.1***  -0.104*** 0.011  Table 13, Column 7
-2.97 -3.73 -3.84 -3.67
Forecast Dispersion -0.032%**  -0.107*** -0.143*** -0.191***  0.159** Table 13, Column 10
-4.35 -3.51 -3.16 -2.93

This table provides a marginal effect analysis based on results from Table 13, examining how
variations in analyst coverage and dividend payout impact the relationship between opacity and
bank risk, measured by Forecast Error and Dispersion, in the U.S. and Europe segmented by
bank size. Panels 1 and 3 show the effect of varying levels of Coverage on the Opacity-Risk
nexus for U.S. and European banks, respectively. Panels 2 and 4 focus on Dividend Payout.
Marginal effects are evaluated at the 25th, 50th, 75th, and 90th percentiles for each interacted
variable, with other variables held at median values. Standard errors are in parentheses.
Statistical significance is denoted by ***, ** and * for 1%, 5%, and 10% levels, respectively.
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1.5.3. Extended Robustness Analyses

Further robustness tests explore alternative models and variables to reinforce the empirical
findings.

1.5.3.1. Opacity and High Default Probability: Evidence from Merton’s Model

In this section, we apply Merton’s option-based model to examine how bank opacity, defined
by analysts' forecast error and forecast dispersion, contributes to heightened default risk and
reduced credit stability. This analysis quantifies the Probability of Default (PD) and Distance
to Default (DD) across varying levels of opacity, shedding light on the implications of limited
transparency in the banking sector. Bank opacity, characterized by limited information
transparency, theoretically links to increased default risk via mechanisms like information
asymmetry, adverse selection, and reduced market discipline. The Merton model, a widely used
option-based framework, calculates PD and DD to evaluate a company’s ability to fulfill its
financial obligations, offering insights into the credit risk associated with opacity. For banks,
analyzing opacity through PD_Mert and DD_Mert measures provides a clear view of how
transparency influences default risk and financial instability. Fig. 3 illustrates the relationship
between detrended opacity (using forecast error) and two key risk indicators, PD_Mert and
DD_Mert, for Global, U.S., and European banks. This visual segmentation allows a
comparative analysis of opacity's impact across different regulatory and market settings,
revealing that opacity is generally associated with increased default risk and lower financial

stability, with the effects being particularly pronounced in the U.S. compared to Europe.
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Fig. 1.3: Scatter Plots of Detrended Opacity (Analysts’ Forecast Error) and Risk Indicators (PD_Mert and
DD Mert) for Global, U.S., and European Subsamples.

In this analysis, we employ a probit model to investigate how high opacity impacts default
probability (PD_Mert) and reduces financial stability (DD_Mert) across U.S. and European
banks. To capture extreme risk scenarios, we define two binary indicators: (1) a high-
probability default dummy (PD_Mert > 75th percentile) and (2) a low distance-to-default
dummy (DD_Mert < 75th percentile), which flag banks at significant instability risk. The probit
equation used is as follows:

Probability [High_PD_Mertl-'t = 1] = Probit (a + £ Opacity; ;4 +

m
Zk_lpkAnalyst_Pressure kit-1 +Y DIV_Policy ;4 + Zizlq)nControlsn_i’t + &

(10)
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Table 1. 15 provides the probit regression results, assessing the impact of opacity—measured
through analyst forecast error and forecast dispersion—on the likelihood of falling into high-
risk categories (either elevated default probability, High_PD_Mert, or reduced financial
stability, Low_DD_Mert). Results are segmented for global, U.S., and European samples to
highlight regional differences in the opacity-risk relationship. The results are segmented for the
global, U.S., and European samples, highlighting regional variations in opacity-risk dynamics.
For the global sample (Models 1 and 5), opacity shows a statistically significant positive effect
on default probability at the 1% level, consistent across both measures of opacity. This suggests
that opacity elevates default risk. Moreover, opacity is significantly linked with a lower distance
to default (Low_DD_Mert) across global and regional samples (Models 2-4 and 6-8), indicating
that higher opacity is associated with reduced financial stability and greater vulnerability to
economic shocks though the result is weaker in Europe?’. The effect is most pronounced in
high-PD scenarios, particularly when opacity is measured by forecast dispersion (Model 5),

underscoring the role of opacity in exacerbating default risk in the banking sector?.,

Table 1. 15: Opacity and High Default Probability: Evidence from Merton’s Model

Analyst Forecast Error

Analyst Forecast Dispersion

) ) (3 4

®)

©®) @ ®

Dependent Variable:  High_PD_mert Low_DD_mert High_PD_mert Low_DD_mert
All All us EU All All us EU
Opacity 0.0545%*** 0.0544%** 0.219%** 0.0347* 0.228*** 0.227%** 0.4707%** 0.128***
3.23 3.22 3.07 1.8 4.98 4.97 4.56 4.13
Coverage -0.00459 -0.00426 -0.0241*** -0.00278 -0.00375 -0.00342 -0.0233*** -0.00208
(-1.62) (-1.51) (-5.56) (-0.66) (-1.33) (-1.21) (-5.41) (-0.49)
REC_Con 0.0257 0.0268 -0.199*** 0.299%** 0.00941 0.0106 -0.208*** 0.278***
0.69 0.72 (-4.21) 477 0.25 0.28 (-4.40) 4.42
DIV_Payout -0.0124%** -0.0124***  -0.0138***  -0.0125*** -0.0117%** -0.0117%%*  -0.0131***  -0.0117***
(-13.32) (-13.36) (-11.10) (-7.97) (-12.54) (-12.59) (-10.55) (-7.50)
_cons -0.318** -0.321** 0.682** -1.213*** -0.345** -0.348** 0.681** -1.217%**
(-1.98) (-2.00) 2.3 (-5.76) (-2.15) (-2.17) 2.29 (-5.77)
Control Variables yes yes yes yes yes yes yes yes
Observations 5440 5440 3872 1568 5440 5440 3872 1568

Table 15 presents the probit regression results analyzing the effect of opacity, derived from analyst forecast error and
dispersion, on the likelihood y of a bank experiencing a high level of default risk for a global, US and European banks.
The dependent variables analyzed include Distance to Default (DD_met) and probability of Default (PD_met); We
use a high PD_mert dummy (PD_mert > 75th percentile) to capture banks with elevated default risk. The low DD_mert
dummy (DD_mert < 75th percentile) identifies banks with reduced financial stability. The main explanatory variable
is opacity, with analyst coverage and other control variables included in the model. Time-fixed effects are incorporated
in all estimations, and robust standard errors, clustered at the bank level, are reported in parentheses. ***, ** and *
denote significance levels at the 1%, 5%, and 10% levels, respectively.

20 Opacity, when measured by analyst forecast error, appears to have a weaker relationship with the Merton
probability of default proxy in the European subsample, indicating that this measure may not fully capture the risk
dynamics in the European banking context.

21 Other variables reveal that while analyst coverage generally does not significantly alter high PD or low DD
probabilities, recommendation consensus shows a modest positive association with risk, suggesting that greater
analyst pessimism may correspond to higher risk categories, though the effects are not consistently significant.
Dividend payouts exhibit a significant negative relationship across most specifications, suggesting that higher
payouts lower the likelihood of high default risk or low stability, thereby playing a stabilizing role.

51



Chapter 1: Opacity, Financial Analysts and Bank Risk: Evidence from US and European Publicly Traded Banks

1.5.3.2. Market Systematic Risk and Price Volatility Analysis

Additional robustness tests assess the effect of opacity on market-based risk measures,
specifically evaluating its influence on systematic risk (Beta) and price volatility across global,
U.S., and European bank samples. Specifically, we re-estimated our baseline model using
Market Systematic Risk (BETA) and Price Volatility (Price VOL). Table 1. 16 presents the
fixed-effect estimation results for the global sample as well as US and European subsamples.
Across the BETA models (columns 1-3 and 7-9), greater opacity—particularly when measured
by analyst forecast dispersion—is positively associated with increased systematic risk, both
globally and regionally. For Price Volatility (columns 4-6 and 10-12), higher opacity under
both proxies’ correlates with increased volatility, indicating that opaque banks are more
susceptible to financial distress and market instability. The US subsample shows more
pronounced effects for price volatility, suggesting that opacity amplifies risk-taking behavior
in the more market-driven US financial environment. In contrast, while the European
subsample also demonstrates increased risk linked to opacity, the effect on price volatility is
weaker, possibly reflecting the stabilizing influence of stronger regulatory oversight in Europe.
Analyst coverage shows a positive association with systematic risk (BETA) globally and
regionally, suggesting that increased analyst coverage might elevate perceived systematic risk,
but it does not significantly affect price volatility. Dividend payout consistently exhibits a
negative relationship with both beta and price volatility, indicating that higher payouts are
associated with lower risk and volatility. This finding suggests that dividend policies serve as
stabilizing signals of financial strength, mitigating perceived risk and promoting market
stability. Overall, these findings underscore that opacity significantly heightens systematic risk
and market volatility, particularly in the US, while dividend payouts act as important stabilizing

mechanisms.
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Table 1. 16: Market Systematic Risk and Price Volatility Analysis

Analyst Forecast Error Analyst Forecast Dispersion
Dependent Variable ) 0] ©) (4 (5) (6) %) ®) ) (10) (11 (12)
BETA Price_VOL BETA Price_VOL
All us EU All us EU All us EU All us EU
Opacity -0.00178 0.0217 -0.00684 0.795*** 1.624%** 0.49 0.0347*** 0.0455 0.0349*** 0.805*** 2.579*** 0.659***
(-0.08) -0.54 (-0.26) -2.9 -4.98 -1.41 -3.13 -0.74 -3.29 -3.82 -4.36 -4.68
Coverage 0.00788***  0.0325***  0.00462*** -0.00703 -0.0289 -0.00234 0.0625***  0.0849***  0.0460*** 0.0618 0.0702 0.0795
-6.15 -6.54 -3.76 (-0.48) (-0.51) (-0.16) -5.58 -351 -3.98 -0.43 -0.26 -0.55
REC_Con -0.0363** 0.00384 -0.0624** -0.239 -0.272 -0.0369 -0.0399* -0.0076 -0.0713** -0.271 -0.308 -0.12
(-2.07) -0.17 (-2.21) (-1.11) (-1.20) (-0.08) (-2.25) (-0.33) (-2.52) (-1.27) (-1.38) (-0.27)
DIV_Payout -0.00353*** -0.00347*** -0.00258*** -0.0642***  -0.0708***  -0.0438*** -0.00338*** -0.00331*** -0.00240***  -0.0624***  -0.0679***  -0.0406***
(-7.15) (-5.03) (-3.82) (-10.33) (-8.94) (-4.32) (-6.98) (-4.90) (-3.88) (-10.29) (-8.82) (-4.30)
_cons 1.124%** 0.106 1.430*** 25.90*** 21.85%** 25.71%** 1.098*** 0.177 1.401%** 25.88*** 22.03*** 25.76%**
-8.6 -0.49 -13.52 -29.17 -10.24 -15.69 -8.21 -0.78 -13.27 -28.93 -10.29 -15.79
Control Variables yes yes yes yes yes yes yes yes yes yes yes yes
Observations 5440 3872 1568 5440 3872 1568 5440 3872 1568 5440 3872 1568
Number of banks 340 242 98 340 242 98 340 242 93 340 242 98
R-square 0.133 0.185 0.135 0.227 0.276 0.205 0.137 0.17 0.151 0.24 0.291 0.233

This table presents fixed-effect estimation results examining the impact of opacity on bank risk-taking, focusing on interactions
between opacity, analyst forecast error, and forecast dispersion in relation to systematic risk (BETA) and price volatility
(Price_VOL). Columns 1-6 analyze the relationship with Analyst Forecast Error, while Columns 7-12 focus on Analyst Forecast
Dispersion. The dependent variables are systematic risk (BETA) and price volatility (Price_VOL), with separate estimations
provided for U.S., European, and global samples. All models include control variables and time-fixed effects. Robust standard
errors clustered at the bank level are shown in parentheses. Statistical significance is indicated by ***, ** and * for 1%, 5%, and
10% levels, respectively.

1.6. Summary and Conclusion

This study provides an in-depth analysis of bank opacity and its impact on risk within the U.S.
and European banking sectors, leveraging forward-looking metrics such as analyst forecast
error and forecast dispersion to capture nuances in market discipline and stability. The findings
underscore opacity's destabilizing role in the banking industry, with higher opacity associated
with increased risk-taking and diminished stability. Notably, this effect is amplified under
conditions of market overvaluation and economic uncertainty, particularly within the U.S.,
where market-driven dynamics and heightened analyst scrutiny create an environment more
sensitive to opaque practices. These insights contribute to the growing literature on bank
transparency by demonstrating that opacity impairs the ability of market participants to assess
bank risk accurately, thereby increasing systemic vulnerabilities.

The role of financial analysts proves to be multifaceted. While analyst coverage generally
improves transparency and mitigates risk, it can also place added pressure on opaque banks,
potentially encouraging riskier behaviors. This effect is most notable in the U.S., especially
among smaller banks that are highly sensitive to analyst coverage. In contrast, European banks
experience a moderated impact from analyst scrutiny, particularly among larger institutions,

reflecting the influence of regional differences in market structure and regulatory priorities.
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Additionally, negative analyst signals—such as sell recommendations and downgrades—
intensify opacity-related risks, especially in high-opacity U.S. banks, where market reactions to
negative forecasts amplify instability. Positive recommendations provide a stabilizing effect,
although less pronounced, underscoring the more significant influence of negative sentiment on
market behavior. Dividend policy also interacts with opacity in complex ways. While moderate
dividend payouts typically signal stability and enforce market discipline, excessive dividends
can exacerbate opacity’s negative effects, reducing resilience. This destabilizing effect is most
prominent in the U.S., where aggressive dividend distributions may weaken capital buffers and
push banks toward riskier strategies to satisfy shareholder expectations. Thus, while dividends
can serve a stabilizing function, they may also undermine stability if misaligned with a bank’s
financial health.

The comparative analysis across the U.S. and European banking sectors reveals that while
the negative effects of opacity are present in both regions, the intensity and mechanisms of
impact differ. U.S. banks, which operate within a more market-driven framework, exhibit a
higher sensitivity to opacity and analyst-induced pressures, often resulting in pronounced risk-
taking behaviors. European banks, however, display a moderated response to opacity and
analyst coverage, albeit with similar directional effects. In conclusion, this research extends the
understanding of how opacity, financial analyst influence, and dividend policies interact to
shape bank risk profiles across distinct financial environments.

These findings have critical implications for regulators, policymakers, and market
participants. They indicate that nuanced regulatory approaches—accounting for the dual role of
analysts and the signaling impact of dividend policies—are crucial for fostering resilience in the
banking sector. Tailored oversight, especially in market-driven contexts, can mitigate opacity’s
destabilizing effects by balancing the informational benefits of analyst coverage with the risks
of excessive market pressure. This study contributes meaningfully to our understanding of
market discipline mechanisms, highlighting how transparency, regulatory context, and market
dynamics together shape banking sector stability in profound and intricate ways.
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Appendix |

Appendix A: Details On Dataset

Table Al. Local market index data

Local Market Index #

S&P 500 COMPOSIIE - PRICE INDEX 275
SWISS MARKET (SMI) - PRICE INDEX 15
FTSE ALL SHARE - PRICE INDEX 13
FTSE ITALIA ALL SHARE - PRICE INDEX 11
WARSAW GENERAL INDEX 20 - PRICE INDEX 10
DAX PERFORMANCE - PRICE INDEX 8

OMX COPENHAGEN BMARK (OMXCB) - PRICE INDEX
IBEX 35 - PRICE INDEX

OMX AFFARSVARLDENS GENERAL - PRICE INDEX
SBF 120 - PRICE INDEX

WIENER BOERSE INDEX (WBI) - PRICE INDEX
ATHEX COMPOSITIE - PRICE INDEX

MOEX RUSSIA INDEX - PRICE INDEX

AEX INDEX (AEX) - PRICE INDEX

UKRAINE PFTS - PRICE INDEX

ROMANIA BET(L) - PRICE INDEX

PRAGUE SEPX - PRICE INDEX

BEL 20 - PRICEINDEX

BULGARIA SE SOFIX - PRICE INDEX

BELGRADE BELEX 15 - PRICE INDEX
BUDAPEST(BUX) - PRICEINDEX

OMX HELSINKI (OMXH) - PRICE INDEX

CROATIA CROBEX - PRICEINDEX

PORTUGAL PSI-20 - PRICE INDEX

LITHUANIA LITIN DEAD' - PRICE INDEX
SLOVAKIA SAX 16 - PRICE INDEX

L i e R R i R S ST N P PR R R O e ]
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Appendix B: Details on Risk Proxies
- Distance to Default Calculation and Risk Measure Visualizations

Distance to Default Calculation: [PD,DD] = mertonByTimeSeries(Equity, Liability,Rate)?

e Equity: The market value of the firm's equity, calculated as the product of the number of shares
and the market price.

e Liability: The liability threshold of the firm, often referred to as the default point, specified as a
positive value.

e Rate: The annualized risk-free interest rate, typically represented by the yield on 5-year
government bonds.

e Maturity: The time to maturity of the liability threshold, specified as a comma-separated pair
('Maturity," positive value).

e Drift: The annualized drift rate, representing the expected rate of return on the firm’s assets,
specified as a comma-separated pair (‘Drift," numeric value).

Outputs: PD (Probability of Default): The probability that the firm will default by the time the
liabilities reach maturity, returned as a numeric value. DD (Distance-to-Default): The number of
standard deviations between the mean of the asset distribution at maturity and the liability threshold
(default point), returned as a numeric value.

- Risk distributions:

Fig. B.1 in Appendix B displays the distribution of key bank risk measures, including solvency and
profitability (Z-Score, SD ROA, Total Risk) and market and credit risk metrics (Beta, Price
Volatility, Distance to Default). These boxplots reveal the variability across risk profiles, offering
context for bank stability and market risk perceptions in our sample.

-
-
———

S — BT

1 _

Risk Measures

Fig. B.1: Boxplots of Bank Solvency, Profitability, Market, and Default Risk Measures

22 The function mertonByTimeSeries estimates the default probability using the time-series version of the Merton model in
MATLAB, as provided by MathWorks Nordic (https://se.mathworks.com/help/risk/mertonbytimeseries.html).
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- Risk — Opacity Correlations:

Table B2 Correlation Matrix Risk and Opacity Variables

1 2 3 4 5 6 7 8 9 10 11 12
Forcast Error 1
Forecast Dispersion 0.4383 1
0.0000
InZScore -0.1724  -0.1391 1
0.0000 0.0000
InZ1Score -0.1728  -0.1347 0.9957 1
0.0000 0.0000 0.0000
InZ2Score -0.158  -0.1801 0.789 0.7517 1
0.0000 0.0000 0.0000 0.0000
InMZScore -0.0867  -0.1113 0.4315 0.4196 0.4471 1
0.0000 0.0000 0.0000 0.0000 0.0000
SDROA 0.1283 0.097 -0.7308 -0.7106  -0.7177  -0.3931 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TTL Risk 0.0972 0.1097 -0.3663  -0.3558  -0.3987  -0.9507 0.3506 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PD hioch Merton 0.0689 0.1152 -0.1231  -0.1189  -0.1419  -0.0707 0.0974 -0.0513 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
DD low Merton 0.0691 0.1153 -0.1247  -0.1207  -0.1427  -0.0715 0.1001 -0.0509 0.9986 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
BETA 0.0808 0.1069 -0.2304 -0.224 -0.2106  -0.1843 0.1348 0.1871 0.0009 0.002 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9480 0.8770
Price VOL 0.1837 0.2177 -0.5272  -05185 -0.5069  -0.5492 0.4003 0.4567 0.1764 0.1782 0.5107 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B2 provides the correlation matrix for risk and opacity variables, detailing their significance levels and

further illustrating the relationship between opacity and bank risk-taking behavior.
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Appendix C: Further Investigations

- Alternative Measures for Analyst Coverage
To enhance robustness, we examine additional proxies for analyst coverage: Residual_Coverage and
Ln-Coverage. Ln-Coverage, the natural logarithm of the primary coverage measure, better captures
variations in coverage levels, while Residual_Coverage is computed from the residuals of Equation (9).

Table C1: Opacity and bank risk-taking- Using alternative coverage measures: Ln_Coverage

Dependent Variable: In(Z-Score)

Analyst Forecast Error

Analyst Forecast Dispersion

@ 2 () () (©) (6) @] (8) (9) (10) (11) (12)

Opacity -0.206***  -0.148%** -0.150*** -0,146*** -0.161*** -0.150%** -0.0849** -0.0747*** -0,0735%** -0,0697** -0.0710** -0.0603**
(-5.95) (-4.69) (-4.79) (-4.62) (-4.83) (-4.54) (-2.55) (-2.61) (-2.61) (-2.54) (-2.51) (-2.34)

Ln_Coverage 0.0611**  0.0597**  0.0806***  0.0676*** 0.0544**  0.0533**  0.0737%*  0.0614**
-2.51 -2.44 -3.43 -2.85 -2.2 -2.14 -3.06 -2.53

REC_Con -0.147%** -0.128%** -0.147%** -0.132%**
(-4.38) (-3.64) (-4.31) (-3.70)

REC_Rev_Dn -0.0571%**  -0.0478** -0.0504**  -0.0415*
(-2.63) (-2.19) (-2.28) (-1.86)

REC_Rev_Up -0.0395 -0.0442 -0.0389 -0.0441
(-1.46) (-1.55) (-1.48) (-1.59)

DIV_Payout 0.00564*** 0.00562***
-5.97 -5.86

_cons 3.768%%*  36320%%  3EEGAAX ZO5GERRR 3 A3QkRk 3 EEQRRK 3731%%%  3604%x  3534FFF 3035k ZAQQRRF 3 EEQRRk
-449.07 -25.35 -26.57 -25.54 -25.56 21.22 -709.01 -25.34 -26.45 -25.43 -25.22 -21.17
Control Variables yes yes yes yes yes yes yes yes yes yes yes yes
Observations 5775 5775 5775 5775 5435 5435 5775 5775 5775 5775 5435 5435
Number of banks 340 340 340 340 340 340 340 340 340 340 340 340
R-square 0.0196 0.151 0.153 0.159 0.154 0.17 0.00726 0.147 0.148 0.154 0.148 0.163

This table presents fixed-effect estimation results examining the impact of opacity, as derived from analysts' forecasts,
on bank risk-taking, using Ln_ Coverage as an alternative measure for analyst coverage. All estimations include time-
fixed effects. Robust standard errors, clustered at the bank level, are shown in parentheses. Statistical significance is
denoted by ***, ** and * for 1%, 5%, and 10% levels, respectively.

Table C2: Opacity and bank risk-taking- Using alternative coverage measures: Residual _Coverage

Dependent Variable: In(Z-Score)

Analyst Forecast Error

Analyst Forecast Dispersion

[©) @ [©) O] ®) (6) ] ®) (9) (10) (11) (12)
Opacity -0.206*** -0.148*** -0.159*** -0.154*** -0.159*** -0.145*** -0.0849** -0.0747*** -0.0665*** -0.0633** -0.0648** -0.0542**
(-5.95) (-4.69) (-4.70) (-4.54) (-4.61) (-4.29) (-2.55) (-2.61) (-2.60) (-2.55) (-2.46) (-2.32)
Residual_Coverage 0.0327***  0.0301***  0.0346***  0.0323*** 0.0327***  0.0301***  0.0346***  0.0322***
-4.01 -3.67 -4.29 -4.01 -3.96 -3.62 -4.23 -3.96
REC_Con -0.127%** -0.132%** -0.131%** -0.137%**
(-3.38) (-3.54) (-3.43) (-3.61)
REC_Rev_Dn -0.0664***  -0.0582*** -0.0611***  -0.0532**
(-3.21) (-2.81) (-2.91) (-2.53)
REC_Rev_Up -0.0501* -0.0544** -0.0505**  -0.0553**
(-1.89) (-1.98) (-1.99) (-2.08)
DIV_Payout 0.00594*** 0.00598***
-6.25 -6.23
_cons 3.768%**  3.6320%*  3333*%*x Q0 335IRFF 3 473%rx 3731%%%  3E04%*  3.306F*  B.675%FF  3.323%%%  3458rrx
-449.07 -25.35 -26.07 -22.4 -26.92 -20.65 -709.01 -25.34 -25.62 -22.07 -26.38 -20.47
Control Variables yes yes yes yes yes yes yes yes yes yes yes yes
Observations 5775 5775 5095 5095 5095 5095 5775 5775 5095 5095 5095 5095
Number of banks 340 340 340 340 340 340 340 340 340 340 340 340
R-square 0.0196 0.151 0.16 0.164 0.161 0.179 0.00726 0.147 0.153 0.158 0.155 0.172

This table presents fixed-effect estimation results examining the impact of opacity, as derived from analysts' forecasts,
on bank risk-taking, using Residual Coverage as an alternative measure for analyst coverage. All estimations include
time-fixed effects. Robust standard errors, clustered at the bank level, are shown in parentheses. Statistical significance
is denoted by ***, ** and * for 1%, 5%, and 10% levels, respectively.
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Table C3: Interactions between Analyst Recommendations, revisions, and Bank Risk

Analyst Forecast Error

Analyst Forecast Dispersion

Dependent Variable:: In(Zscore)

(@) )] @) 4 (5) (6) (7) (8) (9) (10)
Opacity -0.215%%*%  -0.202%**  -0.184%*F*  -0212%**  -0.217*** -0.0728** -0.0762* -0.0603 -0.0674* -0.0890*
(-5.11) (-5.65) (-3.31) (-5.51) (-5.61) (-2.07) (-1.95) (-0.67) (-1.68) (-1.89)
Opacity X REC_Buy 0.0291 0.0294
1.26 0.85
Opacity X REC_Sell 0.0248 0.00898
0.87 0.41
Opacity X REC_Con -0.00431 -0.00269
(-0.20) (-0.11)
Opacity X REC_Rev_Dn 0.000621 0.0287
0.05 1.45
Opacity X REC_Rev_Up 0.0284* 0.0233*
177 181
Opacity X Coverage 0.0315%** 0.0324**  0.0326*** 0.0317** 0.0281** 0.00181 0.0121 0.0104 -0.0042 0.00834
2.65 2.57 2.63 2.33 2.06 0.1 0.78 0.7 (-0.26) 0.48
Opacity X DIV_Payout -0.000375  -0.000523  -0.000451  -0.000365  -0.000293 -0.00394**  -0.00397**  -0.00380**  -0.00434**  -0.00421**
(-0.73) (-1.03) (-0.88) (-0.62) (-0.50) (-2.40) (-2.44) (-2.40) (-1.99) (-1.99)
_cons 3.389%** 3.484%** 3.893*** 3.202%** 3.278%** 3.335%** 3.435%** 3.835%** 3.235%** 3.230%**
21.14 22.13 22.23 20.22 19.85 20.19 21.23 21.72 19 18.65
Control Variables yes yes yes yes yes yes yes yes yes yes
Observations 5775 5775 5775 5435 5435 5775 5775 5775 5435 5435
Number of banks 340 340 340 340 340 340 340 340 340 340
R-square 0.125 0.123 0.128 0.127 0.127 0.121 0.119 0.124 0.123 0.123

This table presents the fixed-effect estimation results, based on Eq. (2), examining the influence of opacity on bank risk-taking,
specifically through interactions with analyst recommendations (e.g., Buy, Sell, and revisions) and coverage. The dependent
variable is In(ZScore), representing bank stability. Time-fixed effects are included in all estimations, and robust standard errors
clustered at the bank level are shown in parentheses. Statistical significance is denoted by ***, ** and * for 1%, 5%, and 10%

levels, respectively.
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Appendix D: Subsamples of US and European Banks

- Variable definitions

Table D1. Variables definition and summary statistics for US and European banks

Variable US banks EU banks

Dependent variables Obs Mean Std. Dev.  Min Max Obs Mean Std. Dev.  Min Max T-Stat.
SDROA 4,114 0.36 0.50 0.00 3.25 1,666 0.44 0.61 0.00 3.90 5.4617***
ZScore 4,114 75.37 70.85 3.76 385.35 1,666 46.15 54.60 0.02 328.13 -15.1161***
Z1Score 4,114 67.63 63.44 3.33 294 .43 1,666 40.71 49.01 3.33 213.59 -15.5450***
Z2Score 4,114 7.63 7.80 -0.53 34.70 1,666 5.37 6.06 -0.53 34.70 -10.6003***
MZScore 4,103 55.05 28.15 0.00 183.79 1,656 55.50 37.93 0.00 413.14  0.4919*
TR 4,114 1.87 137 0.00 8.57 1,666 1.82 137 0.00 8.57 -1.2749*
BETA 4,114 0.77 0.55 -1.24 2.92 1,666 1.01 0.60 -1.24 292  14.5257***
Price_VOL 4,114 22.16 6.43 7.96 4752 1,666  25.60 851 5.89 4752 16.7220***
DD_mert 4,114 1.88 9.30 -27.51 80.53 1666 -0.16 1177 -33.18 80.53  -8.788***
PD_mert 4,114 0.46 0.42 0.00 1.00 1,666  0.65 0.38 0.00 1.00 16.2289***
Variables Of Interest

Analysts Forecasts and Recommendations

Forecast Error 4,114 0.095 0.36 0.00 8.27 1,666  0.60 1.82 0.00 8.27 17.026%**
Forecast Dispersion 4,114 0.08 0.23 0.00 2.55 1666 0.22 0.54 0.00 255 13.6718***
Forecast_Optimism 4,114 0.65 3.33 -9.96 39.12 1,666 3.47 11.11 -9.96 39.12 14.6861***
Coverage 4,114 5.26 6.94 0.00 38.00 1,666 11.92 1155 0.00 46.00 26.8801***
REC_Con 4,114 2.53 0.50 1.00 5.00 1,666  2.64 0.57 1.00 5.00 19.0044***
REC_Rev_Dn 4,114 0.09 0.35 0.00 4.00 1,666  0.38 0.80 0.00 7.00 21.8289***
REC_Rev_Up 4,114 0.06 0.27 0.00 3.00 1,666 0.34 0.70 0.00 5.00 7.4635***
REC_Cons_ BUY % 4,114 37.70 31.03 0.00 100.00 1,666 40.56 27.24 0.00 100.00 3.2781***
REC_Cons_ HOLD % 4,114 57.71 30.15 0.00 100.00 1,666  43.27 24.86 0.00 100.00 -17.3162***
REC_Cons_ SELL % 4,114 459 10.71 0.00 100.00 1,666 16.18 19.88 0.00 100.00 28.5385***
REC_BUY 4,114 0.73 0.44 0.00 1.00 1,666 0.73 0.44 0.00 1.00 -0.0219*
REC_SELL 4,114 0.08 0.27 0.00 1.00 1,666  0.18 0.38 0.00 1.00 10.8115***
DIV_Payout 4,114 31.45 20.87 0.00 91.50 1,666  33.59 26.64 0.00 9150  3.2506***
DIV_Yield 4,114 2.21 1.53 0.00 9.09 1,666  2.83 2.33 0.00 9.09  11.8483***
Control Variables

DEPOSITS 4,114 76.30 9.13 24.79 89.87 1666 56.35 17.65 24.79 89.87 -17.96377***
EQUITY2A 4,114 10.84 2.90 2.88 23.48 1,666  8.10 4.06 2.88 2348 -22.4679%**
SIZE 4,114 9.59 0.71 8.19 12.53 1,666 10.65 0.90 7.73 1240 55.3501***
NI2A 4,114 1.18 111 0.00 15.72 1,666 1.89 181 0.01 29.22  18.1537***
NPL 4,114 1.62 195 0.01 23.63 1,666 452 5.34 0.01 23.63 30.1969***
MTBV 4,114  136.05 60.90 19 378 1,666 12443 73.77 19.00 378 -6.1684***
GDPgr 4,114 1.69 1.95 -3.64 3.80 1666 145 271 -5.79 6.12  -3.8251***
Inflation 4,114 2.03 1.09 -0.36 3.84 1666 1.71 1.51 -0.69 6.36  -9.0661***

This table shows summary statistics and t-tests comparing U.S. and EU banks across dependent, interest, and control
variables. Significant differences between regions are denoted by ***, ** and * at the 1%, 5%, and 10% levels,

respectively.
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Table D2: Correlation Matrix Risk and Opacity Variables

US Sub-sample EU Sub-sample
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1
Forcast Error 1 1
Forecast Dispersion 0.612 1 0.411 1
0.000
InZScore -0.274 -0.266 1 -0.110 -0.108 1
0.000 0.000 0.000 0.000
InZ1Score -0.270 -0.259 0.997 1 -0.105 -0.098 0.993 1
0.000 0.000 0.000 0.000 0.000 0.000
InZ2Score -0.339 -0.300 0.823 0796 1 -0.106 -0.198 0.725 0.668 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
InMZScore -0.226 -0.178 0.429 0424 0440 1 -0.062 -0.133 0.491 0468 0473 1
0.000 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.000
SDROA 0.293 0.244 -0.767 -0.752 -0.769 -0.397 1 0.076 0.064 -0.685 -0.659 -0.617 -0.391 1
0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.009 0.000 0.000 0.000 0.000
TTL Risk 0.206 0.154 -0.365 -0.359 -0.395 -0.958 0.365 1 0.097 0.150 -0.423 -0.406 -0.420 -0.937 0332 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DD low Merton 0108 0.126 -0.085 -0.080 -0.105 -0.026 0.079 -0.075 1 0.028 0.132 -0.123 -0.113 -0.190 -0.166 0.115 0.006 1
0.000 0.000 0.000 0.000 0.000 0.110 0.000 0.000 0.254 0.000 0.000 0.000 0.000 0.000 0.000 0.821
BETA 0.012 0.044 -0.162 -0.149 -0.179 -0.113 0.146 0.151 -0.021 1 0.073 0.144 -0.268 -0.265 -0.240 -0.352 0.083 0.292 -0.028 1
0.439 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.181 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.262
Price VOL 0.297 0.341 -0.511 -0.505 -0.504 -0.508 0.427 0.425 0.143 0.401 1 0.122 0.209 -0.495 -0.475 -0.507 -0.675 0.347 0570 0.176 065 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

- Comparative Analysis of financial stability, analyst dynamics, and dividend policy for
European and US Banks (2004-2020).
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Fig. D.1. This set of charts provides a visual representation of key indicators influencing bank risk and profitability
across European and US banks from 2004 to 2020. The indicators include Analyst Forecast Error, Analyst Forecast
Dispersion, Analyst Forecast Optimism, Analyst Coverage, Dividend Payout Adjustments, and the ZScore as a
measure of bank risk. The data reveals significant regional differences in forecast accuracy, analyst activity,
dividend practices, and overall financial stability, highlighting the unique challenges faced by banks in each region.
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Appendix F: Additional analysis

Table F1: Interactions and Extensions: Analyst Recommendations, Revisions and Opacity-Risk

Analyst Forecast Error

Analyst Forecast Dispersion

Dependent Variable:: In(Zscore)

US Sample [©) (2) ®3) 4 (5) (6) () (8) (9) (10)
Opacity -0.019 0.00388 0.43 -0.0885 0.00195 -0.0831 -0.00533 1.083** 0.0427 0.0597
(-0.18) -0.04 -1.33 (-0.98) -0.03 (-0.96) (-0.05) -2.11 -0.39 -0.53
Opacity X REC_Buy -0.0721 0.386***
(-0.67) -3.03
Opacity X REC_Sell 0.588 -1.240%**
1.61 (-3.95)
Opacity X REC_Con -0.206 -0.388**
(-1.50) (-2.19)
Opacity X REC_Rev_Dn -0.494* -0.349
(-2.18) (-1.50)
Opacity X REC_Rev_Up 0.876%** 0.472%**
2.93 3.34
Opacity X Coverage -0.114 -0.247* -0.05 -0.08 -0.347%** -0.408** -0.297* -0.340** -0.370** -0.434**
(-1.14) (-2.19) (-0.44) (-0.80) (-3.52) (-2.44) (-1.74) (-2.04) (-2.04) (-2.57)
Opacity X DIV_Payout -0.0117***  -0.0137***  -0.0107**  -0.0116***  -0.0131*** -0.0262***  -0.0182***  -0.0227***  -0.0205***  -0.0209***
(-3.10) (-3.35) (-2.41) (-2.78) (-4.02) (-4.69) (-3.25) (-3.56) (-2.87) (-3.01)
_cons 3.903*** 3.957%** 4.352%%* 3.822%** 3.757*** 3.738** 3.833%** 4.006%** 3.662%** 3.627%**
11.7 11.96 12.52 11.11 10.82 11.26 11.69 11.95 10.58 10.46
Control Variables yes yes yes yes yes yes yes yes yes yes
Observations 4111 4111 4111 3869 3869 4111 4111 4111 3869 3869
Number of banks 242 242 242 242 242 242 242 242 242 242
R-square 0.205 0.208 0.211 0.211 0.217 0.215 0.217 0.217 0.213 0.214

