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General Introduction 
 

 
 

The global financial system operates as a delicate equilibrium, where transparency and market 

discipline are critical safeguards against instability. Yet, at its core, the banking sector remains 

uniquely opaque, characterized by complex structures, asymmetric information, and high 

leverage that obscure risk profiles and challenge regulatory oversight. This inherent opacity not 

only exacerbates systemic vulnerabilities but also amplifies agency conflicts, moral hazard, and 

risk-taking behaviors. As intermediaries in this opaque landscape, financial analysts play a 

pivotal role in mitigating information asymmetries and enhancing market discipline. However, 

their influence is not unequivocally stabilizing; analysts also have the potential to amplify 

market volatility and risk-taking, particularly in highly opaque banking environments.  

Despite significant advancements in financial research, key areas remain underexplored. 

Traditional studies rely heavily on backward-looking metrics, which fail to capture the dynamic 

and predictive risks associated with bank opacity. Additionally, while the structural differences 

between market-driven systems like the U.S. and bank-driven systems like Europe are 

acknowledged, their nuanced implications for bank risk-taking and systemic stability remain 

insufficiently analyzed. Furthermore, the dual role of financial analysts—as both transparency 

enhancers and potential drivers of volatility—has not been adequately examined, leaving 

critical gaps in understanding how their behavior interacts with opacity to influence risk.  

Moreover, while opacity and information asymmetry have long been recognized as 

destabilizing forces in banking, their effects are even more profoundly magnified in the rapidly 

evolving and highly interconnected FinTech markets. Indeed, the rapid digitization of financial 

services has significantly improved accessibility and efficiency; however, it has also introduced 

substantial vulnerabilities due to its inherent characteristics, including information asymmetry, 

lack of transparency, and minimal regulatory oversight, which further exacerbate uncertainty 

and instability. 

This thesis examines these critical issues through three interconnected chapters, each 

exploring distinct yet complementary dimensions of opacity, information asymmetry, and risk 

in financial systems. The research is guided by the following questions: How does opacity 

influence systemic risk and stability in banking, and what roles do financial analysts and 
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dividend policies play in moderating or amplifying these effects? How do the characteristics 

and motivations of financial analyst’s shape forecasting behaviors, and what implications do 

these behaviors have for market discipline and career trajectories in global banking markets? 

Finally, how can advanced metaheuristic techniques and machine learning frameworks be 

leveraged to optimize credit risk management in the highly dynamic and opaque FinTech 

sector? 

The first chapter investigates the destabilizing effects of bank opacity on systemic stability, 

introducing forward-looking measures—analysts’ forecast errors and dispersions—to capture 

the dynamic risks associated with opacity. By analyzing publicly traded U.S. and European 

banks from 2000 to 2020, this chapter provides a nuanced perspective on the opacity-risk nexus. 

It highlights critical gaps in the literature, including the limitations of backward-looking metrics 

that fail to capture dynamic risks, the underexplored dual role of financial analysts as 

transparency enhancers and volatility amplifiers, and the lack of comparative analysis of 

opacity's effects across distinct financial systems. The findings reveal that opacity significantly 

undermines bank stability, with destabilizing effects most acute under conditions of 

overvaluation and economic uncertainty, particularly in the U.S. Analyst coverage emerges as 

a double-edged sword: while it enhances market discipline, it paradoxically amplifies risk in 

highly opaque U.S. banks—especially smaller institutions—by intensifying reactions to 

negative earnings signals. Dividend policies further complicate this dynamic, serving as 

stabilizing signals when moderate but exacerbating opacity-driven risks when excessive. A 

comparative analysis underscores distinct regional dynamics, with the market-driven U.S. 

system exhibiting heightened sensitivity to opacity and analyst pressures, while the bank-driven 

European system demonstrates more tempered responses. 

The second chapter shifts the focus to the role of financial analysts, exploring how their 

characteristics and career motivations shape earnings forecast accuracy across global banking 

markets. Using data from the I/B/E/S Detail History Database, the study examines 516 publicly 

traded banks across the U.S., Europe, and Asia from 2000 to 2023. The findings reveal 

significant regional variations in forecasting precision and strategic behaviors. General and 

bank-specific experience significantly enhance forecast accuracy, with the strongest effects 

observed in the U.S. However, portfolio complexity produces contrasting effects: broader 

coverage improves accuracy in the U.S. and Asia but increases errors in Europe due to 

geographical diversification challenges. Boldness, often driven by career motivations, exhibits 

regional nuances. In the U.S., experienced analysts leverage bold forecasts to signal expertise 
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and advance their careers, while less experienced analysts herd to minimize risks. In Asia, 

boldness consistently supports career progression across all experience levels, while in Europe, 

early-career analysts use bold forecasts to gain visibility but often trade off accuracy for career 

advancement. 

The third chapter extends the analysis to the FinTech sector, where the destabilizing effects 

of opacity and information asymmetry are most pronounced. It introduces the Evolutionary-

Based Ensemble Feature Selection Technique using Genetic Algorithms (EFSGA), an 

innovative framework designed to address the limitations of traditional credit risk assessment 

models in this rapidly evolving sector. Unlike conventional methods, EFSGA hybridizes 

metaheuristic algorithms with machine learning to provide real-time, dynamic solutions for 

managing credit risk in high-dimensional, imbalanced datasets. By incorporating 

heterogeneous ensemble learning and optimizing classification thresholds using genetic 

algorithms, the model significantly enhances predictive accuracy and interpretability. Tested 

on FinTech lending datasets, EFSGA demonstrates a 23% improvement in application-specific 

evaluation metrics, providing a transformative approach to credit risk management in an era of 

heightened uncertainty and complexity. This dynamic framework is uniquely positioned to 

address the challenges posed by FinTech markets, ensuring adaptability to evolving borrower 

behaviors and macroeconomic conditions while meeting stringent regulatory requirements. 

Together, these chapters provide a comprehensive examination of the destabilizing effects 

of opacity and information asymmetry in banking and FinTech markets. By bridging traditional 

banking challenges with innovative solutions for the FinTech era, this thesis offers actionable 

insights for policymakers, regulators, and financial institutions, emphasizing the need for 

dynamic, forward-looking strategies to mitigate systemic risks and enhance financial stability 

in an increasingly interconnected global economy. 
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These events provided valuable opportunities to refine the research through insightful 
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Abstract 

This study rigorously examines opacity—captured through analyst forecast errors and 

dispersion—and its destabilizing influence on bank stability across U.S. and European markets. 

We delve into the intricate role of financial analyst pressure in moderating market discipline 

within opaque banks and further analyze how dividend payout policies intersect with the Risk-

Opacity channel to shape sectoral stability. Leveraging an extensive dataset of publicly traded 

banks from 2000 to 2020, we present four pivotal findings. First, we uncover that heightened 

opacity markedly undermines bank stability, with destabilizing effects most acute under 

conditions of elevated market overvaluation and economic uncertainty, particularly in the U.S. 

market. Second, analyst coverage emerges as a nuanced force: while it often promotes market 

discipline, it can paradoxically intensify risk in U.S. opaque banks—especially smaller 

institutions—by heightening sensitivity to negative earnings signals, with a much weaker effect 

in the EU. Third, the impact of analyst recommendations and revisions becomes pronounced 

during heightened uncertainty, with negative signals compounding opacity-induced risk in U.S. 

banks, while positive signals offer a more constrained stabilizing effect. The interplay between 

opacity, adverse recommendations, and extensive analyst coverage exerts considerable pressure 

on U.S. banks, driving asset price volatility that edges institutions closer to default thresholds 

and underscores the disciplinary role of analyst coverage in aligning valuations with risk. 

Lastly, we observe that excessive dividend payouts exacerbate opacity’s adverse effects on 

stability, particularly within U.S. banks. This suggests that while dividend policies can signal 

strength, overly aggressive distributions may erode resilience in opaque banking environments, 

highlighting the critical balance between transparency and financial prudence in fostering 

systemic stability. Overall, our findings highlight how opacity, analyst influence, and dividend 

policies uniquely shape bank risk within market- and bank-driven financial systems, offering 

key insights for enhancing systemic stability in an interconnected financial landscape. 

 

JEL classification: G01; G14; G21; L11 

Keywords: Bank opacity; Bank Risk; Financial Analysts; Market discipline; Dividend 

Policy.  
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1.1. Introduction  

Bank opacity presents an enduring and fundamental challenge in contemporary financial 

research, exerting a profound influence on risk management practices, systemic stability, and 

regulatory frameworks. This inherent opaqueness arises from banks' unique asset and liability 

compositions—distinguished by illiquid and often non-transparent assets, elevated leverage 

ratios, and substantial insured liabilities—all of which intensify agency conflicts and moral 

hazard issues (Morgan, 2002; Flannery et al., 2004; Dang et al., 2017). These complex features 

elevate the cost of external funding and exacerbate systemic vulnerabilities, situating 

transparency as a cornerstone in discussions of bank fragility and regulatory efficacy (Jones et 

al., 2012; Bushman, 2016). Relative to other firms, banks exhibit a heightened opacity that 

obscures accurate assessments of their intrinsic value and solvency (Morgan, 2002; Blau et al., 

2017), complicating efforts by external stakeholders to reliably gauge institutional soundness. 

Regulatory interventions, such as Basel III, have thus increasingly prioritized transparency and 

market discipline as mechanisms to reinforce sectoral stability (Basel Committee on Banking 

Supervision, 2013). The theoretical interface between opacity and market discipline emerges 

as a central concern, as opacity inherently distorts risk-taking incentives and may ultimately 

compromise financial stability (Demsetz & Lehn, 1985; Cordella & Yeyati, 1998; Boot & 

Schmeits, 2000; Nier, 2005). Empirical studies substantiate the intrinsic connection between 

opacity and heightened insolvency risks, underscoring how opacity amplifies systemic 

fragilities across the banking landscape (Jones et al., 2012; Dewally & Shao, 2013a; Fosu et al., 

2017). Understanding this relationship is pivotal, necessitating an intricate examination of how 

internal governance choices and external stakeholder perceptions coalesce to shape risk profiles 

and transparency within the sector. Existing research, however, is constrained by its reliance on 

backward-looking accounting disclosures, which are fundamentally limited in capturing the 

dynamic and forward-looking risks associated with bank opacity (Nier, 2005; Nier & Baumann, 

2006). This retrospective lens constrains our understanding of market discipline’s influence on 

bank stability, particularly amid today’s increasingly complex and interconnected financial 

ecosystems.  

Addressing these limitations, this study introduces a novel approach, leveraging direct and 

forward-looking metrics of opacity—specifically, analysts’ forecast errors and dispersions—to 

empirically evaluate opacity's impact on bank stability. These measures capture degrees of 

uncertainty and disagreement among expert analysts, offering a refined and more predictive 

assessment of banks' future economic trajectories. This approach allows for an investigation 
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into how forecast dispersion and volatility reflect genuine uncertainty regarding banks' 

prospective stability, particularly in response to negative earnings surprises1. A secondary, yet 

equally critical, objective of this research is to examine the contribution of financial analyst 

pressure as information intermediaries within the opaque banking sector and their potential to 

influence market discipline. Specifically, we analyze how informational shocks stemming from 

analysts' recommendations and earnings forecasts are interpreted by market participants and 

the extent to which these shocks influence stock market performance. By evaluating the 

predictive validity of analysts’ reports, we examine whether analysts serve as external monitors 

that enforce discipline or if their coverage inadvertently drives banks toward riskier behaviors 

to meet market expectations. Although existing studies suggest that analysts mitigate 

information asymmetry by providing credible insights (Cheng & Subramanyam, 2008; Mansi 

et al., 2011; Derrien et al., 2016; Kosaiyakanont, 2013), the complex, dualistic role they play 

in banking remains underexplored. Our research thus delves into both the informational 

efficiency of analyst insights and the potential pressures their coverage imposes, seeking to 

clarify whether analysts reinforce market discipline or inadvertently act as catalysts for elevated 

risk-taking2. In addition, this study explores the moderating influence of dividend payout 

policies on the opacity-risk relationship. Dividend payments are frequently construed as signals 

of financial strength, capable of conveying private information to the market and enforcing 

discipline by aligning the interests of internal managers with external stakeholders 

(Easterbrook, 1984; Jensen, 1986). While dividend distributions may constrain a bank's capital 

reserves, they can simultaneously enhance market discipline by reducing informational 

asymmetry (Onali, 2010). Despite their theoretical importance, the implications of dividend 

policies on market discipline in opaque banking environments remain insufficiently examined. 

By investigating how dividend payments interact with opacity in influencing risk, we endeavor 

to shed light on the mechanisms that underpin bank stability.  

Furthermore, recognizing the distinct regulatory and market-driven differences between the 

U.S. and European banking sectors, this study conducts separate analyses for these regions. In 

                                                      
1 This study equates "analyst forecast error" with "earnings surprise," the difference between reported and expected 

earnings, often based on analyst forecasts (Defond et al., 2001; Pinto et al., 2010). Negative values indicate 

optimistic bias, while positive values suggest pessimism. A negative earnings surprise may lead market 

participants to adjust expectations downward, increasing uncertainty about the firm’s value (Hayn, 1995). 

Research on earnings surprises and stock returns shows positive surprises tend to increase trading volume, whereas 

negative surprises generally result in stock price declines (Bamber, 1987; Kinney et al., 2002). 
2 Notably, we examine how analysts intensify market reactions to negative earnings surprises for banks. This 

investigation aims to deepen our understanding of the dual role financial analysts play—both as enhancers of 

market discipline and as potential drivers of risk within the banking sector. 
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the U.S., market dynamics and analyst scrutiny are typically more pronounced, while European 

banks operate under more stringent regulatory oversight. These structural divergences imply 

that the interplay between opacity, analyst influence, and bank stability may vary substantially 

across these regions. To assess the robustness of our findings, we examine U.S. and European 

subsamples, capturing the nuances of these financial ecosystems and their impact on risk-taking 

behaviors and stability. In sum, this research addresses pressing gaps in the literature by 

applying forward-looking measures of bank opacity, analyzing the complex role of financial 

analysts, and assessing the moderating effects of dividend policies on risk across varied 

regulatory landscapes. Through these multi-faceted inquiries, we aspire to advance our 

understanding of market discipline, promoting a more resilient and transparent banking sector.  

Our empirical analysis, based on a dataset of 341 publicly traded U.S. and European banks 

spanning 2000 to 2020, uncovers critical insights that illuminate the opacity-risk nexus in 

banking: First, our analysis shows that a high degree of opacity significantly undermines bank 

stability3, with destabilizing effects—manifesting as reduced profitability and heightened 

earnings volatility, leading to higher default risk—most evident in overvalued banks and under 

conditions of elevated uncertainty4. Regionally, the destabilizing influence of opacity is more 

severe in the U.S., although it remains present, albeit to a lesser extent, in the EU. This also 

implies that analysts' earnings forecast dispersion and bias are effective proxies for opacity, 

yielding substantial insights into future bank risk and earnings volatility, particularly with 

stronger effects observed in the U.S. 

Second, our findings highlight the complex role of analyst coverage in moderating risk-

taking, particularly among high-opacity banks. While analyst coverage generally enhances 

market discipline and curbs excessive risk-taking globally5, its effect on opaque banks is highly 

heterogeneous across regions. In the U.S., increased analyst coverage tends to amplify pressure 

on opaque banks, often pushing them toward riskier behaviors, especially within smaller 

institutions. Thus, heightened analyst coverage amplifies market reactions to negative earnings 

surprises in highly opaque U.S. banks, intensifying the impact of opacity on risk-taking amid 

strong market responses. In contrast, the European context reveals a more tempered dynamic: 

                                                      
3 This destabilizing effect of opacity is robust, persisting across various risk proxies and remaining significant even after 

accounting for a wide array of both observable and unobservable bank characteristics. 
4 These findings underscore the sensitivity of overvalued banks, as indicated by elevated market-to-book ratios, to negative 

earnings surprises, likely driven by market expectations that surpass the bank's actual financial strength. This suggests that 

overvalued growth stocks tend to underperform value stocks following earnings disappointments, highlighting the risks 

inherent in investor optimism.  
5 In the US market, greater analyst coverage has a pronounced disciplining effect on risk-taking, particularly among banks with 

moderate perceived valuations, larger size, and higher volatility. The European market however, exhibits a weaker and more 

inconsistent influence. 
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analyst coverage moderately curtails risk-taking in smaller banks while marginally intensifying 

risk for larger opaque institutions. This nuanced finding underscores the limited yet region-

specific moderating effect of analyst coverage on opacity-induced risk.  

Our analysis highlights the robust predictive power of financial analysts' insights in 

assessing default risk, particularly in the U.S. and notably during periods of elevated market 

uncertainty6. Negative analyst signals—such as sell recommendations and downgrade 

revisions—amplify opacity's destabilizing effects on U.S. banks, while positive 

recommendations and upgrades provide some stabilization, though less significantly, and with 

minimal impact in Europe. The interplay between opacity, negative-toned recommendations or 

revisions, and high analyst coverage creates substantial pressure on opaque U.S. banks. The 

heightened market pressure from analyst forecasts often drives asset price fluctuations that 

potentially edge banks closer to default risk thresholds, emphasizing how extensive analyst 

coverage can promote disciplined market behaviors by making bank valuations more 

responsive to forecast shifts. Ultimately, this dual role of analysts—as both transparency 

enhancers and volatility influencers—positions them as key players in shaping the opacity-risk 

relationship within the banking sector.  

Beyond the impact of analysts, our findings suggest that while dividend payments generally 

enhance bank stability, excessive payouts can magnify the adverse effects of opacity, thereby 

reducing their stabilizing role and potentially contributing to greater instability. This 

destabilizing effect of high dividend payouts is most pronounced in the U.S. but remains 

significant, though somewhat less intense, within the EU. These insights emphasize the 

importance of market dynamics, analyst influence, and regulatory context in shaping the 

opacity-risk relationship across varied financial systems. The U.S. market-driven environment 

fosters a heightened reactivity to analyst forecasts, often compelling banks to undertake riskier 

actions to meet market expectations, particularly following negative earnings surprises7.  

Despite extensive literature examining systemic differences in analyst forecasts, particularly 

outside the banking sector, and numerous attempts to measure bank risk using public data, the 

                                                      
6 Our findings indicate that market reactions to analyst recommendations are significantly heightened for banks 

characterized by elevated opacity and heightened uncertainty. 
7 In these settings, the pressure to meet or exceed analyst expectations can lead to significant adjustments in bank 

behavior. For instance, when market participants react strongly to earnings surprises—especially negative ones—

banks may feel compelled to take on additional risks to meet these elevated targets. This dynamic may not only 

influence stock prices but also impact broader risk management practices within banks, with the intensity of such 

reactions varying across different market structures.  
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intermediary role of financial analysts in bridging market data and the interpretation of banking 

risk has seen surprisingly limited scrutiny. This study offers several key contributions to address 

this gap: First, we integrate research on banking opacity, market discipline, and financial 

analyst influence to deliver a nuanced and comprehensive understanding of banks' risk-taking 

behaviors. By adopting an interdisciplinary approach, this study addresses a critical gap, 

offering insights into the complex interactions that shape bank stability in ways previously 

underexplored. Second, we investigate the moderating role of financial analysts within the 

opacity-risk nexus, examining whether an optimal level of analyst pressure exists that could 

mitigate the adverse effects of opacity. This analysis challenges traditional views by introducing 

a novel perspective on the dual role of analysts, positioning them as both information enhancers 

and potential risk amplifiers. By exploring this duality, our research expands the boundaries of 

existing literature on market discipline and information intermediation. Third, we conduct a 

rigorous assessment of the impact of dividend payout policies on the opacity-risk relationship, 

contributing meaningfully to ongoing regulatory discussions concerning the prudential role of 

dividend policies in enhancing bank resilience. Our findings provide nuanced evidence on the 

potential for dividend payouts to serve as a prudential mechanism counterbalancing opacity-

driven risks, offering actionable insights for policymakers in developing robust disclosure and 

dividend frameworks. Finally, our research illuminates the divergent dynamics of opacity and 

market discipline across distinct financial environments, specifically contrasting market-driven 

with bank-driven systems. By revealing how these differing systems uniquely influence the 

interaction between opacity and risk, we furnish regulators and market participants with critical 

insights for devising tailored strategies that mitigate bank risk effectively within varied 

contexts. 

The remainder of the paper is structured as follows: Section 1. 2 presents a review of the 

relevant literature. Section 1. 3 discusses the empirical estimation methods. Section 1. 4 

describes the data and variables used in the study. Section 1. 5 presents the empirical results, 

and Section 1. 6 concludes. 

1.2. Related Work and Hypothesis Development  

Extensive literature has explored the multifaceted dynamics between transparency, accounting 

disclosures, stock performance, and risk-taking behaviors in the banking sector. These studies 

underline the influence of country-level transparency measures on financial stability, while a 

parallel stream investigates the role of financial analysts in promoting market discipline and the 
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implications of dividend payout policies on bank risk. Drawing from these existing works, this 

1. synthesizes key theories and empirical insights to support the development of three key 

hypotheses relating to (i)bank opacity and risk-taking, (ii)the contribution of financial analyst 

pressure as a potential moderator on the nexus between bank opacity and bank risk-taking 

activities, (iii) we also control for the moderating effect of dividend payout policy on the 

relationship between bank opacity and risk. 

1.2.1. Bank Opacity, Risk and Earnings Volatility  

Bank assets are typically regarded as opaque, raising significant concerns about the efficacy of 

market discipline in curbing risk-taking behavior (Morgan, 2002; Flannery et al., 2013). 

Theoretical frameworks suggest that opacity in the banking sector fuels risk-taking incentives, 

as the difficulty of assessing a bank’s true risk profile leads to higher funding costs, which, in 

turn, motivate riskier strategies (Fosu et al., 2017). This opacity-driven risk-taking is often 

exacerbated by external observers’ limited visibility into banks’ internal monitoring and asset 

quality, resulting in elevated interest rates on deposits and investments that reflect the perceived 

level of risk (Cordella & Yeyati, 1998; Boot & Schmeits, 2000). In contrast, greater transparency 

is seen to enhance market discipline, generally encouraging banks to adopt less risky behaviors. 

The higher cost of capital associated with opacity creates a financial incentive for banks to take 

on greater risks to offset these costs, positioning transparency as a benchmark for effective risk 

management (Nier, 2005). 

Prior research extensively documents the inefficiencies that arise from information 

asymmetry in opaque institutions. These inefficiencies manifest in suboptimal investment and 

financing decisions (Myers & Majluf, 1984; Diamond, 1991; Derrien & Kecskés, 2013), 

elevated costs of capital (Kelly & Ljungqvist, 2012), and the erosion of market valuations 

(Chung & Jo, 1996). Furthermore, opacity can encourage managerial opportunism, reduce 

financial reporting quality, and lead to capital misallocation (Yu, 2008; Chen et al., 2015; Irani 

& Oesch, 2013). Banks, especially those with high levels of opacity, may engage in financial 

statement manipulation to smooth earnings, circumvent capital requirements, or minimize tax 

liabilities. Such practices not only hinder private governance and regulatory oversight but also 

pose substantial risks to stability and asset quality (Beatty & Liao, 2011; Bushman & Williams, 

2012; Huizinga & Laeven, 2012). Empirical evidence consistently aligns with these theoretical 

predictions. Fosu et al. (2017) demonstrate that opacity is closely linked to insolvency risks 

among U.S. banks, and Jones et al. (2012) argue that opacity introduces systemic vulnerabilities 

by increasing financial instability, price contagion, and amplifying systemic risk. Dewally and 
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Shao (2013b) further emphasize that excessive opacity weakens market-based discipline, 

diminishing market participants' ability to effectively constrain bank risk-taking. Recent studies 

continue to explore these dynamics in various contexts. For example, Iannotta and Kwan (2022) 

find that unexpected loan loss provisions elevate bank opacity, thereby encouraging risk-taking 

and diminishing performance. Similarly, Zheng and Wu (2023) demonstrate that during 

financial crises, opacity leads to significant declines in bank valuation, contributing to systemic 

instability. In emerging markets, Nguyen and Tran (2022) show that under conditions of 

heightened uncertainty, opacity adversely affects bank stability and performance. These findings 

highlight the importance of robust and reliable measures of opacity, which traditional 

accounting-based indicators—focused on asset composition—often fail to capture fully due to 

limitations such as vulnerability to managerial manipulation and lack of market-based 

perspectives (Burks et al., 2017; Bushman et al., 2016; Jiang et al., 2016). 