This table presents fixed-effect estimation results based on Eq. (2), examining how opacity influences bank risk-taking
with a focus on the interaction effects of opacity with analyst recommendation tones (positive/negative) and revisions
(upgrades/downgrades) in U.S. banks. The dependent variable is In(ZScore), analyzed across both Analyst Forecast Error
and Analyst Forecast Dispersion models. Time-fixed effects are included in all estimations, and robust standard errors
clustered at the bank level are shown in parentheses. Statistical significance is indicated by ***, ** and * for 1%, 5%,
and 10% levels, respectively. Control variables are included but not displayed for brevity.
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Table F2: Interactions and Extensions: Analyst Recommendations, Revisions, Coverage and Opacity-Risk

Analyst Forecast Error

Analyst Forecast Dispersion

Dependent Variable:: In(Zscore)

Panel A: US (1) (2) (3) (4) (5) (6) (7) (8)
Opacity -0.212%*%*  -0.298***  -0.310***  -0.342*** -0.252*%**  -0.293***  -0.308***  -0.312***
(-4.74) (-4.68) (-5.02) (-4.92) (-2.69) (-3.03) (-2.73) (-2.81)
Opacity X REC_Buy X Coverage -0.340*** -0.225
(-3.20) (-1.18)
Opacity X REC_Sell X Coverage -0.00676 -0.883***
(-0.15) (-2.76)
Opacity X REC_Rev_Dn X Coverage -0.227%** -0.501***
(-2.84) (-3.62)
Opacity X REC_Rev_Up X Coverage 0.0418 -0.0288
1.52 (-0.17)
_cons 3.869*** 3.996%** 3.826™** 3.779%** 3.833%** 3.911%** 3.767*** 3.730%**
11.48 11.96 10.96 10.78 11.33 12 10.8 10.66
Control Variables yes yes yes yes yes yes yes yes
Observations 4111 4111 3869 3869 4111 4111 3869 3869
Number of banks 242 242 242 242 242 242 242 242
R-square 0.205 0.197 0.204 0.201 0.198 0.205 0.2 0.196
Analyst Forecast Error Analyst Forecast Dispersion
Dependent Variable:: In(Zscore)
Panel B: EU (1) (2) (3) (4) (5) (6) (7 (8)
Opacity -0.116***  -0.0978***  -0.105***  -0.110*** -0.0461**  -0.0363***  -0.0504**  -0.0614***
(-3.51) (-3.47) (-3.65) (-3.88) (-2.50) (-3.14) (-2.54) (-2.84)
Opacity X REC_Buy X Coverage 0.0131 0.00458
142 0.8
Opacity X REC_Sell X Coverage 0.00402 -0.00924
0.37 (-0.86)
Opacity X REC_Rev_Dn X Coverage 0.00227 0.00489
0.63 111
Opacity X REC_Rev_Up X Coverage 0.00780* 0.0108*
17 173
_cons 3.227%** 3.296%** 3.151%** 3.135%** 3.192%** 3.276%** 3.133%** 3.120%**
17.08 18.66 17.36 17.29 16.49 18.18 16.82 16.82
Control Variables yes yes yes yes yes yes yes yes
Observations 1664 1664 1566 1566 1664 1664 1566 1566
Number of banks 98 98 98 98 98 98 98 98
R-square 0.0934 0.091 0.0879 0.0875 0.0868 0.0855 0.0809 0.0807

This table presents fixed-effect estimation results examining how opacity influences bank risk-taking, with a focus
on interactions between opacity and analyst recommendations (Buy/Sell), revisions (Up/Dn), and coverage. Panel
A shows results for U.S. banks, while Panel B presents results for European banks. The dependent variable is
In(ZScore), analyzed separately for both Analyst Forecast Error and Analyst Forecast Dispersion models. All
estimations include time-fixed effects, and robust standard errors clustered at the bank level are displayed in
parentheses. Statistical significance is indicated by ***, ** and * for 1%, 5%, and 10% levels, respectively. Control
variables are included in the analysis but not shown for brevity.
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Chapter 2

The Influence of Financial Analyst Characteristics
on Forecast Accuracy: A Comparative Analysis
Across Global Banking Markets

This chapter is based on the working paper titled “The Influence of Financial Analyst
Characteristics on Forecast Accuracy: A Comparative Analysis Across Global Banking
Markets.” An earlier version of this work was presented at the Sixth Edition of the Journées
Internationales du Risque, hosted by the IRIAF (Institute of Industrial, Insurance, and Financial
Risks) in Niort, France, on June 27-28, 2024.
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Abstract

This study explores how financial analyst characteristics and career motivations shape disparities
in earnings forecast accuracy and boldness across global banking markets. Using the I/B/E/S
Detail History Database, we examine forecasts for 516 publicly traded banks across the U.S.,
Europe, and Asia from 2000 to 2023, uncovering notable regional disparities in the factors
influencing forecast accuracy. While general and bank-specific experience significantly
enhances precision—most notably in the U.S.—the benefits of affiliation with top-tier brokerage
houses vary, with a smaller impact in Europe, where smaller, specialized firms often hold
informational advantages. Portfolio complexity shows contrasting effects: broader bank
coverage improves accuracy in the U.S. and Asia but increases errors in Europe due to
geographical diversification challenges. Boldness, tied to career trajectories, exhibits nuanced
regional patterns. In the U.S., experienced analysts issue bold, accurate forecasts that enhance
career mobility, while less experienced analysts herd to avoid the risks of inaccuracy. In Asia,
boldness consistently facilitates career advancement, supported by focused portfolios and
institutional backing. In Europe, early-career analysts use bold forecasts and geographically
diverse portfolios to gain visibility, albeit with a trade-off in accuracy. These findings underscore
the interplay of technical expertise, market dynamics, and career incentives in shaping
forecasting behavior. The study highlights the need for greater transparency and regulatory
oversight to improve forecast reliability and strengthen market discipline in the opaque banking

sector.

JEL classification: G11, G12, G14, G24
Keywords: Financial Analysts, Earnings Forecasts, Forecast Boldness, Banking Sector,

Career Concerns.
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2.1. Introduction

Financial analysts are pivotal in shaping market expectations and guiding investment decisions,
particularly in interpreting complex financial data. Their forecasts and recommendations play a
critical role in improving the information environment, reinforcing market discipline, and
contributing to economic stability (Cheng & Subramanyam, 2008; Mansi et al., 2011; Derrien
et al., 2016; Kosaiyakanont, 2013). In the banking sector, characterized by intricate and opaque
asset structures, the true risk profiles of banks often remain obscured, raising concerns about the
effectiveness of market discipline in curbing banks' risk-taking behavior. This opacity
complicates regulatory oversight and diminishes stakeholders’ ability to monitor and influence

banking practices (Morgan, 2002; Flannery et al., 2013; Dewally & Shao, 2013a).

The literature reveals systematic differences in analysts' forecast accuracy, largely shaped
by market conditions, though such variations remain underexplored in the banking sector.
Discrepancies in earnings forecasts often stem from entrenched information asymmetries and
low disclosure quality—issues that are particularly acute in banking. These challenges
compromise the reliability of earnings per share (EPS) forecasts, a critical metric for assessing
firm performance and investor confidence (Anolli et al., 2014; Lang & Lundholm, 1996; Fosu
et al., 2017). Factors such as analysts’ experience, portfolio complexity, and access to
institutional resources further influence forecast accuracy?3. Additionally, economic incentives
drive patterns of optimism, boldness, and herding behavior, often undermining objectivity.
Analysts frequently issue optimistic, bold forecasts influenced by career incentives and conflicts
of interest, prioritizing commissions and client relationships over forecast reliability (Bradford
et al., 2012; Lehmer et al., 2022; Ljungqvist et al., 2007; Michaely & Womack, 1999; Guo et
al., 2023). Addressing these systemic challenges is critical for improving forecast reliability in
the opaque banking sector. Despite the banking sector's pivotal role in the global economy,
existing research has largely overlooked its unique complexities, with limited exploration of
variations across global markets. This study is the first to investigate how analysts’
characteristics and economic incentives shape forecast accuracy, optimism, and boldness within
the global banking industry. By addressing these gaps, it provides theoretical and practical

insights for enhancing transparency and stability in this critical sector.

This research explores three core themes, beginning with an analysis of how analyst

characteristics—such as experience, brokerage affiliation, and industry specialization—

23 See, e.g., Brown et al. (2015), Bradley, Gokkaya, and Liu (2017); Clement (1999), Lim (2001), Bolliger (2004),
Kim, Lobo, and Song (2011), Alves (2017), and Hong et al., (2000), Kecskés et al., (2017), Kothari et al., (2009).
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contribute to systematic differences in forecast accuracy within the banking sector across
regions. By comparing findings to broader cross-sectoral studies, it uncovers distinctions unique
to banking. Prior studies suggest that affiliations with prestigious brokerage houses and
specialized expertise enhance accuracy, particularly in the U.S., where labor market dynamics
and institutional incentives bolster performance?*. Conversely, Europe's varied regulatory and
labor market structures introduce complexities that temper these effects®. Second, the study
investigates the incentive-driven dynamics of forecasting behavior, focusing on the relationship
between boldness, ability, and career concerns. It examines whether bold forecasts reflect
genuine expertise—Ileveraging private information—or heightened risk-taking. Literature
reveals conflicting evidence on whether boldness bolsters credibility or introduces reputational
risks, particularly for less experienced analysts?®. The study also explores how labor market
incentives influence forecasting strategies and career trajectories. By exploring these dynamics,
the research provides critical insights into the drivers of analysts' behavior and the reliability of

earnings forecasts in the banking sector, highlighting global variations in these relationships.

Examining 516 banks across 29 countries, it highlights significant regional disparities in
forecast accuracy, shaped by the characteristics of 5,647 analysts from 901 brokerages. General
and bank-specific analyst experience emerges as a key determinant of forecast precision, with
the strongest effects observed in the US. Affiliation with top-tier brokerage houses enhances
accuracy globally, though the impact is weaker in Europe, where smaller, specialized firms often
hold informational advantages. Portfolio complexity exhibits contrasting regional effects: while
covering more banks improves accuracy in the US?” and Asia, it increases errors in Europe due
to challenges from geographical diversification?®. This contrast—European analysts managing
geographically dispersed portfolios versus Asian analysts focusing on concentrated banks—

highlights nuanced regional dynamics in managing larger portfolios. Globally, frequent updates

2 See, e.g., Top Analyst: Brown et al. (2015); Guan, Wong, and Zhang (2015); Bradley, Gokkaya, and Liu (2017);
Clement (1999); Brown (1999); Jacob, Lys, and Neale (2000); Lim (2001). Industry Expertise: Jegadeesh and Kim
(2010); Brown and Das (1997). Experience: Mikhail, Walther, and Willis (1997); Clement (1999); Lim (2001);
Brown (1999); Jacob, Lys, and Neale (2000).

% Grandin (1995) and Bolliger (2004) suggest that in Europe, top brokerage affiliation and general experience
may reduce forecast accuracy, likely due to the European labor market's unique structure, including local
disadvantages, limited "learning-by-doing," and a lack of incentives.

2 Career concerns and herding models highlight that forecast accuracy and boldness signal private information
quality, influencing analysts' career outcomes (Schipper, 1991; Michaely & Womack, 1999; Ljungqvist et al.,
2017). While experienced analysts often issue more accurate bold forecasts, less experienced analysts face greater
risks when using boldness to gain visibility (Clement, 2005; Hong et al., 2000).

27 Our findings contrast prior studies linking broader coverage to reduced accuracy in the US (Clement, 1999; Lim,
2001).

2 The findings may reflect insufficient centralization in European brokerage research and analysts' limited
familiarity with diverse institutional contexts (Bolliger, 2004).

67



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis
Across Global Banking Markets

and recent forecasts consistently improve accuracy, while initial forecasts suffer from limited
early information. These findings underscore the importance of specialization, institutional
support, and regional strategies in optimizing forecast precision, particularly in the opaque and
complex banking sector. The analysis reveals significant regional variations in how experience,
past performance, and financial analysts' forecast boldness interact. While boldness is often
perceived as an indicator of expertise, its impact on reputation varies by regional context and
analyst experience. In the United States and Asia, boldness aligns with expertise, as experienced
analysts leverage their reputations to issue audacious forecasts. Analysts from top brokerage
firms and those with strong past performance also demonstrate higher boldness, supported by
institutional resources and confidence in their abilities?®. Conversely, in Europe, boldness is
more tied to career concerns, with younger analysts, those with weaker past performance, and
those from smaller brokerage houses more likely to issue bold forecasts. These analysts often
cover a broader range of banks and countries, using diverse portfolios and regional knowledge

to stand out early in their careers.

This study highlights stark regional variations in how boldness, experience, and past
performance influence analysts' career outcomes. Inthe U.S., poor performance sharply elevates
downgrade risks for less experienced analysts, while strong performance alone fails to secure
promotion; in Europe, high performance drives upward mobility, with no significant trend for
downgrading; and in Asia, high performance drives upward mobility for analysts with strong
bank-specific expertise, while lower past performance does not notably increase downgrading
risks. Boldness further exerts a nuanced influence on career trajectories across regions, shaped
by market structures and professional dynamics. In the U.S., bold forecasts are a double-edged
sword: they hinder less experienced analysts, amplifying career risks, yet serve as a strategic
asset for seasoned professionals with strong bank-specific expertise, unlocking pathways to top-
tier firms. Asia demonstrates a broader acceptance of boldness, where it consistently accelerates
career progression and stabilizes prospects across experience levels, underpinned by
concentrated portfolios and institutional support. In Europe, boldness plays a pivotal role for
early-career analysts, enabling advancement and visibility in competitive markets. Early-career
European analysts strategically leverage bold forecasts, geographically diverse portfolios, and

active market engagement to progress professionally. However, this strategy entails a trade-off,

29 Our findings confirm prior US studies linking boldness to ability, reputation, and experience, while extending
this by highlighting the roles of bank-specific expertise, accuracy, brokerage size, and portfolio complexity. We
also uncover distinct boldness patterns and outcomes in Europe and Asia. See, e.g., Hong and Kubik (2003),
Stickel (1992), Jegadeesh and Kim (2010), Harford and Schon (2019), and Clement (2005).
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as the ambition to achieve career growth through bold, high-visibility forecasts often
compromises forecast accuracy, highlighting the inherent tension between career-driven forecast
behavior and forecast reliability.

The findings of this study reveal the complex interplay between technical expertise and
incentive-driven behaviors in shaping analysts' forecast accuracy. Forecast precision, while
grounded in factors such as experience, industry specialization, and institutional resources, is
also influenced by strategic behaviors tailored to market pressures and career incentives.
Analysts balance technical expertise with incentive-driven behaviors, employing strategies like
portfolio expansion and bold predictions to accelerate career growth. However, these approaches
often involve trade-offs, as boldness and optimism may compromise forecast precision,
particularly in markets where commission-driven incentives amplify these behaviors. By
uncovering these dynamics, this study offers critical insights for investors, financial institutions,
and policymakers. It emphasizes the importance of regulatory oversight and transparency in
mitigating incentive-driven biases, fostering reliable financial analysis, and enhancing market

discipline within the opaque banking sector.

The paper is structured as follows: Section 2. 2 presents the literature review. Section 2. 3
describes the proposed research's empirical methodology. Section 2. 4 assembles our dataset.

Section 2. 5 presents our empirical results, and Section 2. 6 concludes.

2.2. Related Work

2.2.1. The Determinants of Financial Analysts’ Forecast Accuracy

Financial analysts' forecast accuracy is influenced by a range of factors, including individual
characteristics, firm-level dynamics, and regional differences. Extensive research has grouped
these determinants to better understand their impact on forecast precision. Analysts’ experience
and specialization play a critical role in shaping forecast accuracy. Stickel (1992) and Jegadeesh
and Kim (2010) highlight the superior performance of U.S. star analysts, whose forecasts are not
only more accurate but also exhibit minimal bias, resulting in significant market reactions and
higher returns. This finding is consistent with Sinha, Brown, and Das (1997), who show that
superior analysts maintain their edge over time, amplifying their influence on the market.
Specialization in a single industry further enhances forecast accuracy. Desai et al. (2000) and
Brown et al. (2015) highlight how industry focus and reliance on sector-specific data enable

analysts to better interpret trends and improve predictions. Extending this, Guan et al. (2015)
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reveal that supply chain coverage increases accuracy in concentrated industries. Additionally,
Bradley, Gokkaya, and Liu (2017) show that prior industry experience boosts forecasting
precision by providing nuanced insights into sector-specific dynamics. Experience plays a
pivotal role in forecast accuracy. Mikhail et al. (1997) and Jacob et al. (2000) argue that more
experienced analysts deliver better forecasts due to refined methodologies and reduced errors
over time. However, Clement (1999) and Bolliger (2004) suggest diminishing returns with
greater experience, citing competing responsibilities and reduced incentives in certain markets,
such as Europe, where career motivations differ from the U.S. Lim (2001) suggests that analysts
with more excellent experience have greater access to management. Therefore, if the labor
market provides sufficient incentives for financial analysts to produce good forecasts, they
should produce more accurate forecasts as they age.

The frequency of forecast revisions also plays a role. Gleason and Lee (2003) demonstrate
that analysts who revise their forecasts frequently tend to achieve higher accuracy, as their
updates reflect new and relevant information. Similarly, Kim, Lobo, and Song (2011) find that
experienced analysts from larger firms delay their forecasts strategically, leveraging additional
information closer to earnings announcements to enhance precision. Clement (1999) and Brown
(1999) also find that longer forecast horizons are associated with lower forecast accuracy.

Institutional and Brokerage-Level Factors: Analysts affiliated with larger brokerage houses
generally provide more accurate forecasts, especially those who follow fewer industries,
benefiting from better resources and industry specialization (Clement, 1999; Jacob et al., 2000).
However, Lim (2001) adds a nuanced perspective, proposing that analysts may issue optimistic
forecasts strategically to maintain relationships with management and access better information.
This optimism, while initially biased, can lead to better forecasts in subsequent periods.
Conversely, regional disparities in Europe, noted by Bolliger (2004), suggest that smaller,
specialized firms may occasionally outperform larger institutions in specific niches. According
to their findings, the European labor market of financial analysis may not provide sufficient
incentives for financial analysts to produce increasingly accurate forecasts as they age.

Regional Differences and Market Structures: Grandin (1995) finds no evidence of superior
forecast accuracy in the French market among brokerage houses providing forecasts to the
“Associés en Finance” database. Similarly, Bolliger (2004) finds that forecast accuracy in 14
European stock markets improves with firm-specific experience but declines with increased
country coverage and older forecasts, while general experience and brokerage size show no
significant impact. These findings suggest that specialized knowledge and the ability to navigate

regional complexities are crucial for success in European markets.
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2.2.2. Forecast Accuracy, Boldness, and Career Outcome

Research consistently demonstrates that forecast accuracy plays a pivotal role in enhancing
analysts' career prospects. Analysts with a proven track record of accurate forecasts are more
likely to secure promotions and less likely to face job separation. Stickel (1992) and Trueman
(1994) emphasize the importance of accuracy for career advancement in the U.S., noting that
accurate forecasters are often viewed as competent and reliable, leading to superior career
outcomes. Jegadeesh and Kim (2010) further corroborate this, showing that accurate forecasters
gain industry recognition and improved career trajectories in the U.S. Hong and Kubik (2003)
highlight how the U.S. labor market incentivizes accurate forecasting by increasing the
likelihood of analysts with strong track records being hired by high-status brokerage houses.
These opportunities, often linked to analyst experience, are crucial for career growth, as they
improve compensation and establish analysts as key players in the industry (Phillips &
Zuckermann, 2001). Bolliger (2004) identifies similar trends in the European market, noting that
analysts achieving high forecast accuracy are more likely to secure promotions to top-tier
brokerage houses. However, those managing geographically diverse portfolios or issuing older
forecasts face greater accuracy challenges, increasing their risk of termination. This underscores
the importance of specialized expertise and the ability to navigate complex, multi-regional

markets for sustaining employment and achieving career progression in Europe.

Bold forecasts also play a pivotal yet nuanced role in shaping analysts' career trajectories.
Hong et al. (2000) demonstrate that in the United States, inexperienced analysts tend to avoid
bold forecasts due to the career risks associated with inaccuracy, whereas experienced analysts
leverage their reputations to make bold predictions with lower personal risk. While accurate bold
forecasts can enhance an analyst's reputation and accelerate career advancement, their inherent
risk can also harm career prospects if proven inaccurate. Harford and Schon (2019) highlight the
delicate balance between boldness and career risk, noting that bold forecasts can yield substantial
rewards but also carry significant professional stakes. Scharfstein and Stein (1990) and
Prendergast and Stole (1996) explore this balance further, suggesting that the interplay between
accuracy and boldness creates a complex dynamic in career outcomes. Analysts who combine
precise forecasts with occasional bold predictions are often perceived as both skilled and
innovative, leading to the most favorable career advancements. Jegadeesh and Kim (2010)
reinforce this view, showing that maintaining a balance between boldness and accuracy is key
to achieving recognition and career growth in the U.S. market. Overall, career concerns

significantly influence herding behavior, particularly among less experienced analysts, as
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highlighted by studies in the United States, including Hong et al. (2000). Fear of adverse career
outcomes from deviating from the consensus often drives these analysts to align with the
majority. In contrast, experienced analysts with a proven track record face less career risk,
enabling them to issue independent and bold forecasts. Welch (2000) and Clement and Tse
(2005) reinforce this dynamic, showing that career concerns are a critical factor shaping the

tendency of U.S. analysts to herd, with varying effects based on their level of expertise.

2.2.2.1. Economic Incentives and Analyst Behavior

Research consistently demonstrates that Analysts' compensation is deeply linked to trading
volume and broker votes®®. Cowen et al. (2006) note that firms without investment banking
divisions primarily base analyst pay on the trading volume their research generates. Brown et al.
(2015) found that success in generating underwriting business or trading commissions was
critical to compensation, with 44% of analysts emphasizing this factor. Economic incentives
often drive forecast bias. Michaely and Womack (1999) observed significant optimism in
forecasts by analysts affiliated with investment banks, aligning with client expectations, while
Chan et al. (2003) highlighted strategic adjustments to avoid earnings disappointments during
the 1990s bull market. Ljungqvist et al. (2007) confirmed that conflicts of interest in sell-side
research result in overly optimistic forecasts, compromising forecast accuracy. Regulatory
reforms (Hovakimian & Saenyasiri, 2010) have improved accuracy but not eliminated biases
tied to trading incentives. Guo et al. (2023) found that maintaining relationships with
management and generating commissions drive optimism, while Lehmer et al. (2022) linked
forecast optimism to higher trading volumes and lower demotion risks. Analysts who generate
substantial trading activity avoid penalties, reinforcing the critical role of trading volume in
career advancement. These findings illustrate how economic pressures push analysts toward
optimism, benefiting career progression but often compromising forecast objectivity.

Our motivation stems from a significant research gap in understanding financial analysts’
behavior within the banking sector, particularly across global markets. While extensive studies
have examined analysts' characteristics, career concerns, and forecast precision, most focus
predominantly on the U.S. market and lack the industry-specific insights necessary for capturing

the complexities of the banking sector. This omission is critical given the sector’s global

30 Groysberg, Healy, and Maber (2011) found that 1l all-star analysts earn 61% more than their unrated peers,
highlighting strong financial incentives to secure these rankings (Bradley, Gokkaya, and Liu, 2017). This higher
pay is partly due to their role in attracting investment banking deals (Clarke et al., 2007). However, the 2003 Global
Research Settlement restricted linking analyst pay directly to investment banking. See Appendix A for a review of
analyst compensation packages.
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economic importance and inherent opacity. Analysts' optimism, boldness, and forecasting
reliability are often shaped by economic incentives and potential conflicts of interest, particularly
in markets where trading commissions dominate revenue streams. Addressing these dynamics
is essential for improving forecast accuracy, safeguarding the credibility of financial analysis,
and fostering transparency in the banking industry—a sector where reliable analysis is pivotal

for market stability and investor confidence.

2.3. Research Design and Methodology

2.3.1. Measurement of the Proportional Mean Forecast Accuracy

The performance measure employed is the proportional mean absolute forecast error (PMAFE),
which evaluates an analyst’s forecast accuracy relative to the average forecast accuracy of other
analysts following the same stock in a given period. This measure, as utilized by Clement (1999),
Brown (1999), Jacob et al. (2000), and Bolliger (2004), is defined as follows:

DAFE; ;;
mean( AFE; ;)

PMAFEi,j,t =

(1)

where DAFE; ;. represents the difference between analyst i’s absolute forecast error and the

mean absolute forecast error for firm j in year t3%.

DAFE,; j; = AFE;;. — mean( AFE;; )
)
The absolute forecast error (AFE; ;) is calculated as the absolute difference between an
analyst’s forecasted earnings per share (EPS) and the actual EPS for the firm in that year,
deflated by the actual EPS at the end of the period:

FEPS;;, — AEPS;,

AR = AEPS;,

(©)
where FEPS; ;. is the analyst i EPS forecasts for bank j in fiscal year t, and AEPS;; is the

actual EPS for firm j in the same period. PMAFE represents an analyst’s forecast error as a

fraction of all analysts' average absolute forecast errors for firm j in year t. A negative PMAFE

3L Clement (1998, 1999) shows that large EPS firms exhibit greater variability in DAFE than small EPS firms and
that deflating DAFE by mean(AFE) mitigates heteroscedasticity.
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indicates above-average performance, while a positive PMAFE indicates below-average
performance. Unlike traditional measures like absolute or relative forecast error, PMAFE
enables a consistent comparison of forecast accuracy across firms and time periods unaffected
by variations in forecasting difficulty. Factors such as economic conditions (Jacob, 1997) and
temporal shifts in available information (Dutta & Nelson, 1996) can influence the ease or
challenge of forecasting, yet this measure effectively controls for these variations (Clement,
1998; Bolliger et al., 2004). We applied Clement’s (1998) methodology, which highlights that
accounting for firm-year effects improves the detection of systematic differences in analysts’
forecast accuracy compared to using solely firm-fixed and year-fixed effects. Firm-year effects
may arise from events like management disclosures, mergers, or strikes, which can impact the
predictability of a firm's earnings for specific years. The PMAFE method addresses these firm-
year effects by adjusting an analyst’s absolute forecast error with the firm-year average,
incorporating analyst i’s own forecast error in calculating AFE;:as they too are influenced by
the firm-year effect. We follow Bolliger et al. (2004), including each analyst’s last forecast made
between the end of the prior fiscal year and the end of the current fiscal year t to ensure an

adequate sample size®,

2.3.2. Measures of Analyst General Characteristics

2.3.2.1. Measurement of Experience

To assess the impact of analyst experience on forecast accuracy and market influence, we
developed specific metrics to capture both general and specialized expertise, along with two
new proxies for cross-regional analysis within the banking sector. These experience metrics
provide insights into how analysts’ tenure and specialization contribute to forecasting accuracy

and market perceptions:

- GEXP;; (General Experience) = Cumulative years through t in which analyst i has issued

forecasts, indicating broad expertise and consistency in the forecasting field.

- BEXP;, (Bank-Specific Experience) = Cumulative years through t that analyst i has

forecasted for a specific bank, reflecting deeper familiarity with that institution.

- CEXP;, /| REXP;, (Country and Region-Specific Experience): Cumulative years through t

that analyst i has issued forecasts for a particular country or region, reflecting in-depth

32 This restriction applies only to the computation of PMAFE; for other metrics, depending on their definitions,
we include all forecasts and revisions made by each analyst within the same period.
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expertise in local and regional economic environments and market dynamics supporting

robust cross-regional comparisons.

These experience metrics enable an analysis of analysts’ effectiveness in the banking sector,
from broad market knowledge to institution-specific familiarity, with each analyst’s level of

expertise assessed relative to peers based on cumulative forecasting activity from 1982 to 2023.

2.3.2.2. Measurement of Portfolio Complexity
To assess the diversity and complexity of an analyst's portfolio, we count the unique IBES
ticker codes associated with their forecasts each year. We also evaluate the geographic scope

of their coverage by examining the countries and regions of the banks they follow:

- NBAN; (Number of Banks) = The number of unique banks for which analyst i provided
forecasts in year t. A higher NBAN reflects greater portfolio complexity, requiring the
analyst to manage and synthesize information from multiple institutions.

- NCOU;, (Number of Countries) = The count of distinct two-digit I/B/E/S country codes
associated with the banks covered by analyst i in year t. A higher NCOU suggests a
broader specialization across various national markets.

- NREG;, (Number of Regions) = The number of regions covered by analyst iii in year t,
indicating geographic diversification. A higher NREG demonstrates the analyst’s

capacity to navigate different economic and market environments.

2.3.2.3. Analyst Engagement Metrics
This section explores how analyst activity levels relate to forecast accuracy and market

impact:

- NFB;, (Number of Forecasts/Revisions per Bank) = The count of forecasts or revisions
provided by analyst i for each bank in year t. Higher bank-level activity may reflect
greater expertise and deeper focus in specific institutions, potentially enhancing forecast
accuracy.

- NFCOU;; (Number of Forecasts/Revisions per Country) = Tracks the number of
forecasts or revisions by analyst i at the country level during year t. Frequent country-
level forecasting could indicate macroeconomic insight, improving country-specific
forecast precision.

- NFREG;, (Number of Forecasts/Revisions per Region) = Counts forecasts or revisions

by analyst i at the regional level in year t. Analysts active at the regional level may have
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valuable insights into economic conditions and market trends specific to different
regions.
- NFALLL;, (Total Forecasts/Revisions) = The total forecasts or revisions provided by

analyst i in year t.

2.3.2.4. Measuring Brokerage House Size

To assess how brokerage size impacts forecast accuracy, we classify analysts based on their
affiliated brokerage firm’s size, following Stickel (1995) and Clement (1999). This approach
targets analysts working within larger firms, which generally have better resources, such as
superior access to information, advanced analytical tools, and extensive research support, all of
which can enhance forecast precision. We define brokerage size and identify the top 5% of

brokerage firms as follows:

- BrokerSize;, (Brokerage Size) = Defined by the number of analysts at analyst i’s
brokerage in year t, with larger firms assumed to provide better resources, supporting
forecast accuracy.

- BIG5;; (Top 5% Brokerage Firms) = A dummy variable set to one if analyst i is
employed by a top 5% brokerage (by active analyst count) in year t; zero otherwise. Top
brokerages often correlate with higher forecast accuracy and better market performance
due to superior resources and institutional reputation.

This classification of brokerage size is specifically tailored to analysts active in the banking
sector rather than the overall market. By focusing on the banking industry, we aim to align the
measure with sector-specific resources and expertise, capturing how brokerage resources
support forecast accuracy within a sector characterized by unique regulatory and economic
dynamics. However, this approach may not fully reflect brokerages that are widely reputable
across the market, potentially diverging from prior studies that consider analyst counts across
all industries. To support our methodology of selecting brokerage houses specifically active in
the banking industry, we reference Hong and Kubik (2003), which highlights a notable trend in
brokerage house specialization in certain industries as opposed to the traditional full-service
brokerage houses. By including only brokerage houses active in banking industry, our sample
achieves a broker size distribution similar to studies that do not filter by industry. This aligns
with Hong and Kubik's (2003) findings on the industry shift since 2003 toward smaller,
specialized firms, with a decrease in average brokerage size—from around 21 analysts per firm

in 1983 to just over 11 by 2000—reflecting the increasing prevalence of industry-focused
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brokerage firms. Our reliance on brokerage size data and modeling of analyst movements, such
as promotions or demotions (section 2. 5.3), therefore aligns with these industry dynamics, as
our mean brokerage house size shows a similar trend, with an average of 11.5 analysts per

brokerage, supporting the industry dynamics (Hong and Kubik, 2003 and Hong et al., 2000).

2.3.2.5. Control Variables

Prior research suggests that firm-specific, year-specific effects and forecast age (though
context-dependent) should be controlled when evaluating analysts' forecasting performance.
The PMAFE method addresses these by adjusting absolute forecast errors to their firm-year
means, thus accounting for firm-year effects. We mean-adjust the model’s independent
variables to firm-year values to control for these effects, as outlined by Greene (1991). The
model is specified as follows:

Yije —mean(Y;,) = (X;;, — mean(X; )R
(4)
Two proxies for Forecast Timeliness are used: FAGE;;. (Forecast Age), measuring days
from fiscal year-end to forecast date for company j in year t, and FORD; ; (Forecast Order),
capturing the sequence of forecasts and revisions. Initial forecasts use earlier data, while later

revisions may improve accuracy with updated information.

2.3.3. Measures of Analyst Forecast Boldness and Past Performance

2.3.3.1. Forecast Boldness Measurement

We assess an analyst's yearly forecast boldness following a method similar to that of Hong et
al. (2000). Boldness is measured by the absolute deviation between an analyst's forecast,

F_(i,j,t), and the consensus forecast, mean(F_; ;. ):

Deviation from consensus; j; = |Fi,]-,t — mean(F_i,]-,t)|
()
where —i represents all analysts except analyst i who provide earnings estimates for firm j in
year t, and n is the number of such analysts. The consensus forecast, mean(F_; ;. ), is the
average of the recent estimates made by other analysts covering firm j in year t. Each year, we
rank analysts by their deviation from consensus, with the analyst showing the highest deviation
(i.e., boldest) receiving the highest rank. We then calculate a boldness score for each stock in

an analyst’s coverage portfolio, scaling the analyst's rank by the number of analysts covering
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the firm. The least bold analyst receives a score of zero, while the boldest analyst receives a top

score on a scale from 0 to 100:

rank; i, — 1
-2 + 100

Score; i =
"'t | number of analysts;,

(6)

where number of analystsj, t is the total count of analysts covering firm j. Each analyst’s
overall forecast boldness score, BOLDNESS/ j, ¢ is their boldness score for bank j over the
current year t, with higher values indicating bolder forecasts. Additionally, we created a dummy
variable (BOLDNESS _Top 20%) for scores in the top 20% of boldness. For job separation
models, we used a cumulative boldness score, averaging the analyst's boldness scores over the

current year t and the prior three years.

2.3.3.2. Analyst Past Performance Measurement

We now focus on constructing indicators of an analyst's past performance to understand how it
affects their probability of job separation. The goal is to rank and score all analysts based on
their previous performance. We modified the method of Hong et al. (2000) for this purpose. As
mentioned in constructing the proportional mean absolute forecast error (PMAFE), we measure
analysts’ absolute forecast error (AFE; ;) as the absolute value of the difference between
analysts’ forecasts and the corresponding firm-year’s actual earnings per share (EPS), deflated
by the actual earnings per share at the end of the period. Since an analyst typically covers
multiple firms in a year, we aggregate their forecasting accuracy across all the firms they cover.
We calculate the forecast errors for each analyst's forecasts for different firms within a year.
We then rank and score all analysts based on their previous performance. The average rank of
an analyst across all the firms they follow measures their overall accuracy for that year.

To reflect both recent and past forecast accuracy, we compute an overall score as a weighted
average of the analyst's scores in year t and all previous years of their active participation.
Recent performance is given higher weights, which gradually reduces back to their first forecast
performance. This approach overcomes the limitations of prior studies that used a simple
average of scores over the current and two previous years (Hong, 2000), which did not account

for progress over time and posed challenges for analysts covering firms with low coverage®:.

33 First, certain types of analysts are likely to have extreme average scores (both good and bad) regardless of their
performance. For instance, analysts who cover few firms over the three-year period are more likely to be in the
extremes. One very good or poor performance on a firm will greatly affect their average score. Also, analysts who
cover thinly followed firms are more likely to be in the extremes. For a given firm, it is easier for an analyst to
earn a score near 100 or O if there are few other analysts covering the firm in a year.
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We then sort all analysts based on their aggregate weighted forecast performance for the year,
assigning rankings accordingly: the best analyst receives the first rank, the second-best receives
the second rank, and so on until the worst analyst receives the highest rank. This ranking is
captured by the metric Past Per SCORE, which reflects analyst scores based on their
Aggregate Weighted Forecast Performance. For simplicity in analysis, we assign five discrete
ranks to analysts (5 for the best analysts and 1 for the worst analysts). Top analysts, defined as
those in the top 20" percentile, are indicated by the Top_Performance_index, while the worst
analyst is marked by the Poor_Performance_index.

Table B.1 in Appendix B provides a detailed definition of each variable, revealing their

respective roles in the analysis.

2.3.4. Estimation Methodology

In this analysis, we use a fixed effects regression model to estimate the impact of various factors
on the forecast error metric (PMAFE). We adopt the methodology of Clement (1998), who
demonstrated that accounting for firm-year effects enhances the detection of systematic
differences in analysts’ forecast accuracy compared to models using firm-fixed and year-fixed
effects. Additionally, we employ the estimation method introduced by Correia (2017), which
estimates linear regressions with multiple levels of fixed effects, thus supporting individual

fixed effects with group-level outcomes®*. Specifically, we specify the model as follows:

4 4
PMAFE; j: = Z ay . DExperiencey; j . + z ., . DPortfolio_Complexity;
k=1 m=1

4
+ Z pn-DEngagement,; ;. + y.DBIGS;;, + 0.DFAGE, ;. + Bank

n=1

— Year Fixed Effects + €
(7)
PMAFE represents an analyst’s forecast error as a fraction of all analysts' average absolute

forecast errors for firm j in year t. A negative PMAFE indicates above-average performance,

34 We use the reghdfe command in Stata to implement this model, which is efficient for high-dimensional fixed
effects and allows for robust clustering. The syntax used is: “reghdfe pmfae X, absorb(bank-year) cluster (bank
analyst) nocons”. The absorb(bank-year) option absorbs the bank-year fixed effects, which control for any time-
invariant characteristics specific to each bank-year observation. The cluster (bank analyst) option clusters the
standard errors at the bank and analyst levels, accounting for serial correlation within banks and analysts over
time. The nocons option specifies that we omit the constant term, as it is not needed due to the inclusion of bank-
year fixed effects. This model specification allows us to isolate the effect of the independent variables on forecast
error while controlling for unobserved heterogeneity at the bank-year level and clustering standard errors to
account for potential within-group correlations.
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while a positive PMAFE indicates below-average performance. DExperience represents analyst
General, regional, country, and bank-specific experience. Portfolio_Complexity represents the
number of banks and countries analysts follow. DEngagement shows the number of forecasts
and revisions analysts create manually. BIG5 is a proxy for top brokerage firms. Bank-Year
Fixed Effects control for unobserved characteristics at the bank-year level that could affect
forecast accuracy across analysts and time. Clustered Standard Errors are calculated at both the
bank and analyst levels to account for potential correlation within these groups. All variables
are adjusted for firm-year means (D indicates differenced). We do not include a constant term,
as the means have been subtracted from each variable. A positive (negative) value for the
differenced variable indicates that the analyst i's forecast error or characteristic for stock j was
above (below) average in year t.

2.4. Research Data

2.4.1. Data Collection

This study utilizes one-year-ahead annual earnings per share (EPS) forecasts (FY1) and actual
EPS figures sourced from the Institutional Broker Estimate System (I/B/E/S) US and
International Detail History File®®. To construct a comprehensive sample focused on the
banking sector, we carefully integrated data from multiple 1/B/E/S files. Each entry in the
I/B/E/S Detail Estimate File (DETFILAT) represents an individual forecast or revision,
capturing critical details such as the I/B/E/S ticker, broker identifier, analyst identifier, earnings
estimate, and forecast date. The unique Analyst Codes and Broker Codes within I/B/E/S ensure
consistent identification, even when analysts transition between brokerage firms. However,
these codes do not have direct mappings to identifiers in other platforms like Eikon, as I/B/E/S
operates as a standalone system without an integrated mapping file. To specifically target bank

data, we performed the following steps:

- Bank Identification via TRBC: Using the TRBC (Thomson Reuters Business Classification)
file located in the SUPPLEMENTAL_LICENSE folder, we retrieved all tickers classified

35 Note on Data Handling: The IBES FTP system is structured primarily for bulk data retrieval, expecting users to
download entire datasets and then apply specific filters independently. This setup presents challenges, requiring
row-by-row data extraction for each I/B/E/S ticker, which is then processed through tools like Notepad++ to
manage large file sizes efficiently before transfer to Excel or other analytical tools.
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under the banking industry. The TRBCDESC file provided the necessary descriptions and
industry codes, with “Banks” at level 4 identified by codes 55101010 and 55102010.

- Matching and Cross-Referencing: We mapped I/B/E/S tickers to TRBC PermIDs to identify
companies operating within the banking industry, yielding a refined list of 1,733 I/B/E/S

tickers across 100 countries from an initial pool of over 44,000 tickers across various sectors.

- Final Bank-Specific Dataset: Using the list of bank tickers, we downloaded and filtered the
I/B/E/S estimates file to retain only the data associated with banks. Additionally, from
Refinitiv I/B/E/S, we derived a list of publicly traded banks, selecting “primary quotes only”
and limiting our scope to specific sectors, including GICS Banks and TRBC Banking
Services. Finally, we matched the I/B/E/S and Eikon tickers to confirm a comprehensive

selection.

The initial dataset includes forecasts from December 1982 to March 2023, comprising over
509,868 annual earnings forecasts by more than 1,271 brokers and 7,796 analysts, covering 570
publicly traded commercial banks across 40 countries. This sample spans four global regions—
U.S., Europe, Asia, and Canada —and captures data from 1981 to 2023. For data consistency,
we applied several restrictions: forecasts were required to be issued between the fiscal year-end
of the previous year and the end of the current fiscal year; realized earnings per share (EPS)
had to be available in the I/B/E/S Actual File; banks needed to be followed by at least three
analysts; and selected countries had to have substantial analyst coverage and a sufficient
number of forecasts. Additionally, Canadian banks were excluded from the analysis due to
statistical discrepancies with U.S. data. These criteria produced a final sample of 398,175
forecasts from 5,647 analysts employed by 901 brokerages, focusing on 516 publicly traded
banks across 29 countries. Tables Al and A2 in the Appendix summarize the 1/B/E/S dataset

statistics and provide a geographical breakdown of the sample.

2.4.2. Descriptive Statistics of Raw Variables

This section presents the descriptive statistics for the raw (undifferenced) variables, as
computed according to the methodology outlined in Section 2. 3. Table 2. 1 offers a
comprehensive overview of financial analysts' characteristics across different regions,
encompassing forecast bias, experience, portfolio size, complexity, engagement, activity,
brokerage house dynamics, and forecast timing preferences. The dataset analysis reveals that
financial analysts, on average, possess a tenure of slightly over seven years. However, a notable

discrepancy emerges when comparing regional averages: US financial analysts boast an
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average tenure of approximately nine years, while their European counterparts exhibit an
average tenure of about 6.5 years. Asian financial analysts demonstrate the lowest average
tenure, with an average of 5.8 years. Furthermore, in terms of bank experience (BEXP), US
analysts also lead with a mean of 4.91 years, while European analysts average 4.16 years and
Asian analysts average 3.73 years. This observation suggests a higher turnover rate within the
financial analysis profession in Europe and Asia than in the US, consistent with Bolliger's
(2003) findings.

On average, analysts globally track around nine banks annually, with notable regional
differences. US analysts handle a more significant workload, covering an average of 12.41
banks annually, compared to 5.85 banks for European analysts and 7.67 banks for Asian
analysts. Regarding the number of countries (NCOU) analysts cover, European analysts show
a broader geographical scope with an average of 2.41 countries, whereas Asian analysts cover
fewer than 1.4 countries. The broader coverage of European analysts indicates a more
diversified portfolio than their US and Asian counterparts. A key aspect of analyst behavior is
their level of engagement and activity in issuing forecasts and revisions. Globally, analysts
issue approximately 4.5 forecasts and revisions per year for each bank. However, regional
differences are notable: US and European analysts issue around five forecasts per bank
annually, while Asian analysts issue approximately 3.7. This discrepancy highlights a
substantial disparity in forecasting intensity. US analysts issue 66 forecasts and revisions per
year, compared to 31 by their European counterparts and 29 by Asian analysts. The relatively
lower forecasting activity among European and Asian analysts may be attributed, in part, to less
stringent corporate disclosure requirements prevalent in many European and Asian countries,
often resulting in limited availability of timely financial information. The higher activity levels
among US analysts suggest a more dynamic and competitive market environment, necessitating

more frequent forecast updates and revisions.

The average size of brokerage houses (BrokerSize) is relatively consistent across regions,
with US firms employing about 11.49 analysts on average, European firms employing around
12.02 analysts, and Asian firms employing about 11.45 analysts. The presence of top-tier
analysts (BIG5) also shows a similar distribution across regions. These findings align closely
with the observations documented by Hong and Kubik (2003) for the US market, indicating a

similar scale of financial analysis of labor markets across the three regions.

The boldness of forecasts, represented by the BOLDNESS score, shows European analysts

being the boldest with a mean score of 52.62, followed by Asian analysts at 49.08 and US
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analysts at 48.51. The proportion of top 20% boldness (BOLDNESS Top 20%) further
supports this, with 27.8% of European analysts in the top 20% boldness category, compared to
24.8% of US analysts and 23.9% of Asian analysts. This indicates that European analysts are
likelier to deviate from consensus forecasts than their US and Asian peers. Regarding past
performance scores (Past Per SCORE), US analysts have a higher mean score of 2.543
compared to European analysts at 1.872 and Asian analysts at 2.089. This ranking reflects better
overall past performance for US analysts. The proportion of top analysts
(D_TOP_Performance) further supports this, indicating that 32% of US analysts are categorized
as top performers, compared to 14.7% of European analysts and 20.7% of Asian analysts. This
distribution highlights the higher concentration of top performers among US analysts. European
financial analysts exhibit a notable optimistic bias, with a mean value of approximately 0.42,
while their Asian counterparts display a slightly lower bias, averaging around 0.31. In contrast,
analysts from the US demonstrate the lowest level of optimism, with a mean bias of 0.23. The
relative forecast accuracy, measured by the proportional mean absolute forecast error
(PMAFE), shows US analysts with an average PMAFE of -0.023, European analysts with -
0.013, and Asian analysts with -0.016. These values suggest that US analysts have the highest
accuracy, followed by Asian and European analysts. These negative values indicate that
European and Asian analysts overestimate future performance, while US analysts exhibit a
slightly lower tendency to do so.

In summary, US analysts demonstrate lower forecast bias, longer tenure, and higher
engagement levels compared to their European and Asian counterparts. They also cover more
banks and issue significantly more forecasts annually, indicative of a more dynamic and
competitive market environment. European analysts, while slightly more experienced than their
Asian counterparts, exhibit higher forecast bias, specifically higher levels of optimism in their
forecasts, and cover fewer banks, but their coverage spans a broader geographical area. In
contrast, Asian analysts tend to cover more banks concentrated within a single country,
reflecting distinct regional market dynamics. These findings underscore the importance of
considering regional differences when evaluating financial analysts' performance and the

factors influencing their forecast accuracy.

83



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis
Across Global Banking Markets

Table 2. 1 Descriptive Statistics for the Raw Variables

All Sample US Analysts European Analysts Asian Analysts
Category Obs Mean Std Dev. Median | Mean Std Dev. Median | Mean  Std Dev. Median | Mean Std Dev. Median
Experience
GEXP 398,175 7.10 5.05 6.00 894 565 8.00 6.54 4.75 5.00 5.83 4.09 5.00
CEXP 398,175 6.51 494 5.00 8.86 5.62 8.00 5.25 4.28 4.00 531 3.84 4.00
REXP 398,175  7.02 5.01 6.00 8.86 5.62 8.00 6.46 4.72 5.00 5.76 4.05 5.00
BEXP 398,175 4.31 3.59 3.00 491  3.86 4.00 4.16 3.50 3.00 3.73 3.21 3.00
Portfolio Size & Complexity
NBAN 398,175 8.68 5.68 7.00 | 1241 648 12.00 5.85 3.39 5.00 7.67 4.60 7.00
NCOU 398,175 155 112 1.00 1.04 023 1.00 241 1.53 2.00 1.35 0.80 1.00
NREG 398,175  1.05 0.21 1.00 1.03  0.17 1.00 1.03 0.18 1.00 1.07 0.26 1.00
Analysts Engagement & Activity
NFB 398,175 451 3.04 4.00 4.92 2.82 5.00 5.03 331 5.00 3.55 277 3.00
NFCOU 398,175 36.83 3580 25.00 | 65.50 43.10 59.00 17.98 17.81 13.00 | 25.13 1990 21.00
NFREG 398,175 4178 3523 32.00 | 65.51 43.09 59.00 30.55 23.77 26.00 | 28.81 21.94 24.00
NFAIl 398,175 42.46 35.46 33.00 | 66.01 43.36 60.00 31.29 23.83 27.00 | 29.34 22.24 25.00
Forecast Timing
FORD 398,175 3.24 224 3.00 3.40 2.20 3.00 3.57 2.45 3.00 277 2.00 2.00
FAGE 398,175 201 104 195 201 102 186 197 106 198 206 104 204
Boldness
BOLD 398,175 1.89 5.08 0.13 0.28 0.86 0.08 1.60 4.16 0.25 3.89 7.32 0.19
BOLDNESS 398,175 50.02 33.28 51.35 | 4851 34.17 50.00 52.62 3265 55.38 | 49.08 32.89 50.00
BOLDNESS Top20% 398,175 0.254 0.44  0.000 | 0.248 0.43 _ 0.000 0.278 0.45 0.000 | 0.239 0.43  0.000
Brokerage House
BrokerSize 398,175 1149 1047 7.00 | 1149 9.80 7.00 12.02 10.74  8.00 1145 1081 7.00
BIG5 398,175 0.364 048 0.000 | 0.358 0.48 0.000 0.361 0.48 0.000 | 0.387 049 0.000
Analyst Performance
Past_Per 398,175 043 0.69 0.18 | 0.380 0.59 0.17 0560 0.85 0.25 0.393 061 0.17
Past_Per_SCORE 398,175  2.23 1.47 2.00 | 2543 143 3.00 1872 1.36 2.00 2.089 1.45 2.00
D_TOP_Performance 398,175 0.25 0.43 0.00 | 0.320 0.47 0.00 0.147 0.35 0.00 0.207 0.41 0.00
Forecast Error
AFE 398,175 0.313 0.69 0.087 | 0.232 057 0.056 0.428 0.79 0.150 | 0.314 0.71  0.090
PMAFE 106,355 -0.017 082 -0.162|-0.023 0.88 -0.200| -0.013 081 -0.147 | -0016 0.80 -0.144

2.5. Empirical Result

2.5.1. Analyst Characteristics and Relative Forecast Accuracy

The accuracy of financial forecasts is pivotal to decision-making within the banking sector, yet
the factors influencing an analyst’s forecasting accuracy are far from uniform across regions.
This section investigates how specific analyst characteristics, such as experience level,
brokerage house affiliation, and sector specialization, contribute to forecast accuracy and
optimism within the U.S., European, and Asian banking markets. By dissecting these regional
variations, we aim to uncover the underlying dynamics that drive forecasting success in the

banking sector.

2.5.1.1. Regression variables
Table B.4 in Appendix B presents the correlation matrix for the regression variables used in

Eq. (7), highlighting their relationships with forecast accuracy across global and regional
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samples. The findings reveal a strong positive correlation between forecast accuracy and the
four experience measures (DGEXP, DCEXP, DREXP, DBEXP), emphasizing the importance
of accumulated expertise in enhancing forecast precision. Globally, forecast accuracy increases
with the number of banks covered (DNBAN) but decreases as geographical diversification
(DNCOU) rises, reflecting the complexity of managing cross-country institutional contexts—a
pattern consistent across regions except Europe. Frequent forecasts (DNFB, DNFALL)
improve accuracy due to greater market engagement and responsiveness to new information.
Moreover, affiliation with larger brokerage houses (DBIG5) correlates positively with forecast
accuracy globally and regionally. Lastly, more recent forecasts (DFAGE) are typically more
accurate, whereas earlier forecasts (DFORD) show lower precision due to limited initial

information.

2.5.1.2. Regression Result

Table 2 presents the findings from Eq. (7), examining the relationship between forecast
accuracy, measured by Proportional Mean Absolute Forecast Error (PMAFE), and various
analyst characteristics for the global sample. The analysis incorporates variables such as
portfolio complexity and geographical diversification (DNBAN, DNCOU), brokerage house
size (DBIG5), analyst experience (DGEXP, DCEXP, DREXP, DBEXP), forecast frequency
(DNFALL), and forecast timing (DFAGE) as controls. Due to high multicollinearity among
experience variables and between portfolio complexity measures (DNBAN, DNCOU) and

forecast activity (DNFALL), these variables are used separately in the regressions.

The results reveal that analysts affiliated with larger brokerage houses (DBIG5) tend to
produce more accurate forecasts, as evidenced by negative and significant coefficients across
all models. Similarly, all experience variables (DGEXP, DCEXP, DREXP, DBEXP) exhibit
negative and significant coefficients, with bank-specific experience (DBEXP) having the most
pronounced effect on improving forecast accuracy. Furthermore, portfolio complexity
demonstrates a nuanced impact: while the number of banks covered (DNBAN) is negatively
associated with forecast errors, geographical diversification (DNCOU) is positively and
significantly linked to errors, particularly in columns 4-6. This divergence from prior research
underscores the unique challenges of covering diverse institutional contexts in the banking
sector. Additionally, the analysis shows that frequent updates, as measured by forecast activity
(DNFB, DNFALL), improve forecast accuracy, as indicated by negative and significant
coefficients, emphasizing the benefits of timely revisions. Regarding forecast timing, more

recent forecasts (DFAGE) are consistently associated with higher accuracy, whereas initial

85



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis
Across Global Banking Markets

forecasts (DFORD) are less precise due to limited early-period information. These findings
provide critical insights into the interplay of institutional affiliation, analyst experience,
portfolio complexity, and forecast timing in shaping forecast precision.

These findings challenge earlier studies (e.g., Clement, 1999; Lim, 2001; Bolliger, 2004;
Hong et al., 2000), which found that analysts with smaller portfolios produce more accurate
forecasts. Unlike prior research that included multiple industries, this study focuses exclusively
on the banking sector, revealing industry-specific dynamics that influence forecast precision.
This highlights the unique challenges analysts face when balancing portfolio complexity and

maintaining accuracy in the opaque banking industry.

Table 2. 2: Relative Forecast Error and Individual Analysts' Characteristics

Dependent Variable Relative Forecast Error _ PMAFE

Global Regression Results

(1) (2) (3) (4 (5) (6)

DGEXP -0.00608***
(-5.45)
DCEXP -0.00650***
(-5.49)
DREXP -0.00634***
(-5.69)
DBEXP -0.00683*** -0.00647*** -0.00615***
(-4.85) (-4.82) (-4.48)
DNBAN -0.00360*** -0.00397*** -0.00357***
(-2.66) (-3.01) (-2.64)
DNCOU 0.00927* 0.0175%** 0.00962*
1.8 3.15 1.87
DBIG5 -0.0406*** -0.0442%** -0.0411%** -0.0451%** -0.0433%** -0.0420%**
(-4.12) (-4.47) (-4.18) (-4.51) (-4.31) (-4.19)
DNFB -0.00537*** -0.00490%*** -0.00529*** -0.00565%***
(-3.17) (-2.91) (-3.13) (-3.27)
DFORD -0.00110%***
(-5.21)
DNFAII -0.0234***
(-5.83)
DFAGE 0.270*** 0.270*** 0.271%** 0.269*** 0.269*** 0.259***
25.48 25.46 25.48 25.49 2551 25.2
Observations 106124 106124 106124 106124 106124 106124
Number of banks 516 516 516 516 516 516
R-square 0.136 0.136 0.136 0.135 0.135 0.135

Table 2. 2 shows the regression results (Eg. 7) analyzing the effect of various analyst characteristics on relative
forecast error (PMAFE), defined as the difference between the absolute forecast error for analyst i for bank j
at time t and the mean absolute forecast error for that bank at the same time. Key independent variables include
portfolio complexity and geographical diversification (DNBAN for number of banks covered and DNCOU
for number of countries covered), brokerage house size (DBIGS5, indicating if the analyst is affiliated with a
top-tier brokerage), analyst experience (DGEXP for general experience, DREXP for regional experience,
DCEXP for country-specific experience, and DBEXP for bank-specific experience), forecast frequency
(DNFB for forecasts issued per bank and DNFALL for total forecasts issued by the analyst), forecast order
(DFORD), and forecast timing (DFAGE) as a control for forecast timing relative to the fiscal period. Statistical
significance is marked by ***, ** and * for the 1%, 5%, and 10% levels, respectively.
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2.5.1.3. Determinants of Forecast Accuracy Across Regions

Table 2.3 presents the results of regional-based regressions, examining how individual analyst
characteristics affect relative forecast error (PMAFE) across the US, Europe, and Asia. The
analysis highlights the critical role of financial analysts' experience in shaping forecast accuracy
across these regions. General experience (DGEXP) consistently demonstrates a negative and
statistically significant relationship with forecast error, indicating that increased experience
enhances forecast precision. This trend is most pronounced in the US, where forecast errors see
the largest reduction, while bank-specific experience (DBEXP) also significantly reduces errors
across all regions, with the US showing the strongest effect®. A one-standard-deviation
increase in analyst experience is associated with a 2.5-3.1% reduction in relative forecast error
(PMAFE), with the effect exceeding 7.2% in the US market. This underscores the critical value
of accumulated expertise in enhancing forecasting precision, particularly in the complex

banking sector.

Portfolio size and complexity reveal divergent effects across regions. In the US, DNBAN
(number of banks covered) improves forecast accuracy, while in Europe, higher bank coverage
correlates with increased forecast errors due to the complexity introduced by geographical
diversification. This phenomenon is further explored in Section 2. 5.1.4, which investigates the
reasons behind reduced accuracy for European analysts covering more banks. Similar to global
trends, higher bank coverage in Asia reduces forecast errors. Conversely, DNCOU (number of
countries covered) consistently increases forecast errors across all regions, particularly in
Europe. A plausible explanation, as suggested by Bolliger (2003), is that European analysts
covering companies across diverse countries may lack the institutional familiarity required for
accurate forecasting in such varied contexts. Economic interpretation also shows that covering
more banks is linked to a 3.4% reduction in PMAFE globally, with the effect rising to 5.3% in
the U.S. In contrast, European analysts experience a 2.1% increase in PMAFE, indicating that
the added complexity of managing diverse portfolios may hinder accuracy in this region.
Geographical complexity presents another challenge, with a one standard deviation increase in
cross-country coverage driving a 1.4-2.7% rise in PMAFE. This reflects the difficulty of
navigating diverse institutional and market conditions, highlighting the trade-offs between
broader coverage and forecast precision. Brokerage house size (DBIG5) is negatively and

significantly correlated with forecast error across all regions, indicating that analysts affiliated

3 These findings align with prior research, such as Clement (1999), but contrast with studies by Hong et al. (2000),
Jacob et al. (2000), and Bolliger (2003), which found no "learning-by-doing" effect among European analysts.
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with larger brokerage firms benefit from enhanced resources and institutional support, leading
to more precise forecasts. The impact is strongest in the US and Asia; in Europe, the effect is

weaker but still statistically significant®’. Affiliation with top-tier brokerage houses contributes

to an approximate 1.6% decrease in PMAFE globally, reaching a pronounced 3.1% reduction

in the U.S. market. This demonstrates the pivotal role of institutional support and resources in

improving forecast accuracy.

These findings underscore the importance of analyst experience, portfolio management,

forecasting activity, and institutional resources in determining forecast accuracy across regions.

They also highlight the need for further investigation into the regional disparities, particularly

in Europe, where institutional and market-specific factors significantly influence forecasting

precision.

Table 2. 3: Relative Forecast Error and Individual Analysts' Characteristics

Dependent Variable

Relative Forecast Error _ PMAFE

Regional Regression Results

1)

2

(3)

(4)

(5) (6)

(1)

(8)

Us

Us EU EU EU ASIA ASIA ASIA
DGEXP -0.0128*** -0.00504** -0.00609*** -0.00609***
(-5.72) (-2.10) (-3.36) (-3.36)
DBEXP -0.0120*** -0.00528***  -0.00416** -0.00416**
(-6.82) (-2.74) (-2.14) (-2.14)
DNBAN -0.00516***  -0.00824*** 0.00540* 0.00626** -0.00392** -0.00392**
(-3.19) (-4.71) 18 2.05 (-2.12) (-2.12)
DNCOU 0.0137** 0.0137**
2.18 2.18
DBIG5 -0.0511** -0.0648*** -0.0459** -0.0423** -0.0409** -0.0459*** -0.0409** -0.0459***
(-2.54) (-3.34) (-2.41) (-2.23) (-2.12) (-3.48) (-2.12) (-3.48)
DNFB 0.000549 -0.00584** -0.00584**
-0.15 (-2.38) (-2.38)
DFAGE 0.447%** 0.450%** 0.206*** 0.206*** 0.204%** 0.234%** 0.204*** 0.234%**
26.77 27.16 14.05 14.07 13.93 19.33 13.93 19.33
Observations 29775 29775 28559 28559 28559 44809 28559 44809
Number of banks 230 230 90 90 90 186 90 186
R-square 0.206 0.208 0.113 0.113 0.113 0.129 0.113 0.129

Table 3 presents the regression results (Eq. 7) for regional-based regressions, analyzing the impact of individual
analyst characteristics on relative forecast error (PMAFE) across the US, Europe, and Asia. PMAFE, the dependent
variable, represents the difference between the absolute forecast error for analyst iii for bank j at time t and the mean
absolute forecast error for that bank at the same time. Key independent variables include portfolio complexity and
geographical diversification (DNBAN for number of banks covered and DNCOU for number of countries covered),
brokerage house size (DBIG5 for top-tier brokerage affiliation), analyst experience (DGEXP for general experience
and DBEXP for bank-specific experience), forecast frequency (DNFB for total forecasts issued by the analyst for
each bank), and forecast timing (DFAGE). Statistical significance is indicated by ***, ** and * for the 1%, 5%, and

10% levels, respectively.

37 Bolliger (2004) posits that insufficient centralization of research operations within large European brokerage
houses may reduce their effectiveness, whereas medium and small local brokerage firms specializing in specific
countries or sectors may hold informational advantages over their larger counterparts.
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2.5.1.4. Portfolio Complexity and Regional Disparities

This section further investigates how portfolio complexity affects forecast accuracy, focusing
on European analysts. In Section 2. 5.1.2, we observed that while covering more banks
(DNBAN) improves forecast accuracy globally, it increases forecast errors in Europe, likely
due to the complexities of a diversified portfolio. Cross-country coverage (DNCOU) also
consistently raises forecast errors across all regions, suggesting challenges in adapting to
diverse institutional contexts (Bolliger, 2003). Table 2. 4 presents regression results on how
portfolio complexity (DNBAN, DNCOU), top brokerage affiliation (DBIG5), and their
interactions impact relative forecast error (PMAFE) across the EU, US, and AS regions. For
Europe, Column (2) shows a positive and significant interaction between DNBAN and
DNCOU, indicating that geographical diversification amplifies the negative effect of covering
more banks on forecast accuracy. This suggests that managing banks across multiple countries
adds complexity, reducing accuracy. A similar trend is observed in Asia (Column 4), where
greater portfolio complexity is linked to higher forecast errors, highlighting the forecasting
challenges in diverse settings. European analysts generally handle a wider geographic range—
covering an average of 2.41 countries but fewer banks (5.85) than their Asian counterparts, who
cover 7.67 banks within fewer countries (~1.4). This contrast in approach—European analysts
with broader geographic scope versus Asian analysts with more banks in concentrated
regions—helps explain regional disparities in forecast accuracy seen in Tables 2.2 and 2.3.
Regarding affiliation with a top broker, as all models show, DBIG5 is associated with reduced
forecast errors, with stronger effects in the U.S. and Asia but weaker impacts in Europe.
However, the interaction terms suggest that top brokerage affiliation marginally appears to
alleviate the decrease in forecast accuracy related to managing a larger, diversified portfolio

(column 3).

Our findings suggest that industry-specialized financial analysts with large portfolio sizes
and limited geographical coverage produce more accurate forecasts; we can also conclude that
more skilled analysts are assigned a more significant number of banks. However, this result is
challenging for brokerage houses covering Europe that seek to find an optimal structure for
their research operation. Indeed, an industry-organized research department increases forecast
accuracy through the industry specialization effect but also increases the number of countries

to be covered, which, to some extent, challenges the accuracy of earnings forecasts.
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Table 2. 4: Relative Forecast Error and Portfolio Complexity

Dependent Variable Relative Forecast Error _ PMAFE
@) () @) (4) (©)
us EU EU ASIA ASIA
DNBAN* DNCOU 0.00348** 0.00365**
2.28 2.14
DNBAN -0.00327* 0.00318 0.00585** -0.00238 -0.00204
(-1.83) 0.8 212 (-1.06) (-1.05)
DNCOU 0.00113 0.0177*
0.13 18
DNBAN* DBIG5 -0.0018 -0.00935* 0.00562**
(-0.56) (-1.75) 2.01
DBIG5 -0.0652*** -0.0364* -0.0369* -0.0422%** -0.0387***
(-3.36) (-1.97) (-1.97) (-3.22) (-2.92)
DGEXP -0.0120*** -0.00420** -0.00417** -0.00327** -0.00341**
(-6.82) (-2.19) (-2.11) (-2.00) (-2.10)
DNFB 0.000584 -0.00521** -0.00638** -0.00961*** -0.0108***
0.16 (-2.18) (-2.58) (-3.71) (-4.18)
DFAGE 0.450%*=* 0.203*** 0.204**= 0.232%*= 0.232%**
27.16 13.9 13.98 19.42 19.36
Observations 29775 28559 28559 44809 44809
Number of banks 230 90 90 186 186
R-square 0.208 0.114 0.114 0.13 0.129

Table 4 presents the regression results based on Eq. (7), examining how portfolio complexity influences
relative forecast error (PMAFE) across different regions (EU, US, and AS). Key interaction terms include
DNBAN (number of banks covered) combined with DNCOU (number of countries covered) and DBIG5
(affiliation with a top brokerage). The dependent variable, PMAFE, represents the difference between the
absolute forecast error for analyst iii for bank j at time t and the mean absolute forecast error for that bank
at the same time. Other variables include analyst general experience (DGEXP), forecast frequency (DNFB),
and forecast timing (DFAGE). Statistical significance is indicated by ***, ** and * for the 1%, 5%, and
10% levels, respectively.

2.5.2. Boldness, Forecasting Accuracy, and Career Concerns

Economic incentives drive patterns of optimism, boldness, and herding behavior, often
undermining objectivity. Analysts frequently issue optimistic. Issuing bold forecasts can be a
strategic career move for analysts, influenced by both ambition and reputation-building. Herding
theories (e.g., Hong et al., 2000) suggest that future career outcomes may be shaped not only by
an analyst’s past performance but also by bold or unconventional forecasts that deviate
significantly from the consensus. The section investigates the incentive-driven dynamics of
forecasting behavior, focusing on the relationship between boldness, ability, and career
concerns, investigating whether bold forecasts are perceived as indicators of expertise or risk-
taking. We assess whether seasoned analysts approach boldness differently from their less

experienced counterparts and examine regional differences in these behaviors.
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2.5.2.1. Boldness and Relative Forecast Error

In this section, we begin by examining whether analysts who issue bold forecasts demonstrate
higher accuracy than their peers across various regions. Our analysis extends to examine how
experience level, brokerage size, and portfolio complexity interact with boldness to influence
forecast accuracy. To conduct this, we extend our baseline model (Eq. 7) by integrating a
forecast boldness proxy, as introduced in Section 2. 3.3.1: DBOLDNESS j j 1, representing
analyst i’s boldness score for bank j at time t. Our enhanced model (Eq. 8) is formulated as

follows:

4
PMAFE;;; = aDBOLDNESS ; ;, + Z ay . DExperiencey; ;;
k=1

4 4
+ z Bm .- DPortfolio_Complexity,, ; ;. + z pn-DEngagement,; ;.
m=1 n=1

+ y.DBIGS;; + 0.DFAGE;;; + €,

(8)

In Table 2. 5, we present regression results on the relative forecast error (PMAFE) with a
particular focus on boldness (DBOLDNESS) alongside experience (e.g., DGEXP), bank
coverage (DNBAN), and affiliation with a major brokerage (DBIG5) as well as other control
variables. The results reveal a general trend of higher forecast errors associated with boldness
in the full sample, implying that bolder forecasts tend to exhibit less accuracy. However,
regional differences emerge: in the U.S., bolder analysts achieve higher accuracy in forecasts,
a finding that contrasts with Europe and Asia, where boldness correlates with increased forecast
errors. This nuanced relationship is consistent with the broader trend yet points to potential
regional dynamics affecting forecasting efficacy. Notably, our findings in the U.S. align with
prior research, suggesting that bold forecasts may enhance accuracy in certain contexts,
whereas Europe and Asia warrant further investigation into the specific factors driving forecast

errors associated with boldness in these markets.
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Table 2. 5: Boldness and Relative Forecast Error

Dependent Variable Relative Forecast Error _ PMAFE
@ @ ©) 4
All us EU ASIA
DBOLDNESS 0.00232*** -0.00136*** 0.00332*** 0.00328***
6.29 (-3.04) 5.54 5.68
DGEXP -0.00611*** -0.0120*** -0.00421** -0.00353**
(-5.59) (-6.82) (-2.31) (-2.25)
DNBAN -0.000781 -0.00319* 0.00576** 0.000348
(-0.58) (-1.80) 2 0.17
DBIG5 -0.0404*** -0.0651*** -0.0366** -0.0375***
(-4.19) (-3.36) (-2.03) (-2.92)
DNFB -0.00512*** 0.000666 -0.00626** -0.0113***
(-3.06) 0.18 (-2.59) (-4.57)
DFAGE 0.282*** 0.452*** 0.216*** 0.245***
2711 28.05 15.04 20.55
Observations 106124 29775 28559 44809
Number of banks 516 230 90 186
R-square 0.148 0.208 0.135 0.151

Table 4 presents regression results based on Eqg. (8), analyzing the relationship between forecast
boldness and relative forecast error (PMAFE) across regions: global (All), United States (US),
Europe (EV), and Asia (ASIA). The dependent variable, PMAFE, captures the difference between
the absolute forecast error for analyst i forecasting for bank j at time t and the mean absolute
forecast error for that bank during the same period. Key independent variables include
DBOLDNESS i,jt, representing the analyst i's boldness score for bank j at time t, alongside other
controls: analyst general experience (DGEXP), portfolio size (DNBAN, the number of banks
covered), top brokerage affiliation (DBIG5), forecast frequency (DNFB), and forecast timing
(DFAGE). Statistical significance is denoted by ***, ** and * for 1%, 5%, and 10% levels,
respectively.

- Forecast Boldness: Marginal effects of Experience, Brokerage, and Portfolio Size

This section explores factors moderating forecast errors associated with boldness, particularly
in European and Asian markets, focusing on bank-specific experience, top brokerage affiliation,
and portfolio complexity. Table 2. 6 analyzes the interaction effects of boldness
(DBOLDNESS) with bank-level experience (DBEXP), Big Five affiliation (DBIG5), and the
number of banks covered (DNBAN). Bold forecasts are consistently associated with higher
errors, as indicated by positive and significant DBOLDNESS coefficients. In Europe, affiliation
with a Big Five brokerage (DBIG5) significantly reduces errors, and the negative interaction
term (DBOLDNESS*DBIG5) shows that bold forecasts from these firms are more accurate.
While DBEXP lowers forecast errors, its interaction with boldness is insignificant, indicating
no notable combined effect. Likewise, the DBOLDNESS*DNBAN interaction is insignificant;
however, in Europe increased bank coverage slightly raises errors for extreme bold predictions
(DBOLDNESS Top20% * DNBAN), suggesting portfolio complexity may heighten
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inaccuracies. Similar patterns are evident in Asia, where bold forecasts are more accurate when
issued by analysts affiliated with top brokerage houses, experienced professionals, and those
managing focused portfolios. Overall, bold forecasts are generally less accurate, but the impact
varies across regions and is moderated by factors like institutional affiliation and portfolio
scope, highlighting a nuanced relationship between boldness, accuracy, and analyst

characteristics.