To overcome these limitations, some researchers advocate for the use of analysts' forecasts 

as more dynamic, market-related indicators of disclosure quality. Analysts’ earnings forecasts 

provide independent assessments of firm opacity and expected earnings volatility, with larger 

forecast errors and greater forecast dispersion serving as indicators of higher opacity (Flannery 

et al., 2004). Studies show that greater transparency reduces forecast dispersion, enhances 

liquidity, and improves market efficiency (Roulstone, 2003). During the financial crisis, Anolli 

et al. (2014) observed that forecast accuracy was especially crucial as stock price volatility 

intensified amidst high uncertainty. Additionally, research on earnings surprises and stock 

returns reveals that the variance between analyst estimates and actual earnings significantly 

influences market reactions: Positive surprises correlate with increased trading volume, while 

negative surprises are often associated with declines in stock returns (Bamber, 1987; Kinney et 

al., 2002). Fosu et al. (2017) also used analysts' forecasts to assess opacity among U.S. bank 

holding companies, confirming that forecast errors serve as effective proxies for bank opacity. 

High forecast dispersion often signals elevated uncertainty about future cash flows and reflects 

a lower quality of disclosures. 

Building on this literature, we employ analysts’ forecast error and dispersion as proxies for 

bank opacity to examine their influence on bank risk-taking and stability. This approach allows 

us to capture market participants’ perceptions of opacity as they relate to banks' future 

performance and volatility. Consequently, we propose the following hypothesis: 

Hypothesis 1a: Opacity increases risk-taking behavior and exacerbates bank instability and 

performance. 
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This hypothesis tests the informational efficiency of analysts' earnings forecasts as forward-

looking indicators of opacity in banks. Specifically, it posits that banks with higher forecast 

dispersion are more likely to engage in riskier behavior, which diminishes stability and 

performance. Conversely, banks with greater transparency are expected to exhibit stronger 

profit efficiency and lower volatility in earnings8. 

1.2.2.  The Role of Financial Analysts in the Nexus Between Bank Opacity and Risk 

Financial analysts play a pivotal role in shaping market discipline through two primary 

mechanisms: the coverage effect and the informational effect. Together, these mechanisms have 

the potential to not only influence banks' visibility and market valuation but also modulate risk-

taking behaviors in the context of opacity within the banking sector. 

(i) The Coverage Effect: Analyst coverage heightens a bank’s visibility and subjects it to 

increased market scrutiny. As more analysts cover a bank, pressure mounts to meet or exceed 

market expectations, creating dual and sometimes contradictory outcomes. On the one hand, 

increased coverage can bolster market discipline, encouraging banks to adopt more prudent risk 

management practices to align with investor expectations. On the other hand, excessive pressure 

to perform can incentivize banks to undertake riskier strategies, particularly when reacting to 

earnings surprises that shift market expectations. This duality reflects a delicate balance where 

analyst coverage, while improving transparency, can also foster short-term pressures that drive 

riskier behaviors as banks attempt to conform to heightened expectations. 

(ii) The Informational Effect: Financial analysts significantly enrich the informational 

environment by providing earnings forecasts and issuing stock recommendations that range from 

buy/strong buy to sell/strong sell. These outputs mitigate information asymmetry by offering 

investors insights into a bank’s financial health and growth prospects, which can impact the 

bank’s cost of capital, market valuation, and overall risk profile. By enhancing transparency, 

analyst insights help investors form clearer perceptions of risk, which theoretically encourages 

banks to adopt more transparent practices and align risk strategies accordingly. 

                                                      
8 Extension: The impact of opacity on risk-taking is moderated by market structures and market uncertainty, with 

stronger effects in market-based financial systems compared to bank-based systems. This hypothesis posits that 

market-driven systems, such as those in the U.S., are more sensitive to the effects of opacity, particularly under 

conditions of market uncertainty. In contrast, bank-based systems, may see more moderated effects due to stronger 

regulatory oversight.  
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Prior research underscores the dual benefits of analyst coverage in reducing information 

asymmetry and promoting shareholder monitoring, often lowering firms' cost of debt (Cheng 

& Subramanyam, 2008; Mansi et al., 2011; Derrien et al., 2016). For instance, Fang (2007) 

shows that firms with high analyst coverage are less inclined toward earnings management, 

especially when covered by leading analysts. Similarly, Guo et al. (2018) demonstrate that 

analyst coverage can influence firms’ investment strategies, while Hassan et al. (2021) highlight 

that analyst coverage moderates the relationship between career concerns and loan costs. In the 

banking sector, where the stakes of financial opacity are high, analysts' recommendations and 

earnings forecasts are crucial in anticipating risk and bankruptcy measures. For example, Parnes 

et al. (2010) find that changes in analyst reports yield insights into default risk, and Barniv et 

al. (2020) reveal that alignment between recommendations and forecasts positively affects 

market reactions. Furthermore, studies show that analyst recommendations are especially 

valuable for banks facing elevated risk and high information asymmetry (Premti et al., 2016). 

Given these dynamics, our second hypothesis explores the moderating influence of financial 

analysts on market discipline and risk-taking behaviors within the opaque banking sector: 

Hypothesis 2a: Higher analyst pressure enhances insights into default risk and shapes 

market perceptions. 

Hypothesis 2b: Higher analyst pressure moderates the marginal effect of opacity on bank 

risk-taking. 

These hypotheses rest on the premise that greater analyst coverage enhances the availability 

of information to investors, making it increasingly challenging for banks to engage in opaque 

practices without market scrutiny. Consequently, the informational pressure exerted by analysts 

is expected to strengthen the information environment, improve transparency, and thereby 

reduce risk-taking behaviors associated with opacity. This also underscores the predictive role 

of analyst reports and their connection to bankruptcy risk measures, supporting the argument 

that analysts’ recommendations are highly informative in evaluating bank stability and 

influencing market dynamics. Moreover, we posit that stock prices respond to analyst 

recommendations and revisions, impacting market-based return volatility and risk measures 

like MZScore and TR. As such, the presence of robust analyst coverage may foster more 

disciplined market behaviors by heightening the sensitivity of bank valuations to forecast 

updates. 
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1.2.3. The Moderating Effect of Bank Dividend Payout Policy on Opacity and Risk 

Dividend policies hold significant implications in the banking sector, often serving as critical 

signals of financial strength, especially in opaque environments. Given the inherent complexities 

of bank balance sheets, investors and stakeholders frequently look to the frequency and 

magnitude of dividend payments to infer a bank’s financial health. In addition to being indicators 

of stability, dividend policies are closely tied to capital adequacy and form an essential 

component of robust risk management practices (Onali, 2010). The literature presents varying 

perspectives on the role of dividends in promoting bank stability. While dividend payments can 

serve as a stabilizing force, excessive payouts may also incentivize risk-taking behaviors (Tran, 

2021). To understand the influence of dividend policies on bank risk, we consider two primary 

mechanisms: 

 (i) Dividends-Stability Channel: Dividend payouts can limit a bank’s ability to retain 

capital buffers, potentially increasing dependence on riskier assets and thereby eroding overall 

stability (Kanas, 2013). When banks distribute a substantial portion of earnings as dividends, 

they may reduce their capacity to absorb shocks, especially under volatile conditions. This can 

intensify risk-shifting behaviors, as banks might turn to higher-risk investments to meet 

profitability targets and shareholder expectations, particularly when deposit insurance premiums 

mitigate downside risks (Acharya et al., 2009; Onali, 2010). During financial crises, banks 

prioritizing dividend payouts may amplify systemic risks, as evidenced by institutions that 

maintained dividends despite increased financial vulnerability (Floyd et al., 2015). However, 

dividends can also impose a level of external monitoring, potentially curbing excessive 

managerial risk-taking and imposing discipline on bank management (Onali, 2010). 

(ii) Dividends-Opacity Channel: Dividend payments can serve as a form of market 

discipline by reducing the private benefits of control, thereby limiting the scope for earnings 

management. In opaque banking environments, dividends signal a commitment to transparency 

and act as a counterbalance to managerial discretion. Banks adhering to stable dividend targets 

are generally less likely to engage in earnings manipulation, especially when payout restrictions 

are tied to debt covenants or regulatory thresholds (Tran & Ashraf, 2018). Under this framework, 

dividends help mitigate conflicts between insiders and external stakeholders, enforcing a form 

of market-driven discipline that aligns management incentives with shareholder interests 

(Easterbrook, 1984; Jensen, 1986). The Dividends-Opacity Channel thus posits that dividend 

payments can serve as a prudential mechanism, reinforcing transparency and curbing 

opportunistic behaviors. 
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This study examines the extent to which dividend policies impact bank risk-taking, 

particularly by moderating the relationship between bank opacity and risk. The analysis focuses 

on dividends as a potential prudential tool that facilitates external monitoring in opaque banking 

environments. In this context, we propose two hypotheses: 

Hypothesis 3a: Dividend payments enhance market discipline in banks and are associated 

with greater stability. 

Hypothesis 3b: The marginal effect of opacity on bank risk-taking is moderated by the extent 

of dividend payments. 

These hypotheses reflect the dual roles of dividends as signals of financial strength and as 

mechanisms for market discipline. Specifically, we posit that regular dividend payments bolster 

stability by fostering transparency and accountability, which may restrain excessive risk-taking 

behaviors. Additionally, we hypothesize that the stabilizing influence of dividend payouts 

diminishes when payout levels become excessive, potentially leading to increased risk as banks 

deplete capital reserves. By assessing how dividends interact with opacity to influence risk-

taking, this study contributes to the broader discourse on the use of dividend policies as 

prudential tools within regulatory frameworks aimed at promoting bank stability. 

1.2.3.1.  Furthered Considerations: Bank vs Market-driven Environments 

Banking systems in Europe and the U.S. operate within distinct market structures and regulatory 

frameworks, influencing how opacity—measured here through analyst forecast bias and 

dispersion—affects risk. European banks may experience different risk dynamics than U.S. 

banks, where market discipline plays a larger role in moderating risk-taking behavior. Given 

these structural differences, the relationships between opacity, analyst pressure, and bank 

stability are likely to vary across regions. To test these additional considerations, this study 

analyzes how the proposed hypotheses apply in different market contexts, specifically 

examining whether the impact of opacity, analyst pressure, and dividend policies on risk-taking 

and bank performance diverges between bank-driven and market-driven environments. 

1.3. Econometric Specification and Methodology 

In the preceding discussion, we established the relationship between bank risk-taking, stability, 

and future stock returns with respect to bank-specific factors such as opacity, analyst coverage, 

dividend payout policy, and bank business models. Drawing on this framework and controlling 
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for other variables, as outlined in Beck et al. (2013), we model bank risk-taking, stability, and 

future stock returns as functions of bank-level opacity (derived from analysts’ forecast errors 

and dispersion), analyst pressure (including coverage, recommendations, and revisions), and 

dividend payout policy. The general econometric model is specified as follows: 

𝑅𝑖𝑠𝑘 𝑖,𝑡 = 𝛼 + ß 𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 + ∑ 𝜌𝑘𝐴𝑛𝑎𝑙𝑦𝑠𝑡_𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑘,𝑖,𝑡−1 + Ƴ  𝐷𝐼𝑉_𝑃𝑜𝑙𝑖𝑐𝑦 𝑖,𝑡−1 +
𝑚

𝑘=1

∑ 𝜑𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑛,𝑖,𝑡  +  
𝑝

𝑛=1
𝜀𝑖,𝑡  

(1) 

    where Risk represents bank risk, as explained in Section 1. 4.1, while Opacity serves as a 

proxy for bank opacity, derived from analysts’ forecast errors and dispersion. Analyst_Pressure 

encompasses proxies such as analyst coverage, recommendations, and revisions, whereas 

DIV_Policy reflects the bank’s dividend payout policy. Controls include additional control 

variables as defined in Section 1. 4. The parameters β, ρ, and γ are the coefficients to be 

estimated. The variable m indicates the number of variables within the Analyst_Pressure 

category, ranging from 1 to 4, and p represents the number of control variables, ranging from 1 

to 7. The error term ε is assumed to have a mean of zero and a constant variance σ². 

To account for potential nonlinearities in the effects of opacity, analyst pressure, and 

dividend payout on bank risk-taking, we reformulate Eq. (1) as follows: 

𝑅𝑖𝑠𝑘 𝑖,𝑡 = 𝛼 + ß𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1  +  ∑ 𝜌𝑘𝐴𝑛𝑎𝑙𝑦𝑠𝑡_𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑘,𝑖,𝑡−1 + Ƴ  𝐷𝐼𝑉𝑃𝑜𝑙𝑖𝑐𝑦 𝑖,𝑡−1
+

𝑚

𝑘=1

 (  ∑ µ𝑘𝐴𝑛𝑎𝑙𝑦𝑠𝑡_𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑘,𝑖,𝑡−1 + 𝛼  𝐷𝐼𝑉𝑃𝑜𝑙𝑖𝑐𝑦 𝑖,𝑡−1

𝑚

𝑘=1
  ) *𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 +

∑ 𝜑𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑛,𝑖𝑡  +  
𝑝

𝑛=1
𝜀𝑖,𝑡  

      

(2)   

In this formulation, the interaction term captures the non-linear effects of analyst pressure 

and dividend policy on opacity's impact on bank risk-taking. This approach allows us to 

comprehensively assess how these variables, both individually and interactively, influence bank 

risk-taking and stability. 
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1.4.  Measurement and Data  

1.4.1. Measuring Bank Risk 

To assess bank risk and profitability, we compute several accounting-based indicators. 

Profitability is measured using the Return on Assets (ROA), defined as the ratio of net income 

to total assets. For bank risk-taking, we utilize the standard deviation of the return on assets 

(SDROA), calculated over a rolling window of three years ([t−2, t]). A higher SDROA indicates 

greater risk-taking. Additionally, we employ the Z-Score as a proxy for bank default risk, 

computed as proposed by Boyd and Graham (1986): 

𝑍 − 𝑆𝑐𝑜𝑟𝑒𝑖,𝑡 =
𝐸𝑄𝑈𝐼𝑇𝑌𝑖,𝑡 + + 𝑀𝑅𝑂𝐴𝑖,𝑡 

𝜎𝑝(𝑅𝑂𝐴)
 

 (3) 

where MROA represents the three-year rolling average of ROA, EQUITY is the ratio of 

total equity to total assets, and 𝜎𝑝(𝑅𝑂𝐴) denotes the standard deviation of ROA over the same 

rolling window.  The Z-Score is a well-established measure of bank soundness or solvency, 

with lower values indicating a higher probability of failure9. For further granularity, we 

decompose the Z-Score into Z1SCORE (leverage risk) and Z2SCORE (asset risk), as detailed 

by Goyeau and Tarazi (1992) and Lepetit et al. (2008). This decomposition allows us to discern 

whether changes in the Z-Score are driven by asset risk or leverage risk. We also incorporate 

the market-based Z-Score (MZScore) into our risk proxies for a more comprehensive analysis10. 

We complement these accounting-based measures with market-based indicators, particularly 

for listed banks, as accounting variables may not fully reflect sudden shifts in bank profit 

volatility and overall risk11. We estimate systematic and idiosyncratic risks using the market 

model:     

𝑅𝑖,𝑡 =  𝛼 + 𝛽𝑅𝑚,𝑡 +  𝜀𝑗,𝑡 

                                                                               (4) 

                                                      
9 e.g., Lepetit and Strobel, (2013); Köhler, (2015); Mollah et al., (2016); Mergaerts and Vennet, (2016). 
10 The Market-based ZScore is calculated using the formula: MZScore = 100 + (Return/std(Return)), where Return 

and std(Return) are expressed as percentages. Return is the mean of daily bank stock returns over a calendar year. 

The MZScore standardizes how much a stock's return deviates from its average performance in relation to its 

volatility. 
11 The literature utilizes various risk measures, including beta and the standard deviation of residuals from a 

regression of daily stock returns on market portfolio returns (Rozeff, 1982; Li & Zhao, 2008; Hoberg & Prabhala, 

2009). Other common risk measures include the standard deviation of stock returns or the residuals from a 

regression of excess returns on the three Fama and French (1992) factors. 
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Where Ri,t  represents the daily return on the stock of bank i, and Rm,t is the daily return of 

the Local Market Index (LI). For our sample of U.S. and European banks, we utilize 26 Local 

Market Indexes, as detailed in Appendix A, sourced from Thomson Reuters DataStream. 

Following established methodologies (e.g., Pathan, 2009), systematic risk (BETA) 12 is 

captured by the estimated coefficient β, while total risk (TRit) is represented by the annual 

standard deviation of the bank's daily stock returns. For robustness, we measure default risk 

using Merton’s distance to default (DD) and default probability (PD), derived from the option 

pricing model of Black and Scholes (1973) and Merton (1974). The formulas for distance-to-

default (DD) and default probability (PD) are as follows: 

𝐷𝐷𝑖,𝑡 =

ln (
𝑉𝐴𝑖𝑡

𝐿𝑖𝑡
) + ( 𝑟𝑓 − 

𝜎2
𝐴,𝑖𝑡

2  ) × 𝑇

σ𝐴,𝑖𝑡 √𝑇
 

(5) 

PD=1−N(DD) 

(6) 

where VA i,t is the market value of the bank’s assets, L i,t is the book value of debt, T is its 

maturity, rf is the risk-free interest rate (10-year Government Bond Yields: Main (Including 

Benchmark) for the Euro Area & US, Percent, Monthly), and σ A is the volatility of the bank’s 

assets. DD is computed as the number of standard deviations between the expected asset value 

at maturity T and debt threshold and the PD, defined as the probability of the asset value below 

denotes the relation with liability threshold at the end of the time horizon T. Details on the 

computation of Merton’s distance to default (DD) are provided in Appendix B. Additionally, 

we consider Price Volatility (Price_VOL) as a measure of a stock's annual price fluctuation 

from its mean. For example, a stock with 20% price volatility indicates a historical variation of 

±20% from its average annual price.  

Fig. B.1 in Appendix B displays the distribution of key bank risk measures, including 

solvency and profitability (Z-Score, SD ROA, Total Risk) and market and credit risk metrics 

(Beta, Price Volatility, Distance to Default). 

                                                      
12 Systematic Risk (Beta, β): Beta measures the relationship between a stock's volatility and the overall market's 

volatility. This coefficient is calculated using the percentage changes in price over a period of 23 to 35 consecutive 

month-end data points, compared to a local market index. Beta indicates the extent to which a security's return 

tends to move in tandem with the overall stock market.  
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1.4.2. Measuring Opacity using Analyst EPS Forecasts 

In this section, we outline the construction of our opacity measures. Our approach builds on the 

intuition provided by Morgan (2002), Flannery et al. (2004), Anolli et al. (2014), and Fosu et 

al. (2017), which suggests that increased uncertainty about an institution's future tends to reduce 

the accuracy of EPS forecasts. Accordingly, we use these proxies as our measures of opacity in 

this study. Specifically, we measure analysts’ forecast error as the absolute value of the 

difference between the mean analysts’ forecasts and the corresponding firm-year’s actual 

earnings per share (EPS), deflated by the share price at the end of the period: 

𝐹𝐸 − 𝐸𝑃𝑆𝑖,𝑡 = |
𝐴𝐸𝑃𝑆𝑖,𝑡 −  𝐹𝐸𝑃𝑆𝑖,𝑡 

𝑃𝑟𝑖𝑐𝑒𝑖,𝑡
| 

(7) 

This alternative measure of opacity is calculated as the standard deviation of analyst 

forecasts of earnings per share (EPS), scaled by the share price at the end of the period. It 

represents the level of disagreement or dispersion among analysts regarding future EPS 

estimates, providing insight into the uncertainty and variation in market expectations: 

               𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑖,𝑡 =
𝜎(𝐹𝐸𝑃𝑆 𝑖,𝑡)

𝑃𝑟𝑖𝑐𝑒𝑖,𝑡
    

                                                                                  (8) 

where 𝐹𝐸𝑃𝑆𝑖,𝑡 represents the average of all earnings forecasts for bank i in fiscal year t; 

𝐴𝐸𝑃𝑆𝑖,𝑡 is the actual earnings per share for bank i in fiscal year t; and 𝑃𝑟𝑖𝑐𝑒𝑖,𝑡is the share price 

of bank i at the end of fiscal year t. 

1.4.3. Measuring Analyst Pressure:  Coverage Effect  

Analyst coverage is primarily quantified by the number of analysts monitoring a bank in the 

prior year (t−1). Additionally, we use the natural logarithm of analyst coverage to capture 

potential changes over time. To account for the possibility that analyst coverage is 

endogenous—where larger banks or those with higher returns on assets (ROA) are more likely 

to attract analysts (Das et al., 2006; Lee and So, 2017)—we consider several factors influencing 

analyst coverage. These factors include firm size, past performance, growth, external financing 

activities, and business volatility, all of which may also influence a bank’s profitability and risk 

(Bhushan, 1989; Dechow & Dichev, 2002; Kasznik, 1999). To address this potential 

endogeneity, following Yu (2008) and Lee and So (2017), we create an alternative measure 

called Residual_Coverage. This variable is derived as the residual from a regression of Analyst 
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Coverage on Bank Size (measured as the natural logarithm of assets) and Past Performance 

(measured as lagged ROA), controlling for year-fixed effects: 

𝐴𝑛𝑎𝑙𝑦𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖,𝑡 =  𝛼 + 𝛽1𝐵𝑎𝑛𝑘 𝑆𝑖𝑧𝑒𝑖,𝑡−1 + 𝛽2𝐵𝑃𝑎𝑠𝑡 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖,𝑡−1 +
 𝑌𝑒𝑎𝑟 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 +  𝜀𝑖,𝑡  

      (9) 

The residuals from this model, labeled as Residual_Coverage, serve as an alternative proxy for 

analyst coverage13.  

1.4.4. Measuring Analyst Pressure:  Informational Effect  

To assess the predictive ability and perceived value of analyst reports—especially 

recommendations—by market participants, we use proxies based on the distribution of 

consensus recommendation levels and changes. Specifically, we include Recommendation 

Consensus (REC_Con), with values ranging from 1 for "Strong Buy" to 5 for "Strong Sell," 

and Recommendation Revisions, capturing the frequency of upgrades (REC_Rev_Up) and 

downgrades (REC_Rev_Dn). For easier interpretation, we express recommendation 

distributions as percentages of favorable, non-favorable, and hold recommendations, along with 

dummy variables for buy and sell recommendations (e.g., REC_BUY, REC_SELL). 

1.4.5. Measuring Bank Dividend Payout  

We measure Dividend Payout Per Share (%) by dividing Stock Dividends Per Share by 

Earnings Per Share and multiplying the result by 100. To ensure robustness, we include an 

additional proxy: Growth in Dividend Yield, calculated by dividing Dividends Per Share by the 

Market Price at Year-End and multiplying by 100. These metrics provide a comprehensive view 

of dividend distribution and yield growth for analysis. 

1.4.6. Control Variables 

Our econometric models incorporate several bank-specific control variables that are expected 

to impact profitability and risk. We include the natural logarithm of total assets (SIZE) and the 

ratio of equity to total assets (EQUITY2A) to account for bank size and capitalization, 

respectively. Larger banks, benefiting from diversification and economies of scale, may achieve 

higher profitability through non-interest-generating activities (Hughes et al., 2001). However, 

                                                      
13 The results remain consistent across all tests, whether using the raw number of analysts, the natural logarithm, 

or residual coverage as the measure. 
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their complexity may increase agency costs, potentially reducing profitability (Berger et al., 

1987). Regarding risk, large banks can diversify more effectively, potentially lowering the risk 

(Demsetz & Strahan, 1997), but may also engage in riskier behavior due to too-big-to-fail 

policies (Galloway et al., 1997). Credit risk is measured by the ratio of non-performing loans 

to gross loans (NPL), which includes loans that are non-accrual or overdue by 90 days or more. 

To capture differences in business models, we use the ratio of net noninterest income to total 

assets (NI2A), following Köhler (2015). Banks with higher noninterest income typically face 

increased risk and lower risk-adjusted profitability (Stiroh, 2004; Lepetit et al., 2008; 

Demirguc-Kunt & Huizinga, 2010; Altunbas et al., 2011). Non-interest income can also be 

more volatile, potentially destabilizing banks (Liikanen, 2012). We also consider the ratio of 

deposits to total assets (DEPOSITS), as banks with higher deposit ratios may take on greater 

risk, especially when deposits are insured, which reduces depositor incentives to monitor bank 

activities (Demirguc-Kunt & Detragiache, 2002; Barth et al., 2004). To account for 

macroeconomic conditions, we include the real GDP growth rate (GDPgr) and the inflation 

rate, as higher GDP growth is generally associated with increased profitability (Molyneux & 

Thornton, 1992; Albertazzi & Gambacorta, 2009) and reduced risk (Beltratti & Stulz, 2012; 

Distinguin et al., 2013). 

1.4.7. Data Collection and Preprocessing 

We collected consolidated balance sheets, income statements, and market data from the 

Thomson Reuters Datastream database, including daily and monthly stock prices and local 

market indices. Analyst-related data, such as forecasts, recommendations, and coverage, were 

retrieved from the Institutional Brokers Estimate System (I/B/E/S), while macroeconomic 

variables were sourced from Federal Reserve Economic Data (FRED). Our initial sample 

comprised 987 publicly traded commercial banks from the U.S. and Europe, covering 2000 to 

2020. We focused on listed banks due to the availability of detailed market data (e.g., market 

value of assets, dividends) and comprehensive balance sheet information. To refine the sample, 

we filtered for “primary quotes only” and applied sector-specific criteria (GICS sectors: Banks; 

TRBC sectors: Banking services, Banks, and Investment banking and brokerage services), 

yielding 845 listed commercial banks (591 in the U.S. and 254 in Europe). We then excluded 

bank-year observations with negative values for interest income, non-interest income, or stock 

prices to prevent noise or spurious correlations. Banks without analyst coverage were also 

excluded, and each bank holding company was required to have at least three consecutive years 

of data to ensure robustness. After merging datasets and removing incomplete observations, our 
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final sample consisted of 341 banks across 25 countries in the U.S. and Europe, spanning the 

years 2000 to 2020. To mitigate the impact of outliers, we applied winsorization to continuous 

bank-level variables at the 1% and 99% levels. 

1.4.8.  Summary Statistics and Correlation Matrix 

Table 1. 1 provides an overview of the variables used in this study, along with their summary 

statistics. The mean ZScore, an inverse measure of risk-taking, is 66.95, indicating that, on 

average, profits would need to decline approximately 66 times before the average bank faces 

default. The ZScore exhibits high variability (SD = 67.87), with a range from 3.3 to 326.3, 

highlighting significant heterogeneity across banks. The average risk-adjusted profit is 6.9, while 

risk-adjusted capital averages 59.8, indicating that bank stability largely relies on capitalization. 

Both metrics display substantial variability. For market-based risk measures, the mean values 

are as follows: total risk (1.89%), systematic risk (0.8), market-based ZScore (55.17), and 

distance to default (1.26). Most market measures show moderate variability, though the distance 

to default has greater fluctuations. The two opacity measures, analysts’ forecast error (0.24) and 

forecast dispersion (0.12), reveal high variability, with maximum values of 8.27 and 2.55, 

respectively. The average analyst recommendation consensus is 2.56, indicating a balance 

between buy and hold recommendations, with an average of seven analysts covering each bank.  

Table 1. 2 presents the correlation matrix for key explanatory variables. Overall, correlation 

coefficients are low, with some notable relationships between bank size (Log(Assets)), Equity 

(equity-to-assets ratio), and analyst coverage. To address multicollinearity, we orthogonalized 

Equity and Analyst coverage concerning Log(Assets). The summary statistics and pairwise 

correlations suggest our sample does not suffer from significant outliers or limited variability. 

The correlation between Opacity_F_Er (forecast error) and Coverage is 0.0672, suggesting a 

weak positive relationship, indicating that opacity may persist despite higher analyst coverage. 

This could be due to analyst herding, where analysts converge on similar predictions, leading to 

high forecast error despite greater coverage, especially in opaque environments. The correlation 

between Opacity_F_Er and Opacity_FD (forecast dispersion) is 0.439, indicating that banks 

with higher forecast error (i.e., more opacity) also tend to have greater forecast dispersion, 

reinforcing the notion that opacity increases uncertainty among analysts. The correlation 

between DIV_Payout and Opacity_F_Er is slightly negative at -0.026, suggesting that banks 

with higher dividend payouts tend to have marginally lower opacity, aligning with the 

Dividends-Opacity Channel, where dividend payments impose market discipline. However, the 
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relationship is very weak, suggesting additional factors may influence opacity. Non-performing 

loans (NPL) show a weak positive correlation with both Opacity_F_Er (0.1543) and Opacity_FD 

(0.1111), indicating that banks with higher credit risk are likelier to engage in opaque practices, 

possibly to obscure underlying issues. Inflation and GDP growth show minimal correlation with 

opacity (measured by forecast error and dispersion), suggesting that macroeconomic conditions 

have little impact on the accuracy or consistency of analysts' predictions in this sample. 

 Additionally, Table B2 in Appendix B provides the correlation matrix for risk and opacity 

variables, detailing their significance levels and further illustrating the relationship between 

opacity and bank risk-taking behavior. We also explore the relationship between opacity and 

risk-taking by plotting detrended measures of opacity, derived from analysts’ forecast error and 

dispersion, against detrended risk-taking, represented by the Z-score. The scatter plots with fitted 

trend lines in Figures 1 and 2 illustrate a negative correlation between bank opacity and risk-

taking. 
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Table 1.1 Variables Definition and Summary Statistics 

 

Variable Description

Dependent variables Obs Mean Std. Dev. Min Max

SDROA Three-year rolling-window standard deviation of the return on assets (%) 5,780 0.38 0.53 0.00 3.25

ZScore
ZScore = (MROA + Equity)/SDROA, Equity is the ratio of total equity to total assets, MROA is the three-

year rolling window average of ROA
5,780 66.95 67.88 3.37 326.66

Z1Score Measure of leverage risk. Z1Score = Equity/SDROA 5,780 59.87 60.87 3.33 292.84

Z2Score Measure of bank asset risk. Z2Score = ROA/SDROA 5,780 6.98 7.41 -0.53 34.70

MZScore
Market based Zscore: 100+ (mean of daily stock return within a calendar year(%) /standard deviation of daily 

stock returns within a calendar year (%)
5,759 55.18 31.28 0.00 413.14

TR Market based bank risk defined as the standard deviation of daily stock returns within a calendar year (%) 5,780 1.86 1.37 0.00 8.57

BETA Systematic risk.Shows the relationship between the volatility of the stock and the volatility of the market. 5,780 0.84 0.57 -1.24 2.92

Price_VOL A measure of a stock's average annual price movement to a high and low from a mean price for each year. 5,780 23.15 7.26 5.89 47.52

DD_mert
Bank distance to default, calculated using the 'mertonByTimeSeries' method. For further details, refer to 

Appendix B.
5,780 1.25 10.08 -33.18 80.53

PD_mert Bank probability of default, calculated using the 'mertonByTimeSeries' method. 5,780 0.52 0.42 0.00 1.00

Variables Of Interest 

Analysts Forecasts and Recommendations

Forecast Error

Measure of Opacity:1Y_FWD_EPS_Forecast_Error: This is calculated as the absolute value of the difference 

between the mean analyst forecast of earnings per share (EPS) and the actual EPS, scaled by the share price at 

the end of the period.

5,780 0.24 1.05 0.00 8.27

Forecast Dispersion
This alternative measure of opacity is calculated as the standard deviation of analyst forecasts of earnings per 

share (EPS), scaled by the share price at the end of the period. 
5,780 0.12 0.36 0.00 2.55

Forecast_Optimism
The dummy variable is equal to one if the difference between Actual earnings and forecasted earnings is 

negative which indicates overestimation or negative earning surprise.
5,780 1.46 6.72 -9.96 39.12

Coverage Analyst_Coverage :Number of analysts per bank 5,780 7.18 9.05 0.00 46.00

REC_Con Recommendation consensus (average), 1 = Strong buy, 5 = Strong sell, 5,780 2.56 0.52 1.00 5.00

REC_Rev_Dn Recommendations revisions Downgrade :NO. OF RECMND DOWN (revision) 5,780 0.17 0.54 0.00 7.00

REC_Rev_Up Recommendations revisions: NO. OF RECMND UP(revision) 5,780 0.14 0.46 0.00 5.00

REC_Cons_ BUY % REC BUY % 5,780 38.52 30.01 0.00 100.00

REC_Cons_  HOLD % REC HOLD % 5,780 53.55 29.46 0.00 100.00

REC_Cons_  SELL % REC  SELL% 5,780 7.93 14.94 0.00 100.00

REC_BUY Dummy variable equal to one for buy, moderate buy, and strong buy recommendations; zero otherwise. 5,780 0.73 0.44 0.00 1.00

REC_SELL Dummy variable equal to one for sell, moderate sell, and strong sell recommendations; zero otherwise. 5,780 0.11 0.31 0.00 1.00

DIV_Payout Dividend Payout Per Share (%) :Dividends Per Share / Earnings Per Share * 100 5,780 32.07 22.70 0.00 91.50

DIV_Yield Stock Performance Ratio,Dividend Yield - Close, Dividends Per Share / Market Price-Year End * 100 5,780 2.39 1.82 0.00 9.09

Control Variables 

DEPOSITS Ratio of customer deposits to total assets (%) 5,780 70.55 15.19 24.79 89.87

EQUITY2A Ratio of Equity % Total Assets 5,780 10.05 3.50 2.88 23.48

SIZE Natural logarithm of total assets 5,780 9.90 0.91 7.73 12.53

NI2A Ratio of net noninterest income to total assets (%) 5,780 1.39 1.38 0.00 29.22

NPL Non-Performing Loans % Total Loans 5,780 2.46 3.55 0.01 23.63

MTBV
Market to Book Value of equity capital(%) proxy for Franchise Value,The market value of equity capital 

divided by total book value of equity capital* 100
5,780 132.70 65.08 19.00 378.00

GDPgr GDP growth (annual %) 5,780 1.62 2.20 -5.79 6.12

Inflation Inflation, consumer prices (annual %) 5,780 1.94 1.24 -0.69 6.36

Table 1.1 describes the variables used in the analysis, with summary statistics including observations, mean, standard deviation, 

minimum, and maximum values. Variables are categorized into Dependent Variables, Variables of Interest, and Control 

Variables.  
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Table 1.2 Correlation Matrix. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Opacity_F_Er 1

2 Opacity_FD 0.439 1

3 Coverage 0.0672 0.0118 1

4 REC_Consensus 0.0068 0.0406 0.0732 1

5 REC_Rev_Dn 0.0354 0.0413 0.2604 0.093 1

6 REC_Rev_Up 0.0654 0.0726 0.3024 0.0229 0.2155 1

7 DIV_Payout -0.026 -0.1023 0.0898 0.1385 0.003 0.0044 1

8 NPL 0.1543 0.1111 0.142 0.0518 0.1309 0.1532 -0.1813 1

9 SIZEnew -0.0227 -0.0065 0.0149 -0.1561 0.0063 0.0243 -0.0419 0.0188 1

10 EQUITY2A -0.0709 -0.0455 -0.1195 -0.0737 -0.1595 -0.1474 -0.0034 -0.073 -0.0889 1

11 NI2A 0.1693 0.0442 0.1175 0.0355 0.0354 0.0569 0.0376 0.1177 -0.1341 0.1313 1

12 DEPOSITS -0.1244 -0.072 -0.2708 -0.063 -0.2104 -0.2141 -0.0745 -0.0819 -0.0972 0.3333 -0.1267 1

13 GDPgr -0.0496 -0.029 0.0015 0.0451 -0.027 -0.0096 -0.0277 -0.1277 -0.1659 0.0614 0.0092 0.0585 1

14 Inflation -0.0157 -0.0208 -0.113 0.054 -0.0345 -0.0298 -0.0603 -0.154 -0.214 0.0607 0.0692 0.0147 0.2723 1

Table 2 displays the correlation matrix for key explanatory variables available in Table 1. 

Fig. 1.1: Scatter plot of detrended opacity and risk-taking. 
This figure shows a scatter plot of detrended opacity, 
measured by analysts’ earnings forecast dispersion, in 
relation to bank risk-taking.  
 

 

Fig. 1.2: Scatter plot of detrended opacity and risk-taking. 
This figure shows a scatter plot of detrended opacity, 
measured by analysts’ earnings forecast error, in relation 
to bank risk-taking. 
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1.5. Empirical Findings and Analysis 

This section presents the core empirical results from estimating Eq. (1), incorporating bank- and 

year-fixed effects to address unobserved heterogeneity. Subsequent sections provide robustness 

checks and marginal effect analyses derived from Eq. (2) to validate the stability and reliability 

of findings. 

1.5.1.  Opacity, Analyst Influence, and Bank Risk Taking 

In this section, we explore the influence of bank opacity, analyst coverage, and dividend policies 

on risk profiles, with model specifications evolving from opacity-only analysis to the inclusion 

of analyst pressure and dividend variables. Table 1. 3 presents the empirical results for Eq. (1), 

where we test the validity of using analyst forecast errors and forecast dispersion as proxies for 

bank opacity. We also examine the effects of these opacity measures, along with analyst pressure 

and dividend payout policies, on bank risk profiles. We begin with Models 1 and 7, where bank 

risk-taking is explained solely by opacity. In both models, the coefficient on opacity is negative 

and statistically significant at the 1% level, providing strong support for Hypothesis 1: Opacity 

increases risk-taking behavior and reduces profit efficiency among banks. In Models 2 and 8, 

we extend the analysis by including traditional determinants of bank risk-taking. We further 

control for analyst pressure, specifically the coverage effect, in Models 3 and 9. Additionally, 

we control for analysts' informational effect through their recommendations and revisions in 

Models 4-5 and 10-11. Finally, we introduce the dividend payout ratio in Models 6 and 12.  

Across all model specifications, the coefficient on opacity remains negative and statistically 

significant at the 1% level. The results suggest that a one-unit increase in opacity leads to at least 

a 4.9% increase in bank risk-taking. In fully specified models (Models 6 and 12), a one standard 

deviation increase in opacity corresponds to a 6-15% rise in bank risk-taking. Our results indicate 

that analysts’ earnings forecast dispersion and bias are informative about future bank 

profitability and risk, supporting the notion of analysts' informational efficiency as a forward-

looking proxy for measuring opacity in banks.  

The coefficient on the coverage index is positive in Models 3-6 and 9-12, indicating that 

increased analyst coverage is associated with reduced bank risk-taking. Specifically, in Models 

9 and 12, a one standard deviation increase in analyst coverage is associated with a 7.4-8% 

decrease in risk-taking, with this effect being statistically significant at the 1% level. This 

supports our second hypothesis: Higher Analyst Coverage disciplines banks from risk-taking. 

Higher analyst coverage is generally associated with lower default risk and less risk-taking, 
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therefore it has a mitigating effect on risk. Models 4-6 and 10-12 reveal a significant, negative 

relationship between analyst recommendations (REC_CON) and default risk. Specifically, sell-

oriented recommendations (higher REC_CON values) are associated with elevated default risk, 

as indicated by the negative and significant coefficients in the ZScore models.  These findings 

reinforce the predictive power of analyst recommendations in signaling bankruptcy risk, 

highlighting that analysts can effectively identify banks with higher risk levels. The association 

of sell recommendations with increased bank risk indicates that analysts accurately recognize 

and communicate risks to the market, underscoring their informative role in predicting bank 

stability and influencing market dynamics. For recommendation revisions, Models 5-6 and 11-

12 indicate that downgrade revisions are significantly associated with higher bank risk, 

particularly when the initial recommendation is "sell" or "strong sell." Conversely, while 

upgrade revisions are associated with higher bank solvency when the initial recommendation is 

"buy" or "moderate buy," their effect is not strong or statistically significant. This suggests that 

downgrade revisions carry greater weight in signaling risk, whereas upgrade revisions offer a 

weaker and less consistent signal regarding bank stability. 

The dividend payout ratio is positively and significantly correlated with bank solvency. A 

one standard deviation increase in the dividend payout ratio corresponds to a 12.6-12.7% 

improvement in bank stability, supporting our third hypothesis that dividend payments enhance 

market discipline and contribute to higher bank stability. This suggests that banks distributing 

more profits to shareholders through dividends tend to exhibit greater stability and are less 

likely to engage in aggressive risk-taking, reinforcing dividends as signals of financial health 

and prudent management. These results align with the broader literature, which often views 

stable dividend policies as indicators of strong financial discipline. 

Among control variables, a higher non-performing loan (NPL) ratio significantly increases 

risk, indicating a negative effect on stability. Bank size has a positive and significant effect, 

suggesting that larger banks are generally more stable. Similarly, the equity-to-assets ratio 

positively impacts stability, as higher equity levels bolster solvency. The net non-interest 

income to assets variable, however, is not significant, showing no clear association with 

stability in our sample. The deposits-to-assets ratio has a slight negative effect, indicating that 

higher deposit levels may marginally increase risk. Additionally, GDP growth positively and 

significantly impacts stability, suggesting that economic growth supports bank resilience, while 

inflation shows no significant relationship with stability. 
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Table 1.3: Opacity and Bank Risk-Taking-Fixed Effect Estimation Results  

1.5.1.1. Alternative Measures for Analyst Coverage 

We examine alternative metrics for analyst coverage, including logarithmic transformations and 

residual-based measures, to assess coverage effects independently of bank size and performance, 

ensuring robustness against endogeneity. Ln_Coverage accounts for potential nonlinear effects 

over time, while Residual Coverage isolates analyst attention independent of bank size and past 

performance, addressing endogeneity concerns. By regressing analyst coverage on bank size 

This table presents fixed-effects estimation results based on Equation (1), evaluating the impact of opacity on bank risk-

taking, proxied by the natural logarithm of the Z-Score (default risk). Opacity is quantified using analysts’ forecast error 

(absolute deviation of mean forecasts from actual EPS, scaled by share price) and forecast dispersion (standard deviation of 

EPS forecasts, scaled by share price). Analyst coverage is measured as the number of analysts covering a bank in year ttt. 

Additional proxies include Recommendation Consensus (REC_Con) and Recommendation Revisions (upgrades: 

REC_Rev_Up, downgrades: REC_Rev_Dn). Dividend payout (DIV_Payout) is calculated as Stock Dividends Per Share 

divided by Earnings Per Share. Control variables include bank size (log of total assets, SIZE), equity-to-assets ratio 

(EQUITY2A), non-performing loans ratio (NPL), net non-interest income to assets ratio (NI2A), deposits-to-assets ratio 

(DEPOSITS), GDP growth (GDPgr), and inflation. Robust standard errors are clustered at the bank level. ***, **, and * 

indicate significance at the 1%, 5%, and 10% levels, respectively. 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Opacity -0.206*** -0.148*** -0.149*** -0.145*** -0.160*** -0.149*** -0.0849** -0.0747*** -0.0730** -0.0692** -0.0707** -0.0600**

(-5.95) (-4.69) (-4.77) (-4.60) (-4.76) (-4.49) (-2.55) (-2.61) (-2.59) (-2.52) (-2.49) (-2.33)

Coverage 0.0103*** 0.0102*** 0.0118*** 0.0103*** 0.00979*** 0.00971*** 0.0114*** 0.00991*** 0.00951***

3.67 3.58 4.39 3.77 3.43 3.35 4.15 3.57 3.24

REC_Con -0.147*** -0.128*** -0.147*** -0.132***

(-4.39) (-3.66) (-4.33) (-3.71)

REC_Rev_Dn -0.0557** -0.0466** -0.0491** -0.0404*

(-2.58) (-2.15) (-2.24) (-1.83)

REC_Rev_Up -0.0445 -0.0488* -0.0440* -0.0488*

(-1.65) (-1.71) (-1.69) (-1.76)

DIV_Payout 0.00559*** 0.00556***

5.93 5.82

NPL -0.0744*** -0.0747*** -0.0730*** -0.0695*** -0.0643*** -0.0773*** -0.0777*** -0.0759*** -0.0728*** -0.0675***

(-8.20) (-8.23) (-8.19) (-7.67) (-7.40) (-8.53) (-8.54) (-8.48) (-8.00) (-7.72)

SIZEnew 0.488*** 0.483*** 0.438*** 0.589*** 0.576*** 0.515*** 0.510*** 0.464*** 0.613*** 0.596***

5.07 5.05 4.65 5.93 5.8 5.32 5.29 4.9 6.1 5.93

EQUITY2A 0.0460*** 0.0459*** 0.0452*** 0.0491*** 0.0499*** 0.0463*** 0.0461*** 0.0455*** 0.0492*** 0.0499***

6.34 6.39 6.51 6.56 6.88 6.27 6.31 6.43 6.43 6.75

NI2A -0.0418* -0.0392 -0.0388 -0.0353 -0.0361 -0.0427 -0.0403 -0.0399 -0.0361 -0.037

(-1.67) (-1.58) (-1.58) (-1.41) (-1.45) (-1.63) (-1.54) (-1.54) (-1.31) (-1.35)

DEPOSITS -0.00340** -0.00354** -0.00395** -0.00288* -0.00298* -0.00332** -0.00345** -0.00385** -0.00277* -0.00288

(-1.98) (-2.12) (-2.29) (-1.77) (-1.66) (-1.98) (-2.11) (-2.28) (-1.74) (-1.63)

GDPgr 0.0883*** 0.0867*** 0.0861*** 0.0803*** 0.0829*** 0.0891*** 0.0876*** 0.0870*** 0.0814*** 0.0838***

14.59 14.24 14.35 13.46 13.6 14.67 14.34 14.45 13.62 13.73

Inflation -0.00391 0.000575 0.00443 0.0041 0.0114 -0.00249 0.0018 0.00566 0.00539 0.0128

(-0.30) 0.04 0.34 0.31 0.87 (-0.19) 0.14 0.44 0.42 0.99

_cons 3.768*** 3.632*** 3.557*** 3.958*** 3.451*** 3.578*** 3.731*** 3.604*** 3.533*** 3.933*** 3.423*** 3.563***

449.07 25.35 27.09 25.85 26.17 21.51 709.01 25.34 26.93 25.7 25.78 21.43

Observations 5775 5775 5775 5775 5435 5435 5775 5775 5775 5775 5435 5435

Number of banks 340 340 340 340 340 340 340 340 340 340 340 340

R-square 0.0196 0.151 0.154 0.16 0.156 0.171 0.00726 0.147 0.15 0.156 0.149 0.165

Dependent Variable: ln(Z-Score)

Analyst Forecast Error Analyst Forecast Dispersion
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(log of total assets), past performance (lagged ROA), and year-fixed effects, we derive Residual 

Coverage as the unexplained variation. As shown in Appendix C (Tables C1 and C2), these 

alternative proxies remain positive and statistically significant against default risk measures, 

reinforcing our main findings. This consistency confirms that greater analyst scrutiny is linked 

to higher default risk, supporting our hypothesis. 

1.5.1.2. Threshold Effects of Dividend Payout and Analyst Coverage on Stability 

While moderate dividend payouts have been historically linked to improved bank solvency and 

enhanced market discipline, a closer examination reveals a more nuanced relationship at higher 

payout levels. As shown in Table 1.4, when the dividend payout ratio exceeds the 75th 

percentile, the coefficient shifts to negative territory, indicating a departure from the expected 

stabilizing effect. This reversal suggests that beyond a certain threshold, excessive dividend 

distributions may weaken a bank’s financial resilience. While attractive to shareholders, large 

dividend payouts can deplete the capital buffer that banks need to effectively manage risks. As 

internal resources shrink, banks may resort to riskier investment strategies to sustain 

profitability and meet shareholder demands. Consequently, rather than reinforcing market 

discipline, excessive dividends could incentivize risk-taking behaviors that ultimately 

jeopardize financial stability14. The analysis shows that the negative effect of opacity on the Z-

Score lessens with higher analyst coverage, with the opacity coefficient dropping from -0.225 

below 50% coverage to -0.117 above 50% (Table 1.4, columns 4-5). This suggests that 

increased analyst scrutiny improves the information environment, reducing opacity’s adverse 

impact on bank risk. Additionally, REC_Con coefficients strengthen in columns 5-7, indicating 

that negative recommendations ("sell") have a more pronounced impact on bank stability with 

coverage above 75%, implying that higher coverage amplifies market reactions to negative 

recommendations, potentially driving riskier behaviors or exacerbating vulnerabilities in banks. 

 

 

 

 

                                                      
14 As a robustness check, we used an alternative proxy for dividends, specifically the dividend yield, and the 

results remain consistent with the main indicator, which is the dividend payout ratio. 
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Table 1.4: Threshold Effects of Dividend Payout and Analyst Coverage on Stability. 