Table 2.6: Relative Forecast Error and Forecast Boldness with Marginal Effect Analysis

Dependent Variable Relative Forecast Error _ PMAFE
BOLDNESS SCORE BOLDNESS_Top 20%
@ @ ©) Q) ®) (6)
UsS EU ASIA uUs EU ASIA
DBOLDNESS -0.00135*** 0.00327*** 0.00326*** 0.0132 0.288*** 0.293***
(-3.01) 55 5.72 -0.43 -6.69 -5.83
DBOLDNESS*DBIG5 0.000457 -0.00204*** -0.000819* 0.0056 -0.144%** -0.0569
0.75 (-3.21) (-1.72) -0.13 (-3.18) (-1.58)
DBOLDNESS*DBEXP -0.0000852 0.0000588 -0.0000332 -0.00622 0.00501 -0.00288
(-1.19) 0.9 (-0.50) (-1.06) -1.02 (-0.51)
DBOLDNESS*DNBAN -0.0000625 0.000135 0.0000561 -0.00948** 0.0128* 0.00574
(-1.24) 127 0.83 (-2.58) -1.96 -0.96
DBIG5 -0.0571%** -0.0328* -0.0383*** -0.0562*** -0.0346** -0.0390***
(-3.01) (-1.97) (-3.14) (-2.90) (-2.05) (-3.13)
DBEXP -0.0129*** -0.00369 -0.00337* -0.0132%** -0.00332 -0.00345*
(-5.91) (-1.58) (-1.94) (-5.75) (-1.42) (-1.93)
DNBAN -0.00505*** 0.00444* -0.000426 -0.00552*** 0.00457* -0.000205
(-3.08) -1.69 (-0.23) (-3.32) -1.77 (-0.10)
DFB 0.00333 -0.00638** -0.0108*** 0.00345 -0.00669*** -0.0112%**
0.85 (-2.46) (-4.31) -0.89 (-2.71) (-4.53)
DFAGE 0.450*** 0.216*** 0.244*** 0.451*** 0.212%** 0.239%**
27.96 14.97 20.54 -27.14 -14.55 -19.88
Observations 29775 28559 44809 29775 28559 44809
Number of banks 230 90 186 230 90 186
R-square 0.206 0.136 0.151 0.205 0.146 0.159

Table 6 extends the analysis of the relationship between forecast boldness and relative forecast error (PMAFE),
incorporating marginal effect interactions. The table explores how boldness (DBOLDNESS) interacts with key variables
such as portfolio size (DNBAN), bank-specific experience (DBEXP), and top brokerage affiliation (DBIG5) across
different regions (EU, Asia, and US). The dependent variable, PMAFE, represents the difference between the absolute
forecast error for analyst iii forecasting for bank j at time t and the mean absolute forecast error for that bank during the
same period. Key independent variables include DBOLDNESS (i,j,t), representing the boldness score for analyst iii
covering bank j at time t, and BOLDNESS_Top 20%, a dummy variable indicating if the boldness score falls in the top
20%. Interacting variables include general experience (DGEXP), portfolio size (DNBAN), and top brokerage affiliation
(DBIG5). Other control variables include forecast frequency (DNFB) and forecast timing (DFAGE). Statistical
significance is denoted by ***, ** and * for 1%, 5%, and 10% levels, respectively.

2.5.2.2. Forecast Boldness and Analyst Characteristics

In this section, we investigate how career concerns influence financial analysts' tendency to
issue bold forecasts. Specifically, we examine the role of experience and past performance,
focusing on regional variations to understand how these factors, along with career-related
motivations, shape analysts' forecasting behavior. Our empirical approach analyzes how career
concerns affect forecast accuracy and the likelihood of deviating from consensus estimates. We
link forecast boldness to specific analyst characteristics, particularly the differences between

younger and more experienced analysts, as captured by past forecast performance.
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Additionally, we account for firm-specific influences by including a brokerage house effect as
a proxy. To further explore the relationship between experience and deviation from consensus
forecasts, we specify the following regression model, building on prior research (Hong et al.,
2000; Clement, 2005) to capture how analyst characteristics beyond experience contribute to

forecast boldness. The probit model is structured as follows:

Deviation from Consensus; ;
= a + B1Experience; j, + 82 Past Performence;,
+ 33 Brokerage House;; + +f34Portfolio_Complexity; ;. ,& .

(9)

Where Deviation from Consensus (BOLDNESS_Top 20%) is A binary variable indicating
if analyst i's forecast for firm j in year t ranks in the top 20% for boldness. It equals 1 if the
forecast's boldness score is above the 80th percentile. Experience: Includes both analyst
regional experience (REXP) and bank-specific experience (BEXP). Past Performance
(Past_Per_SCORE): A proxy for prior forecasting accuracy, as detailed in section 2.3.3.1.
Portfolio Complexity (NBAN): Measured as the number of banks an analyst covers. Brokerage
House Affiliation (BIG5): A variable capturing the effect of affiliation with one of the top five
brokerage firms.

Table B.5 in Appendix B presents the Spearman rank correlation coefficients for the
regression variables across different regions. The results highlight regional variations in the
relationship between boldness (measured by BOLDNESS and BOLDNESS TOP20%) and
other analyst characteristics. In the U.S. and Asia, bold forecasts are associated with analysts
who have higher bank-specific and regional experience, better past performance, and
affiliations with top brokerage firms. However, in Europe, this relationship appears to be
inversed, indicating potential regional differences in how experience and brokerage affiliation

influence forecast boldness.

Table 2. 7 highlights key trends in the relationship between analyst experience and the
likelihood of issuing bold forecasts across regions. First, for the US and Asia, the positive and
significant coefficients for BEXP suggest that analysts with greater bank-specific expertise are
more inclined to issue bold forecasts. This indicates that experienced analysts, confident in their
skills and reputations, are more willing to deviate from the consensus, using their expertise to
provide unique perspectives. In particular, older analysts in Asia, as indicated by higher REXP,
are more likely to exhibit boldness and less herding behavior, consistent with findings from

Bhagwat and Liu (2020). In Europe, however, the results show a contrasting pattern. The

94



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis
Across Global Banking Markets

negative and significant coefficient for REXP suggests that experienced analysts in this region
are more conservative, tending to align their forecasts with the consensus. This behavior may
stem from the increased scrutiny and accountability that senior analysts face, particularly as
they have survived the industry's rigorous selection processes. Conversely, younger analysts in
Europe are more likely to issue bold forecasts driven by career advancement motivations and a

lower degree of professional accountability.

Second, regarding past performance (Past_Per SCORE), the positive and significant
coefficient in the US indicates that analysts with stronger track records are more inclined to
issue bold forecasts. The high past performance likely enhances analysts’ confidence,
motivating them to take calculated risks in their predictions to maintain a reputation for
accuracy and insight. In contrast, the negative and significant coefficient in Europe suggests
that better past performance is associated with more conservative forecasts, as analysts with
strong reputations may prioritize safeguarding their established credibility. In Asia, the
coefficient is insignificant, implying that past performance does not strongly influence bold
forecasting, with other factors likely playing a more substantial role in shaping forecast

behavior in the region.

Third, considering the brokerage house effect (BIG5), positive and significant coefficients
in the US and Asia suggest that analysts affiliated with top brokerage firms in these regions are
more likely to issue bold forecasts. This could reflect the enhanced confidence and support
provided by well-resourced firms with strong reputations, enabling analysts to adopt bolder
positions. Conversely, in Europe, the negative and significant coefficient indicates that analysts
at major brokerage houses are less likely to issue bold forecasts, suggesting a more conservative
or risk-averse culture within European brokerage firms. Finally, an analysis of analyst portfolio
size (NBAN) reveals that bold analysts in the US and Europe tend to cover a larger number of
banks, possibly using portfolio diversity to enhance visibility and influence. However, the trend
differs in Asia, where bold analysts are less associated with large portfolio sizes, indicating
bold Asian analyst tend to maintain more focused portfolio.

The analysis reveals less experienced European analysts are more likely to issue bold
forecasts than their seasoned peers. Early-career analysts often take risks to gain recognition
and face less scrutiny, allowing greater freedom to deviate from consensus. In contrast,
experienced analysts, shaped by a rigorous selection process, prioritize accuracy and reliability

over boldness, resulting in more conservative forecasting behavior.
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Table 2. 7: The link between Analysts' experience, past performance, and Boldness

Dependent Variable Deviation of Analysts' Forecasts from the Consensus_Top 80% Boldness
@ @] (©) 4 ®) (6) U] ®)
All Us EU AS All Us EU AS
BEXP 0.00399*** 0.00327*** -0.000976 0.00684***
6.3 3.27 (-0.86) 5.6
REXP -0.000643 -0.00346*** -0.00272%** 0.00378***
(-1.35) (-4.74) (-3.18) -3.75
BIG5 -0.00327 0.0352*** -0.0644*** 0.0175** -0.00188 0.0343*** -0.0627*** 0.0172**
(-0.72) 4.48 (-7.83) 2.27 (-0.41) 4.38 (-7.60) 2.23
Past_Per_SCORE -0.00139 0.0115*** -0.0120*** 0.000975 -0.000136 0.0114%*** -0.0114*** 0.00214
(-0.89) -4.28 (-4.14) 0.36 (-0.09) 4.24 (-3.94) -0.8
NBAN -0.00170*** 0.00158*** 0.00405*** -0.00278*** -0.000999** 0.00320*** 0.00470*** -0.00293***
(-4.27) 2.61 3.46 (-3.35) (-2.38) 5.01 3.95 (-3.42)
_cons -0.659*** -0.757*** -0.563*** -0.722%** -0.647*** -0.730%** -0.555*** -0.720***
(-123.70) (-69.68) (-56.94) (-76.78) (-121.45) (-66.42) (-56.05) (-76.09)
Observations 383926 131962 117212 134752 383926 131962 117212 134752

Table 7 presents the regression results (Eq. 9), examining the relationship between analysts' experience, past
performance, and their deviation from the consensus, with a focus on top 20% boldness scores (BOLDNESS-
Top20%). The results are reported for all regions combined (All) and separately for the US, EU, and Asia (AS).
The dependent variable is a dummy set to one if an analyst's forecast ranks in the top 20% for boldness.
Independent variables include regional experience (REXP), bank-specific experience (BEXP) and past
performance (Past_per_score). Control variables are portfolio size (NBAN), top brokerage affiliation (BIG5).
Statistical significance is denoted by ***, ** and * for 1%, 5%, and 10% levels, respectively.

2.5.3. Labor Market Incentives: Balancing Accuracy and Advancement

The section explores how labor market incentives influence forecasting strategies and career
trajectories, with a focus on distinctions between younger and more experienced analysts across
diverse financial markets. To examine career progression, we first construct indicators of job
separation grounded in career theories that highlight job performance as a key determinant of
movement within and between firms. We then analyze the relationship between an analyst's past
forecast accuracy and job transitions. Finally, informed by herding theories, we assess the role
of bold forecasting as an additional factor influencing job separations. The construction of

performance and boldness variables is detailed in Section 2. 3.3.

2.5.3.1. Measures of Job Movements

In this section, we examine job movement measures by tracking each analyst forecast and
employment history within the I/B/E/S sample, focusing on those in the banking sector. Studies
like Hong et al. (2000) note that analysts often specialize within industries, a trend that Hong
and Kubik (2003) further highlighted, showing a shift toward smaller, specialized brokerage
firms since 2003. By including only banking-focused brokerage houses, our sample achieves a

brokerage size distribution that aligns with this industry shift and supports our methodology.
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Our approach also accounts for career dynamics, such as promotions and demotions, reflecting

the evolving structure of specialized brokerage firms in banking.

In our global sample, the typical brokerage house employs around 12 analysts, while those in
the top 5% —classified as top brokerage firms (BIG5)—average approximately 23 analysts. This
number differs by region, with top brokerage firms employing an average of 22 analysts in the
U.S., 24 in Europe, and 23 in Asia. Being part of a top brokerage often correlates with higher
forecast accuracy and enhanced market performance, attributed to the superior resources and
strong institutional reputation these firms hold. Career movements are measured in four ways:
(1) the number of analysts who change brokerage houses during a year (determined by changes
in the analyst’s unique brokerage house code), (2) the number of analysts who upgrade to a
higher-status brokerage firm during a year, (3) the number of analysts who move from a low-
tier brokerage house to a top-tier house during a year, and (4) the number of analysts who

downgrade from a high-status brokerage house to a low-status one during a year.

Table 2. 8 presents summary statistics for various measures of career mobility and forecast
performance, providing insights into different dimensions of analyst job movements. The table
categorizes the data for the overall sample, as well as for US, European, and Asian analysts. The
data reveals that, on average, 14.45% of analysts change their brokerage firms over the sample
period. US analysts show the highest rate of change at 18.54%, compared to 14.07% for
European analysts and 13.46% for Asian analysts. The annual probability of an analyst
changing their brokerage firm is approximately 5.2%, slightly higher for US and Asian analysts
at 5.5% and 5.7%, respectively, and significantly lower for European analysts at 3.8%. The
probability of analysts upgrading to a higher-status brokerage firm is around 1.9%, with US
analysts having a slightly higher upgrade rate (2.17%) compared to European analysts (1.58%)
and Asian analysts (1.95%). Approximately 1.26% of analysts move to firms of similar size,
with this rate being slightly higher for Asian analysts (1.67%) and lower for European analysts
(0.71%). The probability of moving to or from a top-tier brokerage firm is relatively low: the
likelihood of upgrading to a top-tier firm is 0.37%, while the probability of downgrading from
a top-tier firm is 0.28%. US analysts are more likely to upgrade to a top-tier firm (0.43%)
compared to European (0.36%) and Asian analysts (0.29%).
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Table 2. 8: Descriptive Statistics of Job Movements Dataset

All Sample  US Analysts European Analysts Asian Analysts

Category Mean | Mean | Mean | Mean

Brokerage House Change

BrokerChange _ttl 0.578 0.742 0.426 0.538

D BrokerChange Year 5.15% 5.48% 3.75% 5.75%
Probability That Analyst Moves to Higher-Status Brokerage House

D_Upgrade 1.946% 2.170% 1.581% 1.954%
D_Downgrade 1.945% 2.107% 1.461% 2.131%
D_Samesize 1.263% 1.200% 0.711% 1.665%
Probability That Analyst Moves to Top5 Brokerage House

D_Upgrade_top5 0.374% 0.427% 0.357% 0.286%
D_Downgrade_top5 0.283% 0.166% 0.441% 0.145%
D_Samesize 4.497% 4.884% 2.954% 5.318%

- The characteristics of Top-tier brokerage houses in different regions

Our findings show a positive correlation between brokerage house size and forecast accuracy
globally and regionally. In the United States, analysts at top brokerage houses tend to issue
bolder forecasts, follow more concentrated portfolios, and have more bank-specific experience,
though they do not necessarily possess high general experience or top past forecast accuracy.
Conversely, European analysts exhibit high general experience levels, manage more extensive
and complex portfolios, are less bold, and have average past performance records. Asian
analysts demonstrate high experience levels, maintain moderate portfolio sizes, are bold, and
show good past performance. These results highlight the distinct characteristics and behaviors
of analysts across different regions, reflecting the varying dynamics of financial markets and

institutional practices (see Appendix C, Table C.1).

2.5.3.2. Past Forecast Accuracy and Career Advancement: High and Low-Experience
Analysts
This section explores the relationship between analysts' forecast accuracy and career mobility,

including promotions, lateral moves, and exits from the profession. Specifically, we analyze
how forecast performance affects the likelihood of analysts transitioning within or between
brokerage houses—either moving up to top-tier firms or down to lower-status brokerages. By
examining high- and low-experience subsamples, we capture experience-based differences in
how forecast accuracy influences these career outcomes. We adopt the methodology outlined
by Bolliger (2004), utilizing probit regressions to examine the likelihood of career transitions
based on past forecast performance. We estimate separate probit models for each experience

subsample, categorized as high or low relative to median experience in each region (8 years in
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the U.S., 6 years in Europe, and 5 years in Asia). This approach allows us to compare the impact
of forecast performance on career mobility between less experienced and more experienced

analysts. The model specifications are as follows:

Probability [Upgradei,t+1 = 1] = Probit (a + 31 Top_Performance_index; , + &;,)
Probability [Downgraalei,t+1 = 1] = Probit (a + 31 Poor_Performance_index;; €; )
(10)
here, "upgrade” refers to the likelihood of an analyst moving to a top-tier brokerage, while
"downgrade" refers to moving to a lower-status brokerage. Past_Per_SCORE represents the
analyst’s Aggregate Weighted Forecast Performance score, with top-performing analysts
(Top_Performance_index) in the top 20th percentile and poor performers marked by the
Poor_Performance_index. This approach allows us to capture the extremes of analyst
performance and better understand how these factors influence career outcomes across different
regions and experience levels. Moreover, the analysis spans a three-year period to determine
each analyst's general experience level, classifying them into high- and low-experience groups.
This classification enables a nuanced understanding of how career concerns and performance
metrics affect career progression, particularly highlighting the varying incentives faced by
analysts at different career stages.

Table 2. 9 presents regression results analyzing the effect of past performance on career
outcomes, with subsamples for low- and high-experience analysts and distinctions between top
and poor performers. The analysis spans the U.S., Europe, and Asia, highlighting regional
differences in how past performance influences career trajectories. The findings reveal
significant positive relationships in all regions between past performance and the likelihood of
promotion to a higher-status brokerage house. Specifically, higher past performance
significantly increases the probability of moving up in Europe and Asia, though the effect is
smaller in Asia. In contrast, in the U.S., high past performance does not necessarily correlate
with promotions to top brokerage firms. Regarding downgrades, the U.S. shows that lower past
performance significantly increases the likelihood of downgrading, particularly for less
experienced analysts. In Europe, there is no significant relationship between past performance
and downgrading overall, though poor past performance among low-experience analysts does
increase the likelihood of a downgrade. In Asia, the positive coefficient indicates that market
dynamics may interact uniquely with analyst experience level, necessitating further

investigation.
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Overall, the findings demonstrate that high past performance influences career outcomes,
though the effects differ by region. In the U.S., poor past performance, especially for less
experienced analysts, increases the likelihood of downgrading, while high past performance
alone does not guarantee promotion. In Europe, high past performance is linked to upward
mobility, with no significant trend for downgrading except for poor, low-experience
performers. In Asia, high past performance boosts advancement to top firms, while lower past
performance does not notably increase downgrading risks, highlighting unique market
dynamics.

Table 2. 9: Effect of Past Performance on Career Outcomes by Experience

Probability That Analyst Moves to Top Brokerage House

Panel A @) 2 ®) 4 ©) (6)
. Us Us EU EU ASIA ASIA
General Experience <Median >Median <Median >Median <Median >Median
Top_Performance_index -0.0476 -0.391*** 0.431*** 0.166*** -0.542%** 0.0338
(-1.13) (-6.03) -7.91 -2.79 (-4.54) -0.63
_cons -2.542%** -2.593*** -2.844%** -2.682%** -2.717%* -2.761***
(-98.68) (-118.78) (-83.33) (-114.13) (-92.64) (-112.28)
Observations 55115 69524 48243 62039 49233 75702
Probability That Analyst Downgrades to a Lower-Status Brokerage House
Panel B 1) &3] ®3) 4 ©) (6)
US US EU EU ASIA ASIA
<Median >Median <Median >Median <Median >Median
Poor_Performance_index 0.140*** 0.0371 0.0952* 0.0523 -0.258*** -0.204***
-2.72 -0.37 -1.84 -1.31 (-2.83) (-3.13)
_cons -2.909*** -3.216%** -2.753*** -2.707*** -2.951%** -2.795%**
(-61.73) (-43.61) (-53.29) (-65.53) (-46.04) (-61.00)
Observations 55115 69524 48243 62039 49233 75702

Table 9 presents regression results (Eg. 10) assessing the impact of past performance on analysts' career outcomes.
The analysis is structured into two panels: Panel A evaluates the probability of an analyst moving to a top brokerage
house, while Panel B examines the likelihood of downgrading to a lower-status brokerage house. Each panel is
divided by region and general experience (GEXP) above or below the median. Key variables include
Top_Performance_index, a dummy set to 1 if the analyst’s past performance is in the top 20%, and
Poor_Performance_index, a dummy set to 1 for the bottom 20%. Statistical significance is denoted by ***, ** and
* for 1%, 5%, and 10% levels, respectively.

2.5.3.3. Boldness and Career Trajectories: High- and Low-Experience Analysts

Building on herding theories (e.g., Hong et al., 2000), we extend our analysis of career mobility
to include forecast boldness as a potential factor influencing job separation probabilities. These
models suggest that future career outcomes may be shaped not only by past performance but
also by past actions—such as bold or unconventional forecasts that deviate significantly from
the consensus—thereby signaling the quality of an analyst's private information. To investigate

this, we estimate the relationship between the probability of career advancement or downgrade
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and forecast boldness, while controlling for forecast accuracy. We specifically explore how the
combined effects of forecast accuracy and boldness may vary according to analysts’ experience
levels. Our model specification builds on Eq. (10), incorporating a dummy variable
(BOLDNESS_Top 20%) to capture analysts who rank in the top 20% of the boldness-score

distribution in year t. This variable serves as an indicator of bold forecasting behavior®,

Probability [Upgradei,ﬁr1 = 1] = Probit (a« + 81BOLDNESS _Top 20%; , +
32 Top_Performance_index;, + &)

Probability [Downgraalei,t+1 = 1] = Probit (a + R1BOLDNESSz,,20%; . +
32 Poor_Performance_index;, + &; ;)

(11)

This model allows us to analyze how both past performance and boldness influence career
mobility, providing insights into the role of unconventional forecasting as a potential driver of
career advancement or risk, particularly across varying levels of analyst experience. Table 2.
10 examines how bold forecasts (top 20%) and top performance affect career mobility for
analysts with varying experience levels across the U.S., European (EU), and Asian markets. In
the U.S., bold forecasts by less experienced analysts correlate with a lower likelihood of
advancement to top brokerage houses and a greater probability of downgrade if performance is
poor. For experienced analysts, particularly those with robust bank-specific experience (general
experience (GEXP) > median (~8 years) and bank-specific experience (BEXP) > mean (~5.1
years)), boldness enhances the likelihood of moving to top firms (see Appendix C, Table C.2).
For younger analysts, boldness and strong performance alone do not secure promotions,
emphasizing the critical role of experience, especially within specialized sectors, for career
growth. Essentially, high performance alone does not ensure advancement without sufficient
experience (GEXP> mean (~9.2 years)), while poor performance significantly increases

downgrade risk for less experienced analysts (see Appendix C, Table C.3).

In Europe, strong past performance facilitates upward mobility to top brokerage houses, with
bold forecasts significantly boosting promotion prospects for less experienced analysts (GEXP
< median (~6 years)). Among lower-experience analysts, bold forecasts are associated with
better chances of advancing to top firms, though their impact on avoiding downgrades is

minimal. For more seasoned analysts, boldness slightly improves promotion prospects, mainly

38 For our job separation models, we use a cumulative boldness score by averaging each analyst's boldness scores
over the current year t and the prior three years, providing a more stable measure of boldness over time. Please
see Section 2.3.3.
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when coupled with substantial bank-specific experience (BEXP > mean (~4.3 years); see
Appendix C, Table C.2). This regional variation highlights the need for further analysis into
how boldness affects career trajectories for younger, career-driven European analysts. In Asia,
bold forecasts positively impact career advancement across both less and more experienced
analysts, with inexperienced analysts benefiting the most from bold moves (GEXP < median
(~5 years)). Additionally, bold forecasts reduce the likelihood of downgrades for experienced
analysts, suggesting that a combination of high experience and boldness provides resilience and
career stability against potential setbacks. These findings underscore the complex interplay

between boldness and experience in career mobility, with notable regional differences.

Table 2. 10: Impact of Boldness on Career Advancement Across Regions

Probability That Analyst Moves to Top Brokerage House

Panel A @ @ ©) 4 ©) (6)
. us uUS EU EU ASIA ASIA
General Experience - - - - - -
<Median >Median <Median >Median <Median >Median
BOLDNESS_Top 20% -0.326*** 0.159* 0.245** 0.00409 0.742%** 0.162*
(-3.49) 1.83 2.35 0.05 5.71 1.81
Top_Performance_index -0.0569 -0.429*** 0.417*** 0.185*** -0.552*** 0.000255
(-1.29) (-6.12) 7.11 2.8 (-4.13) 0
_cons -2.456%** -2.618*** -2.902%** -2.656*** -2.931*** -2.773%**
(-74.17) (-82.89) (-60.56) (-75.58) (-52.32) (-79.92)
Observations 49787 63137 40470 49341 40688 60571
Probability That Analyst Downgrades to a Lower-Status Brokerage House
Panel B @) @) (€) 4 ©) (6)
UsS US EU EU ASIA ASIA
<Median >Median <Median >Median <Median >Median
BOLDNESS_Top 20% 0.356*** -0.3 0.0679 0.271%** -0.0405 -0.324**
341 (-1.20) 0.62 3.29 (-0.27) (-2.33)
Poor_Performance_index 0.186*** 0.0815 0.000908 -0.0832* -0.308*** -0.136*
3.41 0.76 0.02 (-1.76) (-2.97) (-1.96)
_cons -2.909%** -3.216%** -2.719%** -2.605%** -2.951%** -2.795%**
(-61.73) (-43.61) (-50.23) (-51.95) (-46.04) (-61.00)
Observations 49787 63137 40470 49341 40688 60571

Table 10 presents the regression results (Eq. 11), analyzing the impact of past boldness on the probability that
an analyst experiences desirable or undesirable career outcomes, separated by experience levels and across
different regions (US, EU, and ASIA). The analysis is structured into two panels: Panel A shows the probability
of an analyst moving to a top brokerage house, while Panel B examines the likelihood of an analyst downgrading
to a lower-status brokerage house. Each panel is further divided by region and by experience level (general
experience (GEXP) above or below the median. The main variable of interest is the Top 20% Boldness: A
dummy variable is set to one if the analyst Boldness rank is above 80% and set to zero otherwise. Statistical
significance is indicated by ***, ** and * for 1%, 5%, and 10% levels, respectively.
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2.5.3.4. Career Mobility and Strategic Forecasting

Analysts' forecasts are often shaped by brokerage firms' trading incentives, showing increased
optimism, boldness, or broader coverage to boost trading volumes and client relationships, even
at the risk of reduced accuracy (Lehmer et al., 2022; Ljungqvist et al., 2007; Michaely &
Womack, 1999). This analysis explores how portfolio complexity and expanded coverage affect
promotion prospects, particularly for career-focused analysts, highlighting how bold
forecasting combined with broad coverage can strategically enhance career mobility. The probit
model in Eq. (11) is extended to include subsamples for varying levels of portfolio size,
complexity, and engagement. Table 2. 11 shows how expanded bank (NBAN) and country
coverage (NCOU) amplify promotion probability for bold, career-motivated analysts, while
Table 2. 11 examines the marginal effect of increased market activity, with all variables
averaged over a three-year window. In the European market, analysts with above-median bank
or country coverage who issue bold forecasts experience a significantly higher likelihood of
promotion to top brokerage firms, a trend reinforced by positive performance indicators. Active
engagement in forecasting further enhances career mobility, as high engagement and broad
coverage amplify the benefits of boldness. In contrast, analysts with smaller portfolios have
reduced promotion prospects, highlighting the importance of extensive coverage and visibility
for advancing in their careers. Unlike Europe, where boldness is rewarded with career mobility,
both the U.S. and Asian markets show different dynamic. In Asia, bold forecasts significantly
boost promotion prospects, particularly for analysts with moderate portfolio complexity.
Analysts with below-median bank or country coverage benefit the most from boldness, while
extensive country coverage diminishes its impact, indicating that boldness is more effective
when paired with a focused portfolio. In the U.S., however, bold forecasts tend to reduce the
likelihood of promotion to top brokerage houses, regardless of whether the analyst's bank
coverage is below or above the median. This negative impact is stronger for analysts with higher
coverage, suggesting that for less experienced analysts, boldness is not rewarded in the U.S.
market and may even be penalized.

These findings indicate that in the European market, less experienced analysts can
strategically leverage bold forecasting, extensive portfolio coverage, and active engagement to
enhance their career trajectories. However, bold forecasts are often associated with younger
analysts, those with lower past performance, and analysts from smaller firms. These analysts
tend to cover a broader range of banks and countries, using their diversified portfolios and

regional expertise to stand out early in their careers. Notably, bold forecasts in Europe are linked
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to higher forecast errors, highlighting a trade-off between visibility and accuracy. This trend
aligns with theories on economic incentives and strategic forecasting, where bold, optimistic
forecasts that drive trading volumes can lead to career advancement, particularly for early-
career analysts (Lehmer et al., 2022). This underscores the complex dynamics of boldness,

accuracy, and economic motivations in shaping career progression within competitive financial
markets.

Table 2. 11: Boldness and Career Advancement by Portfolio Complexity

Probability That Analyst Moves to Top Brokerage House
O] @ ®d @ ® (6 Q) () ©) (10

Coverage _ Bank Coverage _ Country
us us EU EU AS AS EU EU AS AS
<Median >Median <Median >Median <Median >Median <Median >Median <Median >Median
BOLDNESS Top20%  -0.258** -0.525**  -0.112  0.359*** 1.190*** (.528*** -0.145  0.317%** Q. 777***  -0.757

(-249)  (-235)  (-051) 2.74 -5.18 314 (-0.59) 2.65 5.86 (-0.97)

Top_Performance_index -0.215%* 0.631*** (0506%* 0.420***  -0.136 0 0.605%%* 0.345%%* Q551
(-403) 483 416 6.11 (-0.89) 0 429 5.27 (-4.05) 0

_cons 22840k ZATOMF 31730k 2 TBLRRR 3308 2663 -3156%FK  -2.802%% .ggETer 3237

(-61.22)  (-2891) (-3167) (-47.86) (-27.59) (-41.23)  (-2841) (5L58) (-50.18)  (-14.35)

Observations 28451 19360 20541 19929 21478 12704 15141 25329 33705 5360

Table 11 presents the regression results (Eq. 11), evaluating how past boldness influences career outcomes while accounting
for portfolio size and complexity across the EU, US, and Asia. The analysis incorporates key portfolio characteristics, including
the number of banks covered (DNBAN) and country coverage (DNCOU), to examine the interaction between bold forecasting
and portfolio structure on career advancement. The results are further segmented by region and by whether the portfolio size
and complexity variables (DNBAN and DNCOU) are above or below the median. All variables are calculated as cumulative
averages over a three-year window. The primary variable of interest is the Top 20% Boldness, a dummy variable set to one if
the analyst's boldness rank is above the 80th percentile and zero otherwise. Statistical significance is denoted by ***, ** and
* for 1%, 5%, and 10% levels, respectively.

Table 2. 12: Boldness and Career Advancement by Analyst Engagement

Probability That Analyst Moves to Top Brokerage House

@ &) ©) 4 ®) (6)
Active Analyst
us us EU EU AS AS

<Median >Median <Median >Median <Median >Median
BOLDNESS_Top 20% 0.107 -0.451*** -0.166 0.384*** 0.829*** 0.161

-0.59 (-4.112) (-0.77) -3.12 -5.84 -0.52
Top_Performance_index  0.468*** -0.190***  0.612*** 0.339%** -0.589*** -0.384
-4.41 (-3.59) -5.48 -4.78 (-3.93) (-1.27)

_cons -2.937%**  -2.364***  -3.063***  -2.816*%**  -2,946***  -2.837***

(-3L57)  (-66.03)  (-32.33)  (-48.77)  (-47.09)  (-23.91)

Observations 11977 37602 18024 22200 33868 6788

Table 2.12 presents the regression results (Eq. 11), extending the analysis in Table 11 to evaluate the impact of
analysts' activity and engagement levels on career outcomes, across EU, US, and Asia. The analysis incorporates
the number of all forecasts and revisions issued by analysts in each period (NFALL) as a measure of activity,
examining its interaction with boldness and portfolio characteristics on career advancement. The results are
segmented by region and by whether NFALL, representing analyst activity levels, is above or below the median.
All variables are calculated as cumulative averages over a three-year window. The primary variable of interest
remains the Top 20% Boldness, a dummy variable set to one if the analyst's boldness rank is above the 80th

percentile and zero otherwise. Statistical significance is denoted by ***, ** and * for 1%, 5%, and 10% levels,
respectively.
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2.6. Summary and Conclusion

This study analyzes the influence of financial analyst characteristics and career motivations on
forecast accuracy, boldness, and career trajectories across global regions, focusing on the
banking sector. Utilizing the I/B/E/S Detail History Database, we uncover significant regional
differences in the factors influencing forecast behavior and career outcomes, highlighting the
complexity of financial analysis in a global context. US analysts exhibit lower forecast bias,
longer tenure, and higher engagement levels than their European and Asian counterparts,
reflecting a more dynamic and competitive environment. European analysts, though slightly
more experienced than Asian analysts, show higher optimism and broader geographical
coverage, whereas Asian analysts concentrate on more banks within a single country.

We examine determinants of financial analysts' forecast accuracy, revealing that analyst
experience, portfolio management, forecasting activity, and institutional resources significantly
impact forecast accuracy globally. General experience reduces forecast error across the US,
Europe, and Asia, with the US showing the most substantial improvement. Bank-specific
experience is particularly impactful in the US and Asia. Larger brokerage houses are associated
with lower forecast errors, especially in the US, due to better resources and support. However,
this effect is weaker in Europe, indicating regional disparities. Frequent forecasts and revisions
correlate with higher accuracy, underscoring the benefits of continuous market engagement.
Interestingly, portfolio size enhances accuracy globally but increases errors in Europe due to
complexity. This finding contradicts previous studies that linked extensive firm coverage with
reduced accuracy, likely due to industry specialization. Higher geographical coverage
consistently increases forecast errors across all regions, with Europe being the most affected.
Our findings suggest that industry-specialized analysts with large portfolio sizes and limited
geographical coverage produce more accurate forecasts. However, this presents challenges for
European brokerage houses seeking an optimal research structure. We then explore the dynamics
between boldness, ability, and career concerns. Our research reveals regional differences in
forecasting behavior, showing how career concerns, boldness, and forecast accuracy interplay.
In the US, bold forecasts are more accurate than herding forecasts. Analysts issuing bold
forecasts typically have significant bank-specific experience, come from major brokerage
houses, and have strong past performance. Career concerns drive less experienced analysts to
herd, while experienced analysts make independent, bold forecasts. In Europe, bold forecasts
are generally linked with higher forecast errors. Younger analysts, those with less favorable past

performance, and those from smaller brokerage houses are more likely to issue bold forecasts.
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Boldness here is closely tied to career concerns, with younger analysts taking risks to gain
recognition, often compromising prediction accuracy. In Asia, bold forecasts are less accurate
overall, though the negative impact is less pronounced for analysts from top brokerage houses
and those with focused portfolio coverage who are the main issuers of bold forecasts in Asian
markets.

Furthermore, across global financial markets, the interplay between forecasting performance,
and career progression reveals distinct regional dynamics that shape analysts' career paths. In
the US market, Inexperienced analysts who make bold forecasts generally face challenges in
moving to top-tier firms and are more likely to experience downgrades if they perform poorly.
However, experienced analysts, particularly those with robust bank-specific expertise, see
greater upward mobility when exhibiting boldness, suggesting that boldness combined with
experience enhances career prospects in top firms. Essentially, high performance alone does
not ensure advancement without sufficient experience, while poor performance significantly
increases downgrade risk for less experienced analysts. In the European market, boldness
emerges as a key factor for less experienced analysts, markedly enhancing their prospects for
advancing to top-tier firms. This finding suggests that early in their careers, European analysts
can strategically use bold forecasts, broad portfolio coverage, and active market engagement to
advance professionally. Notably, while boldness and extensive coverage increase career
mobility, this approach often comes at the expense of forecast accuracy. This trade-off
underscores the influence of economic incentives and strategic forecasting behaviors, where
bold, optimistic forecasts that drive trading volumes can serve as a powerful catalyst for career
growth, especially for ambitious early-career analysts aiming to establish visibility and influence
in competitive financial markets. In Asia, bold forecasts significantly enhance career
advancement for both experienced and less experienced analysts, with a more pronounced
impact on younger analysts. For seasoned analysts, boldness drives career progression and
lowers the risk of downgrades, indicating that boldness, when combined with extensive
experience, stabilizes career trajectories. Notably, the positive impact of boldness is strongest
when analysts maintain a focused portfolio, highlighting the strategic advantage of concentrated
expertise in amplifying the benefits of bold forecasts.

Overall, bold forecasts represent a calculated risk that can yield career benefits under certain
conditions. In the U.S., experience and strong past performance are prerequisites for leveraging
boldness effectively, whereas in Europe, early-career analysts use boldness to stand out but must

navigate its trade-offs with accuracy. Asia demonstrates a more consistent advantage of boldness
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across experience levels, reflecting the regional interplay of market dynamics, institutional
structures, and cultural acceptance of risk-taking.

These findings underscore the nuanced and strategic dimensions of analysts' forecasting
behaviors, revealing that career progression in financial analysis is influenced not only by
traditional skills like forecast accuracy but also by calculated behaviors such as portfolio
expansion, optimism, and boldness in predictions. These behaviors are strategically employed,
particularly by early-career analysts, to heighten visibility and increase advancement prospects
in competitive financial markets. However, such strategies often lead to trade-offs, as boldness
and optimism can compromise forecast precision, especially in markets with different regulatory
frameworks and economic incentives. By providing valuable insights for investors, financial
institutions, and policymakers, this study aims to enhance the integrity and effectiveness of
market discipline mechanisms, fostering greater trust and stability in the banking sector.