1.5.1.3. Employing Market-Based Risk Metrics for Robustness 

To capture rapid risk fluctuations, this analysis incorporates market-based metrics such as total 

risk and systematic risk alongside traditional accounting measures, offering a more dynamic 

perspective on opacity’s impact. The heightened market pressure stemming from analyst 

forecasts can induce a more volatile market environment, with frequent fluctuations in asset 

prices potentially bringing banks closer to their default thresholds. We hypothesize that stock 

prices respond to analyst recommendations and revisions, impacting market-based return 

volatility and risk measures like MZScore and TR. Additionally, we decompose ZScore into 

Z1Score (risk-adjusted capital) and Z2Score (risk-adjusted profit) alongside market-based risk 

measures introduced in Section 1.4.1. Table 1.5 shows that across models (1-3) and (7-9) for 

ZScore, Z1Score, and Z2Score, the opacity coefficient is consistently negative and significant 

at the 1% level, supporting Hypothesis 1 that higher opacity correlates with increased bank risk-

taking. Models (4) and (10) with MZScore yield similar results, confirming robustness. For total 

risk (TR) and earnings volatility (SDROA) in models (5-6) and (11-12), opacity remains 

positively associated with bank risk. These findings consistently indicate that higher opacity, 

measured by forecast error or dispersion, aligns with increased profit volatility and overall risk, 

This table presents the fixed-effect estimation results based on Eq. (1), analyzing the impact of opacity on bank 
stability, with a focus on the moderating effects of dividend payout ratio, analyst coverage. Bank risk-taking is 
proxied by the natural logarithm of the Z-Score. Opacity is quantified using analysts’ forecast error (absolute 
deviation of mean forecasts from actual EPS, scaled by share price) and forecast dispersion (standard deviation of 
EPS forecasts, scaled by share price). The analysis is segmented by different thresholds of dividend payout ratios 
(<50%, >50%, >75%), analyst coverage (<50%, >50%, >75%), and dividend yield (<50%, >50%, >75%). All 
estimations include time-fixed effects, and robust standard errors clustered at the bank level are displayed in 
parentheses. Statistical significance is indicated by ***, **, and * for the 1%, 5%, and 10% levels, respectively. 
Control variables are included but not shown for brevity. 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

< 50th% > 50th% > 75th% < 50th% > 50th% > 75th% < 50th% > 50th% > 75th%

Opacity -0.129*** -0.114** -0.0981* -0.225*** -0.117*** -0.115*** -0.121*** -0.231*** -0.146**

(-2.79) (-2.37) (-1.96) (-5.15) (-3.49) (-2.88) (-3.06) (-2.89) (-2.29)

Dividend_Payout 0.0108*** 0.00205 -0.00599** 0.00576*** 0.00524*** 0.00571*** 0.204*** -0.0510*** -0.0830***

4.33 1.37 (-2.57)   3.57 4.74 3.84 -5.33 (-3.20) (-3.85)

Coverage 0.0141*** 0.00515* 0.00716* 0.0382 0.0123*** 0.00908* 0.0105** 0.00665** 0.0101***

3.21 1.81 1.86 0.95 3.81 1.94 2.31 2.39 2.99

REC_Con -0.165*** -0.0972* -0.0563 -0.0966* -0.198*** -0.221*** -0.150*** -0.102* -0.0589

(-3.68) (-1.78) (-0.71) (-1.95) (-4.12) (-3.54) (-3.29) (-1.97) (-0.96)

_cons 3.443*** 3.211*** 3.820*** 3.695*** 3.763*** 3.881*** 3.388*** 3.547*** 3.264***
22.02 6.97 5.7 15.74 15.31 11.28 -20.34 -8.67 -6.16

Control Variables yes yes yes yes yes yes yes yes yes
Observations 2725 2710 1361 2192 3243 1554 2700 2576 1390
Number of banks 308 319 263 264 281 172 306 315 272
R-square 0.179 0.126 0.102 0.219 0.171 0.163 0.183 0.168 0.178

Dividend_YieldAnalyst CoverageDividend Payout Ratio

Dependent Variable: ln(Z-Score)
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suggesting that opaque banks, less transparent to investors, often adopt riskier financial 

strategies, heightening vulnerability to instability.  

Analyst coverage shows a positive relationship with default risk proxies (ZScore, Z1Score, 

MZScore) while negatively associated with risk-taking proxies (SDROA and TR), though not 

significant for asset risk (Z2Score). This implies that higher analyst coverage generally 

enhances market monitoring, reducing default risk and curbing risk-taking behaviors. Analyst 

recommendations (REC_CON) show a negative correlation with default risk proxies and a 

positive association with risk-taking proxies, meaning sell-oriented recommendations align 

with higher default risk and risk-taking behaviors. Downgrade revisions (Rec_REV_Dn) 

negatively correlate with default risk and increase volatility, especially with sell 

recommendations. In contrast, upgrade revisions (Rec_REV_Up) show no significant link to 

risk-taking, suggesting stronger market reactions to negative recommendations. These findings 

indicate that analyst recommendations and revisions significantly influence stock prices, 

affecting market-based return volatility and risk measures such as MZScore and TR. Finally, 

Dividend payout ratios positively correlate with default risk proxies while showing a negative 

relationship with risk-taking proxies. Excessive payouts, however, turn this coefficient 

negative, suggesting that moderate payouts improve stability, whereas excessive payouts may 

increase risk.  

Our analysis using alternative risk proxies reveals that diversification into non-interest 

income-generating activities increases risk-taking, as evidenced by SDROA, aligning with 

findings by DeYoung and Roland (2001) and Stiroh (2004a, b, 2006). Higher non-performing 

loans are also positively associated with risk, indicating that banks with greater credit risk 

exhibit lower stability. Moreover, larger banks and those with higher equity ratios are generally 

less risky, whereas banks with a higher deposits-to-assets ratio are more likely to engage in 

excessive risk-taking. 
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Table 1.5: Opacity and Bank Risk – Employing Alternative Risk Metrics for Robustness 

                               

1.5.1.4. Contextual Drivers of Bank Risk: Impacts of Valuation, Volatility, and Size 

This analysis addresses how variables like optimism valuation, indicated by market-to-book 

value, volatility, and bank size, modulate the opacity-risk relationship, highlighting conditions 

where opacity exerts a stronger influence on bank risk. The analysis first focuses on the role of 

a bank's Market-to-Book Value (MTBV) ratio in assessing how perceived valuation affects the 

relationship between risk and opacity, measured by analyst forecast error. The MTBV ratio 

serves as a proxy for market optimism or potential overvaluation, revealing discrepancies 

between perceived and intrinsic value15. For banks with MTBV ratios below and above the 

median, opacity has a statistically significant negative effect on the Z-score, indicating that 

increased opacity undermines bank stability (Table 1.6, Models 1 and 2). Specifically, for banks 

                                                      
15 Prior research links the book-to-market (BTM) effect to earnings announcements, showing that investor 

optimism often leads to the mispricing of growth stocks, which then face larger price reversals after disappointing 

earnings (La Porta et al., 1997; Skinner & Sloan, 2002; Billings & Morton, 2001). 

This table presents fixed-effect estimation results based on Eq. (1), examining the impact of opacity, measured through analyst 

forecast error and forecast dispersion, on various banking risk metrics. Dependent variables include ZScore, Z1Score, Z2Score, 

MZScore, SDROA, and TR across two models (Analyst Forecast Error and Analyst Forecast Dispersion). Time-fixed effects are 

included in all estimations, and robust standard errors clustered at the bank level are reported in parentheses. Statistical significance 

is indicated by ***, **, and * for 1%, 5%, and 10% levels, respectively. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ZScore Z1Score Z2Score MZScore SDROA TR ZScore Z1Score Z2Score MZScore SDROA TR

Opacity -0.149*** -0.140*** -0.394*** -0.0481*** 0.0826*** 0.189*** -0.0600** -0.0539** -0.228*** -0.0327** 0.0192 0.0873*

(-4.49) (-4.44) (-4.70) (-2.81) 3.71 3.48 (-2.33) (-2.16) (-3.32) (-2.26) 1.29 1.73

Coverage 0.0103*** 0.0115*** 0.00559 0.00751*** -0.00351** -0.0140*** 0.00991*** 0.0111*** 0.00423 0.00738*** -0.00335** -0.0135***

3.77 4.19 1.09 6.07 (-2.38) (-3.99) 3.57 4 0.82 5.98 (-2.23) (-3.77)

REC_Con -0.128*** -0.112*** -0.261*** -0.0704*** 0.0677*** 0.154*** -0.132*** -0.116*** -0.264*** -0.0699*** 0.0714*** 0.158***

(-3.66) (-3.28) (-3.93) (-4.47) -3.35 -3.28 (-3.71) (-3.35) (-3.88) (-4.45) -3.47 -3.37

REC_Rev_Dn -0.0466** -0.0505** -0.00442 -0.00479 0.00976 0.0528 -0.0404* -0.0448** 0.0149 -0.0022 0.00693 0.0445

(-2.15) (-2.34) (-0.10) (-0.35) 0.98 1.4 (-1.83) (-2.03) 0.32 (-0.16) 0.68 1.2

REC_Rev_Up -0.0488* -0.0522* 0.0266 0.00602 -0.00471 -0.0113 -0.0488* -0.0525* 0.0314 0.0077 -0.00361 -0.012

(-1.71) (-1.82) 0.38 0.55 (-0.28) (-0.36) (-1.76) (-1.87) 0.46 0.7 (-0.23) (-0.37)

DIV_Payout 0.00559*** 0.00510*** 0.0156*** 0.00187*** -0.00280*** -0.00490*** 0.00556*** 0.00509*** 0.0153*** 0.00183*** -0.00285*** -0.00483***

5.93 5.49 8.44 3.54 (-5.36) (-3.28) 5.82 5.4 8.29 3.52 (-5.36) (-3.25)

NPL -0.0643*** -0.0571*** -0.173*** -0.0357*** 0.0340*** 0.0864*** -0.0675*** -0.0601*** -0.181*** -0.0363*** 0.0358*** 0.0904***

(-7.40) (-7.14) (-8.78) (-7.14) -6.87 -6.51 (-7.72) (-7.44) (-9.00) (-7.28) -7.13 -6.73

SIZEnew 0.576*** 0.545*** 0.924*** 0.492*** -0.254*** -0.614*** 0.596*** 0.564*** 0.977*** 0.503*** -0.266*** -0.640***

5.8 5.56 5.51 8.62 (-4.73) (-2.90) 5.93 5.69 5.88 8.86 (-4.91) (-3.04)

EQUITY2A 0.0499*** 0.0533*** 0.0224* 0.0136*** 0.00236 -0.0284*** 0.0499*** 0.0533*** 0.0228** 0.0137*** 0.00242 -0.0285***

6.88 7.07 1.95 4.21 0.55 (-3.19) 6.75 6.96 1.97 4.22 0.55 (-3.16)

NI2A -0.0361 -0.0404 0.0313 0.0116 0.0374** -0.0381* -0.037 -0.0413 0.0304 0.0101 0.0382** -0.0372

(-1.45) (-1.52) 0.82 1.18 2.2 (-1.88) (-1.35) (-1.43) 0.82 1.04 2.07 (-1.54)

DEPOSITS -0.00298* -0.00238 -0.0102*** 0.00328 0.00194** 0.00616 -0.00288 -0.00229 -0.0100*** 0.00325 0.00188** 0.00605

(-1.66) (-1.15) (-5.67) 1.13 2.12 0.72 (-1.63) (-1.13) (-5.51) 1.13 2.09 0.71

GDPgr 0.0829*** 0.0818*** 0.0985*** 0.0663*** -0.0377*** -0.180*** 0.0838*** 0.0827*** 0.101*** 0.0669*** -0.0382*** -0.181***

13.6 13.61 9.14 22.55 (-9.25) (-20.04) 13.73 13.75 9.17 22.85 (-9.38) (-19.97)

Inflation 0.0114 0.00109 0.0940*** -0.0329*** -0.00627 0.0647*** 0.0128 0.00253 0.0957*** -0.0325*** -0.00751 0.0632***

0.87 0.09 3.79 (-5.10) (-0.85) 4.34 0.99 0.2 3.99 (-5.17) (-1.03) 4.36

_cons 3.578*** 3.370*** 1.834*** 3.724*** 0.083 1.559** 3.563*** 3.355*** 1.794*** 3.720*** 0.0916 1.578**

21.51 18.12 7.6 16.77 0.85 2.37 21.43 18.08 7.43 16.95 0.93 2.41

Observations 5435 5440 5440 4936 5440 5440 5435 5440 5440 4936 5440 5440

Number of banks 340 340 340 340 340 340 340 340 340 340 340 340

R-square 0.171 0.164 0.216 0.239 0.143 0.196 0.165 0.158 0.212 0.24 0.134 0.192

Analyst Forecast Error Analyst Forecast Dispersion

Dependent Variable:
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with above-median MTBV ratios, the impact of opacity on risk-taking is more pronounced, 

suggesting that the detrimental effect of opacity is amplified for banks perceived as overvalued. 

This heightened vulnerability likely stems from investor optimism and elevated market 

expectations exceeding the bank's actual financial resilience. These findings align with 

valuation models in the accounting literature, which indicate that overvalued growth stocks tend 

to underperform value stocks following earnings disappointments (Ohlson, 1995; Rees, 1997; 

Collins et al., 1999). Overall, the results suggest that opacity has a greater negative impact on 

bank stability when perceived market valuations are higher, likely due to market pressure and 

heightened expectations exacerbating the risks associated with opaque practices. 

To further explore how market uncertainty shapes the opacity-risk dynamic, we examine the 

effects of opacity under different levels of stock price volatility, dividing the sample into low- 

and high-volatility groups16. Results from Model 4 in Table 1. 6 show that opacity has a 

consistently positive and statistically significant effect on risk-taking at the 1% level in high-

volatility environments. This implies that in uncertain conditions, opacity drives banks toward 

riskier behavior, with a one-standard deviation increase in opacity linked to a 12.2% rise in 

risk-taking. In more stable, low-volatility contexts, however, the relationship between opacity 

and risk weakens, suggesting that the destabilizing impact of opacity intensifies as market 

uncertainty increases. 

Finally, we investigate the influence of bank size on the opacity-risk relationship by 

categorizing banks into small and large groups based on the median of total assets17. In Models 

5 and 6, opacity exhibits a significantly negative association with bank stability, particularly 

among smaller banks. This suggests that smaller institutions are more susceptible to the adverse 

effects of opacity, underscoring the heightened vulnerability of smaller banks to opacity-driven 

risk. Beyond opacity, the data reveal that the disciplining impact of Analyst coverage on bank 

risk-taking is stronger for larger banks. Moreover, the favorable analyst recommendations 

(BUY/Strong Buy) correlate positively with bank stability in high-uncertainty periods, 

highlighting the critical role of market perceptions shaped by analysts when uncertainty is 

heightened. Additionally, dividend payouts demonstrate a consistently positive association with 

                                                      
16 Price volatility, calculated as the annual deviation from mean stock price, serves as a proxy for market 

uncertainty. 
17 Bank size is measured by the natural logarithm of total assets, with a mean of 9.96, a standard deviation of 0.97, 

and a median of 9.735. The sample is split into small banks (below the median) and large banks (above the median) 

to evaluate how the opacity-risk relationship differs across bank sizes. 
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bank solvency across all models, especially when volatility is high, underscoring dividends as 

a stabilizing force even as other risk factors fluctuate. 

Table 1. 6: Contextual Drivers of Bank Risk: Impacts of Valuation, Volatility, and Size 

1.5.1.5. Interactions between Analyst Coverage, Dividend Policies, and Bank Risk  

We explore the non-linear dynamics between opacity and risk, focusing on how the interplay 

between analyst pressure and dividend policies affects risk profiles under varying conditions. 

Table 1. 7 presents the results from Eq. (2), which captures this non-linearity. To validate our 

findings, we conduct several robustness checks: Models 1 and 7 exclude control variables to 

assess their impact, while Models 2-6 gradually introduce bank-specific control variables. 

Subsequently, Models 3-4 and 9-10 incorporate Dividend Payout and Analyst 

Recommendation variables, along with their interactions with opacity. Models 5, 6, 11, and 12 

include all variables for a comprehensive analysis. Additionally, we provide results using both 

coverage proxies (Coverage and Ln_Coverage) to ensure robustness.  

The main focus is the interaction between opacity—measured through analyst forecast error 

and dispersion—and analyst pressure (Coverage), as well as Dividend Payout adjustments. The 

coefficient for opacity remains negative and statistically significant at the 1% level across 

models. The interaction between opacity and Coverage is positive and statistically significant 

at the 10% level. However, the marginal effect of opacity, derived from analysts’ forecast 

This table presents fixed-effect estimation results based on Eq. (1), exploring how bank opacity (measured through 
analyst forecast error) influences bank risk, as represented by the ZScore, across different contextual drivers: Market-
to-Book Value (MTBV), Price Volatility, and Size. Each contextual variable is split at the median, showing effects 
in lower (<Median) and higher (≥Median) segments. Key variables include Opacity, Coverage, REC_BUY, and 
Dividend Payout. Time-fixed effects are included in all estimations, and robust standard errors clustered at the bank 
level are shown in parentheses. Statistical significance is indicated by ***, **, and * for 1%, 5%, and 10% levels, 
respectively. Control variables are included but not shown for brevity. 

Dependent Variable:: ln(Zscore)

Analyst Forecast Error

(1) (2) (3) (4) (5) (6)

<Median >Median <Median >Median <Median >Median

Opacity -0.116*** -0.250*** -0.185** -0.117*** -0.233*** -0.0934**

(-3.62) (-4.22) (-2.39) (-3.58) (-5.29) (-2.55)

Coverage 0.00844*** 0.00899** 0.0103** 0.00998*** 0.00492 0.00819***

2.9 2.17 2.45 3.33 -0.63 -3.17

REC_BUY 0.189*** 0.0922** -0.026 0.356*** 0.132** 0.0989**

3.36 1.99 (-0.58) 5.71 2.23 2.01

DIV_Payout 0.00352*** 0.00394*** 0.00219 0.00404*** 0.00720*** 0.00479***

-3.35 -2.94 -1.63 -3.59 4.51 4.4

_cons 2.794*** 2.729*** 3.889*** 2.372*** 3.088*** 2.135***

22.32 7.26 9.48 14.42 7.8 7.43

Control Variables yes yes yes yes yes yes

Observations 2815 2620 2680 2755 2673 2762

Number of banks 322 335 315 292 209 237

R-square 0.178 0.212 0.0802 0.229 0.216 0.15

Price _ Volatility SIZEMarket to Book Value (MTBV)
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dispersion, does not reach statistical significance, indicating a weak moderating effect of 

analyst coverage on the opacity-risk relationship. Conversely, a reduction in analyst coverage 

may amplify the risk-taking incentives associated with opacity, providing limited support for 

Hypothesis 2b, which posits that higher analyst pressure (through information and coverage) 

moderates the impact of opacity on risk-taking. Although a moderating effect of analyst 

pressure is observed, its economic significance remains modest. 

To further illustrate these results, Table 1. 8 presents the marginal effects calculated using 

Eq. (2) based on Models 5, 6, 11, and 12 from Table 1. 7. Panel 1 of Table 1. 8 shows that the 

marginal effect of opacity, as derived from analysts’ forecast error, is –0.1835 at the 25th 

percentile of the Coverage proxy. This effect decreases by 67% to –0.1095 at the 90th percentile 

of the Coverage index, translating into a 7.2 percentage point reduction in opacity-induced risk-

taking. These results indicate that bank opacity is more likely to escalate the risk profile when 

analyst coverage is low. The moderating role of dividend payout adjustments in the opacity-

risk-taking relationship suggests that excessive dividend payout ratios have a modest 

accentuating effect. In Table 1. 7, the interaction between opacity (based on analysts’ forecast 

dispersion) and dividend payout adjustments is negative and statistically significant at the 5% 

level in Models 11 and 12. The joint significance of opacity and dividend payout adjustments, 

as highlighted in Panel 2 of Table 1. 8, suggests that the adverse impact of opacity is slightly 

intensified by increased dividend payout adjustments. These results challenge Hypothesis 3b, 

which proposed that the marginal effect of opacity on bank risk-taking would be moderated by 

the extent of dividend payments. Specifically, opaque banks paying excessive dividends tend 

to engage in greater risk-taking, highlighting the need for stronger market discipline. Thus, 

excessive dividend payouts amplify the detrimental effects of opacity on banking stability, 

particularly when opacity is measured using analysts’ forecast dispersion, underscoring the 

economic significance of this evidence.  

Finally, we assess whether analyst recommendation tone (e.g., buy) moderates the opacity-

risk relationship by interacting opacity with the buy recommendation variable. Although the 

coefficient is positive, it does not reach statistical significance. Expanding the analysis, we 

explored the effects of recommendation tone (positive vs. negative) and recommendation 

revisions (upgrades and downgrades) on the opacity-risk relationship.  As shown in Table C3 

in Appendix 3, the results reveal no significant coefficients across models, with a minor 

exception: upgrade recommendations exhibit a weak moderating effect at the 10% significance 

level in models 5 and 10. 
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Table 1.7 Interactions between Analyst Coverage, Dividend Policies, and Bank Risk 

 

Table 1. 8: Marginal Effects of Opacity, Analyst Pressure and Dividend Payout Policy 

This table shows the fixed effect estimation results for the effect of opacity on banking risk-taking. Time-fixed effects are 

included in all estimations. Robust standard errors clustered at the bank level are in parenthesis. *** ** and * indicate 

significance at 1%, 5% and 10%, respectively. 
 

This table presents the fixed-effect estimation results, based on Eq. (2), examining the impact of opacity on bank risk-taking, 

with a focus on interaction effects between opacity, analyst pressure, and dividend payout policies. The dependent variable is 

ln(ZScore), and the analysis includes time-fixed effects in all estimations. Robust standard errors clustered at the bank level are 

shown in parentheses. Statistical significance is denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively. Notes: 

The Wald χ² test indicates the significance of interaction terms as follows: for Opacity × Coverage, Model 5: 3.19 (P=0.0742), 

Model 6: 7.02 (P=0.008); for Opacity × DIV_Payout, Model 5: 0.27 (P=0.6052), Model 11: 5.74 (P=0.0166). The interaction 

term of Opacity × REC_BUY is not significant; additional tests are provided in Appendix C, Table C.3. 

 

 

Dependent Variable:: ln(Zscore) Ln_Coverage Ln_Coverage

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Opacity -0.232*** -0.168*** -0.139*** -0.170*** -0.178*** -0.215*** -0.103** -0.0797** -0.0494*** -0.0890** -0.0699** -0.0728**

(-6.03) (-5.36) (-4.31) (-4.73) (-4.48) (-5.11) (-2.30) (-2.55) (-2.66) (-2.36) (-2.30) (-2.07)

Coverage 0.00984*** 0.0100*** 0.0111*** 0.0110*** 0.0100*** 0.0413 0.00984*** 0.0102*** 0.0104*** 0.0105*** 0.0103*** 0.0448*

-3.33 -3.16 -3.76 -3.73 -3.16 -1.55 -3.43 -3.31 -3.49 -3.53 -3.35 -1.7

Opacity X Coverage 0.00247* 0.00214* 0.00202* 0.0315*** 0.0019 0.0016 0.0000809 0.00181

-1.76 -1.79 -1.79 -2.65 -0.96 -1.06 -0.05 -0.1

DIV_Payout 0.00480*** 0.00491*** 0.00483*** 0.00491*** 0.00500*** 0.00475*** 0.00533*** 0.00475*** 0.00531*** 0.00540***

-5.24 -5.17 -5.26 -5.17 -5.25 -5.16 -5.72 -5.15 -5.71 -5.81

REC_Buy 0.131*** 0.131*** 0.122*** 0.124*** 0.123*** 0.132*** 0.131*** 0.126*** 0.126*** 0.124***

-3.32 -3.31 -3.06 -3.1 -3.04 -3.31 -3.29 -3.16 -3.17 -3.1

Opacity X DIV_Payout -0.000283 -0.000272 -0.000375 -0.00401** -0.00388** -0.00394**

(-0.51) (-0.52) (-0.73) (-2.48) (-2.40) (-2.40)

Opacity X Rec_BUY 0.0387 0.0296 0.0291 0.0396 0.0297 0.0294

-1.53 -1.28 -1.26 -1.61 -0.93 -0.85

_cons 3.695*** 3.365*** 3.351*** 3.357*** 3.365*** 3.389*** 3.658*** 3.335*** 3.314*** 3.333*** 3.318*** 3.335***

-154.32 -21.31 -21.12 -21.1 -21.3 -21.14 -160.19 -20.99 -20.49 -20.93 -20.47 -20.19

Control Variables no yes yes yes yes yes no yes yes yes yes yes

Observations 5775 5775 5775 5775 5775 5775 5775 5775 5775 5775 5775 5775

Number of banks 340 340 340 340 340 340 340 340 340 340 340 340

R-square 0.0242 0.126 0.126 0.126 0.127 0.125 0.011 0.12 0.123 0.121 0.123 0.121

Analyst Forecast Error Analyst Forecast Dispersion

Table 8 presents the marginal effect analysis based on results from Table 8, examining how variations in analyst 

coverage and dividend payout impact the relationship between opacity and bank risk, measured by Forecast Error and 

Dispersion. Marginal effects are calculated at the 25th, 50th, 75th, and 90th percentiles of each interacted variable, 

while other interacted variables are held at their median values. Panel 1 shows the marginal effects of Coverage (ln) on 

opacity, Panel 1-a details coverage index levels, and Panel 2 focuses on Dividend Payout index levels. Standard errors 

are shown in parentheses. Statistical significance is denoted by ***, **, and * for the 1%, 5%, and 10% levels, 

respectively. 
 