Our findings collectively illustrate that while experience, firm resources, and specialization
contribute to forecast accuracy, the influence of economic incentives—particularly those tied to
trading volumes—significantly shapes analysts' forecast behavior. This strategic adjustment of
forecasts suggests that analysts may prioritize their brokerage firm's business interests over the

provision of unbiased and accurate information.

2.6.1. Policy Implications and Recommendations

The findings in this study underscore the need for comprehensive and harmonized regulations
to improve transparency, integrity, and reliability in financial analysis, especially within the
opaque banking sector. Current regulations across the U.S., Europe, and Asia show varied
strengths and weaknesses: while the U.S. leads in addressing conflicts of interest through clear
mandates (e.g., the Global Research Analyst Settlement and Reg BI), Europe focuses on
transparency measures, such as unbundling research costs in MiFID II, but faces enforcement
challenges due to market fragmentation. In Asia, flexible yet diverse regulations are often
inconsistently applied, potentially weakening their effectiveness (see Appendix D). To address
these regional disparities, further regulatory efforts should prioritize enhanced disclosure
standards, regular independent audits, and mandatory reporting of analysts’ compensation and
incentives. Emphasizing ongoing professional development and stringent oversight would help
reinforce the quality of financial analysis, ensuring that conflicts of interest are minimized and
the integrity of market information is upheld. Strengthening these regulatory frameworks can
enhance transparency, reliability, and integrity in financial analysis, reinforcing market

discipline and contributing to economic stability and investor trust across key regions.
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Appendix 11

Appendix A:

Financial Analyst Compensation Package in Global Markets:

Financial analyst compensation varies significantly by region and firm size. In the U.S., salaries
typically range from $60,000 to $120,000, with top firms offering up to $150,000. Bonuses
generally add 10% to 50% of the base salary, particularly in major financial hubs like New York.
In Europe, analysts earn between €50,000 and €90,000, with higher pay in London. Bonuses are
also 10% to 50%, though the European Union imposes stricter regulations on bonuses, especially
in the financial sector. Analysts in cities like Frankfurt and Paris earn competitive salaries, albeit
slightly lower than in London. In Asia, compensation is more variable. Hong Kong and Singapore
offer salaries ranging from €47,000 to €100,000, while Japan and China have lower ranges. India
is at the lower end of the spectrum. Bonuses across Asia typically range from 10% to 40% of the
base salary, with the highest bonuses in Hong Kong and Singapore. Large brokerage firms generally
offer higher pay, with U.S. base salaries from $70,000 to $90,000 and bonuses up to 100%. These
firms provide extensive benefits and greater career growth opportunities. In contrast, smaller firms
offer lower salaries, typically $50,000 to $70,000 in the U.S., with more modest bonuses, although
they may offer faster career progression with broader responsibilities.
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Appendix B:

Across Global Banking Markets

Details On the dataset

Table B.1 Variable definition

Variable Description
Experience
GEXP General Experience: Cumulative years through t in which analyst i has issued forecasts.
CEXP Country-Specific Experience: Cumulative years through t that analyst i has forecasted for a specific bank.
REXP Region-Specific Experience: Cumulative years through t that analyst i has issued forecasts for a particular country.
BEXP Bank-Specific Experience: Cumulative years through t that analyst i has issued forecasts for a particular region.
Portfolio Complexity

NBAN This represents the number of banks for which the analyst has supplied at least one forecast during the current year. It indicates portfolio

complexity.
NCOU Thls number reflects t.he.nur.nbe.r of co.untries for V\{hich analysts have supplied at least one forecast during the current year; it provides

insight into their specialization in particular countries.
NREG Ir}dica?e_s th_e number_of region_s for which the analyst has supplied at least one forecast during the current year. It reflects the geographic

diversification of their portfolio.

Analysts Engagement
NFB The number of forecasts/revisions that the analyst supplied for each bank during the current year.
NFCOU The number of forecasts/revisions that the analyst supplied for each country during the current year.
NFREG The number of forecasts/revisions that the analyst supplied for each region during the current year.
NFAIll The number of the total forecasts/revisions that the analyst supplied during the current year.
Forecast Timing
FORD Forecast order for each analyst during the period. This variable captures the chronological order of analysts' forecasts and revisions
FAGE Forecast age (in days) represents the number of days between fiscal year-end and forecast date for company j in the year t.
Analyst Boldness

The measure of an analyst's boldness is the deviation from the consensus forecast. The absolute value of the difference between Fi j,t
BOLD and F-i,j,t ,If the analyst’s current forecast is greater than (less than) the consensus forecast.

Analyst Boldness score: For each bank in each year, rank all the analysts covering a bank by how much they deviate from the consensus
BOLDNESS(Score) forecast of that year (the boldest analyst receives the first rank, the second-boldest, the second rank, etc.). From these rankings, a

boldness score for each analyst for each bank is made.

BOLDNESS_Top 20%

A dummy variable is set to one if the analyst Boldness rank is above 80% and set to zero otherwise.

Brokerage House and Career Movement

BrokerSize

Brokerage size is defined as the number of analysts working for the I/B/E/S brokerage firm that analyst i is associated with in year Y.

BrokerSize_INT

Brokerage houses are ranked yearly according to the number of analysts employed. Small, medium, and large brokers get 1, 2, and 3.

BIG5

Adummy variable is set to one if the analyst is employed by a firm ranked in the top 5% during the current year and set to zero
otherwise

BrokerChange

A number of times analyst has moved to another broker house during his job as an analyst.

D_BrokerChange_Year

Adummy variable is set to one if the analyst has changed the broker in the last 365 days.

D_Upgrade

D_BrokerSize_Change: This dummy variable equals one in case of Upgrade to higher status brokerage house, -1 in case of downgrade,
and 0 if there is no change.

D_Upgrade_BIG5

D_BrokerSize_Change: Dummy variable equals one in case of Upgrade to top 5 brokers, -1 in case of downgrade, and 0 if there is no
change.

Analyst Forecast Error & Past Performance

Past_Per

The aggregated forecasting accuracy across all the banks an analyst covers: This represents the weighted average of the analyst’s prior
period forecast accuracy from the first forecast, assigning higher weights for recent forecasts.

Past_Per_SCORE

Soring and ranking all analysts based on their previous performance and scoring them; the best analyst receives the first rank, the second-
best analyst receives the second rank, and onward until the worst analyst receives the highest rank.

Top_Performance_index

Adummy variable is set to one if the analyst's past performance rank is in the top 20% and set to zero otherwise.

Poor_Performance_index

A dummy variable should be set to one if the analyst's past performance rank is down 20% and set to zero otherwise.

AFE

Absolute Forecast error represents the absolute spread between actual earnings per share for stock j and forecasted earnings per share in
year t deflated by the actual earnings per share at the end of year t.

PMAFE

IProportional Mean Forecast Accuracy. The ratio of the current year individual analyst’s forecast error for a particular firm divided by
the mean current year forecast error of all analysts for the firm, minus one.
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Table B.2 I/B/E/S Dataset Summary Statistics Table B.3. Geographical distribution of the data
Year TTL Forecasts Nb. Brokers/year Nb. Banks/year Nb. Analyst/year Region/Country Nb. Forecasts
2000 7,827 297 234 1,073 us 131,962
2001 9,744 296 240 1,033 EU
2002 9,356 259 260 947 W 18,105
2003 11,215 272 278 982 laly 13083
2004 10,558 299 295 916 Spain 11504
w0 oo o w10 Swizerlong 10775
2007 13,719 325 354 1,045 ﬁl‘ﬁ;; igg%
2008 17,154 335 351 1,097 ’

Germany 9,453
2009 18,976 379 377 1,217 France 9197
2010 18,129 407 382 1,203 Denmark 6822
2011 22,294 398 400 1,280 Netherlands £ 184
2012 22,055 380 410 1,253 Finland 3573
2013 21,030 373 421 1,166 . ’
2014 20,881 369 439 1,147 Austria 3,081
2015 21,856 363 448 1,181 Ireland 2,634
2016 22,687 347 466 1,106 Belgium 2,480
2017 21,964 339 485 1,058 Portugal 726
2018 21,448 315 504 907 ) 17,212
2019 21,458 303 513 835 o N
2020 23,993 282 524 762 India 28,737
2021 20,537 280 529 726 China 20,850
2022 16,626 256 526 653 South Korea 12,911
Malaysia 11,611
Total 398,175 901 516 5,647 Thailand 10,338
Japan 10,217
Total 398,175 29 516 5647 901 Australia 8378
) Indonesia 7,911
Nb. Forecasts represent the number of annual earnings forecasts made each Singapore 7.399
year. Nb. Analysts denote the number of analysts who produced a forecast Hong Kong 7136
during fiscal year t. Nb. Brokers refer to the number of brokerage Taiwan 6,100
companies for which analysts work each year. Nb. Banks represent the Philippines 3,164
number of banks included in the sample each year. Nb. Countries represent 134,752
the number of countries included in the sample each year per region. CA 14,249

Table B.4: Correlation Matrix Relative Forecast Error and Analyst Characteristics (Eqg. 7)

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
All data EU Sub-sample
PMAFE 1 1
DGEXP  -0.029 1 0030 1
DCEXP  -0.031 0.909 1 -0.025 0.808 1
DREXP  -0.029 0.988 0.922 1 -0.028 0.988 0.818 1
DBEXP  -0.027 0673 0750 0682 1 -0.024 0689 0862 0695 1
DNBAN  -0.022 0285 0229 0281 0.184 1 0.009 0197 008 0188 0.077 1
DNCOU 0008 0127 0011 0114 0031 0458 1 0019 0120 -0.031 0114 -0.009 0776 1
DNFB -0055 0197 0227 0198 035 0.184 0.078 1 -0.057 0249 0333 0252 0391 0124 0.034 1
DNFAII -0046 0299 0262 0297 0271 0752 0.334 0.543 1 -0033 0313 0249 0308 0246 0704 0.508 0.565 1
DFORD  -0.167 0.167 0.8 0.167 0279 0.18L 0061 0780 0458 1 -0.144 0213 0273 0214 0308 0121 0032 0809 0474 1
DFAGE 0245 -0.044 -0.042 -0.042 -0.027 -0.049 0.004 -0.125 -0.120 -0.498 1 0220 -0.061 -0.056 -0.060 -0.019 0.002 0034 -0.133 -0.090 -0.484 1
DBIG5 -0.021 0.073 0.019 0063 0059 0060 0136 0.150 0.153 0.126 -0.063 1 -0.017 0108 0.026 0100 0.025 0136 0182 0123 0200 0.105 -0.052 1
US Sub-sample ASIA Sub-sample
PMAFE 1 1
DGEXP  -0.0337 1 00315 1
DCEXP  -0.0335 0.991 1 -0.0392 0.8964 1
DREXP  -0.0335 0.991 1 1 -0.0313 0.9902 0.9095 1
DBEXP  -0.0246 0.5953 0.5996 05996 1 -0.0359 0.7121 0.8002 0.7234 1
DNBAN  -0.0305 0.2913 0.3006 0.3006 0.1962 1 -0.0346 0.3484 0.2712 0.3438 0.2519 1
DNCOU  0.0227 -0.0245 -0.0311 -0.031 0.0027 0.1041 1 0.0016 0.2459 0.0896 0.2305 0.0987 0.4785 1
DNFB  -0.0261 0.0711 0.0683 0.0683 0.2531 0.1231 0.043 1 -0.0709 0.2632 0.2879 0.2605 0.4172 0.2846 0.139%6 1
DNFAII -0.0316 0.225 0.2335 0.2335 0.2239 0.7662 0.0739 0.4497 1 -0.0669 0.3809 0.3258 0.3725 0.3467 0.7845 0.3958 0.6111 1
DFORD  -0.1732 0.0633 0.0627 0.0627 019 01339 -0.0976 0.7363 0.3846 1 -0.1743 0.2247 0.2446 0.2219 0.3376 0.2677 0.1215 07861 05141 1
DFAGE 0.2398 0.0224 0.0238 0.0238 0.033 -0.014 0.1323 -0.0905 -0.0987 -0.5112 1 0.2688 -0.0816 -0.0845 -0.0787 -0.0709 -0.0952 -0.0414 -0.1239 -0.1443 -0.4822 1

DBIGS -0.0233 -0.0791 -0.0852 -0.0853 0.0394 -0.0656 0.0972 0.1802 0.0785 0.4 -0.0501 1  -0.0225 0.1776 0.1077 0.1652 0.1084 0.1102 0.1384 0.1528 0.1854 01293 -0.0706 1

Table B.4 presents the correlation matrix for the differenced variables in the regression model Eq. (7). PMAFE = difference
between the absolute forecast error for analyst i for firm j at time t and the mean absolute forecast error for firm j at time t
scaled by the mean absolute forecast error for firm j at time t.
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Table B.5: Spearman Rank Correlation among the regression variables (Eg. 9)

1 2 3 4 5 6 1 2 3 4 5 6
All data EU Sub-sample

REXP 1 1

BEXP 0.7213* 1 0.7453* 1

BOLDNESS 0.0274* 1 -0.0081* 1

BOLDNESS_TOP20% 0.0128* 0.7549* 1 -0.0079* 0.7762* 1

BIG5 0.0435* 0.0529* 0.0043* 1 0.1084* 0.0363* -0.0219* 1
Past_Per_Score 0.2447* 0.2130* -0.0124* 0.0074* 1  0.2292* 0.2282* -0.0200* -0.0126* 0.0199* 1
US Sub-sample ASIA Sub-sample

REXP 1 1

BEXP 0.6565* 1 0.7511* 1

BOLDNESS 0.0149* 0.0572* 1 0.0096* 0.0231* 1

BOLDNESS_TOP20% 0.0158* 0.7503* 1 0.0127* 0.0178* 0.7395* 1

BIG5 -0.0524* 0.0554* 0.0150* 0.0122* 1 0.0980* 0.0771* 0.0073* 1
Past_Per_Score 0.0742* 0.0537* 0.0126* -0.0617* 1  0.3297* 0.3129* 0.0723* 1

Table B.5 presents the Spearman rank correlation coefficients for the variables used in regression model
Eq. (9) across different regions. This table provides insights into the relationships between boldness,
measured by both BOLDNESS and BOLDNESS_TOP20%, and other analyst characteristics, such as
experience, past performance, brokerage affiliation, and portfolio complexity.

Appendix C:
Furthered Analysis:
Table C.1: The Link Between Boldness and Top Brokerage House.
Dependent Variable Link between Top Brokerage House and Boldenss
@) @ 6] @ © © @ ®
All us EU ASIA All uUs EU ASIA
BOLDNESS_Top 20% -0.00349 0.0356*** -0.0663*** 0.0183** -0.00206 0.0348*** -0.0642*** 0.0182**
(-0.73) -4.36 (-7.85) 225 (-0.43) -4.25 (-7.60) -2.24
BEXP 0.0160*** 0.0189*** 0.00138 0.0269***
-27 -20.12 -1.27 -24.51
Top_Performance_index -0.0382*** -0.126*** -0.0859*** 0.131%** -0.0412%*+* -0.173%** -0.0580%** 0.131%**
(-7.72) (-16.37) (-7.93) -15.27 (-8.31) (-22.33) (-5.33) -15.26
REXP 0.00559*** -0.0183*** 0.0181*** 0.0338***
-12.53 (-26.35) -22.05 -37.52
DNBAN 0.00225*** -0.00446*** 0.0490*** 0.000945 0.00256*** 0.00397*** 0.0440*** -0.00480***
-6.09 (-7.92) -43.82 -1.22 -6.56 -6.67 -38.64 (-5.98)
_cons -0.413*** -0.372%** -0.621*** -0.427%** -0.387*** -0.207*** -0.709*** -0.479%**
(-91.52) (-41.27) (-68.34) (-53.74) (-85.43) (-22.70) (-76.64) (-59.00)
Observations 29775 29775 29775 28559 28559 28559 44809 44809

Table C.1 presents the regression analysis exploring the relationship between boldness and the likelihood of an
analyst being associated with a top brokerage house. The dependent variable is the likelihood of being associated
with a top brokerage house, with boldness being a key independent variable. Statistical significance is indicated
by *** ** and * for 1%, 5%, and 10% levels, respectively.
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Table C.2: Impact of Past Boldness and Performance on Career Outcomes by Bank-Specific Experience

Probability That Analyst Moves to Top Brokerage House_ Bank-Specific Experience

()

@

®

Q)

®)

(6

0

®

)

UsS

Bank-Specific Experience - - - EU_ - ASI'_A
<Median >Median ~ >Mean(~5.1Y)| <Median >Median ~ >Mean(~4.3Y)| <Median >Median ~ >Mean(~3.9Y)
BOLDNESS_Top 20% -0.125*% 0.138 0.387** 0.0762 0.177* 0.111 0.644%** -0.0598 0.00786
(-1.75) 0.97 2.4 0.89 172 0.96 6.21 (-0.57) 0.07
Top_Performance_index -0.248%** -0.147* -0.223* 0.312%** 0.167** 0.225%** -0.252%** 0.111* 0.0209
(-6.35) (-1.72) (-1.89) 6.02 2.28 2.62 (-3.15) 1.87 0.29
_cons -2.351%** -2.970%** -3.123%** -2.730%** -2.796*** -2.822%** -2.892%** -2.769%** -2.788***
(-91.08) (-59.35) (-49.45) (-73.02) (-65.87) (-59.66) (-67.34) (-73.86) (-65.70)
Observations 62846 56971 48135 48220 47746 38937 55751 54219 44694

Table C.2 extends the analysis of Table 10 (Eq. 11) by examining how past boldness and performance influence an
analyst's likelihood of moving to a top brokerage house across the US, Europe, and Asia while accounting for varying
experience levels. Each region is further categorized into three sub-groups based on whether the analyst's bank-
specific experience is above or below the median or above the mean, capturing strong bank-level expertise. The key
independent variable, Top 20% Boldness, is a dummy set to 1 if the analyst’s boldness rank is above 80% and 0
otherwise. Statistical significance is denoted by ***, ** ‘and * for 1%, 5%, and 10% levels, respectively.

Table C.3: Impact of Past Boldness and Performance on Career Outcomes by General Experience

Probability That Analyst Moves to Top Brokerage House_ Above the Mean General Experience

@ @ (©] @ (©) Q)

. Us Us EU EU ASIA ASIA
General-Experience
<Mean(~9.2Y) >Mean(~9.2Y) <Mean(~6.5Y) >Mean(~6.5Y) <Mean(~6Y) >Mean(~6Y)
BOLDNESS_Top 20% -0.175** -0.224 0.261*** 0.0213 0.550%** 0.0909
(-2.35) (-1.17) -2.67 -0.24 -4.58 -0.89
Top_Performance_index -0.247%** 0.254*** 0.372%** 0.199*** -0.111 0.00808
(-6.17) -2.94 -6.62 -3 (-1.53) -0.12
_cons -2.373*** -3.114%** -2.901%** -2.666*** -2.906*** -2.756**
(-89.67) (-46.67) (-64.76) (-74.85) (-62.26) (-73.75)
Observations 63527 50445 47260 48706 50251 52410

Table C.3 extends the analysis of Table 10 (Eq. 11) by examining how past boldness and performance influence an
analyst's probability of advancing to a top brokerage house across the US, Europe, and Asia. This analysis considers
variations in general experience, with results categorized into two subgroups: analysts with experience levels above
and below the mean within each region. The independent variable of interest, Top 20% Boldness, is a binary indicator
equal to one if the analyst's boldness rank is in the top 20% and zero otherwise. Statistical significance is denoted by
**xx *x and * at the 1%, 5%, and 10% levels, respectively.

Appendix D:

Overview of Key Regulations Governing Financial Analysts and Brokerage Firms in
Global Markets

Given the vital role that financial analysts play in reducing information asymmetries and bolstering
market discipline—especially within the opaque banking sector—robust regulation is essential to
ensure transparency, mitigate conflicts of interest, and maintain market integrity. In the U.S.,
Europe, and Asia, financial analysts and brokerage firms operate under various regulations designed

to achieve these goals. Key regulations include the Global Research Analyst Settlement in the U.S.,
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MIFID Il in Europe, and various local regulations in Asia. These regulations differ in scope,
enforcement strength, and impact, reflecting the distinct market structures and regulatory

philosophies of each region (see Appendix D, Table D.1).

- Comprehensive Separation of Research and Investment Banking (Global Research
Analyst Settlement, 2003): In the U.S., this regulation mandates a strict physical and
operational separation between research and investment banking divisions within brokerage
firms. This separation prevents investment banking activities from influencing the objectivity
of analysts' recommendations, thereby addressing conflicts of interest at their root. In Europe,
MIFID 11, effective in 2018, enhances transparency and manages conflicts by unbundling
research costs from trading fees, but it doesn’t mandate the same strict separation. Similarly, in
Asia, while there are guidelines and directives addressing conflicts of interest, they often lack
the stringent separation required in the U.S. This leaves more room for potential conflicts to

influence analysts' work in both Europe and Asia.

- Targeted Rules Addressing Conflicts of Interest (FINRA Rule 2241, 2015): FINRA Rule
2241 inthe U.S. provides detailed guidelines for managing conflicts of interest within brokerage
firms. It prohibits analysts from being compensated based on specific investment banking
activities they might influence. It also requires firms to disclose potential conflicts and ensures
that research reports are not compromised by business pressures. While European regulations,
such as MiFID Il, address conflicts broadly, they lack the detailed, prescriptive measures seen
in FINRA Rule 2241. Similarly, Asian regulations, though present, are generally less specific

and enforceable.

- Enforcement Strength and Accountability (Sarbanes-Oxley Act, 2002): The Sarbanes-
Oxley Act (SOX) in the U.S. enhances accountability through stringent internal controls and
executive certifications of financial reports, promoting ethical behavior within firms. SOX
indirectly influences analysts and research reports by enforcing a broader culture of compliance
and integrity. While Europe and Asia have their own regulations, such as CRD IV and MAR in
Europe, they do not match SOX's enforcement strength and direct impact on internal firm

operations.

- Investor-Centric Regulation (Regulation Best Interest, 2020): Reg Bl in the U.S. requires
broker-dealers to act in the best interest of retail customers, prioritizing client interests over the
firm's financial incentives. This helps ensure that analysts' recommendations remain unbiased.
While MIFID 11 in Europe also focuses on investor protection, it does not mandate a "best
interest” standard as explicitly as Reg. Bl. Asian regulations vary and generally do not enforce

a client-first standard to the same extent.
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The regulatory frameworks in the U.S., Europe, and Asia each have unique strengths and
weaknesses shaped by their market structures and philosophies. The U.S. regulatory framework
benefits from a long history of managing conflicts of interest, transparency, and investor protection.
It combines broad transparency mandates (Regulation Fair Disclosure, 2000), structural separation
(Global Research Analyst Settlement, 2003), detailed conflict management (FINRA Rule 2241,
2015), and strong investor protection (Reg. B, 2020) to create a robust and comprehensive system,
albeit with higher compliance costs and complexity. Europe has strengthened investor protection
and transparency with key regulations, including the separation of research and trading fees (MiFID
I1, 2018) and stringent disclosure rules (Market Abuse Regulation, 2016; ESMA Guidelines, 2013).
However, its fragmented market structure challenges consistent enforcement. Asia’s regulatory
approach, driven by flexibility and rapid development, includes key standards like Japan’s Financial
Instruments and Exchange Act (2007) and Hong Kong’s Securities and Futures Ordinance (2003),
which promote transparency and ethical conduct, though inconsistent enforcement across the region
can undermine effectiveness. Understanding these differences is essential for developing effective
global policies that enhance financial analysis transparency and reliability, particularly in the

opaque banking sector.

- Furthered Enforcements

Given the strengths and weaknesses of existing regulations, further enforcement is crucial to
enhance the reliability of financial analysis and mitigate conflicts of interest, particularly within the
opaque banking sector. To strengthen market discipline, policies should mandate standardized
disclosures of forecasting assumptions and conflicts of interest supported by rigorous regulatory
oversight. This should be coupled with continuous professional development, certification
programs, and the promotion of independent analysis to reduce biases. Additionally, regulations
could require mandatory disclosure of analyst compensation and incentives, enforce the separation
of research and trading activities, and mandate independent audits of research reports. These
measures aim to improve transparency, reliability, and integrity in financial analysis across the U.S.,
Europe, and Asia, ultimately reinforcing the information environment, strengthening market
discipline, and contributing to overall economic stability in the banking sector across these key

regions.
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Table D.1 Key Regulations Governing Financial Analysts and Brokerage Firms in Global Markets

Regulation | Purpose | Date Started
USA

Regulation Fair Disclosure (Reg FD) Prevents selective disclosure of material information, ensuring all investors have equal access. 2000
Enhances the quality and reliability of corporate financial reporting, including for banks and brokerage firms, requiring stricter

Sarbanes-Oxley Act (SOX) : quality and relibilfty of corporate financial reporting, including ge Hirms, requiring stri 2002
internal controls and independent audits.

Global Research Analyst Settlement Requires separation of research and investment banking within brokerage firms, mandates independent research. 2003

FINRA Rule 2241 Mandates that b_roke_rage firms manage conflicts F)f interest, separate research from investment banking, and disclose conflicts. No 2015
investment banking influence over the compensation of research analysts.

Dodd-Frank Wall Street Reform and Imposes stricter regulations on financial institutions, including banks and brokerage firms, to improve transparency, accountability, 2010

Consumer Protection Act and financial stability.

Volcker Rule (Part of Dodd-Frank) Restricts proprietary trading by banks and brokerage firms, limits their involvement in hedge funds and private equity. 2013

SEC Regulation Best Interest (Reg BI)  [Requires broker-dealers to act in the best interest of retail customers, affecting how brokerage firms conduct business. 2020

Generally Accepted Accounting Provides a standardized set of accounting principles used by public companies, including banks, to ensure consistency, Ondoin

Principles (GAAP) transparency, and accuracy in financial reporting. going

Europe

Markets in Financial Instruments Requires unbundling of research costs from trading fees, enhances transparency in financial analysis, and sets standards for 2018

Directive 1l (MiFID I1) conflict of interest disclosures. Impacts brokerage firms by separating research from trading activities.

Market Abuse Regulation (MAR) Inclu_des me_asures to prevent market abuse, to ensure the integrity of EU financial markets, and to enhance investor protection and 2016
confidence in those markets.

ESMA Guidelines Provides guidelines for tr_anspgrency and conflict of interest management in financial analysis. To improve investor protection and 2013
promote stable, orderly financial markets.

Capital Requirements Directive IV and  [Sets stringent capital adequacy standards, risk management requirements, and disclosure obligations for financial institutions to 2013

Capital Requirements Regulation

ensure financial stability and transparency in their financial reporting.

Code of Conduct by EFFAS

Promotes integrity, transparency, and professionalism in financial analysis and reporting, indirectly affecting banks' reporting
standards.

Widely followed

International Financial Reporting

Mandates standardized financial reporting for banks and other companies, ensuring transparency, comparability, and accuracy in

. . 2005 (Ongoin
Standards (IFRS) financial disclosures across Europe. (Ongoing)
Asia
Financial Instruments and Exchange Act |Aims to regulate securities markets and financial instruments to ensure investor protection and market transparency. It includes 2007
(FIEA) measures to prevent unfair trading practices, enforce corporate disclosure, and oversee financial intermediaries
. " Ensures transparency and ethical conduct in financial analysis. Sets standards for financial disclosures by financial institutions and
Securities and Futures Ordinance (SFO) s Y IR by . Y 2003
banks to prevent market abuse and maintain fair market practices.
- Regulates brokerage firms and financial analysts, mandates ethical conduct and transparency, and enforces strict financial
Securities and Futures Act (SFA) 9 . N 4 P 4 2001
reporting standards for banks.
Guidelines for the Conduct of Securities . . . L . .
Sets standards for brokerage firms, promoting transparency and ethical conduct in financial analysis. 2011

Analysts

Pan-Asian Regulatory Cooperation

Harmonizes regulations across Asian markets, impacting how banks and financial institutions manage disclosures, transparency,
and financial reporting.

Ongoing efforts,
varies by country

Speci_fic Financial Reporting Regulates financial reporting by banks and other companies in China, ensuring transparency, accuracy, and compliance with Ongoing
Requirements by CSRC national standards.

International Financial Reporting Sets standardized financial reporting requirements for banks and financial institutions, ensuring transparency and comparability in | Adopted different
Standards (IFRS) financial disclosures across the region. times
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Chapter 3: Evolutionary-Based Ensemble Feature Selection Technique for Dynamic Application-Specific Credit
Risk Optimization in FinTech Lending

Abstract

This study introduces EFSGA, an evolutionary-based ensemble learning and feature selection
technique inspired by the genetic algorithm, tailored as an optimized application-specific credit
classifier for dynamic default prediction in FinTech lending. Our approach addresses existing
gaps in metaheuristic applications for credit risk optimization by (i) hybridizing metaheuristics
with machine learning to accommodate the dynamic nature of time-evolving systems and
uncertainty, (ii) leveraging distributed and parallel computing for real-time solutions in
complex risk decision processes, and (iii) enhancing applicability to unbalanced learning
scenarios. The proposed model utilizes a heterogeneous ensemble of machine learning
algorithms, incorporating a genetic algorithm to simultaneously optimize model
hyperparameters and classification thresholds based on decision-maker objectives over time.
This approach substantially improves out-of-sample model performance, providing valuable
insights for timely post-loan risk management. The feature selection technique contributes to a
balanced trade-off between model performance and interpretability—a pivotal consideration in
metaheuristic-based models. Results obtained from the EFSGA model applied to a dataset
spanning 2007 to 2014 unveiled an average improvement of 23% in application-specific
evaluation metrics compared to conventional heterogeneous ensemble techniques across
diverse risk-taking scenarios. Noteworthy is the proposed dynamic framework, featuring a
tunable class-weighted fitness function, demonstrating significant superiority in delivering real-
time solutions adaptable to evolving decision processes. We validate the EFSGA classification

model against established credit evaluation models.

JEL classification : C61, C63, G32, E17, G11, G17
Keywords: Decision-Making Optimization, Dynamic Risk Management, Ensemble Learning,

Feature Selection Metaheuristic Optimization

117



Chapter 3: Evolutionary-Based Ensemble Feature Selection Technique for Dynamic Application-Specific Credit
Risk Optimization in FinTech Lending

3.1.Introduction

The rapid evolution of FinTech credit markets®® has significantly improved access to financing
for households and small enterprises traditionally underserved by conventional banking systems.
By leveraging digitization, these platforms have enhanced transparency, reduced costs, and
streamlined financial processes (He Li, 2018; Frost et al., 2019). However, the accelerated
growth and interconnectedness of these markets have raised concerns regarding information
asymmetries and regulatory oversight (FSB, 2019; Abbasi et al., 2021). Despite the initial
positive credit performance, empirical evidence points to an increasing risk of delinquency over
time, underscoring the need for continuous monitoring and adaptive risk management strategies
(Di Maggio & Yao, 2018; Chava et al., 2021). To mitigate these emerging risks, dynamic credit
scoring algorithms are crucial for financial institutions (Dia et al., 2022; Granja et al., 2022). The
importance of real-time early warning systems in FinTech credit markets, secondary trading,
and loan resale markets cannot be overstated. Monitoring borrower behavior and intervening
proactively during the repayment process has been shown to significantly reduce delinquencies
and minimize financial losses (He Liu, 2018; Wang et al., 2018). However, the complexities of
FinTech-driven peer-to-peer (P2P) lending, characterized by high-dimensional and imbalanced
credit data, present significant challenges for traditional credit risk models and conventional
machine learning algorithms, necessitating advanced statistical and optimization techniques for
effective risk assessment (Zhou et al., 2019). Recent advancements in credit risk prediction have
focused on three key areas: (i) hybridizing metaheuristics with heterogeneous ensemble machine
learning classifiers, (ii) applying hybrid feature selection techniques to balance interpretability
and performance, and (iii) developing methodologies to address imbalanced learning scenarios.
Metaheuristic algorithms, particularly Genetic Algorithms (GA) and Particle Swarm
Optimization (PSO), have emerged as powerful tools in computational finance, optimizing
complex decision variables and improving the accuracy of credit-scoring models (Goldberg, D.
E., 1989; Metawa et al., 2017; Doering et al., 2019; Plawiak et al., 2019). These algorithms are
also widely used for feature selection in credit risk analysis (Hall, 1998; Wang et al., 2015; Feng
etal., 2019), refining models by identifying key features, removing redundancies, and enhancing

interpretability and accuracy (Lappas & Yannacopoulos, 2021; Lu et al., 2022). These methods

39 The term “FinTech credit” encompasses all credit activity facilitated by electronic platforms that connect borrowers
directly with lenders. These entities are commonly referred to as “loan-based crowd funders”, “peer-to-peer (P2P)
lenders “or “marketplace lenders”.
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are frequently combined with individual machine learning models, neural networks, or ensemble
approaches (Calvet et al., 2017; Ptawiak et al., 2020), offering enhanced accuracy and reduced
computational complexity*.

Researchers have increasingly focused on advanced techniques to improve model
performance in response to the challenges posed by high-dimensional and imbalanced datasets.
Such datasets often exhibit a significant bias toward the minority class, requiring refined
approaches. Acceptance threshold optimization, which adjusts decision thresholds to balance
class representation, has proven effective in mitigating this bias. Genetic Algorithms (GA), in
particular, excel at optimizing these thresholds in large search spaces with complex performance
metrics (Kazemi et al., 2022). Furthermore, cost-sensitive learning plays a crucial role in
addressing class imbalances by adjusting thresholds based on the unequal importance of
different classes and mitigating the asymmetrical misclassification costs between default and
non-default loans (Herasymovych et al., 2019; Junior et al., 2020; Tang et al., 2021; Das,
Mullick, & Zelinka, 2022; Jiang et al., 2023; Khalili & Rastegar, 2023).

Despite these advancements, the broader adoption of metaheuristics in credit risk assessment
remains constrained by challenges related to model interpretability and handling imbalanced
datasets (Dastile et al., 2020). Improving feature extraction methods to balance performance,
computational efficiency, and interpretability is critical for the advancement of metaheuristic-
based models (Lopez & Maldonado, 2019; Liu et al., 2022c). Additionally, oversized feature
sets often lead to overfitting, increased computational complexity, and reduced transparency*.
To address these limitations, more robust methodologies are needed that can integrate dynamic
risk factors into decision-making processes while handling imbalanced data classification
effectively. Moreover, further exploration of multi-objective optimization strategies is required
to simultaneously maximize predictive accuracy while adapting to evolving data environments
and financial landscapes. Developing robust methodologies for dynamically adjusting
acceptance thresholds in real time is essential to ensure that credit risk models remain adaptive
and effective under volatile economic conditions. Addressing these significant gaps is crucial

for enhancing credit risk predictions in complex and dynamic financial environments.

40 Heterogeneous ensemble machine learning classifiers have become increasingly popular for their superior
performance in credit risk prediction and feature selection, as demonstrated in various studies (Jiang et al., 2018;
Chen et al., 2020; Mahbobi et al., 2021; Lu et al., 2022; Liu et al., 2022a; Abdoli et al., 2023; Bai et al., 2022; Liu
et al., 2022c; Zhang et al., 2023).

41 Research shows that only 8% of studies focus on model transparency (Dastile et al., 2020), a critical gap given
regulatory mandates like the Basel Il Accord, which require credit scoring models to be interpretable and
explainable. Thus, transparency is not just beneficial but essential for compliance.
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Our study pioneers an innovative approach by leveraging metaheuristic-driven ensemble
learning and feature selection techniques to advance risk management within the FinTech sector.
We propose the EFSGA model—an Evolutionary-based Ensemble Learning and Feature
Selection technique inspired by Genetic Algorithms. This approach offers a tailored, application-
specific credit risk optimization framework designed for dynamic default prediction and
adaptable to imbalanced data environments, aligning with specific management objectives. The
EFSGA model integrates a heterogeneous ensemble of machine learning algorithms and uses
Genetic Algorithms to simultaneously optimize model hyperparameters and classification
thresholds over time, enhancing both performance and decision-maker objectives.

Our research introduces several key innovations to address gaps in the application of
metaheuristics for credit risk optimization: (i) the hybridization of metaheuristic algorithms with
machine learning techniques to better account for dynamic behaviors and uncertainty in time-
evolving systems, (ii) the integration of distributed and parallel computing paradigms to
facilitate real-time decision-making in complex risk environments, (iii) the joint application of
hybrid feature selection to balance performance, computational complexity, and interpretability,
and (iv) the enhanced management of imbalanced learning scenarios through GA-based multi-
objective optimization, including dynamic adjustments to decision thresholds. To the best of our
knowledge, this study is the first to apply metaheuristics to credit risk optimization using this
comprehensive, multi-faceted approach, with a focus on four key areas:

First, Simultaneous Optimization of Ensemble Learning and Feature Selection: Our model
pioneers a unique approach by simultaneously optimizing ensemble learning and feature
selection using Genetic Algorithms (GA). Unlike conventional methods, which typically
require all ensemble classifiers to operate on the same feature set, our model selects distinct
feature subsets tailored to each classifier. This optimization technique significantly enhances
predictive accuracy and represents an advancement over traditional approaches that, to our
knowledge, has not been previously explored in research.

Second, Ensemble Feature Selection with Genetic Algorithm (EFSGA): Our study
introduces a novel framework designed to tackle the persistent challenge of balancing
performance and interpretability in metaheuristic-driven models. By simultaneously optimizing
weights and feature subsets for each base learner, EFSGA enhances the understanding of
variable importance, reduces redundancies, and refines the balance between accuracy and

transparency, thus advancing metaheuristic applications for credit risk assessment. It delivers
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valuable implications for risk management and policy decisions by providing deeper insights

into variables influencing borrower defaults.

Third, Dynamic Optimized Decision Threshold for Imbalanced Data: Our EFSGA model
addresses challenges posed by high-dimensional, imbalanced datasets through a multifaceted
strategy. This includes dynamically adjusting the decision threshold using Genetic Algorithms
(GA) to account for varying class importance and objectives. Additionally, it integrates a
Genetic Class-Weighted, tunable Objective Function that incorporates distinct misclassification

costs, enhancing its suitability for application-specific evaluation frameworks*?.

Fourth, Adaptive Framework for Evolving Decision-Maker Needs: Traditional risk
assessment methods often face limitations in scenario modeling and accommodating diverse
decision-making processes due to their reliance on fixed rules. Our adaptive framework
addresses these challenges by offering a dynamic approach that aligns with evolving decision-
maker needs and credit risk assessment tasks. Central to this framework is a tunable multi-
objective fitness function, enabling customized, real-time risk assessments tailored to specific
decision-maker objectives.

Our research provides a nuanced and in-depth analysis of the performance characteristics of
diverse machine learning models, from individual classifiers to both homogeneous and
heterogeneous ensembles. Rather than focusing solely on minority class identification, we
prioritize ensuring model robustness and consistency across a variety of risk scenarios,
iterations, and imbalanced datasets, while adhering to computational efficiency. By leveraging
real-world P2P lending datasets—well-known for their class imbalance—we employ a
metaheuristic algorithm to optimally weigh machine learning classifiers within the ensemble
system. This approach enables financial institutions to precisely balance risk mitigation with
operational performance, ensuring effective credit risk management across various strategic
priorities.

The EFSGA model offers adaptable, real-time solutions for complex risk decision-making,
significantly enhancing predictive accuracy and delivering actionable insights. By addressing
the limitations of traditional methods, it presents a transformative approach to risk management,

capable of adapting to dynamic borrower profiles and shifting macroeconomic conditions. This

42 Optimizing the decision threshold in credit default identification is pivotal in addressing the disproportionate
cost of false negatives compared to false positives. Our method strategically emphasizes recall to reduce the
incidence of defaults while ensuring specificity to preserve profitable lending opportunities. This balanced
approach not only mitigates risk but also enhances profitability, providing a refined model that aligns risk
management with revenue optimization for more effective credit decision-making.
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framework enhances credit and post-lending risk management for FinTech firms, banks, and
non-bank financial institutions, supporting key areas such as loan approval, portfolio
management, regulatory compliance, and risk assessment. Additionally, the model benefits
secondary trading and loan resale markets by enabling investors to hedge default risks and adapt
to evolving market conditions, making it a versatile tool for diverse financial scenarios.
Furthermore, the framework aligns with stringent regulatory requirements, offering transparent
and explainable models critical for compliance with standards such as the Basel 11 Accord,

ensuring that financial institutions can meet both operational and regulatory expectations.

The paper is structured as follows: Sect. 3.2 presents the literature review. Section 3. 3
outlines the Proposed EFSGA Model. Section 3.4 details the Empirical Evaluation. Section 3.5
provides the Discussion and Conclusion, and Sect. 3.6 highlights Future Research Directions.

3.2. Related Work

Credit risk prediction has long been a focal point in the financial sector due to its critical role in
managing loan portfolios and mitigating potential defaults. Extensive empirical research has
explored various modeling techniques, including dynamic credit risk scoring, the integration of
metaheuristics with machine learning, feature selection methodologies, and improved strategies
for addressing imbalanced data. While substantial progress has been made, several key gaps
remain, particularly in the adaptability, accuracy, and interpretability of credit risk models. The
following sections review the most relevant work in the field, focusing on dynamic credit risk
assessment, ensemble methods, metaheuristic algorithms, feature selection, and imbalanced
learning. This review identifies existing limitations and highlights how our approach addresses

these challenges.

3.2.1. Dynamic Credit Risk Assessment

In credit risk management, two primary models—credit scoring and behavioral scoring—are
traditionally employed to evaluate borrower creditworthiness and repayment potential.
However, traditional behavioral models often fail to capture the evolving nature of borrower
behavior throughout the loan lifecycle. These static classification approaches may overlook
critical changes over time, limiting both predictive accuracy and effectiveness. Recent
advancements in credit risk assessment have begun to address these limitations by incorporating

dynamic behavioral data into predictive models. This shift involves the use of variables such as
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repayment history and management interventions, which change over time. Techniques like
neural networks, ensemble machine learning models, and continuous-time Markov chains have
been particularly effective in capturing the temporal dynamics of borrower behavior,
significantly enhancing default risk prediction. For example, Lessmann et al. (2015) underscore
the importance of continuously monitoring borrower behavior with machine learning techniques
to dynamically adapt credit scoring models. Similarly, Li et al. (2020) propose an ensemble
approach that integrates real-time borrower data, improving prediction accuracy in response to
changing economic conditions. Chen et al. (2021) also explore continuous-time Markov chains
to model the transition probabilities of borrower states, providing deeper insights into credit risk
dynamics. Despite these advances, challenges remain in dynamic credit risk assessment. Issues
such as data availability and quality, the complexity of modeling dynamic behaviors, and the
need to account for macroeconomic conditions and management interventions persist (Foo et
al., 2017; Dastile et al., 2020; Li et al., 2020). Overcoming these challenges is essential to further

improving the predictive power and generalizability of dynamic credit risk models.

3.2.2. Ensemble of Classifiers in Credit Risk Research Area

Ensemble methods have become a dominant approach in credit risk prediction due to their
superior performance over traditional models. Numerous studies (Jiang et al., 2018; Chen et al.,
2020; Cao et al., 2021; Mahbobi et al., 2021; Lu et al., 2022; Liu et al., 2022a; Abdoli et al.,
2023; Bai et al., 2022; Liu et al., 2022c; Zhang et al., 2023) demonstrate the effectiveness of
ensemble techniques in improving credit risk assessment and feature selection. Malekipirbazari
and Aksakalli (2015) showed that a random forest-based model outperformed traditional FICO
scores in predicting trustworthy borrowers on the Lending Club platform, emphasizing the
importance of credit history variables. Kim and Cho (2019) found that an ensemble semi-
supervised learning model surpassed the decision tree and support vector machine models for
default prediction. Further advancements have included the use of Gradient Boosting Decision
Trees (GBDT) and Auto-Encoder in multi-stage ensembles (Chen et al., 2019) and the
development of heterogeneous ensemble models for credit scoring, such as the model proposed
by Li et al. (2020). Innovations like Xia et al.'s (2020) tree-based ensemble method and Liu et
al.'s (2022a) AugBoost-RFS and AugBoost-RFU have further reinforced ensemble methods’
ability to improve accuracy, particularly in handling imbalanced datasets. Research also
highlights the importance of data preprocessing, feature selection, and addressing class
imbalance to enhance both model performance and interpretability (Galar et al., 2012; Xiao et

al., 2016; Wang et al., 2018). Overall, ensemble techniques present a robust solution to credit
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risk modeling, effectively tackling key issues like feature selection and class imbalance in

financial datasets.

3.2.3. Metaheuristic Algorithms in Credit Risk Assessment and Feature Selection

3.2.3.1. Hybrid Approaches with Metaheuristic Algorithms

In recent years, metaheuristic algorithms have garnered significant attention in credit risk
assessment due to their ability to handle complex and dynamic datasets. Among these, Genetic
Algorithms (GAs), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)
have emerged as effective tools for improving both the accuracy and efficiency of credit-scoring
models. These algorithms have been widely employed in hybrid models, often combined with
machine learning techniques such as neural networks or ensemble methods. Specifically, GAs
have been instrumental in optimizing parameters and enhancing the performance of credit
scoring models across various contexts. Several key studies exemplify the application of
metaheuristic algorithms in credit risk assessment. Tran et al. (2016) developed a hybrid model
integrating Genetic Programming (GP) and Deep Learning (DL), leveraging GAs to optimize
neural network architectures. This approach not only improved the model’s predictive accuracy
but also demonstrated the synergy between evolutionary computation and deep learning in
handling complex credit datasets. Similarly, Ye et al. (2018) applied GAs to optimize Random
Forest models for Peer-to-Peer (P2P) lending platforms, improving the prediction of loan
profitability and refining loan decision-making processes. Moreover, Plawiak et al. (2019)
introduced DGHNL, a deep genetic hierarchical network for credit scoring, which combined the
strengths of hierarchical learning with genetic algorithm optimization. This model demonstrated
superior accuracy compared to traditional deep learning architectures. Soui et al. (2019) further
explored the integration of multi-objective evolutionary algorithms in rule-based credit risk
models, which enhanced both accuracy and interpretability by optimizing rule extraction and
minimizing complexity. These studies collectively highlight the advancements in the application
of metaheuristic-driven models for credit risk assessment. However, challenges remain in
balancing performance and interpretability, particularly when dealing with complex, high-
dimensional datasets. This gap underscores the need for further research into hybrid approaches

that integrate metaheuristic optimization with modern machine learning techniques.

3.2.3.2. Feature Selection Using Metaheuristic Algorithms
Feature selection has become a central focus in risk management studies, particularly in

identifying key factors influencing credit risk. While model accuracy remains a primary concern,
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interpretability poses significant challenges in machine learning, deep learning, and ensemble
models (Lopez & Maldonado, 2019; Liu et al., 2022c). Efforts to improve interpretability
through approaches like LogR (Dumitrescu et al., 2022) or model-agnostic methods such as
LIME and SHAP (Biicker et al., 2022) often face challenges, including high computational costs
and stability issues (Aas et al., 2021; Slack et al., 2020). Metaheuristic algorithms, including
genetic algorithms (GA), particle swarm optimization (PSO), and simulated annealing, are
gaining prominence in feature selection for credit risk assessment. These techniques offer more
robust solutions compared to traditional methods by effectively identifying influential features
(Wang et al., 2015; Feng et al., 2019). For instance, Sustersic et al. (2009) introduced a hybrid
model combining Principal Component Analysis and GAs with neural networks, enhancing
feature selection. Similarly, Oreski et al. (2014) developed the Hybrid Genetic Algorithm Neural
Network (HGA-NN) to optimize feature subsets for improving classification accuracy. Recent
advancements include the use of multi-objective GAs in feature selection, as demonstrated by
Deniz et al. (2017), who achieved superior performance over conventional methods like PSO
and Greedy algorithms. Hancer et al. (2018) combined differential evolution with information
theory to improve feature ranking, while Taradeh et al. (2019) proposed an evolutionary
algorithm for more efficient feature selection. Additionally, Lappas and Yannacopoulos (2021)
incorporated expert knowledge with GA-based feature selection, improving accuracy in
unbalanced credit datasets. Lu et al. (2022) further expanded the field by integrating the binary
opposite whale optimization algorithm (BOWOA) with the Kolmogorov—-Smirnov (KS) statistic
for feature selection in credit risk. Other studies have successfully integrated feature selection
algorithms with ensemble classifiers to enhance predictive performance (Tripathi et al., 2019;
Nali¢ et al., 2020). These studies underscore the growing importance of metaheuristic-driven
feature selection in credit risk, addressing complex data challenges while balancing

interpretability and model accuracy.

3.2.4. Imbalanced Learning and Threshold Optimization Techniques

Imbalanced learning is a persistent challenge in credit risk and default prediction, where datasets
often display a significant skew toward one class, such as non-default loans outnumbering
defaults. Researchers have developed various techniques to improve model performance under
these conditions. A common approach is threshold optimization, which fine-tunes the decision
boundary to balance sensitivity (identifying defaults) and specificity (correctly identifying non-
defaults). Genetic Algorithms (GAs) have proven effective in this domain by iteratively

adjusting thresholds based on performance metrics (Kazemi et al., 2022). Cost-sensitive learning
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is another critical method, assigning different costs to misclassifications based on their real-
world consequences. For example, false positives (approving risky loans) and false negatives
(rejecting safe loans) carry different risks. By prioritizing the minority class, cost-sensitive
approaches provide a balanced representation of classes (Junior et al., 2020; Tang et al., 2021).
In addition, recent studies propose dynamic selection techniques that adapt to varying data
characteristics in real time. Junior et al. (2020) introduced dynamic local region selection for
imbalanced credit scoring, and Tang et al. (2021) applied a cost-sensitive kernel method with
the Blinex loss function to adjust misclassification costs dynamically. Das, Mullick, and Zelinka
(2022) reviewed advancements in handling class-imbalanced datasets, emphasizing the
importance of these strategies for improving model reliability in real-world scenarios. Khalili
and Rastegar (2023) further developed a hybrid metric that integrates traditional and cost-
sensitive considerations, enhancing model accuracy while minimizing the financial impact of
misclassifications. Kazemi et al. (2022) also demonstrated the efficacy of GAs in optimizing
decision thresholds for credit-scoring applications. Their method improved model performance
by dynamically adjusting thresholds, which helped balance false positives and negatives, thus

enhancing the discriminatory power of credit scoring models.

3.2.5. Our Motivation

While the application of metaheuristics in credit risk assessment has demonstrated significant
promise, several critical limitations remain unaddressed in the existing literature. Specifically,
the following gaps persist (a) the effective hybridization of metaheuristic algorithms with
machine learning techniques to better account for the dynamic behaviors of financial systems
and inherent uncertainties, (b) the need for improved feature extraction and selection techniques
that balance model performance, computational complexity, and interpretability, (c) the
development of flexible frameworks that enable real-time risk decision-making in complex and
evolving scenarios, and (d) more robust solutions for handling imbalanced data, including
dynamic threshold optimization and the incorporation of broader economic factors into
predictive models. To address these limitations, our study introduces a novel hybrid model that
combines the strengths of evolutionary algorithms with ensemble learning techniques. By
integrating Genetic Algorithms (GAs) for dynamic threshold optimization and feature selection,
our approach enhances the adaptability, accuracy, and interpretability of credit risk models.
Furthermore, we propose a flexible, real-time decision-making framework that accounts for
management objectives and changing risk factors, improving the generalizability of credit risk

assessments across diverse economic conditions. Through these innovations, our research aims
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to advance the field of credit risk modeling and provide more effective solutions for financial

institutions facing complex, dynamic credit risk environments.

3.3. Proposed EFSGA Model

Generally, in pattern recognition systems, an optimal feature subset is chosen from a set of
original features to maximize system performance. Indeed, the system eliminates unnecessary
and redundant features that may be represented as continuous or discrete binary variables.
Hence, the sclected feature set constitutes the “features vector” (Ansari et al., 2017). Each
machine learning classifier has advantages and disadvantages in classifying samples into
different classes based on a distribution of data samples in an N-dimensional feature space.
Therefore, an ensemble of heterogeneous classifiers may result in better performance.
Moreover, each classifier can achieve the best accuracy via a specific feature subset. In other
words, the optimal feature subset for a classifier may differ from another classifier. Therefore,
the feature selection procedure is also a classifier-dependent problem. Fig.1 illustrates the
simplified flow diagram representing the " Data, Methodology, and Output " structure of the
proposed combined evolutionary-based ensemble learning and ensemble feature selection
technique for early credit risk warning systems in P2P lending. The proposed EFSGA utilizes a
hybrid ensemble learning and feature selection technique based on GA. This optimized
application-specific loan classifier compromises an ensemble of heterogeneous machine
learning structures as base learners. The GA is employed to simultaneously optimize the weights
and feature subsets for each base learner within the ensemble model. Additionally, the GA
optimizes the classification decision threshold to address the misclassification challenge
associated with imbalanced datasets with varying class importance, particularly for the minority
class (the default class in this study).

3.3.1. Ensemble Learning and Feature Selection

The optimization process of the EFSGA model is facilitated through the collective learning
system within the proposed ensemble model. Our study utilizes a parallel, heterogeneous
ensemble learning algorithm to enhance performance and reduce overfitting. Therefore, using
GA enhances result interpretability and improves system performance by individually selecting

the most compelling features for each classifier. The feature selection process eliminates
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redundant and unnecessary features, leading to a simplified model that maximizes system

accuracy.
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Fig. 3.1. The simplified flow diagram representing the " Data, Methodology, and Output " structure of the proposed

EFSGA model.

3.3.1.1. Heterogeneous Ensemble Model

Our Heterogeneous Ensemble Model integrates high-performing machine learning algorithms

through a rigorous performance evaluation process. This evaluation encompasses individual

models as well as homogeneous and heterogeneous ensembles, with a specific focus on

identifying minority classes. To ensure robustness, stability, and consistency, we assess model

performance across multiple iterations, varied risk modeling scenarios, and imbalanced data

distributions while adhering to computational constraints. The evaluation leverages real-world

P2P lending datasets, known for their imbalanced nature, across two critical prediction periods:

the loan application stage and the post-loan repayment period. A Genetic Algorithm (GA) is

employed to optimize key parameters, including algorithm weights (ranging from 0 to 1), feature

subsets, and classification thresholds for each classifier to enhance the ensemble's overall

performance. The assigned weights reflect the contribution of each algorithm to the final
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ensemble model, where values closer to 1 signify a higher impact on the model's predictions,
and values closer to 0 indicate a more limited role. This adaptive weighting system enables the
model to effectively balance the contributions of individual algorithms, prioritizing those that
perform consistently well while down-weighting less effective ones. By ranking classifiers based
on weighted averages across multiple genetic iterations, the GA provides critical insights into
their consistency and effectiveness across diverse risk scenarios. The initial selection of
algorithms for integration into the ensemble model was driven by their demonstrated ability to
address data imbalance challenges. Prior research highlights substantial differences in the
performance, strengths, and limitations of various machine learning algorithms for identifying
default instances. While some models excel in predicting minority classes, their applicability
in broader or imbalanced contexts remains under scrutiny, especially given the computational
demands of certain algorithms*3. In response, our approach strategically balances the selection
of initial ensemble models by incorporating a diverse set of individual algorithms—aboth linear
(e.g., Linear Discriminant Analysis, Naive Bayesian) and non-linear (e.g., K-Nearest Neighbors,
Adaptive Neuro-Fuzzy Inference System)—along with homogeneous ensemble models (e.g.,
Random Forest, AdaBoost, LogitBoost, Random Subspace). This comprehensive strategy
harnesses the diverse strengths of each model, reduces computational complexity, and enhances
overall predictive performance (Altman, 1992; Jang et al., 1991; Winterfeldt et al., 1986; Detlof
etal.,1986; Breiman, 2001; Ernst & Wehenkel, 2006; Freund et al., 1999; Friedman et al., 2000).
These algorithms were tested on real-world, imbalanced P2P lending datasets across two key
stages: loan application and post-loan repayment. The development of the ensemble learning
model followed a systematic selection process based on three core criteria: (i) classification
performance, particularly in identifying minority classes, aligning with our main objectives (ii)
consistency and stability across different data imbalance ratios and risk scenarios, and (iii)
computational efficiency, achieved through hyperparameter tuning to ensure optimal resource

use.

* Linear models like Logistic Regression (LR) and Support Vector Machines (SVMs) with linear kernels are widely used for
their simplicity, ease of implementation, and good classification accuracy in balanced datasets. They work well when the
relationship between predictors and the target is linear, making them fast and reliable. In contrast, non-linear models such as
Decision Trees, k-Nearest Neighbors (KNN), and SVMs with non-linear kernels excel in handling imbalanced datasets, where
minority class instances are fewer but crucial, as they capture complex relationships better than linear models. However,
ensemble methods like Boosting (e.g., AdaBoost, XGBoost) and Bagging (e.g., Random Forest) outperform both linear and non-
linear models for predicting minority classes. These methods reduce bias and variance by combining multiple models, improving
accuracy in imbalanced datasets despite higher computational costs (Kim & Cho, 2019; Liu et al., 2022a; Malekipirbazari &
Aksakalli, 2015; Chen et al., 2019; Xia et al., 2020). This underscores the trade-offs between model complexity, efficiency, and
performance, with ensemble methods consistently offering superior results for minority class predictions.
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3.3.1.2. Ensemble Feature Selection

Furthermore, to enhance the interpretability of the results, build a simpler model, maximize
system performance, and eliminate unnecessary and redundant features, we have developed the
ensemble feature selection and feature importance analysis technique using a genetic algorithm.
The proposed ensemble feature selection analysis technique aims to determine each feature
subset's predictive power and significance as significant predictors of default. It selects the most
efficient features for each classifier separately (as the optimal feature subset for a classifier may
differ from another classifier due to their different classification algorithms). It performs
weighted optimization of collective learning coefficients for all heterogeneous machine learning

classifiers accordingly.

The output of the proposed EFSGA system for i input sample is expressed as a weighted

average of the outputs of M different classifiers, represented as follows:

M
ZW Out, (SF,)
Output (i ) = ¥

M

D W

k=1
(1)
where wk is the weight of the k™" classifier in the proposed ensemble learning model, SFx is the
selected features for the k™ classifier, and Out'x is the output of the k™ classifier for the i input

sample.*

Moreover, in a binary classification problem, the output of a model is a probability score
indicating the likelihood of the instance belonging to the positive class. The decision threshold
separates the positive and negative classes based on the model's probability scores. Typically, a
threshold of 0.5 is used. However, in imbalanced data, since the probability distribution tends to
be biased toward the minority class, the default classification threshold of 0.5 may not be the
best choice. The choice of threshold depends on the problem and the importance of false
positives and false negatives. We employ a Genetic Algorithm (GA) to optimize the threshold,
which mimics natural selection to find the most suitable value. The GA is a powerful approach
to finding an optimal threshold value, especially when the search space is large or the
relationship between the threshold and performance is complex. The GA generates a population

4 We utilized ten individual machine learning algorithms and homogeneous ensemble methods to construct our
collective heterogeneous ensemble learning model (M = 10). Furthermore, our loan dataset comprises 47 features,
encompassing loan characteristics, borrower demographics and financial records, as well as macroeconomic
characteristics (N = 47)
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of thresholds, evaluates their performance, selects the best ones, and creates new populations.
This systematic approach using a GA provides a powerful tool for improving the performance

of machine learning models.

Solution.T =T, T€[0,1]

()

Default if Output(i)>T

Label(i) =
abel(7) {Normal if Output(i)<T

©)
Where T is the optimized threshold by genetic algorithm, and Label (i) is a final decided class
(Default, Non-default) for each i input sample. Further details are provided in Appendix A.

3.3.2. Optimization of EFSGA Model

3.3.2.1. Problem Representation

A genetic algorithm (GA) is an efficient optimization procedure. The mechanisms of biological
evolution inspire the basic principle of the GA. GA uses a set of genetic-inspired operators to
evolve an initial population of solutions into a new population. Each population comprises
chromosomes representing genetically encoded solutions to a specific problem. Each individual
has a fitness score _ based on the GA fitness function_ assigned to them, which represents their
ability in terms of a solution. A new population is evolved by using operators of crossover,
mutation, and selection, where selection is based on the individual’s fitness and influences the
ability to reproduce into the next generation (Mitchell, 1996; Michalewicz,1996; Sustersic et al.,
2009; Kozeny, 2015). The process begins with producing a random population of chromosomes
(Feasible Solution). For many optimization problems, GA does not operate directly on the
solutions for the problems. Instead, they make use of problem-specific representations of the
solutions. The genetic operators modify the representation, which is then transformed into a
solution using a decoding procedure. More specifically, each chromosome can be represented
as a hybrid structure containing an integer vector W of length 1*M (weights of M Machine
learning classifiers of the heterogeneous ensemble learning) and a binary matrix F of dimension
M*N (each raw represents the feature selection for each classifier from N original features). In
reference to Eq. (1), if the j attribute is present in class i, the i, j derivative in a binary matrix is

equal to "1", and if the j attribute for class i is eliminated in the corresponding solution, the

131



Chapter 3: Evolutionary-Based Ensemble Feature Selection Technique for Dynamic Application-Specific Credit
Risk Optimization in FinTech Lending

derivative i, j is equal to "0". Also, the weight coefficients of different classes are expressed

according to Eq. (4).

Solution. W:
W1 W2 W3 Wwm

Heterogeneous Regressors

f11 fi2 fis | ... fin

for fa2 faz | ... fon
Solution. F : fa1 fa2 faz | ... fan
Heterogonous Feature extraction

Fct Fc2 Fea | ... Fmn

Solution. T:

Optimized Decision Threshold T

Fig. 3.2. Representation of a feasible solution (chromosome encoding) for optimizing the EFSGA model.

Solution.W(k ) =w, [0,1]; Vk =1,2,..,M

4)
Solution.F(k, j) =f,, €{0,1}; Vk =1,2,.,M ,Vj =1,2,..,N
1 if j™ feature is selected for k ™ classifier
Ki — .
0 otherwise
®)

In each iteration of the GA, there are two general steps. The first is to evaluate the
competence of the solutions produced, and the second is to update the population (generate a
new population). These two consecutive steps are performed repeatedly until the termination
criterion is satisfied. The final condition in this study is to determine the number of repetitions

of the algorithm.

3.3.2.2. Proposed Fitness Function

This paper introduces a class-weighted, multi-objective function (ObjF) in the GA framework
as a tunable, application-specific evaluation metric for optimizing the EFSGA model. To
enhance interpretability, our initial evaluation applies weighted aggregation of precision,
accuracy, and recall rates within the genetic objective function. The objective function (ObjF)
is defined as the minimization of the weighted sum of the overall error (1 - Accuracy),

imprecision (1 - Precision), and missed predictions (1 - Recall):
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Minimize ObjF = wery X (1 — Accuracy) + wer, X (1 — Precision) + wegs X
(1 — Recall)
(6)

where wer1, Wer2, and Wers are constant weights that regulate the influence of each metric,
ensuring the sum equals 1. Further details are provided in Section 3. 4.2.

We use K-fold cross-validation to compute the fitness function, averaging accuracy,
precision, and recall across folds for evaluation. Our model prioritizes minimizing the false
negative rate to mitigate financial loss from defaulted loans, even with a minor trade-off in
overall accuracy. Additionally, we aim to sustain an optimal true negative rate (specificity) to
preserve potential revenue from performing loans. Our model's design reflects this dual
objective—minimizing defaults while maximizing profit. Recognizing the limitations of single-
metric evaluations in imbalanced datasets, which can bias results toward minority classes, our
approach incorporates a suite of performance measures, including the FR-Score, for a more

comprehensive evaluation.

The optimization process is tailored to accommodate varying risk strategies through a
customizable genetic cost function that reflects management objectives (e.g., risk tolerance,
trade-offs between risk and profit). By adjusting the weights in the GA cost function, the model
adapts to diverse risk preferences. Our approach prioritizes recall and the F2-Score, particularly
in scenarios requiring high recall while maintaining sufficient accuracy and precision for
practical decision-making. The model's optimization balances objectives such as maximizing
recall with minimal precision loss, balancing recall with modest accuracy and precision trade-
offs, and achieving optimal performance across all metrics. These objectives shape the
weightings in the GA’s cost function, enabling the model to strike a balance between
minimizing defaults and maximizing profits, ensuring its flexibility across different risk

management contexts.

3.3.2.3. GA Optimization Process

The Genetic Algorithm (GA) begins by generating a randomly initialized population. This
initial stage is followed by an iterative cycle of two key processes: fitness evaluation and
population updating, which continue until the predefined number of iterations is reached. In
each iteration, the fitness of the current population is evaluated, and a subset of high-performing
chromosomes is selected as parents for the next generation. These selected parents undergo a
crossover operation to produce offspring, ensuring genetic diversity and enabling the
exploration of new solutions within the search space. Following the creation of the offspring, a

133



Chapter 3: Evolutionary-Based Ensemble Feature Selection Technique for Dynamic Application-Specific Credit
Risk Optimization in FinTech Lending

mutation operator is applied to introduce random alterations to certain genes, which helps
prevent premature convergence and fosters a broader exploration of the solution space. The
optimization process is guided by the objective of improving model performance at each
iteration, ensuring the population evolves toward optimal solutions. The overall structure of the
proposed hybrid GA-based optimization algorithm is illustrated in Fig. 5, which outlines the

following key steps:

Generating a Random Initial Population: Population initialization marks the first step in the
GA process. The population represents a subset of solutions in the current generation, with each
solution encoded as a chromosome. The initial population P (0), or the first generation, is
generated randomly. Each chromosome is represented as a binary matrix and a quantitative
vector, expressed as a vector of length M X N + MT. The M X N portion corresponds to the
feature selection phase, while MT represents the collective learning segment. Each gene within
a chromosome has an equal probability of being "0" or "1," ensuring randomness in the initial

population.

Assessing the competence of the proposed solutions: Following the population update, the
solutions are evaluated based on a fitness score. This score guides the evolutionary process. If
necessary, the weights of the error components in the objective function (ObjF) are tuned to
improve optimization. The fitness evaluation plays a crucial role in determining the quality of

each chromosome.

Population update: The GA iteratively generates new populations by applying genetic
operators to the current population. The population update consists of three stages:
recombination, crossover, and mutation. The proportions of the new generation produced using
these three operators are defined as PRecombination, PCrossover, and PMutation, respectively.
In this study, these values are set to 0.1, 0.5, and 0.4. This balanced approach facilitates

exploration while preserving optimal genetic material.

Parent selection: Parent selection is critical to the GA's convergence rate, as it determines
which chromosomes will combine to form offspring for the next generation. Following the
research by Li Zhan et al. (2021), we utilize the Roulette Wheel selection method, which has
shown superior optimization capabilities. In this approach, the probability of selecting a
chromosome is proportional to its fitness, as determined by the objective function (ObjF). The
Roulette Wheel selection with power two is applied in this study to ensure effective parent

selection.
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Combination Operator (Crossover): The crossover operator combines the genetic material
from two selected parents to produce a new generation (offspring). In this study, we use the
Uniform Crossover method, where genes from the offspring are randomly selected from either
parent with a probability of PCrossover. For example, in Fig. 3, specific genes (second, fourth,
sixth, and ninth) are inherited from the first parent, while the remaining genes come from the

second parent. This process ensures diversity and enhances the search for optimal solutions.

Parent1 |1 | 0| 1|1]|]0|0|1]|]0]|1]|0

Parent2 |0 | O0O|1|0|1]0|1]1]|1]|0

Chid (ofo0j1}j1(1f0|1|1]1]|0O0

Fig.3.3 Population updating in GA: Uniform Crossover Operator.

Mutation operator: The mutation operator introduces random variations to the offspring’s
genes to prevent premature convergence. In this study, we apply Binary Swap mutation for the
feature selection structure (FS) and Evolution Strategies (ES) for the other components. The
mutation operator alters genes with a probability Pm (Mutation probability ), ensuring that new
genetic material is explored. In the Binary Swap mutation, two randomly selected genes are
interchanged to maintain diversity, as illustrated in Fig. 4. This process allows the algorithm to

explore a wider range of potential solutions while preserving essential features of the parents.

Before Mutation Operation 1|10|1(1f{0|0|21|0|1]|0O

After Mutation Operation 1|1]0|1(1f1|/0|2|0|1]|0

Fig. 3.4: Population updating in GA: Binary Swap Mutation Operator.
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Fig. 3.5 Flowchart of the proposed hybrid method for Ensemble Feature Selection using the genetic algorithm.

3.4. Empirical Evaluation of Proposed Method

All experiments reported in this section have been executed in MATLAB R2018b on a PC with
a1.80 GHz Intel® Core™ i5-8250U CPU and 12 GB of RAM using the Windows 10 operating

system.

3.4.1. Data Collection

3.4.1.1. P2P Lending Dataset

The dataset for this study was sourced from "Lending Club," a leading P2P lending platform in
the US, in November 2019. It includes both defaulted and non-defaulted loans issued between
Q3 2007 and the end of 2018%°. After excluding non-funded loans, the dataset contains 622,682
observations, with 24% representing defaults and 76% non-defaults. The raw data is divided
into four feature groups, comprising 128 attributes relevant to loan applications: Group 1

includes borrower financial characteristics (76 attributes), Group 2 encompasses loan attributes

4 https://www.lendingclub.com/info/statistics.action .Since 2019, Lending Club has modified its download policies and data
accessibility, now exclusively offering data on accepted loans while removing information on rejected loans. Additionally, a
new copyright notice has been introduced. It's important to note that data collection is currently restricted to US residents.
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(18 attributes), Group 3 captures post-loan performance (34 attributes), and Group 4
incorporates macroeconomic indicators. Each feature group contributes essential data for
evaluating borrower credit risk and predicting default probability (Appendix B provides
detailed feature descriptions).

Additionally, to ensure the robustness and generalizability of our findings, we performed a
robustness test using data from Mintos, a European marketplace lending platform. This analysis
covers loans issued across the US and various EU countries, incorporating recent economic
disruptions, such as the COVID-19 pandemic and the Russia-Ukraine war, thus providing a

broader perspective on the study's implications.

3.4.1.2. General Economy data collection

This study examines the real-time influence of macroeconomic factors on borrower risk
behavior, particularly during periods of financial crisis and market instability. Departing from
prior P2P lending research, which primarily focused on individual factors like interest rates or
default probabilities, we aim to establish a direct connection between default risk and broader
economic conditions (Foo et al., 2017). Our analysis incorporates six key macroeconomic
indicators: the unemployment rate, stock market performance (total shares), consumer price
index (CPI), household debt, GDP growth, and the TED spread. These variables provide a
comprehensive view of economic health and its relationship to credit risk. The data on Treasury
yields and general economic indicators were retrieved from the FRED database of the Federal

Reserve Bank of St. Louis.

3.4.2. Simulation Settings

The implementation of the EFSGA model’s assessment involves multiple stages: (i) data pre-
processing, (ii) adjustments to the real-time prediction framework, (iii) configuring data
sampling for training, validation, and testing using techniques like FCM, K-Fold Cross-
validation, and PCA, and (iv) hyperparameter tuning of EFSGA through the Genetic Algorithm
(GA).

3.4.2.1. Data Pre-processing

The first stage in the process is data pre-processing, which includes instance selection, missing
value imputation, data transformation, feature normalization, outlier detection, and data
randomization. These steps ensure that the data is properly formatted for model training and

evaluation. Detailed information on the pre-processing procedures is provided in Appendix C.
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3.4.2.2. Real-Time Prediction Framework

The next phase involves generating a real-time loan default prediction framework. The model
is designed to operate at two prediction points: at the loan application stage and during post-
loan repayment before maturity. The model uses Feature Groups 1, 2, and 4 for loan
applications, while post-loan predictions utilize all Feature Groups. The system dynamically
updates borrower information, such as repayment history and total paid amounts, to capture
delayed payments and their durations. The framework tracks each borrower's progress every
three months, refining the prediction based on updated macroeconomic factors and allowing

for a real-time, adaptive risk prediction during the loan settlement period.

3.4.2.3. Representative Data Selection and Training

A key component of the EFSGA implementation is the selection of representative data for
training, validation, and testing. We employ the Fuzzy C-Means (FCM) algorithm, configured
with specific parameters (e.g., an exponent for the membership matrix of 1.2, a maximum of
50 iterations, and a minimum improvement of 1le-5). To ensure generalizability, we employ a
10-fold cross-validation approach. Initially, the dataset is divided into training and test sets,
comprising 60% and 40% of the data, respectively. The training set is then partitioned into 10
equal-sized folds, with the model trained on 9 folds and validated on the remaining fold during
each iteration. This iterative process ensures the model is exposed to diverse data subsets,
improving robustness and reducing the risk of overfitting. As a result, this method enhances the
model's ability to generalize effectively to new, unseen data.

Additionally, we apply Principal Component Analysis (PCA) to reduce data dimensionality
while retaining 95% of the explained variance (Li et al., 2023). PCA is performed separately
on the training, validation, and test sets to prevent information leakage and maintain model
integrity. By eliminating noise and irrelevant features, PCA enhances model efficiency and
improves predictive accuracy, making it particularly valuable in optimizing credit risk

assessment models.