Dependent Variable: ln(Z-Score)

25th% 50th% 75th% 90th% Change (25th-90%) Based on

Panel 1

Coverage (ln) index at: 0.693 1.386 2.197 3.04
Forecast Error -0.1835*** -0.1617*** -0.1361*** -0.1095*** -0.0741*** Table 7, Column 6

-6.07 -5.88 -4.99 -3.59
Forecast Dispersion -0.1765*** -0.1752*** -0.1737*** -0.1722*** -0.0043 Table 7, Column 12

-3.37 -3.51 -3.39 -3.04

Panel 1-a

Coverage  index at: 2 4 9 21
Forecast Error -0.1608*** -0.1568*** -0.1466*** -0.1223*** -0.0385* Table 7, Column 5

-5.34 -5.33 -5.18 -4.04
Forecast Dispersion -0.1727*** -0.1725*** -0.1721*** -0.1711*** -0.0015371 Table 7, Column 10

-3.37 -3.41 -3.46 -3.19
Panel 2

Dividend Payout index at: 15 32 46 60
Forecast Error -0.1519*** -0.1582*** -0.1634*** -0.1690*** 0.0170565 Table 7, Column 6

-5.55 -5.8 -5.61 -5.16
Forecast Dispersion -0.1093*** -0.1752*** -0.2299*** -0.2886*** 0.1793** Table 7, Column 12

-4.22 -3.51 -3.2 -3.01

All
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1.5.2. Comparative Analysis: Opacity-Risk Dynamics Across Bank vs. Market-Driven 

Financial Systems 

This section compares the opacity-risk relationship in bank-driven European and market-driven 

U.S. financial systems, examining how these distinct environments shape the effects of analyst 

influence and opacity. Our analysis evaluates whether opacity, driven by analyst forecast errors 

and dispersion, impacts bank stability differently in these environments. Specifically, we test if 

analyst pressure and opacity have distinct effects on risk-taking and bank performance in the 

bank-driven European context versus the market-driven U.S. environment. European banks 

may exhibit different risk dynamics compared to U.S. banks, where market-based mechanisms 

like analyst coverage and shareholder activism play a more prominent role in influencing risk 

behaviors. 

1.5.2.1.  Differences in Analyst Properties and Risk Profiles 

We provide a comprehensive comparative analysis of U.S. and European banks, highlighting 

how differences in opacity, analyst coverage, and risk factors align with varying regulatory and 

market structures. This analysis leverages separate regressions on analysts' forecast errors and 

forecast dispersion as proxies for bank opacity in each region, quantifying how opacity impacts 

risk and profitability differently under distinct regulatory environments and market forces. Key 

findings, summarized in Table D1 (Appendix D), reveal the following distinctions:  

Analyst Properties: U.S. banks display lower average opacity levels, with analyst forecast 

error and forecast dispersion averaging 0.09 and 0.08, respectively, in contrast to European 

banks, which show higher averages of 0.6 and 0.2. The greater standard deviation in Europe 

(1.8 to 0.5) compared to the U.S. (0.3 to 0.8) further underscores the higher variability in opacity 

measures across European banks. Additionally, an optimism index highlights this regional 

disparity, with U.S. banks averaging 0.6 versus 3.47 for European banks, indicating greater 

optimism and forecast volatility in Europe. European banks also attract more analyst coverage, 

averaging 11.92 analysts per bank compared to 5.26 for U.S. banks, and face more frequent 

recommendation revisions, including a higher proportion of negative ratings, such as "Sell" and 

"Moderate Sell," relative to their U.S. counterparts. 

Risk Profiles: U.S. banks exhibit greater financial stability, with an average Z-Score of 

75.37 compared to 46.15 for European banks, likely due to stronger profitability, more robust 

equity buffers, and a more resilient post-crisis recovery. European banks, however, demonstrate 

higher price volatility (25.60 versus 22.16 in the U.S.) and a greater systematic risk, with a 

BETA of 1.01 compared to 0.77 for U.S. banks, indicating greater sensitivity to market 
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fluctuations. Additionally, the distance to default (DD_mert) averages 1.88 in the U.S., 

significantly higher than -0.16 in Europe, reflecting a lower default risk profile among U.S. 

banks.  

Bank level Variables: Regarding control variables, U.S. banks display a greater reliance on 

deposits (76.3% vs. 56.35% in Europe) and maintain stronger equity-to-assets ratios (10.84% 

vs. 8.10%), suggesting enhanced capitalization and liquidity. In contrast, European banks report 

higher net non-interest income relative to assets (1.89% vs. 1.18%) and face elevated credit 

risk, as evidenced by higher average non-performing loans (4.52% vs. 1.62%). U.S. banks also 

show a higher market-to-book value (136.05% vs. 124.43%), indicating a stronger perceived 

investor optimism. In terms of dividend payouts, European banks report higher and more 

variable ratios (33.59% vs. 31.45% for U.S. banks), reflective of economic volatility and 

regulatory differences across regions. In contrast, U.S. banks exhibit more stable dividend 

distributions, underscoring a steady approach to maintaining shareholder value. 

Fig. D1 in Appendix D illustrates the annual trends in Analyst Forecast Error, Forecast 

Dispersion, Analyst Dynamics, and Dividend Payout Adjustments for European and U.S. banks 

over the period 2004–2020, providing a comparative view of these variables across the two 

regions. Correspondingly, Table D2 presents the correlation matrix for risk and opacity 

variables, including significance levels for U.S. and European subsamples, further clarifying 

the relationships between these variables across different banking environments. 

1.5.2.2. Information, Analyst, Dividend Distribution and Risk-taking – U.S. vs. Europe 

This section explores how opacity, analyst influence, and dividend policies distinctly affect 

bank risk within the U.S. and European banking environments, each marked by unique regional 

risk dynamics. Table 1. 9 presents a comparative analysis using key proxies, such as opacity 

(measured by analyst forecast error and forecast dispersion), analyst coverage, and dividend 

policies, and examines their impact on various indicators of risk, profitability, and earnings 

volatility (e.g., ZScore, Z1Score). This analysis highlights the differential effects of these 

factors across U.S. and European markets, providing insights into how regional characteristics 

shape the risk profiles of banks in these financial systems.  

The results for both subsamples align with the global trend in Section 1.5.1, showing that 

higher bank opacity correlates with increased instability and return volatility in both the US and 

EU. Across models (1-4 & 7-10), opacity consistently shows a negative and significant 

relationship with Z-Score, indicating elevated risk. In models (5-6 and 11-12), opacity is also 

positively associated with risk-taking and earnings volatility. The effect is more pronounced in 
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the US, where opacity has a larger negative coefficient and higher significance (e.g., -0.307 in 

column 1 for Z-Score), suggesting that opacity drives greater instability in US banks compared 

to EU banks (e.g., -0.0924 in column 1). However, opacity measured by analyst forecast 

dispersion appears to be a less effective indicator of earnings volatility in the European market 

(models 11 & 12). Overall, these findings demonstrate that higher opacity not only increases 

bank instability in both regions but also encourages riskier financial strategies due to reduced 

transparency, which obscures true risk levels from investors and the market.  

The findings for analyst coverage mirror the global trend, with a slightly stronger effect in 

the US. Higher coverage generally correlates with lower insolvency risk and reduced risk-

taking in both US and EU banks, as increased analyst attention enables better market monitoring 

of risk profiles. While stabilizing in both regions, analyst coverage has a more pronounced 

impact on bank stability in the US, highlighting regional differences in market response to 

analyst information. Analyst recommendation consensus aligns with the overall trend, where 

more sell-oriented recommendations (higher REC_Con values) are associated with higher 

default risk in both US and European banks, indicated by negative coefficients in the ZScore 

models. However, REC_Con has a weaker and less consistent effect on stability and earnings 

volatility in the EU. This implies that sell recommendations effectively highlight banks with 

higher default risk while also being positively associated with risk-taking, suggesting that banks 

receiving sell recommendations may adopt riskier strategies, possibly to counter negative 

market sentiment. Analyst recommendation revisions show similar effects in both US and 

European banks, consistent with the full sample. Downgrades are associated with higher risk, 

particularly in the US, while upgrades do not show a significant link to risk. For both US and 

European banks, higher dividend payouts correlate with lower default risk and reduced risk-

taking, reflecting improved stability.  

In the US, dividend payouts are more strongly associated with ZScore (e.g., 0.00697 in 

column 1), suggesting greater stability, while EU coefficients are lower (e.g., 0.00354), 

indicating a milder effect. This difference may be due to varying regulatory and market 

dynamics, with European banks generally paying more volatile dividends than US banks.  

The regional differences in the impact of control variables on risk and volatility indicators 

reveal that consistent with the global trend, larger banks and those with higher equity ratios 

tend to be less risky, while higher non-performing loans are positively associated with risk, 

indicating that banks with greater credit risk are less stable. In the US, a higher deposits-to-

assets ratio is linked to lower stability (ZScore) in line with the global sample but is also 
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associated with reduced total risk and a higher market-based ZScore. Conversely, in Europe, a 

higher deposits-to-assets ratio does not correlate with stability (ZScore) but is linked to higher 

total risk. Consistent with global results, regional analysis shows that banks with greater 

reliance on non-interest income exhibit higher risk-taking, with the effect being more 

pronounced for US banks. These findings align with Stiroh (2004) for US banks and Lepetit et 

al. (2008) for European banks.
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Table 1.9: Opacity, Analyst Pressure, and Bank Risk – U.S. vs. Europe 

Panel A: US (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ZScore Z1Score Z2Score MZScore SDROA TR ZScore Z1Score Z2Score MZScore SDROA TR

Opacity -0.307*** -0.277*** -0.913*** -0.102*** 0.212*** 0.382*** -0.325*** -0.290** -0.826*** -0.0998*** 0.146** 0.284***

(-4.75) (-4.54) (-6.73) (-4.73) -3.92 -5.12 (-2.66) (-2.55) (-3.59) (-3.12) -2.01 -3.08

Coverage 0.0292*** 0.0299*** 0.0449** 0.0258*** -0.00693 -0.0460*** 0.0290*** 0.0297*** 0.0451** 0.0259*** -0.00725 -0.0465***
2.88 2.97 2.49 6.44 (-1.27) (-3.49) 2.82 2.92 2.37 6.37 (-1.30) (-3.46)

REC_Con -0.119*** -0.106** -0.210** -0.0732*** 0.0913*** 0.190*** -0.116*** -0.103** -0.207** -0.0728*** 0.0924*** 0.191***

(-2.71) (-2.55) (-2.53) (-3.81) 3.85 3.55 (-2.73) (-2.55) (-2.52) (-3.81) 3.94 3.57

REC_Rev_Dn -0.0739* -0.0756** -0.107 -0.0393* 0.00411 0.149** -0.0733* -0.0752** -0.104 -0.0389* 0.00304 0.147**

(-1.91) (-2.02) (-1.46) (-1.78) -0.19 -2.38 (-1.90) (-2.01) (-1.36) (-1.74) -0.13 -2.31

REC_Rev_Up -0.0585 -0.0584 -0.0585 -0.00349 0.0156 0.0195 -0.067 -0.066 -0.0836 -0.00624 0.0214 0.03

(-1.33) (-1.34) (-0.66) (-0.18) -0.58 -0.35 (-1.50) (-1.49) (-0.92) (-0.32) -0.78 -0.53

DIV_Payout 0.00697*** 0.00645*** 0.0178*** 0.00122* -0.00350*** -0.00629*** 0.00683*** 0.00633*** 0.0177*** 0.00121* -0.00362*** -0.00645***

5.5 5.23 6.82 1.72 (-4.50) (-3.03) 5.34 5.12 6.74 1.69 (-4.60) (-3.09)

NPL -0.140*** -0.128*** -0.334*** -0.0733*** 0.0674*** 0.161*** -0.143*** -0.131*** -0.347*** -0.0746*** 0.0713*** 0.167***

(-7.91) (-8.04) (-7.98) (-6.63) -6.42 -5.92 (-8.22) (-8.32) (-8.41) (-6.76) -6.93 -6.2

SIZEnew 0.514*** 0.513*** 0.808*** 0.471*** -0.155*** -0.402** 0.531*** 0.529*** 0.875*** 0.476*** -0.177*** -0.437**

4.73 4.77 4.36 8.43 (-2.90) (-2.22) 4.76 4.82 4.44 8.43 (-3.20) (-2.42)

EQUITY2A 0.0457*** 0.0485*** 0.0075 0.0131*** -0.00046 -0.0312*** 0.0457*** 0.0485*** 0.00814 0.0131*** -0.000774 -0.0317***

7.62 8.38 0.66 3.21 (-0.13) (-3.03) 7.62 8.41 0.71 3.16 (-0.21) (-3.03)

NI2A -0.0359 -0.0366 0.0314 0.0202 0.0558** -0.0733* -0.0363 -0.0369 0.0292 0.0199 0.0568** -0.0717*

(-1.20) (-1.12) -0.64 -0.93 -2.47 (-1.73) (-1.24) (-1.15) -0.59 -0.91 -2.54 (-1.69)

DEPOSITS -0.00869** -0.00708* -0.0210*** 0.0114*** 0.00222 -0.0319*** -0.00790** -0.00638 -0.0190*** 0.0116*** 0.00187 -0.0326***

(-2.23) (-1.79) (-3.33) -5.22 -1.13 (-6.17) (-2.04) (-1.63) (-2.98) -5.26 -0.95 (-6.21)

GDPgr 0.108*** 0.108*** 0.121*** 0.0827*** -0.0441*** -0.225*** 0.110*** 0.109*** 0.126*** 0.0833*** -0.0451*** -0.226***

-13.13 -13.48 -8.37 -27.64 (-8.27) (-20.74) -13.2 -13.51 -8.49 -27.61 (-8.18) (-20.85)

Inflation 0.00418 -0.00198 0.0621*** -0.0262*** 0.000951 0.0436** 0.00443 -0.0018 0.0650*** -0.0258*** -0.000551 0.0413**

-0.32 (-0.15) -2.82 (-3.44) -0.14 -2.59 -0.34 (-0.14) -3.03 (-3.44) (-0.08) -2.51

_cons 4.067*** 3.788*** 2.706*** 2.996*** -0.012 4.719*** 4.005*** 3.733*** 2.531*** 2.976*** 0.0256 4.788***
12.56 11.4 5.04 15.12 (-0.07) 10.09 12.52 11.35 4.64 14.85 0.15 10.12

Observations 3869 3872 3872 3547 3872 3872 3869 3872 3872 3547 3872 3872

Number of banks 242 242 242 242 242 242 242 242 242 242 242 242

R-square 0.261 0.255 0.307 0.347 0.22 0.283 0.259 0.253 0.293 0.345 0.203 0.276

Analyst Forecast Error Analyst Forecast Dispersion

Dependent Variable:

Panel B: EU (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ZScore Z1Score Z2Score MZScore SDROA TR ZScore Z1Score Z2Score MZScore SDROA TR

Opacity -0.0924*** -0.0904*** -0.205*** -0.0323** 0.0364** 0.131** -0.0357*** -0.0320** -0.171*** -0.0275** 0.00701 0.0737

(-3.01) (-3.02) (-2.85) (-2.17) -2.05 -2.33 (-3.12) (-2.62) (-4.33) (-2.56) -0.88 -1.6

Coverage 0.00793*** 0.00913*** -0.000462 0.00485*** -0.00272* -0.00878*** 0.00763*** 0.00885*** -0.00149 0.00474*** -0.00263* -0.00826**
2.91 3.38 (-0.10) 4.34 (-1.89) (-2.67) 2.78 3.24 (-0.31) 4.28 (-1.81) (-2.47)

REC_Con -0.111* -0.087 -0.292** -0.0133 0.0224 -0.024 -0.116* -0.0926 -0.281** -0.0108 0.026 -0.0223

(-1.84) (-1.40) (-2.60) (-0.55) -0.59 (-0.29) (-1.89) (-1.47) (-2.47) (-0.45) -0.67 (-0.28)

REC_Rev_Dn -0.0473** -0.0518** 0.00593 0.0076 0.0187* 0.0133 -0.0425* -0.0473* 0.0235 0.0105 0.0173* 0.00467

(-2.03) (-2.18) -0.11 -0.52 -1.91 -0.33 (-1.78) (-1.94) -0.43 -0.73 -1.74 -0.12

REC_Rev_Up -0.044 -0.0487 0.0554 0.00978 -0.0108 -0.0175 -0.0432 -0.0483 0.067 0.0124 -0.0103 -0.0211

(-1.39) (-1.50) -0.68 -0.82 (-0.60) (-0.48) (-1.36) (-1.48) -0.82 -1.01 (-0.58) (-0.53)

DIV_Payout 0.00354*** 0.00320** 0.0103*** 0.00353*** -0.00178*** -0.00695*** 0.00333** 0.00301** 0.00932*** 0.00341*** -0.00174*** -0.00654***

2.65 2.36 4.18 5.55 (-3.23) (-3.59) 2.44 2.17 3.99 5.61 (-3.09) (-3.50)

NPL -0.0356*** -0.0294*** -0.104*** -0.0189*** 0.0203*** 0.0482*** -0.0376*** -0.0313*** -0.109*** -0.0192*** 0.0210*** 0.0511***

(-3.57) (-3.31) (-4.39) (-4.07) -3.32 -3.55 (-3.71) (-3.45) (-4.46) (-4.11) -3.38 -3.69

SIZEnew 0.404* 0.326 0.402 0.204 -0.209 -0.00933 0.414* 0.334 0.451 0.229* -0.21 -0.0297

-1.74 -1.39 -0.98 -1.61 (-1.62) (-0.02) -1.74 -1.39 -1.11 -1.85 (-1.62) (-0.07)

EQUITY2A 0.0496*** 0.0538*** 0.0284 0.0113** 0.017 -0.0260** 0.0491*** 0.0532*** 0.0303 0.0125** 0.0174* -0.0260*

-2.91 -3.03 -1.17 -2.08 -1.64 (-2.02) -2.83 -2.95 -1.27 -2.32 -1.66 (-1.96)

NI2A -0.03 -0.0387 0.0252 0.0159 0.0114 -0.0387 -0.0299 -0.0387 0.0274 0.0149 0.0115 -0.0394

(-0.93) (-1.17) -0.54 -1.35 -0.52 (-1.40) (-0.86) (-1.09) -0.63 -1.27 -0.5 (-1.26)

DEPOSITS -0.00358 -0.00339 -0.0129*** -0.000619 0.00129 0.0157*** -0.00351 -0.00332 -0.0129*** -0.000692 0.00125 0.0156***

(-1.49) (-1.23) (-4.77) (-0.37) -1.21 -3.29 (-1.47) (-1.21) (-4.82) (-0.43) -1.17 -3.31

GDPgr 0.0408*** 0.0379*** 0.0566*** 0.0303*** -0.0242*** -0.0921*** 0.0424*** 0.0394*** 0.0598*** 0.0311*** -0.0249*** -0.0942***

-4.83 -4.53 -3.83 -8.44 (-3.61) (-8.49) -5.04 -4.75 -3.82 -8.68 (-3.74) (-8.39)

Inflation -0.0344 -0.0476 0.0524 -0.0481*** 0.00314 0.0935*** -0.0342 -0.0472 0.0476 -0.0480*** 0.00267 0.0945***

(-1.16) (-1.63) -0.89 (-4.71) -0.17 -3.13 (-1.16) (-1.63) -0.85 (-5.00) -0.14 -3.31

_cons 3.475*** 3.247*** 2.103*** 3.902*** 0.155 1.328*** 3.460*** 3.234*** 2.050*** 3.885*** 0.158 1.354***
14.53 12.52 5.31 34.32 1.01 3.54 14.36 12.39 5.17 34.83 1.03 3.61

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1566 1568 1568 1389 1568 1568 1566 1568 1568 1389 1568 1568

Number of banks 98 98 98 98 98 98 98 98 98 98 98 98

R-square 0.106 0.0983 0.19 0.176 0.112 0.21 0.0999 0.0921 0.204 0.183 0.108 0.208

Analyst Forecast Error Analyst Forecast Dispersion

Dependent Variable:

This table presents fixed-effect estimation results, based on Eq. (1), examining the impact of opacity on bank risk-taking for publicly listed banks in the 

U.S. (Panel A) and Europe (Panel B). The analysis considers the influence of analyst pressure and dividend policies, capturing regional variations in the 

opacity-risk relationship. Each model incorporates time-fixed effects to account for temporal dynamics. Robust standard errors, clustered at the bank 

level, are reported in parentheses. Statistical significance is indicated by ***, **, and * at the 1%, 5%, and 10% levels, respectively. 
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1.5.2.3.  Threshold Effects of Dividend Policies and Analyst Pressure 

Expanding on global findings, this section evaluates if excessive dividend payouts and 

extensive analyst coverage contribute similarly to risk dynamics in both regions. As detailed in 

Table 1. 10, both regions mirror the global trend from Section 1. 5.1.2: Moderate dividend 

payouts support stability, while excessive payouts (columns 3 and 9) reduce resilience. Unlike 

the global sample, subsample analysis reveals that the negative effect of opacity on Z-Score 

intensifies with greater analyst coverage, particularly in the US (Table 1. 10, columns 4 and 5). 

Consistent with the global trend, higher analyst coverage amplifies the impact of 

recommendations (columns 4, 5, and 6). This suggests that increased coverage may intensify 

market reactions to negative recommendations, driving riskier behaviors or amplifying 

vulnerabilities in banks—though this effect is not significant in the European market. 

Additionally, positive recommendations, when accompanied by higher coverage, are linked to 

reduced risk.  

 

Table 1. 10: Threshold Effects of Dividend Payouts and Analyst Coverage  

 

 

 

 

 

Dependent Variable: ln(Z-Score)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

< 50th% > 50th% > 75th% < 50th% > 50th% > 75th% < 50th% > 50th% > 75th% < 50th% > 50th% > 75th%

Opacity -0.203*** -1.111*** -1.279*** -0.212*** -0.367** -0.377* -0.0683 -0.0577* -0.117** -0.0701 -0.0869** -0.0486

(-4.05) (-6.32) (-3.80) (-5.17) (-2.26) (-1.89) (-1.19) (-1.70) (-2.19) (-1.32) (-2.52) (-1.03)

Dividend_Payout 0.0133*** 0.0000911 -0.00458* 0.00441** 0.00894*** 0.00977*** -0.000374 0.00274 -0.0105* 0.00591*** 0.00244 0.00225

4.2 0.06 (-1.75) 2.06 6.22 4.59 (-0.10) 1.03 (-1.92) 2.88 1.53 1.02

Coverage 0.0425*** 0.00366 0.00433 0.105* 0.0284*** 0.0418*** 0.00651 0.00600** 0.0118** -0.0103 0.00213 -0.00308

2.8 0.28 0.23 1.76 2.61 3.23 1.63 2.1 2.42 (-0.61) 0.46 (-0.31)

REC_Con -0.136** -0.0585 -0.0249 -0.0291 -0.244*** -0.370*** -0.163** -0.163 -0.189 -0.216*** -0.0694 -0.0251

(-2.31) (-1.04) (-0.31) (-0.54) (-4.05) (-3.90) (-2.20) (-1.39) (-1.21) (-2.66) (-0.91) (-0.23)

_cons 4.233*** 3.545*** 4.615*** 3.915*** 4.206*** 3.156*** 3.358*** 3.141*** 4.833*** 3.695*** 3.782*** 4.127***

10.48 7.71 7.21 8.02 11.06 5.29 13.26 4.86 5.34 10.36 11.28 7.69

Control Variables yes yes yes yes yes yes yes yes yes yes yes yes

Observations 1934 1935 972 1504 2365 1047 730 764 367 760 806 394

Number of banks 215 225 188 160 210 111 92 92 77 98 98 93

R-square 0.263 0.253 0.233 0.247 0.299 0.347 0.126 0.0865 0.101 0.114 0.104 0.198

Dividend Payout Ratio Analyst Coverage

US Banks European Banks

Analyst CoverageDividend Payout Ratio

This table presents the fixed-effect estimation results based on Eq. (1), analyzing the impact of opacity on bank stability, with 
a focus on the moderating effects of dividend payout ratio, analyst coverage for publicly listed banks in the U.S. (Columns 1- 
6) and Europe (Columns 7- 12). The analysis is segmented by different thresholds of dividend payout ratios (<50%, >50%, 
>75%), analyst coverage (<50%, >50%, >75%), and dividend yield (<50%, >50%, >75%). All estimations include time-fixed 
effects, and robust standard errors clustered at the bank level are displayed in parentheses. Statistical significance is indicated 
by ***, **, and * for the 1%, 5%, and 10% levels, respectively. Control variables are included but not shown for brevity. 
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1.5.2.4. Contextual Influences of Volatility, Valuation, and Size on Opacity-Risk in the 

U.S. and Europe 

This part delves into how valuation, volatility, and size create regional disparities in the opacity-

risk relationship, underscoring contextual differences in bank risk responses. The results in 

Table 1. 11 indicate that, consistent with global findings, opacity significantly increases risk-

taking in the US sample under high-volatility and optimism overvaluation conditions, with 

banks being particularly sensitive to valuation pressures and market uncertainties (columns 1-

2 and 5-6). In contrast, European banks exhibit a weaker response to opacity under similar 

elevated market-to-book value and high-volatility conditions (columns 3-4 and 7-8). Across 

both regions, consistent with the global trend, the impact of opacity is more pronounced in 

smaller banks, where opacity exacerbates risk-taking to a greater extent than in larger banks 

(columns 9-12). US smaller banks, in particular, demonstrate the highest risk sensitivity. In 

contrast, for European banks, the effect of opacity on risk does not vary significantly with bank 

size, suggesting a more moderated impact across different size segments18. 