3.4.2.4. GA Simulation Settings

In optimizing the EFSGA model, several GA parameters were fine-tuned to achieve optimal
performance. After experimenting with various parameter values, the best results were selected
based on the objective function (ObjF) performance in the final simulations. The specific
parameters for the EFSGA algorithm are outlined in Table 3. 1. For instance, the next-
generation chromosomes were produced using PRecombination, PCrossover, and PMutation

values of 0.1, 0.5, and 0.4, respectively. The population size and maximum iterations were set
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to 50 and 200. These configurations allowed us to refine the model’s ability to predict default
probability over time while improving generalization to new datasets. Notably, the EFSGA can
be customized based on specific application needs by adjusting the weights assigned to
objectives in the multi-objective function (Eq. 6). We conducted multiple simulations across
different settings for wer1, Wer2, Werz and varied data imbalances to evaluate model consistency.
Results are based on the average outcome over ten iterations.

After completing data pre-processing, system tuning, and parameter optimization, the full
implementation involved two main steps: first, we developed a collective learning system
integrating heterogeneous machine learning classifiers; second, we fine-tuned the ensemble
learning approach using a metaheuristic algorithm. This process enhanced performance,
enabling an effective real-time early credit risk warning system.

Table 3. 1. Setting the controllable parameters of GA.

Parameter Value
Maximum Iteration 200
Population 50
Selection Method Roulette Wheel
Crossover Operator Uniform
PRecombination % 10%
PCrossover % 50%
PMutuation % 40%
Mutation Operator Binary Swap & Value
Pm 0.02
Wecf; 0.25
Wcf; 0.15
Wecf; 0.60

3.4.3. Performance Comparison of Individual and Homogenous Ensemble Algorithms

To construct our ensemble learning model from the best-performing individual and homogenous
ensemble algorithms, in this stage, we evaluated the classification performance of several
diverse individual linear non-linear machine learning algorithms (KNN, LDA, NB, ANFIS,
SVM, MLP & DT) and homogenous ensemble models (RF, AdaBoost, LogitBoost, TotalBoost,
and Random Subspace) on real datasets of P2P lending with imbalanced data, in two prediction
periods including the loan application point and the post-loan repayment period. The spot-check
criteria include evaluating (i) overall classification performance focusing on identifying the
minority class, aligning with our main objectives, (ii) the consistency and stability of their

performance across different data imbalance ratios and different risk modeling scenarios, and
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(iii) computational complexity using hyperparameter tuning with a limited need for
computational resources. Our principal objective is to achieve the lowest false negative rate
while maintaining the true negative rate and system accuracy at optimized levels. We prioritize
selecting algorithms that yield the highest recall and F[3-Score (3=2) without sacrificing accuracy
and precision rates. Refer to Appendix D for a detailed presentation of our crucial evaluation

metrics. The summarized out-of-sample results are shown in Table 3. 2.

3.4.3.1. Individual Linear Models

Linear algorithms, such as LDA and NB, are extremely fast and simple to implement, with an
average computation time of just 3.48 seconds. These models provide good overall
classification performance, delivering an average accuracy of 84.62% and precision of 96.48%.
However, despite their speed and accuracy, linear models struggle to effectively capture
minority class instances, as indicated by their lower average recall of 70.25% and F2-Score of
74.29%. This reflects a trade-off between computational efficiency and their ability to handle
imbalanced datasets, particularly in identifying the minority class, where recall and F2-Score
are critical. Linear models are useful for quick and efficient classification tasks, but they are
less effective in scenarios requiring high recall, such as those dealing with imbalanced data.
Their high precision is offset by the reduced ability to detect minority class instances, making

them less suitable for tasks where identifying minority class events is crucial.

3.4.3.2. Individual Non-Linear Models

Regarding computational efficiency, KNN, ANFIS, and DT significantly outperform SVM and
MLP. The average computation time for KNN, ANFIS, and DT is 56 seconds, while SVM (both
Polynomial and Linear Kernels) and MLP require much more time, with an average of 2,311
seconds. SVM models, particularly SVM Polynomial and Linear, are the slowest due to the
complexity of kernel operations. MLP also demands considerable time, primarily because its
computational complexity depends on the depth and size of the neural network layers. When
optimizing KNN, increasing the value of k generally improves accuracy, precision, and
specificity by reducing noise in the classification. However, larger values of k led to less distinct
boundaries between classes, reducing the recall rate. KNN tends to be biased towards the
majority class, especially with smaller k values (e.g., k=1) because of its majority voting
mechanism. Decision Trees (DT), while showing the highest recall rates, deliver relatively
lower accuracy than other models. The trade-off here is between capturing more true positives
at the expense of overall prediction accuracy.
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Across all non-linear algorithms—KNN, ANFIS, SVM, MLP, and DT—the average
accuracy and precision rates are 82.75% and 89.2%, respectively. These non-linear models also
demonstrate superior performance in handling imbalanced classes, with an average recall of
74.2% and an F2-Score of 76.56%, outperforming linear models in recall and F2-Score. This

suggests that non-linear models are well-suited for addressing class imbalances.

3.4.3.3. Homogenous Ensemble Algorithms

Homogeneous ensemble algorithms, including boosting and bagging, demonstrated superior
overall performance compared to individual models (both linear and non-linear). The average
accuracy for boosting, bagging, and individual models was 85.23%, 85.22%, and 83.02%,
respectively. In terms of precision, bagging performed the best with 95.92%, followed by
boosting at 90.68% and individual models at 90.24%. Boosting methods, however, excelled in
the more critical metrics for imbalanced datasets—recall and F2-Score. Boosting achieved an
average recall of 77.14% and an F2-Score of 79.36%, surpassing bagging (recall: 71.91%, F2-
Score: 75.7%) and individual models (recall: 71.63%, F2-Score: 76.24%). This makes boosting
particularly effective in addressing the challenge of identifying minority classes in highly
imbalanced datasets. Among bagging methods, Random Forest (RF) improved precision over
individual decision trees, making it highly effective at identifying borrowers with strong credit
profiles (Breiman et al., 1996). However, RF struggled to detect the minority class, resulting in
a lower recall rate. This limitation arises because RF, like other bagging methods, treats all
samples equally during classification, which diminishes its ability to focus on minority class
instances. In contrast, boosting algorithms like AdaBoost and LogitBoost consistently
outperformed RF and other bagging techniques in minority class detection. Boosting assigns
higher weights to minority class samples during each iteration, increasing the sensitivity of the
model towards those harder-to-detect instances. As a result, these algorithms achieved better
recall and F2-Scores than bagging technigques, making them ideal for imbalanced datasets.
TotalBoost, which initially demonstrated the highest recall rate among boosting algorithms,
was excluded due to its prohibitively high computational cost. AdaBoost and LogitBoost
performed similarly, with AdaBoost minimizing exponential loss and LogitBoost focusing on
logistic loss. Both are particularly effective in improving minority class prediction when paired

with tree-based weak learners, which perform well in imbalanced classification tasks.

In summary, boosting algorithms, particularly AdaBoost and LogitBoost, consistently
outperformed both individual models and bagging techniques in predicting minority class

instances. Their superior recall and F2-Score metrics demonstrate their effectiveness in
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handling imbalanced datasets, making them more suitable for applications where identifying

the minority class is critical (Liu et al., 2022a).

3.4.3.4. Analysis of Algorithm Performance On Varied Imbalanced Ratios

This analysis reveals notable variations in algorithm performance on imbalanced datasets.
While some algorithms show promise, their superiority is not necessarily universal or consistent
across all imbalance scenarios. To investigate this further, datasets were intentionally balanced,
starting with an initial 25%-75% imbalance ratio, followed by simulations at a more severe
15%-85% ratio. The focus remained on evaluating the classification performance of these
algorithms in identifying default cases, prioritizing recall as the key metric.

The outcomes of these simulations are presented in Table 3. 3 and Table 3. 4 As the
imbalance ratio became more severe, new insights emerged regarding algorithm performance.
Boosting algorithms maintained their maintained superiority, except for TotalBoost.
Interestingly, Random Forest's (RF) ranking in terms of recall decreased as the imbalance ratio
increased, highlighting its struggle to adapt to more extreme data imbalances. In contrast,
Decision Trees (DT) continued to excel in recall but showed a drop in precision. MLP and
ANFIS performed consistently well across different imbalance ratios, while SVMs displayed
mixed results. Notably, RBF-SVM showed relative stability. KNN, while achieving a
comparatively high precision score, suffered from a lower recall, demonstrating its weakness
in classifying risky loans under severe imbalanced conditions (Liu et al., 2022a). This analysis
highlights different algorithms' diverse strengths and weaknesses across varying imbalanced
scenarios. The performance of each model fluctuated based on the severity of the data
imbalance, reinforcing the need for targeted algorithm selection based on specific classification

objectives.
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Table 3. 2. An Empirical Comparison of Individual and Homogenous Ensemble Algorithms_ Post-Loan
Repayment Period*®

Post-Loan Repayment Period

Standard Classification Imbalanced Classification
Algorithm Specification Accuracy Recall Precision Specificity| F2-Score B.Accuracy| Time(s)
Linear Discriminant Analysis (LDA) 85.5 70.31 98.92 99.45 74.65 84.88 2.77
Naive Bayesian (NB) 83.74 70.19 94.04 95.98 73.94 83.08 4.2
K-Nearest Neighborhood (KNN) 1 81.19 77.37 81.98 84.64 78.25 81.005 52
K 7 84.34 72.57 92.88 94.98 75.89 83.775 | 54
9 84.47 71.98 93.89 95.77 75.5 83.875 | 56
19 84.96 70.78 96.64 97.78 74.78 84.28 52
Qf;fmﬂﬁﬁﬂgfum Inference “;;TJ:’:;ZTSP 3 8401 7378 908 9325 | 7665 83515 | 1155
Linear 85.38 69.51 99.94 99.96 74.02 84.735 2930
Support Vector Machine (SVM) RBF 85.33 71.67 97.73 98.55 75.7 85.11 E?lS
Polynomial 70.54 82.12 65.02 60.08 78.02 71.1 I_I 4860
Multi-Layer Perceptron (MLP) | Hidden layers [35205] 84.93 73.04 93.8 95.63 76.42 84.34 IIBSS
[30 10 25] 84.24 74.68 90.99 93.32 77.46 0.00 I:h.270
Decision Tree (DT) 79.09 79.55 77.12 80.44 79.05 79.995 6.6
Ensemble Algorithms ﬁz;‘f::eF;’fgé Bagging 8522 7191 9592  97.24 75.7 84575 | 141
Tree LogitBoost 85.3 76.31 91.3 93.43 78.9 84.43 | 81
Tree TotalBoost 80.73 81.28 78.79 80.23 80.77 80.755 (13493
Tree AdaBoostM1 85.15 77.98 90.07 92.31 79.83 84.77 | 81
KNN Random.Subspace 725 76.79 69.16 68.55 75.13 72.67 | 121
Discriminants AdaBoostM1 85.11 69.35 99.06 99.35 73.77 84.35 24

Table 3. 3. Analysis of Algorithm Performance in Varied Imbalanced Ratios

Algorithms
Imbalanced . .
Ratio Metrics LDA NB NN KNN ANFIS SVM-L SVM-RBF SVM-P MLP DT RF  LogitBoost Total Boost AdaBoostM1
Gen.ObjF 0216 0228 0210 0214 0211 0220 0210 0233 0205 0209 0212 0192 0.192 0.184
25%-75%  Recall 7031 7019 7737 7257 7378 6951 7167 8212 7468 7955 7191 7631 81.28 77.98
F2-Score 7465 7394 7825 7589 7665 7402 7570 7802 7746 79.05 7570  78.90 80.77 79.83
Gen.ObjF 0206 0.232 0250 0220 0218 0204 0207 0500 0200 0252 0.209 0201 0.228 0.214
15%-85%  Recall 68.99 69.62 7722 7351 7446 6863 7078  60.05 7585 79.30 71.60  75.90 79.93 75.91
F2-Score 7330 7174 7107 7394 7428 7320 7401 4200 7448 7055 7420 76.24 7358 74.99
Table 3. 4. Analysis of Algorithm Rankings in Varied Imbalanced Ratios
Algorithms
Imbalanced i
Ratio  Rank LDA NB NN  KNN ANFIS SVM-L SVM-RBF SVM-P MLP DT RF  LogitBoost Total Boost AdaBoostM1
Recall Y12 Y13 F5 9 g 14 W 11 M1 H7 3 Mo FH o6 M 2 M 4
25%-75%
F2-score W12 W14 FH5 9 ehg W13 11 FHe H7 M3 0 fhoa 2
Recall 12 W11 A3 8 @7 Y13 10 P14 Fe M2 W9 Hs M1 A o4
15%-85%
F2-Score 9 W11 W12 7 Ap4a 10 F 6 Y14 A3 Y13 Fls A1 o 8 M 2

3.4.4. Results of the Heterogeneous Ensemble Model

Following the comprehensive evaluation of individual models and homogeneous ensembles in

earlier stages, the Heterogeneous Ensemble Model was constructed by integrating the top-

46 Table E.1. in Appendix E shows the performance of each individual and homogenous classifier in the loan
allocation period.
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performing algorithms. The selection was based on each algorithm's ability to consistently
classify risky loans while maintaining manageable computational demands and stability across
various imbalance ratios. The final model combined linear, non-linear, and boosting algorithms,
all of which surpassed traditional bagging methods in predicting minority class instances. Each
algorithm in the final ensemble was carefully configured to optimize performance and minimize
complexity.

From the linear models, LDA and Naive Bayes (NB) were included for their simplicity and
precision. Among the non-linear models, K-Nearest Neighbors (KNN) was selected with
configurations of k=1 and k=9, offering a balance between noise reduction and localized
decision-making. Decision Trees (DT), powered by the CART (Classification and Regression
Trees) algorithm, were included for their strong recall, particularly in identifying defaulted
loans. However, DT required careful tuning to avoid overfitting, a common challenge with tree-
based models. ANFIS (Adaptive Neuro-Fuzzy Inference System) was incorporated to model
complex relationships, and to address its computational cost, Principal Component Analysis
(PCA) was used to enhance performance and speed. For Support Vector Machines (SVM), the
RBF (Radial Basis Function) kernel was chosen after eliminating Polynomial and Linear
kernels due to inefficiency. The RBF kernel handled the complexities of imbalanced data
effectively while maintaining robustness and computational efficiency. Multi-Layer Perceptron
(MLP), using a two-layer network configuration ([30, 10]), was also integrated, offering a good
balance between complexity and performance.

The inclusion of AdaBoost and LogitBoost was critical for improving the model’s ability to
detect risky loans. These boosting algorithms are particularly suited to imbalanced datasets, as
they assign greater weight to minority class instances during training. AdaBoost, by minimizing
exponential loss, and LogitBoost, by minimizing logistic loss, significantly enhanced recall and
the F2-Score. TotalBoost, which initially showed the highest recall, was excluded from the final
model due to its prohibitive computational cost, making AdaBoost and LogitBoost the most
effective trade-offs between computational efficiency and predictive power. The integration of
diverse classifiers, each with its own strengths, created a model that was both flexible and

powerful in tackling the complexities of imbalanced datasets.

The performance of the ensemble model was evaluated during two critical prediction
periods: the loan application point and the post-loan repayment period, using a weighted
average strategy to aggregate results. As indicated in Table 3. 5, during the loan application

phase, the ensemble model outperformed individual and homogeneous models in terms of
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predictive accuracy. However, the model's true strength became apparent in the post-loan
repayment period, where it achieved an overall accuracy of 85.89%, a precision rate of 98.9%,
and a recall rate of 71.95%. These results highlight the ensemble’s ability to effectively identify
high-risk loans with minimal false positives, a crucial factor in credit risk prediction. The recall
rate of 71.95% and the F2-Score of 75.28% further underscore its capacity to detect defaulted
loans, particularly within the minority class, where accurate prediction is most critical.
Although there remains room for improvement, particularly in reducing false negatives, the
ensemble’s ability to surpass both individual and homogeneous models demonstrate its

robustness and efficiency in managing imbalanced datasets.

Table 3. 5. Ensemble of collective learning from heterogeneous individual and ensemble algorithms

Standard Classification mbalanced Classificatio
Algorithm Specification Accuracy Recall PrecisionSpecificity F2-Score B.Accuracy| Time(s) Gen. ObjF
Ensemble of the collective base Loan Allocation Period 82.76 55.85 94.79 98.23 60.85 77.04 230 0.316
learners (weighted average) Post Loan Repayment Period | 85.89  71.95 98.9 99.11 75.28 85.44 116 0.205

3.4.5. Performance Evaluation of the Proposed Application-Specific EFSGA Model

To enhance the ensemble’s overall performance, a Genetic Algorithm (GA) was employed to
optimize key parameters, including algorithm weights, feature selection, and classification
thresholds. The weights, ranging from 0 to 1, reflect each algorithm’s relative contribution to the
final model, with higher values indicating greater influence on predictions. This adaptive
weighting framework ensures the ensemble prioritizes the most effective classifiers while
attenuating the impact of less reliable ones. By iterating across multiple genetic cycles, the GA
systematically ranks classifiers based on their weighted contributions, offering critical insights
into their stability and performance across various risk scenarios. This process ensures a finely-
tuned, balanced model with optimized predictive accuracy.

The GA optimizes the ensemble by fine-tuning each classifier’s weight according to
predefined objectives tied to varying risk and profit scenarios. By iterating through multiple
genetic cycles, the GA systematically ranks classifiers based on their contributions, providing
critical insights into their stability and effectiveness across different risk environments. This
process ensures that the model is well-calibrated for diverse situations, with optimized
predictive accuracy. The primary goal of the EFSGA model optimization was to enhance recall
and F2-Score, prioritizing these metrics over accuracy and precision. This approach ensures

that the model minimizes defaults (false negatives) while maintaining an acceptable true
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negative rate (specificity) to avoid overlooking potential revenue from good loans. This dual

optimization strategy focuses on balancing the reduction of defaults and maximizing profit.
The EFSGA model was simulated under three distinct risk-taking strategies, each with

different weighted coefficients to reflect the importance of accuracy, precision, and recall in the

GA objective function: [wcfl, wcf2, wcf3].

e Scenario 1: Prioritizing maximum recall, even at the expense of some loss in precision:
[0.25,0.1,0.65].

e Scenario 2: Maximizing recall without significantly sacrificing accuracy and precision:
[0.25,0.15,0.6].

e Scenario 3: Achieving an optimal balance between all performance metrics:
[0.35,0.15,0.5].

3.4.5.1. EFSGA Classification Results

The final EFSGA model exhibited marked advancements across all key performance metrics,
decisively surpassing the ensemble models from earlier stages. As detailed in Table 3. 6, the
EFSGA model achieved a 29% improvement in the genetic fitness function, alongside a 24%
increase in recall and a 14% enhancement in the F2-Score when compared to traditional
heterogeneous ensemble techniques. These results underscore the model's exceptional
capability to effectively manage imbalanced datasets and dynamically adjust to varying risk-
taking scenarios, demonstrating its robustness and adaptability in high-stakes predictive
environments.

Notably, the EFSGA model demonstrated an impressive out-of-sample sensitivity, achieving
an 88.20% recall rate, a 24% improvement over the previous Ensemble of Collective Top
Learners. With an F2-Score of 86.17%—representing a 14% increase—the model exhibited a
remarkable ability to minimize both false positives and false negatives. This performance
illustrates the model's proficiency in accurately identifying genuine risks without over-
triggering unnecessary alarms, ensuring both risk minimization and revenue maximization from
loans.

The results affirm the value of leveraging a metaheuristic algorithm to optimize ensemble
learning and feature selection techniques, yielding substantial performance gains. The
robustness of the EFSGA model was consistently demonstrated across various test scenarios.
Moreover, the model's computational efficiency far exceeded that of prior ensembles. For

example, in Scenario No. 1, the EFSGA required just 55 seconds to execute, significantly
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outperforming the previous top algorithms, which required 230 seconds during the Loan
Allocation Period and 116 seconds during the Post Loan Repayment Period.

The proposed dynamic flexible risk decision-making framework, driven by the Genetic
Algorithm, further enhanced real-time default prediction accuracy, especially during the post-
loan repayment period. The EFSGA model’s combination of superior optimization and
computational efficiency positions it well ahead of the ensemble models developed earlier, with
consistently lower execution times and more favorable general objective values across all tested
scenarios. Additionally, the model's flexibility allows it to be seamlessly adapted to the specific
goals of decision-makers, making it both an effective and efficient solution for real-world
applications where accuracy and operational costs are critical. For the sake of visualization, we
summarize our results in Fig. 6.

The comparative results presented in Table 3. 7 validate the EFSGA model's performance,
clearly establishing its superiority over other leading algorithms in key metrics such as the
genetic objective function, recall, and F2-Score. These findings solidify the EFSGA model's
status as the optimal choice for handling imbalanced datasets and ensuring high-quality

predictive performance.

Table 3. 6. EFSGA prediction performance based on different risk-taking scenarios — Post-Loan repayment

prediction
Evaluation Metrics

Standard Classification Imbalanced Classification
Algorithm Specification Accuracy  Recall Precision Specificity| F2-Score B.Accuracy Time(s) Gen. ObjF
Scenario no.1 74.69 92.04 68.63 56.79 86.16 74.42 55 0.146
EFSGA Scenario no.2 82.63 88.20 78.9 76.55 86.17 82.38 75 0.146
Scenario no.3 83.62 84.94 81.88 79.22 84.31 82.08 51 0.160
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Fig. 3.6. Post-loan repayment prediction result by EFSGA
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Table 3. 7. EFSGA prediction performance comparison against top selected and heterogeneous ensemble
algorithms

Algorithms
'mt;a;:réce‘j Metrics ~ EFSGA ANFIS SVM-RBF MLP DT  RF LogitBoostAdaBoostM1Het.Ensemble
Gen.ObjF 0146 0211 _ 0210 0205 0209 0212 0192  0.84 0.205
25%-75%  Recall 8820 7378 7167 7468 7955 7191 7631  77.98 71.95
F2-Score  86.17 7665 7570 77.46 79.05 7570 7890  79.83 75.28
Precision 7890 90.80  97.73 9099 77.12 9592 9130  90.07 98.90
Accuracy 8263 8401 8533  84.24 79.09 8522 8530 85.15 85.89

3.4.5.2. Optimized Weights of Classifiers in the Ensemble Model

Our ensemble model employs a metaheuristic algorithm to optimize the weight of each
classifier within the collective learning system*’. These weights, tailored to different risk-taking
scenarios, are presented in Table 8. Classifiers were further ranked based on their average
weights across ten genetic iterations, providing insights into their stability and effectiveness
across multiple iterations and risk scenarios, as shown in Table 3. 9.

In the second scenario (the prefered scenrio) , which focused on maximizing recall while
maintaining accuracy and precision, the Genetic Algorithm (GA) assigned higher weights to
advanced classifiers such as LogitBoost, SVM-RBF, MLP, and ANFIS. Simpler algorithms,
including KNN, LDA, and Naive Bayes (NB), received lower weights. Decision Trees (DT)
ranked highest in the first scenario, where recall was prioritized. However, in the third scenario,
which focused on precision, DT lost its top position. In contrast, MLP and LogitBoost
consistently secured the top ranks, demonstrating superior performance in identifying risky
credits with minimal loss of good credits. SVM-RBF maintained a strong position across all
scenarios, reflecting its robust and stable performance. MLP proved to be particularly reliable
and effective, consistently ranking among the top five classifiers. ANFIS also performed well,
especially in the recall-focused first scenario, though DT, while effective, was slightly less
competitive when compared to the leading classifiers.

These results highlight the efficacy of advanced classifiers—LogitBoost, SVM-RBF, MLP,
ANFIS, and DT—in managing credit risk by accurately identifying high-risk loans while
preserving the integrity of low-risk classifications. A more detailed analysis of these top-
performing classifiers can be found in Fig. E.1 in Appendix E.

47 Specifically, the Genetic Algorithm (GA) generated an integer vector, W, with a length of 1*M, representing
the weights of M machine learning classifiers in the heterogeneous ensemble.
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Table 3. 8. Optimized weights of each ML classifier by GA based on the genetic objective function

Solution W: Optimized Weights of the Ensemble Model

Algorithm Specification LDA NB NN KNN ANFIS  SVM-RBF MLP DT LogitBoost AdaBoostM1
Scenario no.1 0.14 0.01 0.05 0.03 0.17 0.12 0.09 0.18 0.12 0.09
EFSGA Scenario no.2 0.09 0.01 0.10 0.06 0.11 0.13 0.13 0.10 0.14 0.11
Scenario no.3 0.06 0.07 0.07 0.09 0.04 0.17 0.17 0.05 0.19 0.10

Table 3. 9. Top Ranked algorithms based on GA-assigned weights

Solution W: Algorithm Ranking (1~10)

Algorithm Specification LDA NB NN KNN ANFIS  SVM-RBF MLP DT LogitBoost AdaBoostM1
Scenario no.1 3.0 9.0 5.4 7.3 8.3 5.0 5.0 43 4.0 5.1
EFSGA Scenario no.2 54 9.0 5.2 6.3 44 32 3.6 49 3.2 4.6
Scenario no.3 6.5 6.0 7.0 5.0 7.0 2.0 2.0 7.0 1.0 4.0

3.4.5.3. Dynamic Optimized Decision Threshold

Optimizing the decision threshold in credit default identification is vital due to the higher cost
associated with false negatives than false positives. While lowering the decision threshold
improves recall, it may compromise precision. Striking an optimal balance between recall and
precision is crucial. Our proposed model leverages a Genetic Algorithm (GA) as a search
heuristic to optimize the decision threshold. The model employs a class-weighted, tunable
objective function in the GA to address imbalanced datasets and varying class importance. This
function prioritizes recall, which is especially critical in credit default identification while
maintaining an optimal true negative rate (specificity) to prevent overlooking potential revenue
from good loans. This dual objective ensures a balanced optimization focus on minimizing
defaults while maximizing profit. The GA fine-tunes the classification threshold to achieve an
optimal balance, considering specific problem goals and trade-offs. The model's performance
is rigorously assessed using imbalanced classification metrics to ensure robust identification of

both majority and minority classes.

We fine-tune the weighted coefficients (wcfl, wcf2, and wcf3) in the GA objective function
to determine the optimized decision threshold, influencing the trade-off between accuracy,
precision, and recall. The optimal thresholds for three risk strategy scenarios are as follows: 0.1
in scenario 1, maximizing recall and F2-Score; 0.18 in scenario 2, maximizing recall while
maintaining balanced accuracy and precision; and 0.25 in scenario 3, achieving a balance
between recall, precision, and accuracy. Fig. 7 illustrates these results. Our proposed model
effectively addresses the challenges associated with high-dimension imbalanced datasets,
optimizing credit default identification by minimizing the risk of misclassifying normal credits
while maximizing expected profit. Leveraging a class-weighted, tunable objective function,

optimizing the classification threshold, and utilizing imbalanced classification metrics for
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evaluation, our model attains a high level of sensitivity and precision in credit default

identification problems.
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Fig.3.7: Optimized threshold according to genetic objective function parameter adjustment.

3.4.5.4. Ensemble Feature Importance Analysis - Model Interpretability

To improve interpretability, simplify the model, and eliminate redundancy, we applied an
ensemble feature selection approach using a genetic algorithm (GA). This method
simultaneously optimizes both feature subsets and weights for each base learner within the
ensemble model. The GA autonomously selects the most relevant features for individual
classifiers while optimizing collective learning coefficients across all heterogeneous
classifiers®. Our findings demonstrate that the EFSGA model effectively extracts critical
features, reduces overfitting, and significantly outperforms both individual classifiers and
homogeneous ensemble methods. Notably, the GA reduced the number of selected features by
over 50%, from 47 to 24, without sacrificing model performance®. In the context of achieving
optimal recall rates (our second scenario), we prioritize the contribution of each variable to
defaults rather than overall accuracy. This approach provides valuable insights into which
variables most strongly predict borrower default, supporting risk management and policy
decisions. By running the GA 10 times, we calculate the importance of each feature based on
its selection frequency across iterations.

The results, shown in Table 3. 6, reveal the following key findings: Key insights reveal that
loan characteristics, such as maturity and interest rate, play a crucial role in predicting defaults.
Borrowers opting for longer loan terms, such as five years, tend to have lower credit scores,
face higher interest rates, and are more likely to default. The purpose of the loan is also

significant, with small business loans presenting the highest risk, as default rates surpass 73%,

48 Optimizing Performance and Cost: Base learners are categorized into two groups based on training speed and
complexity. Feature selection is applied to the first group, comprising NN, KNN, LDA, NB, and DT.
49 Number of selected features = [NN:24, KNN:26, LDA:24, NB:25, DT:24]
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while wedding loans carry the lowest risk. In contrast, loan amounts and installments are found
to be less impactful. Socioeconomic characteristics also provide valuable predictive insights.
Homeownership and annual income stand out as strong indicators of credit risk, whereas
employment length shows minimal effect. Renters, compared to homeowners, exhibit a higher
likelihood of default, with default rates exceeding 45%. In terms of Borrower's financial profile
and credit history, critical predictors include delinquencies, public records (such as overdue
accounts), debt-to-income ratio, and credit utilization. Additionally, the number of satisfactory
bankcard accounts, the average balance across all accounts, recent trade activity, and total
revolving credit balance significantly influence default risk. Lastly, macroeconomic variables,
those associated with actual economic activity such as inflation rates, GDP, and stock market

indices, consistently emerged as key contributors to default rates across all scenarios.

Table 3. 6. Feature Importance Scores from Iterative Genetic Algorithm Optimization

Feature Occurrence % Genetic Solutions

Attributes Importance o Selected by X% of Classifers NN~ KNN DA NB DT

Rank " T >80% >60% 24 26 24 25 24
deling_2yrs 1 64% 50% 70% 0.9 0.7 0.4 0.6 0.7
deling_amnt 2 64% 50% 80% 0.7 0.6 0.6 0.6 0.7
num_bc_sats 3 62% 50% 70% 0.6 0.7 0.6 0.4 0.7
avg_cur_bal 4 62% 30% 80% 0.4 0.9 0.4 0.9 0.7
annual_inc 5 62% 40% 60% 04 0.6 0.9 0.6 0.7
term 6 62% 40% 70% 0.7 0.6 0.9 0.7 0.3
acc_open_past_24mths 7 62% 30% 60% 0.6 0.6 0.4 0.7 0.7
purpose 8 62% 30% 60% 0.4 0.7 0.7 0.6 0.6
TTL All Shares 9 61% 30% 70% 0.7 0.4 0.4 0.7 0.9
acc_now_deling 10 60% 30% 60% 0.7 0.6 0.7 0.6 0.4
dti 11 59% 10% 70% 0.6 0.6 0.6 0.4 0.7
revol_bal 12 59% 30% 60% 0.1 0.7 1.0 0.7 0.3
revol_util 13 59% 30% 60% 0.7 0.3 0.9 0.6 0.4
bc_open_to_buy 14 58% 40% 60% 0.7 03 04 06 07
home_ownership 15 58% 20% 50% 0.6 0.7 04 0.6 0.6
Inflation (cpi) 16 58% 20% 50% 0.4 0.6 0.6 0.6 0.7
mths_since_last_delinq 17 57% 20% 50% 0.7 0.4 0.7 0.4 0.6
sub_grade 18 56% 20% 60% 04 04 0.6 0.7 0.6
be_util 19 56% 0% 60% 0.6 0.6 0.6 0.6 0.3
num_rev_tl_bal_gt_0 20 54% 0% 70% 0.6 0.6 0.6 0.4 0.6
mths_since_recent_inq 21 54% 20% 50% 04 04 04 0.6 0.7
installment 22 53% 20% 70% 0.4 0.6 0.4 0.4 0.7
int_rate 23 53% 40% 40% 0.7 0.4 0.4 0.4 0.6
TED 24 52% 10% 60% 0.6 0.6 0.3 0.9 0.3
num_tl_op_past_12m 25 52% 0% 60% 04 0.6 04 0.6 04
GDP Growth 26 52% 30% 50% 0.7 0.6 0.4 0.4 0.4
Income status _ verified 27 52% 30% 50% 0.3 0.6 0.6 0.6 04
pub_rec 28 51% 20% 50% 0.4 0.9 0.6 0.3 0.4
Loan_Amnt 29 51% 20% 50% 0.3 0.4 0.7 0.3 0.7
tax_liens 30 51% 20% 60% 0.7 0.7 0.6 0.3 0.4
total_bal_ex_mort 31 51% 10% 70% 04 0.7 0.6 04 04
Unemployment rate 32 50% 10% 40% 04 0.6 0.7 0.6 0.1
pet_tl_nwr_dig 33 50% 20% 50% 0.6 0.3 0.4 0.6 0.4
num_sats 34 50% 20% 50% 04 0.7 04 0.6 0.6
ing_last_6mths 35 50% 10% 50% 0.4 0.6 0.4 0.4 0.6
mort_acc 36 49% 10% 40% 0.1 0.6 0.6 0.6 0.7
HH Debt 37 49% 20% 50% 0.7 0.4 0.4 0.6 0.6
pub_rec_bankruptcies 38 49% 10% 50% 1.0 0.6 0.3 0.6 0.1
open_acc 39 48% 20% 30% 0.6 0.1 0.7 04 04
emp_length 40 46% 10% 50% 0.1 0.6 0.6 0.4 0.4
num_actv_bc_tl 41 46% 10% 50% 0.6 0.6 0.1 0.7 0.3
num_bc_tl 42 46% 20% 40% 0.4 0.6 0.7 0.4 0.3
num_rev_accts 43 44% 10% 40% 0.4 0.6 0.1 0.6 0.6
chargeoff_within_12_mt 44 44% 20% 30% 0.6 0.4 0.4 0.4 0.4
percent_bc_gt_75 45 41% 10% 40% 03 04 04 04 06
month(earliest_cr_line) 46 32% 10% 20% 0.1 0.3 0.6 0.3 0.3
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Fig. 3.8 Top features contributing to default risk selected by EFSGA

3.4.6. Optimization of Credit Risk Management

The proposed approach has the potential to revolutionize credit risk optimization in FinTech
lending by employing evolutionary algorithms to optimize feature scaling, classifier weights,
and decision thresholds within a collective learning framework. Traditional risk assessment
models, often constrained by fixed rules, fail to adapt to the dynamic nature of borrowers and
overlook critical factors such as macroeconomic conditions and management interventions.
These limitations can be particularly problematic in complex risk decision-making processes
where risk tolerance levels and objectives may vary. Our study introduces a flexible and
dynamic decision-making framework that addresses these shortcomings by offering tailored,
real-time risk assessments. By leveraging distributed and parallel computing paradigms, this
approach provides timely solutions, particularly valuable in the fast-paced FinTech industry.
The framework's adaptability ensures that decision-makers receive customized risk insights,
aligning with specific management goals and evolving market conditions. This high level of
customization is crucial for enhancing credit risk management, as it allows organizations to
make more informed decisions across diverse sectors and risk scenarios, ultimately improving

decision-making processes in industries beyond FinTech.
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3.4.7. Robustness Tests

To ensure the reliability and broader applicability of our findings, we conducted a robustness
test using data from Mintos, a European marketplace lending platform. This dataset, spanning
loan listings from January 2018 to September 2023 across 10 European countries, captures the
effects of economic fluctuations, including the COVID-19 pandemic and the Russia-Ukraine
war. Detailed information on the dataset and variables is provided in Appendix F, with Table
F.1 offering a comprehensive description. After preprocessing, the dataset included 23 variables
and 484,912 loan listings, with 19% defaulted loans and 81% non-defaulted loans. The data
underwent a similar preprocessing procedure as described in Section 3. 4-2, except for utilizing
alternative configurations® . All detailed results are presented in Appendix F (Tables F2 to F6),
covering individual and homogeneous ensemble algorithm performance (Table F.2), results
from the heterogeneous ensemble model (Table F.3), EFSGA model classification results
(Table F.4), optimized classifier weights (Table F.5), and feature selection analysis (Table F.6).

The key findings from the robustness tests are as follows: Firstly, the proposed EFSGA
model demonstrates sustained robustness across various scenarios. Notably, the model achieved
a 14% improvement in recall, a 9% increase in F2-Score, and a 3% boost in balanced accuracy
compared to the previous Ensemble of Collective Top Learners®!. Secondly, compared with the
previous results, where the optimized weights and rankings of machine learning classifiers were
detailed, the current analysis shows consistency in the top five ranked classifiers across
different risk-taking scenarios. Although the specific order of rankings has changed, boosting
algorithms, ANFIS, SVM-RBF, Decision Trees (DT), and MLP consistently occupy the leading
positions. This stability reinforces the robustness of our findings and the effectiveness of these
classifiers, even with varying emphases on recall, precision, and accuracy. Lastly, the EFSGA
model excels in extracting valuable features, surpassing alternative methods, and notably
reducing the number of features while maintaining superior model performance. Detailed
insights into the significance of features regarding borrower credit default are available in
Appendix F.

%0 For this new dataset, we employed a distinctive train-test split, allocating 70% for training and 30% for testing
to rigorously assess model performance. Additionally, we introduced a different imbalanced ratio of 20-80.
PRecombination, PCrossover, and PMutation operators were set to 0.2, 0.4, and 0.4, respectively. The Genetic
Algorithm parameters included a population size of 30 and a maximum of 100 iterations.

51 The Mintos dataset differs from typical credit risk datasets by excluding borrower personal information, focusing
only on loan-related data such as Issue Date, Rate, Term, and Type. This divergence results in lower classification
accuracy for individual and ensemble algorithms compared to the results from our primary dataset.
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3.5. Discussion and Conclusion

The EFSGA methodology introduces a novel approach to credit risk optimization, addressing
challenges faced by traditional metaheuristics in dynamic default prediction for FinTech
lending. The Evolutionary-based Ensemble Feature Selection with a Genetic Algorithm
(EFSGA) leverages diverse machine learning structures, optimizing both hyperparameters and
classification thresholds through a Genetic Algorithm. This dual optimization enhances the
model's performance, offering a comprehensive and efficient solution. Our approach fills the
gap in metaheuristic applications for credit risk optimization by hybridizing with machine
learning, utilizing distributed and parallel computing for real-time solutions, and enhancing
adaptability to unbalanced learning scenarios.

The proposed "dynamic flexible risk decision-making framework," inspired by GA, has
significantly improved real-time default prediction during the post-loan repayment period. The
EFSGA model shows superior computational efficiency and optimization compared to the
ensemble of top algorithms, with notably lower execution times and general objective values
across various scenarios. It demonstrated substantial improvements in overall model
performance during the post-loan repayment period, including a 29% improvement in the
genetic fitness function, a 24% boost in recall, and a 14% increase in F2-Score, outperforming
conventional heterogeneous ensemble techniques across diverse risk-taking scenarios.
Moreover, the framework is highly flexible and can be adapted to the specific objectives of
decision-makers. Our ensemble feature selection and analysis technique, driven by a genetic
algorithm, achieves a balanced trade-off between model performance and interpretability. By
simultaneously optimizing weights and feature subsets for each base learner within the
ensemble model, the proposed technique extracts valuable features, reduces overfitting, and
outperforms other classifiers. It significantly reduces the feature set from 47 to 24 while
maintaining superior performance. We conducted ten iterations of the GA to comprehensively
assess feature importance, deriving scores from the occurrence rates across iterations. The
EFSGA model adeptly addresses challenges associated with the misclassification of
imbalanced datasets and variable class importance through dynamic decision threshold
adjustments using a Genetic Algorithm. Employing cost-sensitive learning algorithms
prioritizes the minority class, optimizing a class-weighted objective function for a balanced
recall-precision trade-off.

Our research thoroughly assesses the performance dynamics of diverse machine learning

algorithms, spanning individual models and homogeneous and heterogeneous ensembles.
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Emphasizing the identification of minority classes, we ensure robustness, stability, and
consistency across multiple iterations, varied risk modeling scenarios, and different imbalanced
data distributions, all while adhering to computational constraints. This evaluation leverages
real-world P2P lending datasets known for their imbalanced nature across two key prediction
periods: the loan application stage and the post-loan repayment period. To further optimize the
ensemble, a Genetic Algorithm (GA) is employed to determine the optimal weights for each
classifier based on predefined objectives across different risk scenarios. This approach enabled
the model to adapt to various conditions by balancing the contribution of each algorithm. The
Genetic Algorithm (GA) strategically allocated higher weights to advanced classifiers such as
LogitBoost, SVM-RBF, MLP, and ANFIS, while simpler algorithms like KNN, LDA, and NB
received lower weights. These findings indicate that boosting algorithms, particularly
LogitBoost, which consistently holds the first rank, followed by SVM-RBF, MLP, ANFIS, and
DT, are the most effective in identifying risky credits while maintaining optimal accuracy and
minimizing the loss of good credits. These insights can guide financial institutions in selecting
appropriate machine-learning models to minimize credit risk while maintaining optimal
performance across different operational priorities. The proposed "flexible, dynamic decision-
making-based framework" with its tunable class-weighted fitness function offers
transformative potential for risk management in the FinTech sector. Providing real-time,
adaptable solutions for complex decision-making processes, this approach enhances risk
management and offers valuable insights across industries where diverse risk tolerances and

objectives necessitate adaptable strategies.

3.6. Future Research Directions

While the EFSGA model marks a significant advancement in credit risk optimization, several
avenues for further exploration remain. First, the reliance on Genetic Algorithms (GA) for
optimization can be expanded by exploring alternative metaheuristics, such as Grey Wolf
Optimization or the Aquila Optimizer, to enhance flexibility and efficiency (Mirjalili et al.,
2014; Abualigah et al., 2021). Additionally, integrating advanced deep learning techniques like
deep neural networks or reinforcement learning could improve the model’s ability to manage
complex, imbalanced datasets. Another limitation is the restricted access to post-loan borrower
data, which limits real-time risk monitoring. Future research should incorporate richer datasets,
such as borrower payment histories and behavioral patterns, to refine dynamic predictions.

Furthermore, although the EFSGA model has shown promise in FinTech, its application in
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traditional banking and high-risk finance requires further exploration. Evaluating the model in
volatile, high-risk environments will help assess its scalability and robustness across diverse
credit risk settings. Incorporating EFSGA into decision support systems (DSS) with scenario-
based simulations would further enhance its practical utility for decision-makers managing
complex risk profiles. Altogether, advancing the EFSGA model through alternative
metaheuristics algorithms, richer data integration, and broader application will enhance its
adaptability and effectiveness in diverse financial contexts.
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Appendix 11

Appendix A

Threshold Optimization Method Based On Genetic Algorithms: This framework outlines the basic
steps for optimizing the classification threshold using a genetic algorithm. Here is a brief

explanation of each step:

(i) Objective function: The objective function is a metric that measures the model's performance
at different threshold values. We used accuracy, precision, and recall in this study and analyzed

them based on F2-Score.

(i) Initial population: The initial population is a set of potential threshold values that the objective

function will evaluate. These values are typically chosen randomly.

(iii) Fitness evaluation: The fitness of each potential threshold value in the population is evaluated
using the objective function. This determines how well each threshold value performs on the

classification problem.

(iv) Selection: The best-performing threshold values with the highest fitness scores are selected to
move on to the next generation. This process is repeated until specific threshold values have been

set.

(v) Reproduction and mutation: New threshold values are created by combining the selected
individuals and introducing random mutations to promote diversity. This creates a new population
of potential threshold values. So, the fitness of the new population is evaluated, and the process is
repeated until a termination criterion is met. This could be a certain number of generations or a

specific fitness level.

(vi) Solution: Once the genetic algorithm has converted to a solution, the threshold value with the
highest fitness score is chosen as the optimized threshold. This threshold value can predict new

data in the classification problem.
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Appendix B
Lending Club Lending Dataset

Table B.1. Overview of Lending Club Features and Associated Economic Indicators

Summary Statistics

Attributes Description -
Min Max Mean SD

Loan Indicators
term The number of payments on the loan. 36.0 60.0 422 105
int_rate Interest Rate on the loan 0.1 0.3 0.1 0.0
installment The monthly payment owed by the borrower . 216 1408.1 428.7 2442
purpose A category provided by the borrower for the loan request. House, education , Small buisness,... (1~14) 10 14.0 4.7 28
Loan_Amnt The listed amount of the loan applied for by the borrower. 1,000 35000 13,866 8,186
LC sub_grade Lending Club assigned loan subgrade, A1~G5 , codes (1~35) 10 35.0 13.1 6.7
Loan_status Current status of the loan: Fully paid, Charged off, Default, In grace period, Late ,... 0 5 1 141
Borrower's Financial Characteristics and Credit History indicators
Demographics
home_ownership The home ownership status provided by the borrower including Own, Mortgage, Rent (Codes: 1,2,3) 10 3.0 23 0.6
emp_length Employment length in years. 00 10.0 5.7 37
annual_inc The self-reported annual income provided by the borrower during registration.(*1000) 4 1 70 46
Income status _ verified Income \erification status by LendingClub :Verified, Source verified, Not verified (Codes: 1,2,3) 1.0 3.0 18 0.86
Credit Hisory & Performnce
dti Borrower’s total monthly debt payments on the total debt obligations,excluding mortgage, divided by his 0

?>’ self-reported monthly income. 35 17 8
percent_bc_gt_75 ﬁ Percentage of all bankcard accounts > 75% of limit. 0 100 46 37
be_util 4 Ratio of total current balance to high credit/credit limit for all bankcard accounts. 0 340 57 34
ing_last_6mths B The number of inquiries in past 6 months (excluding auto and mortgage inquiries) 0 8 1 1
mths_since_recent_inq § Months since most recent inquiry. 0 24 6 6
mort_acc = Number of mortgage accounts. 0 24 2 2
revol_util The amount of credit the borrower is using relative to all available revolving credit. 0 148% 57% 0
acc_now_deling © The number of accounts on which the borrower is now delinquent. 0 5 0 0
deling_2yrs s The number of 30+ days past-due incidences of delinquency in the borrower's credit file for the past 2 year 0 18 0 1
deling_amnt & " The past-due amount owed for the accounts on which the borrower is now delinquent. 0 63,453 8 527
mths_since_last_deling 8 'g The number of months since the borrower’s last delinquency. 1 151 35 22
pub_rec § § Number of derogatory public records 0 9 0 0
pub_rec_bankruptcies E’ Number of public record bankruptcies 0 5 0 0
chargeoff_within_12_mths E Number of charge-offs within 12 months 0 4 0 0
pet_tl_nvr_dlg Percent of trades never delinquent 0 100 78 38
acc_open_past_24mths S 5 > Number of trades opened in past 24 months. 0 40 4 3
month(earliest_cr_line) % 8 % The month the borrower's earliest reported credit line (LOC) was opened - Loan Issue date 36 683 174 80
num_tl_op_past_12m 5T Number of accounts opened in past 12 months 0 25 2 2
total_bal_ex_mort I Total credit balance excluding mortgage 0 1,924,200 37,502 41,092
revol_hal § § Total credit revolving balance 0 1,743,266 15,237 18,955
avg_cur_bal § f_.a‘ Awverage current balance of all accounts 0 958,084 11,273 16,327
bc_open_to_buy < Total open to buy on revolving bankcards. 0 278,899 6,828 12,329
open_acc The number of open credit lines in the borrower's credit file. 0 53 11 5
num_rev_accts é Number of revolving accounts 0 63 12 9
tax_liens § Number of tax liens 0 9 0 0
num_sats f_: Number of satisfactory accounts 1 53 11 5
num_bc_tl ; Number of bankcard accounts 0 44 9 5
num_actv_bc_tl E Number of currently active bankcard accounts 0 22 3 2
num_bc_sats z Number of satisfactory bankcard accounts 0 29 5 3
num_rev_tl_bal_gt 0 Number of revolving trades with balance >0 1 30 5 3
Macroeconomic indicators
Unemployment rate The number of unemployed as a percentage of the labor force. 255 336 29.9 22
TTL All Shares Total Share Prices for All Shares for the United States -22.5 12.7 0.4 3.7
Inflation Inflation as measured by the consumer price index. -0.4 38 22 1.0
HH Debt Household Debt Service Payments as a Percent of Disposable Personal Income 9.7 13.2 113 1.2
GDP Growth The inflation adjusted value of the goods and services produced by labor and property located in the US. -1.9% 2.4% 1.0% 0.7%
TED The spread between 3-Month LIBOR based on US dollars and 3-Month Treasury Bill. 0.1 34 04 0.4
Post Loan Performance
Loan_Paid % Total paid amount at loan maturation or closure 1 14 0.79 0.3
Loan_last_first Payment Months before loan maturation or closure(last_pymnt_d)-(Issue_d) 1 60 11 6
Recovery Recovery plan for problematic loans 0 1 0.15 0.35
3M_interval_loan status Timing every 3 Months before loan maturation
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Appendix C

We meticulously conducted the following critical steps in data preprocessing to ensure the data is
well-suited for effective utilization in our prediction model.

(i) Instance selection:

» The data set is filtered to select only the loans issued between 2007 and 2014, as we choose
only finished credits that have reached their final state during the standard term of the credit —
36 or 60 months.

« Eliminating features and rows with more than 5 percent missing values.

» Removing categorical variables with only one possible value and irrelevant variables such as
member ID, URL, emp _title, grade, description, address, etc. As a result, 64 variables have been
dropped.

(i) Handling missing values:

« Various techniques, including mean, mode, and KNN imputations, are employed to address
missing values. In a comprehensive experiment involving 1000 samples, KNN imputation
demonstrated superior performance, yielding the smallest values for rmse (root mean squared
error), mse (mean squared error), and mae (mean absolute error). Consequently, KNN
imputation has been chosen as the preferred method over alternative approaches.

(iii)  Data transformation:

« Categorical variables are encoded using one-hot encoding, and date variables are transformed
into numerical features. In this step, several variables are transformed into new forms:

 The loan status attribute describes the current state of the loan and has the following values:
“Current,” “Fully Paid,” “Default,” “Charged Off,” “In Grace Period,” “Late (16 - 30 days)”,
and “Late (31 — 120 days)”. These statuses are transformed to a binary classification problem,
i.e., the loan with the status “Charged Off,” “Late (31 — 120 days)”, and “Default” will be
changed into “Default” and loan with the status “Fully Paid” will be transformed into “Normal.”
Loans with statuses “In Grace Period,” “Current,” and “Late (16 — 30 days)” will be filtered out
because those loans are considered immature or do not have final statuses.

« Nominal variables such as subgrade, employment length, Loan Purpose, Term, Home
Ownership, Verification status, ... are transformed into continuous variables.

» Some new variables have been calculated, such as Credit history_ yrs by subtracting Loan
application date from earliest_cr_line (The month the borrower's earliest reported credit line
(LOC) was opened).

(iv)  Normalization of features:

 The features are normalized and standardized through the Min-Max Scaling
Standardization/Variance Scaling

(v)Data randomization:

« After normalization and before the dataset is divided into training and validation sets, deliberate
data randomization has been implemented, prioritizing a randomized arrangement over an
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ordered one. This approach is crucial for mitigating potential biases arising from inherent order
or patterns in the data. We aim to foster a diverse and representative training experience by
opting for randomization, enhancing the model's ability to generalize effectively across
different scenarios.

(vi) Handling Outliers:

« To ensure dataset quality, a rigorous outlier treatment has been implemented. Various methods,
including outlier removal, capping, and discretization, have been selectively applied to specific
variables based on the percentage and distribution of outliers detected.

After completing these comprehensive preprocessing steps, our final dataset comprises 84,440
observations and 49 variables. This refined dataset is primed for optimal utilization in building an
accurate and robust prediction model.

Appendix D
Fitness evaluation

Table D. CONFUSION MATRIX

Predicted Class Precision Rate = TP/ (TP+FP) *100%
Accuracy Rate = (TP+IN) / (TP+FP+TN+FN) *100%
E Positive (Default) Negative(Normal) Recall (Sensitivity) Rate = TP /(TP+FN) *100%
9 Positive (Default)  True positive (TP) False Negative (FN) Specificity Rate = TN/ (IN+FP) *100%
§ Negative(Normal) False Positive (FP) True Negative (TN) F B Score = (1+B"2)*(Precision*Recall)/{ B*2*Precision + Recall)*100%
= G mean =0.5% (Recall™ specificity )

Balanced_Accuracy =0.5"(Recall+ specificity )

A confusion matrix is a summary of prediction results on a classification problem. In the above
confusion matrix, TP is the number of test samples with a default class tag that are properly assigned
to a default class. TN is the number of test samples with the Normal class tag that are correctly
placed in the Normal class. FP is the number of samples with a Normal label mistakenly classified
by the classification system. Finally, FN is the number of samples with a Default label incorrectly
identified by the system as default.
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Appendix E
Table E. An Empirical Comparison of Individual and Homogenous Ensemble Algorithms_ Loan Allocation
Period
Loan Allocation Period
Standard Classification Imbalanced Classification
Algorithm Specification Accuracy Recall Precision Specificity| F2-Score B.Accuracy| Time(s,
Linear Discriminant Analysis (LDA) 82.62 57.43 91.96 97.11 74.65 84.88 2.77
Naive Bayesian (NB) 81.25 54.21 90.7 96.8 73.94 83.08 42
K-Nearest Neighborhood (KNN) 1 776 65.47 70.94 84.57 66.49 75.02 52
K 7 81.43 58.03 86.71 94.98 62.14 76.46 54
9 81.61 56.74 88.89 95.77 61.16 76.33 56
19 82.15 54.43 94.26 97.78 74.78 84.28 52
QS:t’ztr'n"e(:';‘F‘:;F“ZZy Inference '\sﬂmaef.f:f 3 8122 5758 8648 9482 | 7665 83515 | 569
Linear 85.38 69.51 99.94 99.96 74.02 84.735 2930
Support Vector Machine (SVM) RBF 824 53.16 97.51 99.22 75.46 85.11 225
Polynomial 77.74 65.51 71.23 84.78 78.02 711 503
Multi-Layer Perceptron (MLP) | Hidden layers [35205] 78.49 65.22 72.99 86.12 76.42 84.34 1160
[30 10 25] 80.14 62 79.08 90.56 64.80 76.28 340
Decision Tree (DT) 75.72 68.07 66.32 80.11 79.05 79.995 6.6
Ensemble Algorithms 53;";’:::2“1958 Bagging 8259 5592 9395  97.93 75.7 84575 67
Tree LogitBoost 82.77 62.43 86.67 94.47 78.9 84.43 81
Tree TotalBoost 80.73 81.28 78.79 80.23 80.77 80.755 3493
Tree AdaBoostM1 82.9 63.51 86.01 94.05 79.83 84.77 81
KNN Random.Subspace 725 76.79 69.16 68.55 75.13 72.67 121
Discriminants AdaBoostM1 85.11 69.35 99.06 99.35 73.77 84.35 24
ROC Curves for Top Algorithms. Top Algorithms - Scenario no.1

ANFIS
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DT (Decision Trees)
SVM-RBF
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AdaBoostM1
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Algorithm

0 1 2 3 4
Rank
Top Algorithms - Scenario no.3
LogitBoost
SVM-RBF
MLP
AdaBoostM1
ANFIS

LogitBoost (AUC = 0.85)
—— SVM-RBF (AUC = 0.85)
— MLP (AUC = 0,83}

Algorithm

—— ANFIS (AUC = 0.84)
DT (Decision Trees) (AUC = 0.80)
AdaBoostM1 (AUC = 0.81) DT (Decision Trees)

0 0.2

To 0 1 2 3 ] 5 3 7

0.4 0.6 0.8 Rank

False Positive Rate

Fig. E.1. Top Algorithms Performance Based On Each Scenario
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Appendix F
Mintos Lending Dataset:

The countries included in the database are Bulgaria, Denmark, Estonia, Finland, Latvia, Lithuania,
Poland, Spain, Romania and the United Kingdom. These countries are similar in their regulatory
framework and business environment and represent an excellent opportunity for analyzing the
current tendencies in marketplace lending markets. We combine each loan recorded in the database
with the country-specific economic variables and variables representing COVID-19 risk and the
Russia-Ukraine war. The loan status attribute describes the current state of the loan and has the
following values: “Current,” “Bad debt or Default,” “finished (as scheduled or prematurely),” “In
Grace Period,” and “Late” loans. These statuses are transformed to a binary classification problem,
i.e., the loan with the status “Bad debt or Default,” “finished prematurely Buyback Guarantee,”
“Late (31 — 60)”, and “Late (60+)” will be changed into “Default.” Loans with the status “finished
as scheduled” and “finished prematurely due to early repayment” will be transformed into
“Normal.” Loans with statuses “In Grace Period,” “Current,” and “Late less than 30 days will be
filtered out because those loans are considered immature or do not have final statuses.

Table F.1. Description and Summary Statistics of Mintos Features and Associated Economic Indicators

Attributes Description Summary Statistics
Min Max Mean SD Count
Loan indicators
A category provided by the borrower for the loan request. 1-Business Loan, 2-Car
Loan Type Loan, 3-Invoice Financing, 4-Mortgage Loan, 5-Pawnbroking Loan, 6- Personal 1.00 8.00 7.44 0.75 484,912
Loan, 7-Shert-Term Loan
Loan Rate% Interest Rate on the loan 4.00 18.50 11.67 2.81 484,912
Term Duration of loan 1.00 238.00 3.89 10.52 484,912
Initial LTV Initial Loan-to-Value (LTV) Ratio 0.00 650.00 851 23.84 484,912
LTV Final Loan-to-Value (LTV) Ratio 0.00 99.00 1.08 8.84 484,912
Initial Loan Amount The listed amount of the loan applied for by the borrower. 1259 70000.00 42481 593.70 396,536
Collateral Dummy vaflable reprgsentlng the _Ioan type in te_rms of a provision of collateral. 0.00 1.00 012 032 484912
Equal to 1 if the loan is collateralised, 0 otherwise
Current status of individual loan.Dummy variable equal to 1 if the loans is
Loan Status . .
overdue, defaulted or buyback and 0 otherwise (current or repaid) 0.00 1.00 0.19 0.42 484,912
Borrower’s Financial Characteristics
Mintos Risk Score Mintos assigned Rating’ ranging between A+ (1) and D (7) 5.50 8.60 6.80 0.60 412,813
Macroeconomic indicators
. Dummy variable equal to 1 for the
Covid_DUM dates between March 11, 2020 & Jan 2021 and 0 otherwise 0.00 1.00 0.18 0.38 484,912
War_DUM Dummy variable equal to 1 for the dates later than Feb. 24th 2022 and O otherwise ~ 0.00 1.00 0.55 0.50 484,912
GDP Gross domestic product (GDP) -20.32 16.78 0.76 0.99 484,912
unemployment rate Country based Unemployment rate Total, % of labour(Monthly) 2.70 16.50 9.21 4.30 484,912
Inflation Inflation as measured by the consumer price index.(CP1 monthly Growth) -1.68 21.84 6.89 6.69 484912
HH debt Household Debt Service Payments as a Percent of Disposable Personal Income 36.90 256.86 84.14 34.07 484,912
Stcok Mkt index Dow Jones EURO STOXX indices - Benchmark - Broad Index 308.5 478.7 422.9 38.8 484,912
Death_cases Number of WHO reported daily COVID-19 related deaths in country i at time t 0 121,852 60041 50473 484,912
(Monthly acc.)
Post Loan
In Recovery Recowery plan for problematic loans 0.00 1.00 0.07 0.26 484,912
Extendable schedule Dummy variable representing the restructuring of a loan. Equal to 1 if the original 0.00 1.00 078 0.42 484912
maturity date of the loan has been increased by more than 60 days, 0 otherwise ' ' ' ' ’
Buyback Dummy variable Equal to 1 if the loan uses buyback guarantee, O otherwise 0.00 1.00 0.65 0.48 484,912

Loan Originator Status

Timing every 3 Months before loan maturation
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Table F.2. An Empirical Comparison of Individual and Homogenous Ensemble Algorithms_ Post—Loan
Repayment Period

Post-Loan Repayment Period

Standard Classification Imbalanced Classification
Algorithm Specification Accuracy Recall  Precision 3pecificity FBScore B.Accuracy|Time(s)
Linear Discriminant Analysis (LDA) 80.85 74.22 83.01 84.23 75.82 79.22 0.32
Naive Bayesian (NB) 81.25 73.58 86.24 88.96 75.81 81.27 4.2
K-Nearest Neighborhood 1 77.64 77.65 76.01 77.85 74.10 77.75 | 149
(KNN) K 7 78.74 76.54 7764 7964 77.73 7809 | 152
9 79.75 76.28 79.60 81.44 76.92 78.86 52
i - Membershi
ﬁ?:[r)srfe’\lsigt:r:l:%FIS) e 3 79.80 7592 7944 7865 | 76.60 7729 (12050
Linear 85.38 7151 86.97 88.23 74.15 79.87 3150 |
Support Vector Machine (SVM) RBF 79.50 75.86 84.13 85.09 77.38 80.48 ﬂ 210
Polynomial 52.44 57.15 65.56 83.08 58.65 70.12 378d
Multi-Layer Perceptron (MLP]  Hidden layers [35205] 76.94 75.32 76.04 78.42 75.47 76.87 18 |
[25515] 78.29 75.68 87.24 88.20 77.45 81.94 D270
Decision Tree (DT) 76.82 79.73 77.29 78.95 79.23 79.34 54
Ensemble Algorithms [Ejg‘fr':efi'f;é] Bagging 77.08 76.85 7913 8099 | 77.30 7892 || 567
Tree LogitBoost 77.98 77.19 80.64 82.56 77.86 79.87 ﬂ 256
Tree TotalBoost 73.95 73.05 72.47 74.76 72.94 73.91 4835 \
Tree AdaBoostM1 78.30 76.26 81.01 82.39 77.16 79.32 ﬂ 287 ‘

Table F.3. Ensemble of collective learning from heterogeneous individual and ensemble algorithms
Evaluation Metrics

Standard Classification Imbalanced Classification
Algorithm Specification Accuracy  Recall Precision Specificity| FBScore B.Accuracy| Time(s) Gen. ObjF
Ensemble of the Loan Allocation Period 75.26 70.02 78.56 77.88 73.29 73.03 226 0.274
collective base learners  pogt | gan Repayment Period | 78.92 76.26 81.27 82.65 76.78 78.36 258 0.223

Table F.4. EFSGA prediction performance based on different risk-taking scenarios — Post-Loan repayment
prediction

Evaluation Metrics

Standard Classification Imbalanced Classification
. A . o . . Decision
Algorithm  Specification Accuracy  Recall Precision Specificity| FBScore B.Accuracy Time(s) Gen. ObjF Threshold
Scenario no.1 71.22 92.54 63.57 75.01 84.81 83.78 55 0.316 0.100
EFSGA Scenario no.2 76.05 87.02 71.33 74.69 83.35 80.86 75 0.181 0.130
Scenario no.3 82.350 83.48 80.31 81.31 82.83 82.40 51 0.185 0.210
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Fig. F.1. Post-loan repayment prediction result by EFSGA
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Table F.5. Optimized weights of each ML classifier by GA based on the genetic objective function

Solution W: Optimized Weights of the Ensemble Model

Algorithm  Specification LDA  NB NN KNN ANFIS SVM-RBF  MLP DT  LogitBoost AdaBoostM1
Scenariono.l ~ 0.05 0.02 0.06 0.06 0.12 0.15 0.13 0.18 0.13 0.08
EFSGA Scenariono.2  0.06 0.07 0.07 0.08 0.10 0.12 0.13 0.12 0.14 0.12
Scenariono.3  0.07 009 0.05 0.08 0.10 0.11 0.13 0.12 0.14 0.11

Table F.6. Feature Importance Scores from Genetic Algorithm Optimization

Attributes Feature Selection by ML Classifiers
NN KNN DA NB DT

TTL# 14 17 15 16 14

Loan Chracteristics

Loan Type 3 1 1 1

Loan Rate% 5 1 1 1 1 1

Term 4 1 1 1 1

Initial LTV 3 1 1 1

LTV 2 1 1

Initial Loan Amount 5 1 1 1 1 1

Loan Originator 3 1 1 1

Loan Originator Status 4 1 1 1 1

Collateral 3 1 1 1

Mintos Risk Score 3 1 1 1

Macroeconomic indicators

Covid_DUM 4 1 1 1 1

War_DUM 3 1 1 1

GDP 5 1 1 1 1 1

unemployment rate 4 1 1 1 1

Inflation 5) 1 1 1 1 1

HH debt 3 1 1 1

Stcok Mkt index 2 1 1

Death cases 3 1 1 1

Post Loan

In Recovery 3 1 1 1

Extendable schedule 2 1 1

Buyback 4 1 1 1 1

Loan Originator Status 3 1 1 1

The EFSGA model effectively extracts valuable features and outperforms other methods,
significantly reducing the number of features. The key findings are as follows:

e Loan Specific Characteristics: Essential factors, such as loan maturity and interest rates, carry
significant weight for classifiers. Our analysis reveals a notable correlation: borrowers opting for
higher loan amounts (averaging 40% higher) and longer loan terms generally face elevated
interest rates (approximately 10% higher) and an increased propensity for default. Loan purpose
is another determinant; invoice financing and pawnbroking loans present the lowest risk, while
business and car loans bear the highest risk, with default rates exceeding 75% and 69%,
respectively. The loan originator, Creditstar, primarily offers various short-term loans (mostly
less than one year), with only approximately 25% classified as favorable. A more appealing
option could be Everest Finanse, exhibiting a superior rate of non-delinquent short-term loans.
Additionally, riskier borrowers tend to exhibit higher loan-to-value (LTV) ratios. Examining the
binary variable "Buyback," 65% of loans entail the buyback obligation, with 70% classified as
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good borrowers and 30% categorized as riskier. Similar trends are observed in loans with an
"extendable schedule." Mintos' estimated credit scores show that 69% fall into the mid-risk
range, 16% in the low-risk range, and 15% as Score Withdrawn (SW). Significantly, the default
risk does not necessarily increase as Mintos' estimated loan risk transitions from the low to
medium-risk range.

e Macroeconomic Variables and Default Risk: The primary drivers of default rates encompass
elements tied to actual economic activity, inflation rates, and GDP. Notably, the impact of
European stock market indexes on credit risk is less pronounced compared to our observations
in the US. More precisely, our analysis reveals that a decline in GDP is associated with an
increase in default probabilities within the Euro area, mirroring a similar pattern observed for
the inflation rate. This aligns with well-established findings in the existing literature. The effect
of stock market indexes varies across sectors, prompting scrutiny regarding its effectiveness in
elucidating credit quality trends in the present dataset.

e COVID-19 Pandemic Risk and Default Risk: While a limited number of studies have delved into
early-stage implications of the pandemic on risk levels and defaults in FinTech lending markets
(Baig et al., 2020; Demirguc-Kunt et al., 2020b; Najaf et al., 2021), our study extends the horizon
(2018-2023) to capture the full extent after the easing of government restrictions. The
pandemic's influence on credit risk becomes evident by late 2021 as short-term liquidity
challenges transform into insolvency for businesses and households. Our analysis reveals a
delayed yet impactful rise in default risk from the second half of 2021, persisting until the first
quarter of 2022. Borrower risk profiles notably deteriorated during the pandemic, with the two
pandemic risk proxies (Covid_DUM and Death_cases) consistently selected by classifiers.
Specifically, the surge in COVID-19-related deaths significantly increases the likelihood of
default. The probability of default, late payments, and the inclusion of 'buyback' guarantees for
loans increases from 22% pre-pandemic to 26% post-pandemic. We emphasize a decline in loan
quality amid the pandemic, with the loan ratings shifting from low risk to the middle to near low-
risk range (8.3 to 6.8). It can be asserted that the decrease in loan ratings inherently leads to
changes in default or overdue loans. Furthermore, we uncover variations in the magnitude of
COVID-19 risk impact based on borrower credit score and country, providing nuanced insights
into the evolving landscape of default risk in Europe.

e Effect of Russia—Ukraine War on Default Risk: Following the Russia-Ukraine invasion, we
observed a notable uptick in default risk during the first six months, as opposed to the preceding
period. Our analysis reflects a gradual change in defaulted loans, instances of significant
repayment delays, and the use of a buyback guarantee. The overall incidence has increased from
20% before the invasion to 23% after, with some countries experiencing rates surpassing 40%.
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General Conclusion

This thesis aims to investigate the complex interplay between bank opacity, the role of financial

analysts, and risk optimization within the banking and FinTech sectors. It explores how opacity
influences stability, how financial analysts can both mitigate and exacerbate risks in different
market environments, and introduces innovative approaches to credit risk management in
FinTech lending. Through these objectives, the research seeks to provide policymakers and
financial institutions with actionable insights to foster systemic resilience in an increasingly
interconnected financial landscape.

The findings challenge the traditional perception of financial analysts as purely stabilizing
agents in the financial ecosystem, revealing a dual role where analysts, especially in opaque
institutions, can inadvertently amplify risk. This thesis identifies specific conditions—such as
economic uncertainty and market overvaluation—under which analyst coverage may heighten
instability rather than reinforce discipline. By highlighting these dynamics, the research calls
for a more nuanced regulatory approach, recognizing the situations where analysts might
unintentionally serve as catalysts for risk. Furthermore, the thesis underscores the often-
overlooked systemic implications of opacity in financial institutions. Rather than being a
localized issue, opacity has far-reaching consequences that, when compounded by market
pressures, can destabilize entire financial systems. The findings suggest a need for enhanced
transparency measures and adaptive regulatory frameworks capable of responding to evolving
market conditions, thereby minimizing the destabilizing potential of opacity across highly
opaque sectors.

The research also sheds light on the implications of dividend policies in opaque banks,
revealing that excessive payouts can exacerbate the negative impact of opacity, particularly
within U.S. markets. This insight suggests that dividend policies should be reconsidered as
regulatory tools, as they may not only signal financial strength but also indicate vulnerability
in certain contexts. Policymakers are encouraged to view dividend restrictions as a strategic
mechanism to mitigate instability where opacity and market pressures converge.

The comparative analysis of financial analysts’ behavior across the U.S., Europe, and Asia

illustrates significant regional variations in forecasting accuracy, boldness, and career
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motivations. These differences underscore the importance of region-specific regulatory
approaches that address the distinct incentives, experience levels, and affiliations influencing
analysts’ behaviors. Such tailored oversight can help mitigate the potential risks of overly
optimistic or bold forecasts that may prioritize career advancement over market discipline,
ensuring that the regulatory environment aligns with the unique characteristics of each region’s
financial landscape.

In the FinTech sector, this thesis introduces the EFSGA model, a dynamic, evolutionary-
based ensemble learning technique tailored for real-time credit risk optimization. By integrating
genetic algorithms with machine learning, EFSGA provides adaptive solutions to the specific
challenges of FinTech lending, such as unbalanced datasets and rapidly shifting risk profiles.
This model demonstrates the potential of evolutionary-based algorithms to enhance credit risk
management, setting a foundation for future research in machine learning applications within
finance and underscoring the value of adaptable frameworks that can meet evolving market
needs.

Ultimately, this research bridges traditional banking and FinTech risk management,
proposing that key principles such as transparency and market discipline can be adapted to
bolster stability in FinTech platforms. This cross-sector perspective supports a unified
regulatory approach that addresses both traditional and digital financial institutions, fostering
systemic stability through a holistic framework. As a crucial recommendation, the thesis
advocates for transparency as a cornerstone of financial stability. Opacity not only obscures
risks but also creates vulnerabilities to market shocks, making transparency essential in an
interconnected global financial system. This emphasis on transparency calls for policy reforms
at both national and international levels, ensuring that financial stability is underpinned by clear,

reliable, and comprehensive information across diverse sectors.
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Abstract

This thesis examines the interplay between bank opacity, financial analyst influence, and risk
optimization in banking and FinTech. It comprises three studies exploring systemic stability, analyst
behaviors, and innovative credit risk management tools. Chapter one focuses on U.S. and European
banks, demonstrating how opacity, measured via analyst forecast errors and dispersion, exacerbates risk,
particularly in smaller, opaque U.S. banks. Analyst coverage amplifies market sensitivity to negative
signals, while high dividend payouts intensify opacity-driven risks. Chapter two analyzes global
forecasting behaviors, revealing that experience, portfolio breadth, and regional incentives shape
accuracy and boldness. U.S. analysts show accuracy and boldness, while European analysts prioritize
boldness, often sacrificing precision. Chapter three introduces EFSGA, an evolutionary-based ensemble
learning model for dynamic credit risk optimization in FinTech, balancing accuracy and interpretability.
This thesis advances understanding of opacity, analyst behavior, and adaptive risk assessment, offering
critical insights for resilience in modern finance.

Résumé

Cette thése explore I’interaction entre 1’opacité bancaire, ’influence des analystes financiers et
I’optimisation du risque dans les secteurs bancaire et FinTech. Le premier chapitre révéle que 1’ opacité,
mesurée par les erreurs et dispersions des prévisions des analystes, accroit les risques, notamment dans
les petites banques opaques américaines, ou la couverture par les analystes amplifie la sensibilité du
marché. Le deuxiéme chapitre analyse le role des analystes a 1’échelle mondiale, montrant que
I’expérience, les portefeuilles et les incitations régionales influencent précision et audace des prévisions.
Enfin, le troisieme chapitre introduit EFSGA, un modéle d’apprentissage évolutif pour 1’optimisation
dynamique du risque de crédit dans les FinTech, équilibrant précision et interprétabilité. Cette these
éclaire I’impact de I’opacité et des pressions des analystes sur la stabilité financiére, tout en proposant
des outils innovants pour gérer les risques dans les marchés modernes.

185