 

Table 1. 11: Contextual Influences of Volatility, Valuation, and Size on Opacity-Risk – U.S. vs. Europe 

                                                      
18 In line with the global trend, analyst coverage in the US exerts a stronger disciplining effect on risk-taking 

among larger banks with higher volatility and lower MTBV ratios, whereas the European market displays a weaker 

and inconsistent impact. Favorable analyst recommendations (BUY/Strong Buy) are positively correlated with 

bank stability during high-uncertainty periods in both regions; in the US, this effect is more pronounced for smaller 

banks, while in Europe, it is stronger for banks with lower MTBV ratios. 

Dependent Variable:: ln(Zscore)

Analyst Forecast Error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

<Median >Median <Median >Median <Median >Median <Median >Median <Median >Median <Median >Median

Opacity -0.191*** -0.858*** -0.0667* -0.184*** -0.363* -0.241*** -0.145*** -0.0357 -0.265*** -0.319** -0.109** -0.0850***

(-4.12) (-4.31) (-1.85) (-4.26) (-1.87) (-4.33) (-2.74) (-0.86) (-4.81) (-2.10) (-2.14) (-2.76)

Coverage 0.0622*** 0.0152 0.00275 0.00908** 0.0204 0.0386** 0.00749** 0.00584* -0.0166 0.0378*** 0.00264 0.00537*

4.25 0.98 0.88 2.11 1.29 2.57 2.24 1.86 (-0.54) 3.57 0.67 1.99

REC_BUY 0.0706 0.0763 0.296*** -0.0323 -0.0178 0.294*** -0.0152 0.321** 0.132* 0.0791 0.061 0.105

1.11 1.44 2.96 (-0.35) (-0.36) 3.98 (-0.15) 2.55 1.95 1.33 0.51 1.21

DIV_Payout 0.00403*** 0.00592*** 0.00253 0.00204 0.00285* 0.00614*** 0.00121 0.00262* 0.00604*** 0.00861*** 0.00552** 0.00271**

2.61 4.03 1.66 0.95 1.74 3.83 0.58 1.91 3.01 5.29 2.09 2.1

_cons 3.114*** 4.095*** 2.453*** 3.534*** 4.356*** 2.839*** 2.718*** 2.366*** 4.258*** 3.108*** 2.776*** 1.628***

8.13 8.79 14.45 8.23 10.43 7.8 4.62 12.72 9.02 9.2 9.8 5.13

Control Variables yes yes yes yes yes yes yes yes yes yes yes yes

Observations 2003 1866 821 745 1910 1959 768 798 1888 1981 764 802

Number of banks 229 242 91 96 227 213 94 87 164 179 60 61

R-square 0.245 0.295 0.149 0.139 0.114 0.332 0.0862 0.129 0.267 0.253 0.0937 0.229

SIZEPrice _ VolatilityMarket to Book Value (MTBV)

US EU US EUUS EU

This table presents fixed-effect estimation results based on Eq. (1), analyzing how opacity (measured through analyst forecast 
error) impacts bank risk (ZScore) under varying contexts: Market-to-Book Value (MTBV), Price Volatility, and Size. Each 
contextual factor is divided at the median, comparing effects in lower (<Median) and higher (≥Median) segments across U.S. 
and European banks. The primary variables include Opacity, Coverage, REC_BUY, and Dividend Payout. Time-fixed effects 
are applied in all models, with robust standard errors clustered at the bank level shown in parentheses. Statistical significance 
is denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively. Control variables are included but omitted from the 
table for brevity. 
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1.5.2.5. Interactions and Extensions: Analyst Coverage, Dividend Policies, and 

Opacity-Risk _ U.S. vs. Europe 

Building on prior analysis (Section 1. 5.1.5), this section assesses the nuanced role of analyst 

coverage and dividend policies as moderators in the opacity-risk nexus across regional 

systems19. Tables 1.12 and 1.13 present the marginal effects of analyst coverage on the risk-

taking behavior of opaque banks in the US and Europe, segmented by bank size. Table 1. 14 

further details the statistical significance of these effects at varying levels of analyst coverage. 

For US banks, the results indicate that higher analyst coverage amplifies risk-taking among 

opaque banks, particularly in those with greater forecast dispersion (Table 1. 12, models 5 and 

7; Table 1. 13, model 4). This effect is most pronounced in smaller banks, as shown in Table 1. 

13 (models 2 and 5) and confirmed by marginal analysis in Table 1. 14 (Panel 1, columns 2, 4, 

and 5). In contrast, the effect for European banks is weaker and varies by bank size. Higher 

analyst coverage increases risk-taking among larger opaque banks (Table 1. 13, models 9 and 

12), while for smaller European banks, analyst coverage exerts a modest moderating influence 

on risk-taking (Table 1. 13, models 8 and 11). Panel 3 (EU) in Table 1. 14 further confirms the 

relatively weak amplifying role of analyst coverage on risk for larger EU banks.  

 These findings challenge Hypothesis 2b, which suggests a moderating role for analyst 

coverage in the opacity-risk relationship across different market structures and bank sizes. 

While analyst coverage typically enhances banks’ visibility and subjects them to greater market 

scrutiny—potentially promoting market discipline and encouraging prudent risk 

management—this effect is not consistent for high-opacity banks across regions. In the global 

sample, analyst coverage exerts only a weak moderating impact on the opacity-risk nexus. 

However, when examining subsamples based on distinct financial market structures, we find 

that higher analyst coverage increases pressure on opaque banks, especially in the US. This 

pressure appears to drive riskier behaviors, as banks may take on additional risk to meet analyst 

expectations, particularly in markets with strong reactions to earnings surprises. This effect is 

most pronounced in smaller US banks, where analyst pressure significantly heightens risk-

taking. In contrast, the European market shows a less consistent impact: analyst coverage exerts 

a weak moderating influence on risk-taking in smaller banks but amplifies risk for larger opaque 

banks. Regarding dividend policy, the results suggest that excessive dividend payouts slightly 

accentuate risk-taking in both regions, consistent with the global trend. In Europe, however, 

                                                      
19 In our global sample, we observed a weak moderating role of analyst coverage and an accentuating role of 

dividend payout adjustments on the opacity and risk-taking relationship; here, we assess whether this effect 

varies across different financial markets. 
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this effect is significant when opacity is measured by analyst forecast dispersion (Table 1. 13, 

columns 1, 4, 7, and 8). Panel 2 and 4 of Table 1. 14 show that increased dividend payouts 

modestly intensify the adverse impact of opacity, particularly when measured by forecast 

dispersion, highlighting the economic significance of this relationship for bank stability. Lastly, 

we examine the moderating effect of positive analyst recommendations (REC_BUY) on the 

relationship between opacity and bank risk. In the U.S. sample, this interaction is significant, 

especially under conditions of high forecast dispersion and among smaller banks (see Table 1. 

12, columns 5 and 7; Table 1. 13, columns 4 and 5).  

To further explore the influence of recommendation tones (positive/negative) and revisions 

(upgrades/downgrades) on the opacity-risk relationship for both U.S. and European banks, we 

refined our analysis (refer to Table F1 in Appendix F). The findings indicate that negative 

recommendations (e.g., "Sell") and downgrade revisions significantly exacerbate the adverse 

effects of opacity on bank stability, particularly in forecast dispersion models (columns 4, 7, 

and 8). Conversely, positive recommendations and upgrade revisions exhibit a favorable 

moderating impact (columns 5, 6, and 10). No significant results were found for European 

banks in this regard. We extended our analysis by assessing the interaction between opacity and 

different recommendation tones, focusing on the role of increased analyst coverage. Results 

from the U.S. sample (Panel A, Table F2) reveal that higher analyst coverage significantly 

amplifies the effects of negative recommendations and downgrade revisions on bank risk, as 

evidenced by significant coefficients in models using forecast dispersion (columns 6 and 7). 

These findings suggest that heightened analyst coverage under high-opacity conditions 

exacerbates risk-taking behaviors and increases vulnerabilities in U.S. banks. In contrast, for 

European banks, upgrade recommendation revisions accompanied by higher analyst coverage 

only weakly moderate the risk of opaque banks (Panel B, Table F2, columns 4 and 8). 
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Table 1. 12: Interactions: Analyst Coverage, Dividend Policies, and Opacity-Risk – U.S. vs. Europe 

 

Table 1. 13: Analyst Coverage, Dividend Policies, and Opacity-Risk —Segmentation by Bank Size 

This table presents fixed-effect estimation results based on Eq. (2), assessing how opacity influences bank risk-taking, 

focusing on the interaction effects of opacity with analyst coverage, dividend payout policies, and REC_BUY. The dependent 

variable is ln(ZScore), analyzed separately for U.S. and European banks across both Analyst Forecast Error and Analyst 

Forecast Dispersion models. Time-fixed effects are included in all estimations, with robust standard errors clustered at the 

bank level in parentheses. Statistical significance is indicated by ***, **, and * for 1%, 5%, and 10% levels, respectively. 

Control variables are included but not displayed for brevity. 
 

Dependent Variable:: ln(Zscore)

All <Median >Median All <Median >Median All <Median >Median All <Median >Median

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Opacity -0.019 -0.00422 0.0334 -0.0831 -0.141 0.815 -0.144*** -0.167* -0.0692* -0.0223 -0.111*** 0.0314

(-0.18) (-0.03) 0.09 (-0.96) (-1.07) 1.28 (-2.75) (-1.68) (-1.92) (-0.82) (-4.15) 1.14
Opacity X Ln_Coverage -0.114 -0.471*** 0.0456 -0.408** -0.563*** -0.659* 0.0207 0.0355 -0.0219*** -0.01 0.0356 -0.0300*

(-1.14) (-5.53) 0.25 (-2.44) (-4.83) (-1.76) 1.6 1.47 (-2.76) (-0.65) 1.12 (-1.80)
Opacity X DIV_Payout -0.0117*** -0.0116*** -0.0247*** -0.0262*** -0.0171*** -0.0387*** -0.000154 -0.000489 0.000980* -0.00220** -0.0017 -0.00372

(-3.10) (-2.84) (-3.86) (-4.69) (-2.77) (-4.97) (-0.40) (-0.69) -1.77 (-2.39) (-1.34) (-1.25)
Opacity X REC_BUY -0.0721 0.116 -0.425 0.386*** 0.418* -0.0176 0.0111 0.0135 0.0153 0.017 -0.0189 0.0213

(-0.67) 0.88 (-1.59) 3.03 1.9 (-0.08) 0.44 0.29 0.54 0.83 (-0.27) 1.22
Ln_Coverage 0.025 0.0188 0.0389 0.0453 0.0206 0.0663 0.0599* -0.00258 0.0694** 0.0658** -0.00588 0.0696**

0.51 0.27 0.51 0.92 0.3 0.86 1.91 (-0.07) 2.21 2.12 (-0.15) 2.35
DIV_Payout 0.00538*** 0.00407** 0.00780*** 0.00548*** 0.00361* 0.00787*** 0.00437*** 0.00545* 0.00350** 0.00461*** 0.00534* 0.00414***

4.42 2.08 4.99 4.32 1.76 4.98 3.01 -1.87 -2.54 3.38 -1.87 -3.1
REC_BUY 0.144*** 0.143** 0.143** 0.103** 0.110* 0.117** 0.0963 0.103 0.1 0.0953 0.0887 0.114

3.17 2.17 2.49 2.4 1.76 2.06 1.28 -0.82 -1.1 1.28 -0.7 -1.24
_cons 3.903*** 4.156*** 3.383*** 3.738*** 4.082*** 3.214*** 3.231*** 2.964*** 1.616*** 3.174*** 2.945*** 1.553***

11.7 8.68 9.4 11.26 8.77 8.86 17.27 -10.42 -4.97 16.52 -10.44 -4.53

Control Variables yes yes yes yes yes yes yes yes yes yes yes yes

Observations 4111 2050 2061 4111 2050 2061 1664 825 839 1664 825 839

Number of banks 242 169 179 242 169 179 98 64 61 98 64 61

R-square 0.206 0.223 0.201 0.222 0.225 0.219 0.0951 0.0929 0.197 0.0917 0.0913 0.19

Wald χ² 1.31 30.59 0.06  5.96 23.36 3.11 2.55 2.17 7.62 0.42 1.25 3.24

P- Value 0.235 0.000 0.805 0.0146  0.0000 0.0778 0.1104 0.1407 0.0058 0.5187 0.2643 0.0717

Analyst Forecast Error Analyst Forecast Dispersion Analyst Forecast Error Analyst Forecast Dispersion

Size_US Size_US Size_EU Size_EU

Dependent Variable:: ln(Zscore)

US EU US EU US EU US EU

(1) (2) (3) (4) (5) (6) (7) (8)

Opacity -0.0984 -0.113*** -0.019 -0.144*** -0.0239 -0.0316** -0.0831 -0.0223

(-0.90) (-2.72) (-0.18) (-2.75) (-0.24) (-2.09) (-0.96) (-0.82)
Opacity X Coverage -0.00889 0.00126 -0.114 0.0207 -0.133*** -0.000613 -0.408** -0.01

(-0.51) -1.22 (-1.14) -1.6 (-4.10) (-0.40) (-2.44) (-0.65)
Opacity X DIV_Payout -0.0115*** -0.000105 -0.0117*** -0.000154 -0.0238*** -0.00214** -0.0262*** -0.00220**

(-2.88) (-0.27) (-3.10) (-0.40) (-4.03) (-2.38) (-4.69) (-2.39)
Opacity X REC_BUY -0.0335 0.0114 -0.0721 0.0111 0.395*** 0.0109 0.386*** 0.017

(-0.29) 0.44 (-0.67) 0.44 3.05 0.52 3.03 0.83
Coverage 0.0232** 0.00792** 0.025 0.0599* 0.0278*** 0.00828*** 0.0453 0.0658**

2.34 2.47 0.51 1.91 2.95 2.66 0.92 2.12
DIV_Payout 0.00532*** 0.00427*** 0.00538*** 0.00437*** 0.00507*** 0.00451*** 0.00548*** 0.00461***

4.35 2.95 4.42 3.01 4 3.33 4.32 3.38
REC_BUY 0.127*** 0.0988 0.144*** 0.0963 0.0855** 0.0991 0.103** 0.0953

2.79 1.31 3.17 1.28 2.01 1.33 2.4 1.28
_cons 3.852*** 3.253*** 3.903*** 3.231*** 3.713*** 3.206*** 3.738*** 3.174***

11.74 17.04 11.7 17.27 11.39 16.54 11.26 16.52

Control Variables yes yes yes yes yes yes yes yes

Observations 4111 1664 4111 1664 4111 1664 4111 1664
Number of banks 242 98 242 98 242 98 242 98
R-square 0.206 0.0951 0.205 0.0938 0.222 0.0917 0.215 0.0896

Ln_Coverage Ln_Coverage

Analyst Forecast Error Analyst Forecast Dispersion

This table provides fixed-effect estimation results based on Eq. (2), examining how opacity affects bank risk-taking with a focus 

on interaction effects involving analyst coverage, dividend payout policies, and REC_BUY. The dependent variable is ln(ZScore), 

analyzed for U.S. and European banks, segmented by bank size (below and above the median). Both Analyst Forecast Error and 

Analyst Forecast Dispersion models are presented. Time-fixed effects are applied in all estimations, and robust standard errors 

clustered at the bank level are shown in parentheses. Statistical significance is indicated by ***, **, and * for 1%, 5%, and 10% 

levels, respectively. Control variables are included but omitted from the display for conciseness. 
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Table 1. 14: Marginal Effects: Analyst Coverage and Dividend Policies on Opacity-Risk  

Nexus —by Bank Size 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable: ln(Z-Score)

Change

25th% 50th% 75th% 90th% 25%-90% Based on

Panel 1 SIZE
Coverage (ln) index at: 1.38 1.94 2.39 3.04
Forecast Error -0.518*** -0.565*** -0.661*** -0.74*** 0.221 Table 13, Column 1

-5.36 -4.85 -3.65 -3.05

<Median -0.248*** -0.574*** -0.765*** -0.901*** 0.65*** Table 13, Column 2

-2.68 -6.01 -6.79 -6.97

>Median -1.065*** -1.04*** -1.019*** -0.99*** -0.08 Table 13, Column 3

-5.26 -7.09 -6.99 -4.65

Forecast Dispersion -0.908*** -1.074*** -1.419*** -1.702*** 0.794** Table 13, Column 4

-5.29 -5.63 -5 -4.45

<Median -0.319*** -0.709*** -0.937*** -1.099*** 0.781*** Table 13, Column 5

-2.21 -4.56 -5.23 -5.46

>Median -1.447*** -1.816*** -2.114*** -2.54*** 1.093* Table 13, Column 6

-6.34 -6.41 -5.17 -4.07

Panel 2

Dividend Payout index at: 17 31 44 57
Forecast Error -0.419*** -0.582*** -0.73*** -0.882*** 0.463*** Table 13, Column 1

-4.26 -4.61 -4.48 -4.3
Forecast Dispersion -0.77*** -1.136*** -1.469*** -1.809*** 1.04*** Table 13, Column 4

-4.37 -5.58 -5.93 -5.95

US

Dependent Variable: ln(Z-Score)

Change

25th% 50th% 75th% 90th% 25%-90% Based on

Panel 3 SIZE
Coverage (ln) index at: 1.79 2.48 3.14 3.34
Forecast Error -0.112*** -0.096*** -0.08*** -0.072*** -0.04 Table 13, Column 7

-3.7 -3.69 -3.18 -2.74

<Median -0.126*** -0.106*** -0.082* -0.064 -0.062 Table 13, Column 8

-2.62 -2.37 -1.77 -1.26
>Median -0.066*** -0.081*** -0.095*** -0.099*** 0.033*** Table 13, Column 9

-3.78 -4.51 -4.79 -4.82

Forecast Dispersion -0.098*** -0.106*** -0.114*** -0.118*** 0.02 Table 13, Column 10

-3.23 -3.54 -3.33 -3.13

<Median -0.135*** -0.115** -0.091* -0.073 -0.062 Table 13, Column 11

-2.61 -2.58 -1.9 -1.18

>Median -0.127*** -0.145*** -0.164*** -0.171*** 0.044* Table 13, Column 12

-1.29 -1.51 -1.69 -1.75

Panel 4

Dividend Payout index at: 5 34 50 72
Forecast Error -0.092*** -0.098*** -0.1*** -0.104*** 0.011 Table 13, Column 7

-2.97 -3.73 -3.84 -3.67
Forecast Dispersion -0.032*** -0.107*** -0.143*** -0.191*** 0.159** Table 13, Column 10

-4.35 -3.51 -3.16 -2.93

EU

This table provides a marginal effect analysis based on results from Table 13, examining how 

variations in analyst coverage and dividend payout impact the relationship between opacity and 

bank risk, measured by Forecast Error and Dispersion, in the U.S. and Europe segmented by 

bank size. Panels 1 and 3 show the effect of varying levels of Coverage on the Opacity-Risk 

nexus for U.S. and European banks, respectively. Panels 2 and 4 focus on Dividend Payout. 

Marginal effects are evaluated at the 25th, 50th, 75th, and 90th percentiles for each interacted 

variable, with other variables held at median values. Standard errors are in parentheses. 

Statistical significance is denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively.  
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1.5.3.  Extended Robustness Analyses  

Further robustness tests explore alternative models and variables to reinforce the empirical 

findings. 

1.5.3.1. Opacity and High Default Probability: Evidence from Merton’s Model 

In this section, we apply Merton’s option-based model to examine how bank opacity, defined 

by analysts' forecast error and forecast dispersion, contributes to heightened default risk and 

reduced credit stability. This analysis quantifies the Probability of Default (PD) and Distance 

to Default (DD) across varying levels of opacity, shedding light on the implications of limited 

transparency in the banking sector. Bank opacity, characterized by limited information 

transparency, theoretically links to increased default risk via mechanisms like information 

asymmetry, adverse selection, and reduced market discipline. The Merton model, a widely used 

option-based framework, calculates PD and DD to evaluate a company’s ability to fulfill its 

financial obligations, offering insights into the credit risk associated with opacity. For banks, 

analyzing opacity through PD_Mert and DD_Mert measures provides a clear view of how 

transparency influences default risk and financial instability. Fig. 3 illustrates the relationship 

between detrended opacity (using forecast error) and two key risk indicators, PD_Mert and 

DD_Mert, for Global, U.S., and European banks. This visual segmentation allows a 

comparative analysis of opacity's impact across different regulatory and market settings, 

revealing that opacity is generally associated with increased default risk and lower financial 

stability, with the effects being particularly pronounced in the U.S. compared to Europe. 
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In this analysis, we employ a probit model to investigate how high opacity impacts default 

probability (PD_Mert) and reduces financial stability (DD_Mert) across U.S. and European 

banks. To capture extreme risk scenarios, we define two binary indicators: (1) a high-

probability default dummy (PD_Mert > 75th percentile) and (2) a low distance-to-default 

dummy (DD_Mert < 75th percentile), which flag banks at significant instability risk. The probit 

equation used is as follows: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [𝐻𝑖𝑔ℎ_𝑃𝐷_𝑀𝑒𝑟𝑡𝑖,𝑡  = 1]   = 𝑃𝑟𝑜𝑏𝑖𝑡 (𝛼 + ß 𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 +

 ∑ 𝜌𝑘𝐴𝑛𝑎𝑙𝑦𝑠𝑡_𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑘,𝑖,𝑡−1 + Ƴ  𝐷𝐼𝑉_𝑃𝑜𝑙𝑖𝑐𝑦 𝑖,𝑡−1 + ∑ 𝜑𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑛,𝑖,𝑡  +  
𝑝

𝑛=1

𝑚

𝑘=1
𝜀𝑖,𝑡                                             

                                                                                                                                                                                                                              

(10) 

Fig. 1.3: Scatter Plots of Detrended Opacity (Analysts’ Forecast Error) and Risk Indicators (PD_Mert and 
DD_Mert) for Global, U.S., and European Subsamples. 



Chapter 1: Opacity, Financial Analysts and Bank Risk: Evidence from US and European Publicly Traded Banks 

 51 

Table 1. 15 provides the probit regression results, assessing the impact of opacity—measured 

through analyst forecast error and forecast dispersion—on the likelihood of falling into high-

risk categories (either elevated default probability, High_PD_Mert, or reduced financial 

stability, Low_DD_Mert). Results are segmented for global, U.S., and European samples to 

highlight regional differences in the opacity-risk relationship. The results are segmented for the 

global, U.S., and European samples, highlighting regional variations in opacity-risk dynamics. 

For the global sample (Models 1 and 5), opacity shows a statistically significant positive effect 

on default probability at the 1% level, consistent across both measures of opacity. This suggests 

that opacity elevates default risk. Moreover, opacity is significantly linked with a lower distance 

to default (Low_DD_Mert) across global and regional samples (Models 2-4 and 6-8), indicating 

that higher opacity is associated with reduced financial stability and greater vulnerability to 

economic shocks though the result is weaker in Europe20. The effect is most pronounced in 

high-PD scenarios, particularly when opacity is measured by forecast dispersion (Model 5), 

underscoring the role of opacity in exacerbating default risk in the banking sector21.  

Table 1. 15: Opacity and High Default Probability: Evidence from Merton’s Model 

                                                      
20 Opacity, when measured by analyst forecast error, appears to have a weaker relationship with the Merton 

probability of default proxy in the European subsample, indicating that this measure may not fully capture the risk 

dynamics in the European banking context. 
21 Other variables reveal that while analyst coverage generally does not significantly alter high PD or low DD 

probabilities, recommendation consensus shows a modest positive association with risk, suggesting that greater 

analyst pessimism may correspond to higher risk categories, though the effects are not consistently significant. 

Dividend payouts exhibit a significant negative relationship across most specifications, suggesting that higher 

payouts lower the likelihood of high default risk or low stability, thereby playing a stabilizing role. 

Table 15 presents the probit regression results analyzing the effect of opacity, derived from analyst forecast error and 

dispersion, on the likelihood y of a bank experiencing a high level of default risk for a global, US and European banks. 

The dependent variables analyzed include Distance to Default (DD_met) and probability of Default (PD_met); We 

use a high PD_mert dummy (PD_mert > 75th percentile) to capture banks with elevated default risk. The low DD_mert 

dummy (DD_mert < 75th percentile) identifies banks with reduced financial stability. The main explanatory variable 

is opacity, with analyst coverage and other control variables included in the model. Time-fixed effects are incorporated 

in all estimations, and robust standard errors, clustered at the bank level, are reported in parentheses. ***, **, and * 

denote significance levels at the 1%, 5%, and 10% levels, respectively.  

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: High_PD_mert High_PD_mert

All All US EU All All US EU

Opacity 0.0545*** 0.0544*** 0.219*** 0.0347* 0.228*** 0.227*** 0.470*** 0.128***

3.23 3.22 3.07 1.8 4.98 4.97 4.56 4.13

Coverage -0.00459 -0.00426 -0.0241*** -0.00278 -0.00375 -0.00342 -0.0233*** -0.00208

(-1.62) (-1.51) (-5.56) (-0.66) (-1.33) (-1.21) (-5.41) (-0.49)

REC_Con 0.0257 0.0268 -0.199*** 0.299*** 0.00941 0.0106 -0.208*** 0.278***

0.69 0.72 (-4.21) 4.77 0.25 0.28 (-4.40) 4.42

DIV_Payout -0.0124*** -0.0124*** -0.0138*** -0.0125*** -0.0117*** -0.0117*** -0.0131*** -0.0117***

(-13.32) (-13.36) (-11.10) (-7.97) (-12.54) (-12.59) (-10.55) (-7.50)

_cons -0.318** -0.321** 0.682** -1.213*** -0.345** -0.348** 0.681** -1.217***

(-1.98) (-2.00) 2.3 (-5.76) (-2.15) (-2.17) 2.29 (-5.77)

Control Variables yes yes yes yes yes yes yes yes

Observations 5440 5440 3872 1568 5440 5440 3872 1568

Analyst Forecast Error Analyst Forecast Dispersion

Low_DD_mert Low_DD_mert
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1.5.3.2. Market Systematic Risk and Price Volatility Analysis 

Additional robustness tests assess the effect of opacity on market-based risk measures, 

specifically evaluating its influence on systematic risk (Beta) and price volatility across global, 

U.S., and European bank samples. Specifically, we re-estimated our baseline model using 

Market Systematic Risk (BETA) and Price Volatility (Price VOL). Table 1. 16 presents the 

fixed-effect estimation results for the global sample as well as US and European subsamples. 

Across the BETA models (columns 1-3 and 7-9), greater opacity—particularly when measured 

by analyst forecast dispersion—is positively associated with increased systematic risk, both 

globally and regionally. For Price Volatility (columns 4-6 and 10-12), higher opacity under 

both proxies’ correlates with increased volatility, indicating that opaque banks are more 

susceptible to financial distress and market instability. The US subsample shows more 

pronounced effects for price volatility, suggesting that opacity amplifies risk-taking behavior 

in the more market-driven US financial environment. In contrast, while the European 

subsample also demonstrates increased risk linked to opacity, the effect on price volatility is 

weaker, possibly reflecting the stabilizing influence of stronger regulatory oversight in Europe. 

Analyst coverage shows a positive association with systematic risk (BETA) globally and 

regionally, suggesting that increased analyst coverage might elevate perceived systematic risk, 

but it does not significantly affect price volatility. Dividend payout consistently exhibits a 

negative relationship with both beta and price volatility, indicating that higher payouts are 

associated with lower risk and volatility. This finding suggests that dividend policies serve as 

stabilizing signals of financial strength, mitigating perceived risk and promoting market 

stability. Overall, these findings underscore that opacity significantly heightens systematic risk 

and market volatility, particularly in the US, while dividend payouts act as important stabilizing 

mechanisms. 
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Table 1. 16: Market Systematic Risk and Price Volatility Analysis 

1.6. Summary and Conclusion 

This study provides an in-depth analysis of bank opacity and its impact on risk within the U.S. 

and European banking sectors, leveraging forward-looking metrics such as analyst forecast 

error and forecast dispersion to capture nuances in market discipline and stability. The findings 

underscore opacity's destabilizing role in the banking industry, with higher opacity associated 

with increased risk-taking and diminished stability. Notably, this effect is amplified under 

conditions of market overvaluation and economic uncertainty, particularly within the U.S., 

where market-driven dynamics and heightened analyst scrutiny create an environment more 

sensitive to opaque practices. These insights contribute to the growing literature on bank 

transparency by demonstrating that opacity impairs the ability of market participants to assess 

bank risk accurately, thereby increasing systemic vulnerabilities. 

The role of financial analysts proves to be multifaceted. While analyst coverage generally 

improves transparency and mitigates risk, it can also place added pressure on opaque banks, 

potentially encouraging riskier behaviors. This effect is most notable in the U.S., especially 

among smaller banks that are highly sensitive to analyst coverage. In contrast, European banks 

experience a moderated impact from analyst scrutiny, particularly among larger institutions, 

reflecting the influence of regional differences in market structure and regulatory priorities. 

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

All US EU All US EU All US EU All US EU

Opacity -0.00178 0.0217 -0.00684 0.795*** 1.624*** 0.49 0.0347*** 0.0455 0.0349*** 0.805*** 2.579*** 0.659***

(-0.08) -0.54 (-0.26) -2.9 -4.98 -1.41 -3.13 -0.74 -3.29 -3.82 -4.36 -4.68

Coverage 0.00788*** 0.0325*** 0.00462*** -0.00703 -0.0289 -0.00234 0.0625*** 0.0849*** 0.0460*** 0.0618 0.0702 0.0795

-6.15 -6.54 -3.76 (-0.48) (-0.51) (-0.16) -5.58 -3.51 -3.98 -0.43 -0.26 -0.55

REC_Con -0.0363** 0.00384 -0.0624** -0.239 -0.272 -0.0369 -0.0399** -0.0076 -0.0713** -0.271 -0.308 -0.12

(-2.07) -0.17 (-2.21) (-1.11) (-1.20) (-0.08) (-2.25) (-0.33) (-2.52) (-1.27) (-1.38) (-0.27)

DIV_Payout -0.00353*** -0.00347*** -0.00258*** -0.0642*** -0.0708*** -0.0438*** -0.00338*** -0.00331*** -0.00240*** -0.0624*** -0.0679*** -0.0406***

(-7.15) (-5.03) (-3.82) (-10.33) (-8.94) (-4.32) (-6.98) (-4.90) (-3.88) (-10.29) (-8.82) (-4.30)

_cons 1.124*** 0.106 1.430*** 25.90*** 21.85*** 25.71*** 1.098*** 0.177 1.401*** 25.88*** 22.03*** 25.76***

-8.6 -0.49 -13.52 -29.17 -10.24 -15.69 -8.21 -0.78 -13.27 -28.93 -10.29 -15.79

Control Variables yes yes yes yes yes yes yes yes yes yes yes yes

Observations 5440 3872 1568 5440 3872 1568 5440 3872 1568 5440 3872 1568

Number of banks 340 242 98 340 242 98 340 242 98 340 242 98

R-square 0.133 0.185 0.135 0.227 0.276 0.205 0.137 0.17 0.151 0.24 0.291 0.233

Analyst Forecast Error

BETA Price_VOL BETA Price_VOL

Analyst Forecast Dispersion

This table presents fixed-effect estimation results examining the impact of opacity on bank risk-taking, focusing on interactions 

between opacity, analyst forecast error, and forecast dispersion in relation to systematic risk (BETA) and price volatility 

(Price_VOL). Columns 1–6 analyze the relationship with Analyst Forecast Error, while Columns 7–12 focus on Analyst Forecast 

Dispersion. The dependent variables are systematic risk (BETA) and price volatility (Price_VOL), with separate estimations 

provided for U.S., European, and global samples. All models include control variables and time-fixed effects. Robust standard 

errors clustered at the bank level are shown in parentheses. Statistical significance is indicated by ***, **, and * for 1%, 5%, and 

10% levels, respectively. 
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Additionally, negative analyst signals—such as sell recommendations and downgrades—

intensify opacity-related risks, especially in high-opacity U.S. banks, where market reactions to 

negative forecasts amplify instability. Positive recommendations provide a stabilizing effect, 

although less pronounced, underscoring the more significant influence of negative sentiment on 

market behavior. Dividend policy also interacts with opacity in complex ways. While moderate 

dividend payouts typically signal stability and enforce market discipline, excessive dividends 

can exacerbate opacity’s negative effects, reducing resilience. This destabilizing effect is most 

prominent in the U.S., where aggressive dividend distributions may weaken capital buffers and 

push banks toward riskier strategies to satisfy shareholder expectations. Thus, while dividends 

can serve a stabilizing function, they may also undermine stability if misaligned with a bank’s 

financial health. 

The comparative analysis across the U.S. and European banking sectors reveals that while 

the negative effects of opacity are present in both regions, the intensity and mechanisms of 

impact differ. U.S. banks, which operate within a more market-driven framework, exhibit a 

higher sensitivity to opacity and analyst-induced pressures, often resulting in pronounced risk-

taking behaviors. European banks, however, display a moderated response to opacity and 

analyst coverage, albeit with similar directional effects. In conclusion, this research extends the 

understanding of how opacity, financial analyst influence, and dividend policies interact to 

shape bank risk profiles across distinct financial environments.  

These findings have critical implications for regulators, policymakers, and market 

participants. They indicate that nuanced regulatory approaches—accounting for the dual role of 

analysts and the signaling impact of dividend policies—are crucial for fostering resilience in the 

banking sector. Tailored oversight, especially in market-driven contexts, can mitigate opacity’s 

destabilizing effects by balancing the informational benefits of analyst coverage with the risks 

of excessive market pressure. This study contributes meaningfully to our understanding of 

market discipline mechanisms, highlighting how transparency, regulatory context, and market 

dynamics together shape banking sector stability in profound and intricate ways.
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Appendix I 

 

 

Appendix A: Details On Dataset  

Table A1. Local market index data 
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Appendix B: Details on Risk Proxies 

- Distance to Default Calculation and Risk Measure Visualizations 

Distance to Default Calculation: [PD,DD] = mertonByTimeSeries(Equity,Liability,Rate)22 

 Equity: The market value of the firm's equity, calculated as the product of the number of shares 

and the market price. 

 Liability: The liability threshold of the firm, often referred to as the default point, specified as a 

positive value. 

 Rate: The annualized risk-free interest rate, typically represented by the yield on 5-year 

government bonds. 

 Maturity: The time to maturity of the liability threshold, specified as a comma-separated pair 

('Maturity,' positive value). 

 Drift: The annualized drift rate, representing the expected rate of return on the firm’s assets, 

specified as a comma-separated pair ('Drift,' numeric value). 

Outputs: PD (Probability of Default): The probability that the firm will default by the time the 

liabilities reach maturity, returned as a numeric value. DD (Distance-to-Default): The number of 

standard deviations between the mean of the asset distribution at maturity and the liability threshold 

(default point), returned as a numeric value. 

 

- Risk distributions:  

Fig. B.1 in Appendix B displays the distribution of key bank risk measures, including solvency and 

profitability (Z-Score, SD ROA, Total Risk) and market and credit risk metrics (Beta, Price 

Volatility, Distance to Default). These boxplots reveal the variability across risk profiles, offering 

context for bank stability and market risk perceptions in our sample. 

 

                                      
Fig. B.1: Boxplots of Bank Solvency, Profitability, Market, and Default Risk Measures 

 

 

 

 

                                                      
22 The function mertonByTimeSeries estimates the default probability using the time-series version of the Merton model in 

MATLAB, as provided by MathWorks Nordic (https://se.mathworks.com/help/risk/mertonbytimeseries.html).  

https://www.mathworks.com/help/risk/mertonbytimeseries.html#d124e42456
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- Risk – Opacity Correlations:  

 

Table B2 Correlation Matrix Risk and Opacity Variables 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12

Forcast Error 1

Forecast Dispersion 0.4383 1
0.0000

lnZScore -0.1724 -0.1391 1
0.0000 0.0000

lnZ1Score -0.1728 -0.1347 0.9957 1
0.0000 0.0000 0.0000

lnZ2Score -0.158 -0.1801 0.789 0.7517 1
0.0000 0.0000 0.0000 0.0000

lnMZScore -0.0867 -0.1113 0.4315 0.4196 0.4471 1
0.0000 0.0000 0.0000 0.0000 0.0000

SDROA 0.1283 0.097 -0.7308 -0.7106 -0.7177 -0.3931 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TTL_Risk 0.0972 0.1097 -0.3663 -0.3558 -0.3987 -0.9507 0.3506 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PD_high_Merton 0.0689 0.1152 -0.1231 -0.1189 -0.1419 -0.0707 0.0974 -0.0513 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

DD_low_Merton 0.0691 0.1153 -0.1247 -0.1207 -0.1427 -0.0715 0.1001 -0.0509 0.9986 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

BETA 0.0808 0.1069 -0.2304 -0.224 -0.2106 -0.1843 0.1348 0.1871 0.0009 0.002 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9480 0.8770

Price_VOL 0.1837 0.2177 -0.5272 -0.5185 -0.5069 -0.5492 0.4003 0.4567 0.1764 0.1782 0.5107 1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B2 provides the correlation matrix for risk and opacity variables, detailing their significance levels and 

further illustrating the relationship between opacity and bank risk-taking behavior. 
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Appendix C: Further Investigations 

- Alternative Measures for Analyst Coverage 

To enhance robustness, we examine additional proxies for analyst coverage: Residual_Coverage and 

Ln-Coverage. Ln-Coverage, the natural logarithm of the primary coverage measure, better captures 

variations in coverage levels, while Residual_Coverage is computed from the residuals of Equation (9). 

Table C1: Opacity and bank risk-taking- Using alternative coverage measures: Ln_Coverage 

 

Table C2: Opacity and bank risk-taking- Using alternative coverage measures: Residual _Coverage 

This table presents fixed-effect estimation results examining the impact of opacity, as derived from analysts' forecasts, 

on bank risk-taking, using Residual Coverage as an alternative measure for analyst coverage. All estimations include 

time-fixed effects. Robust standard errors, clustered at the bank level, are shown in parentheses. Statistical significance 

is denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively. 

This table presents fixed-effect estimation results examining the impact of opacity, as derived from analysts' forecasts, 

on bank risk-taking, using Ln_ Coverage as an alternative measure for analyst coverage. All estimations include time-

fixed effects. Robust standard errors, clustered at the bank level, are shown in parentheses. Statistical significance is 

denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Opacity -0.206*** -0.148*** -0.150*** -0.146*** -0.161*** -0.150*** -0.0849** -0.0747*** -0.0735*** -0.0697** -0.0710** -0.0603**

(-5.95) (-4.69) (-4.79) (-4.62) (-4.83) (-4.54) (-2.55) (-2.61) (-2.61) (-2.54) (-2.51) (-2.34)

Ln_Coverage 0.0611** 0.0597** 0.0806*** 0.0676*** 0.0544** 0.0533** 0.0737*** 0.0614**

-2.51 -2.44 -3.43 -2.85 -2.2 -2.14 -3.06 -2.53

REC_Con -0.147*** -0.128*** -0.147*** -0.132***

(-4.38) (-3.64) (-4.31) (-3.70)

REC_Rev_Dn -0.0571*** -0.0478** -0.0504** -0.0415*

(-2.63) (-2.19) (-2.28) (-1.86)

REC_Rev_Up -0.0395 -0.0442 -0.0389 -0.0441

(-1.46) (-1.55) (-1.48) (-1.59)

DIV_Payout 0.00564*** 0.00562***

-5.97 -5.86

_cons 3.768*** 3.632*** 3.555*** 3.956*** 3.432*** 3.562*** 3.731*** 3.604*** 3.534*** 3.935*** 3.409*** 3.552***

-449.07 -25.35 -26.57 -25.54 -25.56 -21.22 -709.01 -25.34 -26.45 -25.43 -25.22 -21.17

Control Variables yes yes yes yes yes yes yes yes yes yes yes yes

Observations 5775 5775 5775 5775 5435 5435 5775 5775 5775 5775 5435 5435

Number of banks 340 340 340 340 340 340 340 340 340 340 340 340

R-square 0.0196 0.151 0.153 0.159 0.154 0.17 0.00726 0.147 0.148 0.154 0.148 0.163

Dependent Variable: ln(Z-Score)

Analyst Forecast Error Analyst Forecast Dispersion

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Opacity -0.206*** -0.148*** -0.159*** -0.154*** -0.159*** -0.145*** -0.0849** -0.0747*** -0.0665*** -0.0633** -0.0648** -0.0542**

(-5.95) (-4.69) (-4.70) (-4.54) (-4.61) (-4.29) (-2.55) (-2.61) (-2.60) (-2.55) (-2.46) (-2.32)

Residual_Coverage 0.0327*** 0.0301*** 0.0346*** 0.0323*** 0.0327*** 0.0301*** 0.0346*** 0.0322***

-4.01 -3.67 -4.29 -4.01 -3.96 -3.62 -4.23 -3.96

REC_Con -0.127*** -0.132*** -0.131*** -0.137***

(-3.38) (-3.54) (-3.43) (-3.61)

REC_Rev_Dn -0.0664*** -0.0582*** -0.0611*** -0.0532**

(-3.21) (-2.81) (-2.91) (-2.53)

REC_Rev_Up -0.0501* -0.0544** -0.0505** -0.0553**

(-1.89) (-1.98) (-1.99) (-2.08)

DIV_Payout 0.00594*** 0.00598***

-6.25 -6.23

_cons 3.768*** 3.632*** 3.333*** 3.690*** 3.351*** 3.473*** 3.731*** 3.604*** 3.306*** 3.675*** 3.323*** 3.458***

-449.07 -25.35 -26.07 -22.4 -26.92 -20.65 -709.01 -25.34 -25.62 -22.07 -26.38 -20.47

Control Variables yes yes yes yes yes yes yes yes yes yes yes yes

Observations 5775 5775 5095 5095 5095 5095 5775 5775 5095 5095 5095 5095

Number of banks 340 340 340 340 340 340 340 340 340 340 340 340

R-square 0.0196 0.151 0.16 0.164 0.161 0.179 0.00726 0.147 0.153 0.158 0.155 0.172

Analyst Forecast Error Analyst Forecast Dispersion

Dependent Variable: ln(Z-Score)
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Table C3: Interactions between Analyst Recommendations, revisions, and Bank Risk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This table presents the fixed-effect estimation results, based on Eq. (2), examining the influence of opacity on bank risk-taking, 

specifically through interactions with analyst recommendations (e.g., Buy, Sell, and revisions) and coverage. The dependent 

variable is ln(ZScore), representing bank stability. Time-fixed effects are included in all estimations, and robust standard errors 

clustered at the bank level are shown in parentheses. Statistical significance is denoted by ***, **, and * for 1%, 5%, and 10% 

levels, respectively. 

Dependent Variable:: ln(Zscore)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Opacity -0.215*** -0.202*** -0.184*** -0.212*** -0.217*** -0.0728** -0.0762* -0.0603 -0.0674* -0.0890*

(-5.11) (-5.65) (-3.31) (-5.51) (-5.61) (-2.07) (-1.95) (-0.67) (-1.68) (-1.89)

Opacity X REC_Buy 0.0291 0.0294

1.26 0.85

Opacity X REC_Sell 0.0248 0.00898

0.87 0.41

Opacity X REC_Con -0.00431 -0.00269

(-0.20) (-0.11)

Opacity X REC_Rev_Dn 0.000621 0.0287

0.05 1.45

Opacity X REC_Rev_Up 0.0284* 0.0233*

1.77 1.81

Opacity X Coverage 0.0315*** 0.0324** 0.0326*** 0.0317** 0.0281** 0.00181 0.0121 0.0104 -0.0042 0.00834

2.65 2.57 2.63 2.33 2.06 0.1 0.78 0.7 (-0.26) 0.48

Opacity X DIV_Payout -0.000375 -0.000523 -0.000451 -0.000365 -0.000293 -0.00394** -0.00397** -0.00380** -0.00434** -0.00421**

(-0.73) (-1.03) (-0.88) (-0.62) (-0.50) (-2.40) (-2.44) (-2.40) (-1.99) (-1.99)

_cons 3.389*** 3.484*** 3.893*** 3.292*** 3.278*** 3.335*** 3.435*** 3.835*** 3.235*** 3.230***

21.14 22.13 22.23 20.22 19.85 20.19 21.23 21.72 19 18.65

Control Variables yes yes yes yes yes yes yes yes yes yes
Observations 5775 5775 5775 5435 5435 5775 5775 5775 5435 5435

Number of banks 340 340 340 340 340 340 340 340 340 340
R-square 0.125 0.123 0.128 0.127 0.127 0.121 0.119 0.124 0.123 0.123

Analyst Forecast Error Analyst Forecast Dispersion
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Appendix D:   Subsamples of US and European Banks 

- Variable definitions  

 

Table D1. Variables definition and summary statistics for US and European banks 

 

This table shows summary statistics and t-tests comparing U.S. and EU banks across dependent, interest, and control 

variables. Significant differences between regions are denoted by ***, **, and * at the 1%, 5%, and 10% levels, 

respectively. 

Variable 

Dependent variables Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max T-Stat.

SDROA 4,114 0.36 0.50 0.00 3.25 1,666    0.44 0.61 0.00 3.90 5.4617***

ZScore 4,114 75.37 70.85 3.76 385.35 1,666    46.15 54.60 0.02 328.13 -15.1161***

Z1Score 4,114 67.63 63.44 3.33 294.43 1,666    40.71 49.01 3.33 213.59 -15.5450***

Z2Score 4,114 7.63 7.80 -0.53 34.70 1,666    5.37 6.06 -0.53 34.70 -10.6003***

MZScore 4,103 55.05 28.15 0.00 183.79 1,656    55.50 37.93 0.00 413.14 0.4919*

TR 4,114 1.87 1.37 0.00 8.57 1,666    1.82 1.37 0.00 8.57 -1.2749*

BETA 4,114 0.77 0.55 -1.24 2.92 1,666    1.01 0.60 -1.24 2.92 14.5257***

Price_VOL 4,114 22.16 6.43 7.96 47.52 1,666    25.60 8.51 5.89 47.52 16.7220***

DD_mert 4,114 1.88 9.30 -27.51 80.53 1,666    -0.16 11.77 -33.18 80.53 -8.788***

PD_mert 4,114 0.46 0.42 0.00 1.00 1,666    0.65 0.38 0.00 1.00 16.2289***

Variables Of Interest 

Analysts Forecasts and Recommendations

Forecast Error 4,114 0.095 0.36 0.00 8.27 1,666    0.60 1.82 0.00 8.27 17.026***

Forecast Dispersion 4,114 0.08 0.23 0.00 2.55 1,666    0.22 0.54 0.00 2.55 13.6718***

Forecast_Optimism 4,114 0.65 3.33 -9.96 39.12 1,666    3.47 11.11 -9.96 39.12  14.6861***

Coverage 4,114 5.26 6.94 0.00 38.00 1,666    11.92 11.55 0.00 46.00 26.8801***

REC_Con 4,114 2.53 0.50 1.00 5.00 1,666    2.64 0.57 1.00 5.00 19.0044***

REC_Rev_Dn 4,114 0.09 0.35 0.00 4.00 1,666    0.38 0.80 0.00 7.00 21.8289***

REC_Rev_Up 4,114 0.06 0.27 0.00 3.00 1,666    0.34 0.70 0.00 5.00 7.4635***

REC_Cons_ BUY % 4,114 37.70 31.03 0.00 100.00 1,666    40.56 27.24 0.00 100.00 3.2781***

REC_Cons_  HOLD % 4,114 57.71 30.15 0.00 100.00 1,666    43.27 24.86 0.00 100.00 -17.3162***

REC_Cons_  SELL % 4,114 4.59 10.71 0.00 100.00 1,666    16.18 19.88 0.00 100.00 28.5385***

REC_BUY 4,114 0.73 0.44 0.00 1.00 1,666    0.73 0.44 0.00 1.00 -0.0219*

REC_SELL 4,114 0.08 0.27 0.00 1.00 1,666    0.18 0.38 0.00 1.00 10.8115***

DIV_Payout 4,114 31.45 20.87 0.00 91.50 1,666    33.59 26.64 0.00 91.50 3.2506***

DIV_Yield 4,114 2.21 1.53 0.00 9.09 1,666    2.83 2.33 0.00 9.09 11.8483***

Control Variables 

DEPOSITS 4,114 76.30 9.13 24.79 89.87 1,666    56.35 17.65 24.79 89.87 -17.96377***

EQUITY2A 4,114 10.84 2.90 2.88 23.48 1,666    8.10 4.06 2.88 23.48  -22.4679***

SIZE 4,114 9.59 0.71 8.19 12.53 1,666    10.65 0.90 7.73 12.40 55.3501***

NI2A 4,114 1.18 1.11 0.00 15.72 1,666    1.89 1.81 0.01 29.22  18.1537***

NPL 4,114 1.62 1.95 0.01 23.63 1,666    4.52 5.34 0.01 23.63 30.1969***

MTBV 4,114 136.05 60.90 19 378 1,666    124.43 73.77 19.00 378 -6.1684***

GDPgr 4,114 1.69 1.95 -3.64 3.80 1,666    1.45 2.71 -5.79 6.12 -3.8251***

Inflation 4,114 2.03 1.09 -0.36 3.84 1,666    1.71 1.51 -0.69 6.36 -9.0661***

US banks EU banks
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Table D2: Correlation Matrix Risk and Opacity Variables  

 

- Comparative Analysis of financial stability, analyst dynamics, and dividend policy for 

European and US Banks (2004-2020).  

 

US Sub-sample EU Sub-sample

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

Forcast Error 1 1

Forecast Dispersion 0.612 1 0.411 1
0.000 0.000

lnZScore -0.274 -0.266 1 -0.110 -0.108 1
0.000 0.000 0.000 0.000

lnZ1Score -0.270 -0.259 0.997 1 -0.105 -0.098 0.993 1
0.000 0.000 0.000 0.000 0.000 0.000

lnZ2Score -0.339 -0.300 0.823 0.796 1 -0.106 -0.198 0.725 0.668 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

lnMZScore -0.226 -0.178 0.429 0.424 0.440 1 -0.062 -0.133 0.491 0.468 0.473 1
0.000 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.000

SDROA 0.293 0.244 -0.767 -0.752 -0.769 -0.397 1 0.076 0.064 -0.685 -0.659 -0.617 -0.391 1
0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.009 0.000 0.000 0.000 0.000

TTL_Risk 0.206 0.154 -0.365 -0.359 -0.395 -0.958 0.365 1 0.097 0.150 -0.423 -0.406 -0.420 -0.937 0.332 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DD_low_Merton 0.108 0.126 -0.085 -0.080 -0.105 -0.026 0.079 -0.075 1 0.028 0.132 -0.123 -0.113 -0.190 -0.166 0.115 0.006 1
0.000 0.000 0.000 0.000 0.000 0.110 0.000 0.000 0.254 0.000 0.000 0.000 0.000 0.000 0.000 0.821

BETA 0.012 0.044 -0.162 -0.149 -0.179 -0.113 0.146 0.151 -0.021 1 0.073 0.144 -0.268 -0.265 -0.240 -0.352 0.083 0.292 -0.028 1
0.439 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.181 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.262

Price_VOL 0.297 0.341 -0.511 -0.505 -0.504 -0.508 0.427 0.425 0.143 0.401 1 0.122 0.209 -0.495 -0.475 -0.507 -0.675 0.347 0.570 0.176 0.65 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

Fig. D.1. This set of charts provides a visual representation of key indicators influencing bank risk and profitability 

across European and US banks from 2004 to 2020. The indicators include Analyst Forecast Error, Analyst Forecast 

Dispersion, Analyst Forecast Optimism, Analyst Coverage, Dividend Payout Adjustments, and the ZScore as a 

measure of bank risk. The data reveals significant regional differences in forecast accuracy, analyst activity, 

dividend practices, and overall financial stability, highlighting the unique challenges faced by banks in each region. 
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Appendix F:   Additional analysis  

 

Table F1: Interactions and Extensions: Analyst Recommendations, Revisions and Opacity-Risk 

 

 

 

 

 

Dependent Variable:: ln(Zscore)

US Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Opacity -0.019 0.00388 0.43 -0.0885 0.00195 -0.0831 -0.00533 1.083** 0.0427 0.0597

(-0.18) -0.04 -1.33 (-0.98) -0.03 (-0.96) (-0.05) -2.11 -0.39 -0.53

Opacity X REC_Buy -0.0721 0.386***

(-0.67) -3.03

Opacity X REC_Sell 0.588 -1.240***

1.61 (-3.95)

Opacity X REC_Con -0.206 -0.388**

(-1.50) (-2.19)

Opacity X REC_Rev_Dn -0.494** -0.349

(-2.18) (-1.50)

Opacity X REC_Rev_Up 0.876*** 0.472***

2.93 3.34

Opacity X Coverage -0.114 -0.247** -0.05 -0.08 -0.347*** -0.408** -0.297* -0.340** -0.370** -0.434**

(-1.14) (-2.19) (-0.44) (-0.80) (-3.52) (-2.44) (-1.74) (-2.04) (-2.04) (-2.57)

Opacity X DIV_Payout -0.0117*** -0.0137*** -0.0107** -0.0116*** -0.0131*** -0.0262*** -0.0182*** -0.0227*** -0.0205*** -0.0209***

(-3.10) (-3.35) (-2.41) (-2.78) (-4.02) (-4.69) (-3.25) (-3.56) (-2.87) (-3.01)

_cons 3.903*** 3.957*** 4.352*** 3.822*** 3.757*** 3.738*** 3.833*** 4.096*** 3.662*** 3.627***

11.7 11.96 12.52 11.11 10.82 11.26 11.69 11.95 10.58 10.46

Control Variables yes yes yes yes yes yes yes yes yes yes

Observations 4111 4111 4111 3869 3869 4111 4111 4111 3869 3869

Number of banks 242 242 242 242 242 242 242 242 242 242
R-square 0.205 0.208 0.211 0.211 0.217 0.215 0.217 0.217 0.213 0.214

Analyst Forecast Error Analyst Forecast Dispersion

This table presents fixed-effect estimation results based on Eq. (2), examining how opacity influences bank risk-taking 

with a focus on the interaction effects of opacity with analyst recommendation tones (positive/negative) and revisions 

(upgrades/downgrades) in U.S. banks. The dependent variable is ln(ZScore), analyzed across both Analyst Forecast Error 

and Analyst Forecast Dispersion models. Time-fixed effects are included in all estimations, and robust standard errors 

clustered at the bank level are shown in parentheses. Statistical significance is indicated by ***, **, and * for 1%, 5%, 

and 10% levels, respectively. Control variables are included but not displayed for brevity. 
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Table F2: Interactions and Extensions: Analyst Recommendations, Revisions, Coverage and Opacity-Risk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable:: ln(Zscore)

Panel A: US (1) (2) (3) (4) (5) (6) (7) (8)
Opacity -0.212*** -0.298*** -0.310*** -0.342*** -0.252*** -0.293*** -0.308*** -0.312***

(-4.74) (-4.68) (-5.02) (-4.92) (-2.69) (-3.03) (-2.73) (-2.81)
Opacity X REC_Buy X Coverage -0.340*** -0.225

(-3.20) (-1.18)
Opacity X REC_Sell X Coverage -0.00676 -0.883***

(-0.15) (-2.76)
Opacity X REC_Rev_Dn X Coverage -0.227*** -0.501***

(-2.84) (-3.62)
Opacity X REC_Rev_Up X Coverage 0.0418 -0.0288

1.52 (-0.17)

_cons 3.869*** 3.996*** 3.826*** 3.779*** 3.833*** 3.911*** 3.767*** 3.730***

11.48 11.96 10.96 10.78 11.33 12 10.8 10.66

Control Variables yes yes yes yes yes yes yes yes

Observations 4111 4111 3869 3869 4111 4111 3869 3869

Number of banks 242 242 242 242 242 242 242 242
R-square 0.205 0.197 0.204 0.201 0.198 0.205 0.2 0.196

Analyst Forecast Error Analyst Forecast Dispersion

Dependent Variable:: ln(Zscore)

Panel B: EU (1) (2) (3) (4) (5) (6) (7) (8)

Opacity -0.116*** -0.0978*** -0.105*** -0.110*** -0.0461** -0.0363*** -0.0504** -0.0614***

(-3.51) (-3.47) (-3.65) (-3.88) (-2.50) (-3.14) (-2.54) (-2.84)

Opacity X REC_Buy X Coverage 0.0131 0.00458

1.42 0.8

Opacity X REC_Sell X Coverage 0.00402 -0.00924

0.37 (-0.86)

Opacity X REC_Rev_Dn X Coverage 0.00227 0.00489

0.63 1.11

Opacity X REC_Rev_Up X Coverage 0.00780* 0.0108*

1.7 1.73

_cons 3.227*** 3.296*** 3.151*** 3.135*** 3.192*** 3.276*** 3.133*** 3.120***

17.08 18.66 17.36 17.29 16.49 18.18 16.82 16.82

Control Variables yes yes yes yes yes yes yes yes

Observations 1664 1664 1566 1566 1664 1664 1566 1566

Number of banks 98 98 98 98 98 98 98 98

R-square 0.0934 0.091 0.0879 0.0875 0.0868 0.0855 0.0809 0.0807

Analyst Forecast Error Analyst Forecast Dispersion

This table presents fixed-effect estimation results examining how opacity influences bank risk-taking, with a focus 

on interactions between opacity and analyst recommendations (Buy/Sell), revisions (Up/Dn), and coverage. Panel 

A shows results for U.S. banks, while Panel B presents results for European banks. The dependent variable is 

ln(ZScore), analyzed separately for both Analyst Forecast Error and Analyst Forecast Dispersion models. All 

estimations include time-fixed effects, and robust standard errors clustered at the bank level are displayed in 

parentheses. Statistical significance is indicated by ***, **, and * for 1%, 5%, and 10% levels, respectively. Control 

variables are included in the analysis but not shown for brevity. 
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This chapter is based on the working paper titled “The Influence of Financial Analyst 

Characteristics on Forecast Accuracy: A Comparative Analysis Across Global Banking 

Markets.” An earlier version of this work was presented at the Sixth Edition of the Journées 

Internationales du Risque, hosted by the IRIAF (Institute of Industrial, Insurance, and Financial 

Risks) in Niort, France, on June 27–28, 2024. 
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Abstract 

This study explores how financial analyst characteristics and career motivations shape disparities 

in earnings forecast accuracy and boldness across global banking markets. Using the I/B/E/S 

Detail History Database, we examine forecasts for 516 publicly traded banks across the U.S., 

Europe, and Asia from 2000 to 2023, uncovering notable regional disparities in the factors 

influencing forecast accuracy. While general and bank-specific experience significantly 

enhances precision—most notably in the U.S.—the benefits of affiliation with top-tier brokerage 

houses vary, with a smaller impact in Europe, where smaller, specialized firms often hold 

informational advantages. Portfolio complexity shows contrasting effects: broader bank 

coverage improves accuracy in the U.S. and Asia but increases errors in Europe due to 

geographical diversification challenges. Boldness, tied to career trajectories, exhibits nuanced 

regional patterns. In the U.S., experienced analysts issue bold, accurate forecasts that enhance 

career mobility, while less experienced analysts herd to avoid the risks of inaccuracy. In Asia, 

boldness consistently facilitates career advancement, supported by focused portfolios and 

institutional backing. In Europe, early-career analysts use bold forecasts and geographically 

diverse portfolios to gain visibility, albeit with a trade-off in accuracy. These findings underscore 

the interplay of technical expertise, market dynamics, and career incentives in shaping 

forecasting behavior. The study highlights the need for greater transparency and regulatory 

oversight to improve forecast reliability and strengthen market discipline in the opaque banking 

sector. 

 

JEL classification: G11, G12, G14, G24 

Keywords: Financial Analysts, Earnings Forecasts, Forecast Boldness, Banking Sector, 

Career Concerns.  
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2.1. Introduction  

Financial analysts are pivotal in shaping market expectations and guiding investment decisions, 

particularly in interpreting complex financial data. Their forecasts and recommendations play a 

critical role in improving the information environment, reinforcing market discipline, and 

contributing to economic stability (Cheng & Subramanyam, 2008; Mansi et al., 2011; Derrien 

et al., 2016; Kosaiyakanont, 2013). In the banking sector, characterized by intricate and opaque 

asset structures, the true risk profiles of banks often remain obscured, raising concerns about the 

effectiveness of market discipline in curbing banks' risk-taking behavior. This opacity 

complicates regulatory oversight and diminishes stakeholders’ ability to monitor and influence 

banking practices (Morgan, 2002; Flannery et al., 2013; Dewally & Shao, 2013a). 

The literature reveals systematic differences in analysts' forecast accuracy, largely shaped 

by market conditions, though such variations remain underexplored in the banking sector. 

Discrepancies in earnings forecasts often stem from entrenched information asymmetries and 

low disclosure quality—issues that are particularly acute in banking. These challenges 

compromise the reliability of earnings per share (EPS) forecasts, a critical metric for assessing 

firm performance and investor confidence (Anolli et al., 2014; Lang & Lundholm, 1996; Fosu 

et al., 2017). Factors such as analysts’ experience, portfolio complexity, and access to 

institutional resources further influence forecast accuracy23. Additionally, economic incentives 

drive patterns of optimism, boldness, and herding behavior, often undermining objectivity. 

Analysts frequently issue optimistic, bold forecasts influenced by career incentives and conflicts 

of interest, prioritizing commissions and client relationships over forecast reliability (Bradford 

et al., 2012; Lehmer et al., 2022; Ljungqvist et al., 2007; Michaely & Womack, 1999; Guo et 

al., 2023). Addressing these systemic challenges is critical for improving forecast reliability in 

the opaque banking sector. Despite the banking sector's pivotal role in the global economy, 

existing research has largely overlooked its unique complexities, with limited exploration of 

variations across global markets. This study is the first to investigate how analysts’ 

characteristics and economic incentives shape forecast accuracy, optimism, and boldness within 

the global banking industry. By addressing these gaps, it provides theoretical and practical 

insights for enhancing transparency and stability in this critical sector.  

This research explores three core themes, beginning with an analysis of how analyst 

characteristics—such as experience, brokerage affiliation, and industry specialization—

                                                      
23 See, e.g., Brown et al. (2015), Bradley, Gokkaya, and Liu (2017); Clement (1999), Lim (2001), Bolliger (2004), 

Kim, Lobo, and Song (2011), Alves (2017), and Hong et al., (2000), Kecskés et al., (2017), Kothari et al., (2009). 
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contribute to systematic differences in forecast accuracy within the banking sector across 

regions. By comparing findings to broader cross-sectoral studies, it uncovers distinctions unique 

to banking. Prior studies suggest that affiliations with prestigious brokerage houses and 

specialized expertise enhance accuracy, particularly in the U.S., where labor market dynamics 

and institutional incentives bolster performance24. Conversely, Europe's varied regulatory and 

labor market structures introduce complexities that temper these effects25. Second, the study 

investigates the incentive-driven dynamics of forecasting behavior, focusing on the relationship 

between boldness, ability, and career concerns. It examines whether bold forecasts reflect 

genuine expertise—leveraging private information—or heightened risk-taking. Literature 

reveals conflicting evidence on whether boldness bolsters credibility or introduces reputational 

risks, particularly for less experienced analysts26. The study also explores how labor market 

incentives influence forecasting strategies and career trajectories. By exploring these dynamics, 

the research provides critical insights into the drivers of analysts' behavior and the reliability of 

earnings forecasts in the banking sector, highlighting global variations in these relationships. 

Examining 516 banks across 29 countries, it highlights significant regional disparities in 

forecast accuracy, shaped by the characteristics of 5,647 analysts from 901 brokerages. General 

and bank-specific analyst experience emerges as a key determinant of forecast precision, with 

the strongest effects observed in the US. Affiliation with top-tier brokerage houses enhances 

accuracy globally, though the impact is weaker in Europe, where smaller, specialized firms often 

hold informational advantages. Portfolio complexity exhibits contrasting regional effects: while 

covering more banks improves accuracy in the US27 and Asia, it increases errors in Europe due 

to challenges from geographical diversification28. This contrast—European analysts managing 

geographically dispersed portfolios versus Asian analysts focusing on concentrated banks—

highlights nuanced regional dynamics in managing larger portfolios. Globally, frequent updates 

                                                      
24 See, e.g., Top Analyst: Brown et al. (2015); Guan, Wong, and Zhang (2015); Bradley, Gokkaya, and Liu (2017); 

Clement (1999); Brown (1999); Jacob, Lys, and Neale (2000); Lim (2001). Industry Expertise: Jegadeesh and Kim 

(2010); Brown and Das (1997). Experience: Mikhail, Walther, and Willis (1997); Clement (1999); Lim (2001); 

Brown (1999); Jacob, Lys, and Neale (2000).  
25 Grandin (1995) and Bolliger (2004) suggest that in Europe, top brokerage affiliation and general experience 

may reduce forecast accuracy, likely due to the European labor market's unique structure, including local 

disadvantages, limited "learning-by-doing," and a lack of incentives. 
26 Career concerns and herding models highlight that forecast accuracy and boldness signal private information 

quality, influencing analysts' career outcomes (Schipper, 1991; Michaely & Womack, 1999; Ljungqvist et al., 

2017). While experienced analysts often issue more accurate bold forecasts, less experienced analysts face greater 

risks when using boldness to gain visibility (Clement, 2005; Hong et al., 2000). 
27 Our findings contrast prior studies linking broader coverage to reduced accuracy in the US (Clement, 1999; Lim, 

2001). 
28 The findings may reflect insufficient centralization in European brokerage research and analysts' limited 

familiarity with diverse institutional contexts (Bolliger, 2004). 
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and recent forecasts consistently improve accuracy, while initial forecasts suffer from limited 

early information. These findings underscore the importance of specialization, institutional 

support, and regional strategies in optimizing forecast precision, particularly in the opaque and 

complex banking sector. The analysis reveals significant regional variations in how experience, 

past performance, and financial analysts' forecast boldness interact. While boldness is often 

perceived as an indicator of expertise, its impact on reputation varies by regional context and 

analyst experience. In the United States and Asia, boldness aligns with expertise, as experienced 

analysts leverage their reputations to issue audacious forecasts. Analysts from top brokerage 

firms and those with strong past performance also demonstrate higher boldness, supported by 

institutional resources and confidence in their abilities29. Conversely, in Europe, boldness is 

more tied to career concerns, with younger analysts, those with weaker past performance, and 

those from smaller brokerage houses more likely to issue bold forecasts. These analysts often 

cover a broader range of banks and countries, using diverse portfolios and regional knowledge 

to stand out early in their careers.  

This study highlights stark regional variations in how boldness, experience, and past 

performance influence analysts' career outcomes. In the U.S., poor performance sharply elevates 

downgrade risks for less experienced analysts, while strong performance alone fails to secure 

promotion; in Europe, high performance drives upward mobility, with no significant trend for 

downgrading; and in Asia, high performance drives upward mobility for analysts with strong 

bank-specific expertise, while lower past performance does not notably increase downgrading 

risks. Boldness further exerts a nuanced influence on career trajectories across regions, shaped 

by market structures and professional dynamics. In the U.S., bold forecasts are a double-edged 

sword: they hinder less experienced analysts, amplifying career risks, yet serve as a strategic 

asset for seasoned professionals with strong bank-specific expertise, unlocking pathways to top-

tier firms. Asia demonstrates a broader acceptance of boldness, where it consistently accelerates 

career progression and stabilizes prospects across experience levels, underpinned by 

concentrated portfolios and institutional support. In Europe, boldness plays a pivotal role for 

early-career analysts, enabling advancement and visibility in competitive markets. Early-career 

European analysts strategically leverage bold forecasts, geographically diverse portfolios, and 

active market engagement to progress professionally. However, this strategy entails a trade-off, 

                                                      
29 Our findings confirm prior US studies linking boldness to ability, reputation, and experience, while extending 

this by highlighting the roles of bank-specific expertise, accuracy, brokerage size, and portfolio complexity. We 

also uncover distinct boldness patterns and outcomes in Europe and Asia. See, e.g., Hong and Kubik (2003), 

Stickel (1992), Jegadeesh and Kim (2010), Harford and Schon (2019), and Clement (2005).  
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as the ambition to achieve career growth through bold, high-visibility forecasts often 

compromises forecast accuracy, highlighting the inherent tension between career-driven forecast 

behavior and forecast reliability. 

The findings of this study reveal the complex interplay between technical expertise and 

incentive-driven behaviors in shaping analysts' forecast accuracy. Forecast precision, while 

grounded in factors such as experience, industry specialization, and institutional resources, is 

also influenced by strategic behaviors tailored to market pressures and career incentives. 

Analysts balance technical expertise with incentive-driven behaviors, employing strategies like 

portfolio expansion and bold predictions to accelerate career growth. However, these approaches 

often involve trade-offs, as boldness and optimism may compromise forecast precision, 

particularly in markets where commission-driven incentives amplify these behaviors. By 

uncovering these dynamics, this study offers critical insights for investors, financial institutions, 

and policymakers. It emphasizes the importance of regulatory oversight and transparency in 

mitigating incentive-driven biases, fostering reliable financial analysis, and enhancing market 

discipline within the opaque banking sector. 

The paper is structured as follows: Section 2. 2 presents the literature review. Section 2. 3 

describes the proposed research's empirical methodology. Section 2. 4 assembles our dataset. 

Section 2. 5 presents our empirical results, and Section 2. 6 concludes. 

2.2. Related Work 

2.2.1.  The Determinants of Financial Analysts’ Forecast Accuracy   

Financial analysts' forecast accuracy is influenced by a range of factors, including individual 

characteristics, firm-level dynamics, and regional differences. Extensive research has grouped 

these determinants to better understand their impact on forecast precision. Analysts’ experience 

and specialization play a critical role in shaping forecast accuracy. Stickel (1992) and Jegadeesh 

and Kim (2010) highlight the superior performance of U.S. star analysts, whose forecasts are not 

only more accurate but also exhibit minimal bias, resulting in significant market reactions and 

higher returns. This finding is consistent with Sinha, Brown, and Das (1997), who show that 

superior analysts maintain their edge over time, amplifying their influence on the market. 

Specialization in a single industry further enhances forecast accuracy. Desai et al. (2000) and 

Brown et al. (2015) highlight how industry focus and reliance on sector-specific data enable 

analysts to better interpret trends and improve predictions. Extending this, Guan et al. (2015) 
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reveal that supply chain coverage increases accuracy in concentrated industries. Additionally, 

Bradley, Gokkaya, and Liu (2017) show that prior industry experience boosts forecasting 

precision by providing nuanced insights into sector-specific dynamics. Experience plays a 

pivotal role in forecast accuracy. Mikhail et al. (1997) and Jacob et al. (2000) argue that more 

experienced analysts deliver better forecasts due to refined methodologies and reduced errors 

over time. However, Clement (1999) and Bolliger (2004) suggest diminishing returns with 

greater experience, citing competing responsibilities and reduced incentives in certain markets, 

such as Europe, where career motivations differ from the U.S. Lim (2001) suggests that analysts 

with more excellent experience have greater access to management. Therefore, if the labor 

market provides sufficient incentives for financial analysts to produce good forecasts, they 

should produce more accurate forecasts as they age.  

The frequency of forecast revisions also plays a role. Gleason and Lee (2003) demonstrate 

that analysts who revise their forecasts frequently tend to achieve higher accuracy, as their 

updates reflect new and relevant information. Similarly, Kim, Lobo, and Song (2011) find that 

experienced analysts from larger firms delay their forecasts strategically, leveraging additional 

information closer to earnings announcements to enhance precision. Clement (1999) and Brown 

(1999) also find that longer forecast horizons are associated with lower forecast accuracy. 

Institutional and Brokerage-Level Factors: Analysts affiliated with larger brokerage houses 

generally provide more accurate forecasts, especially those who follow fewer industries, 

benefiting from better resources and industry specialization (Clement, 1999; Jacob et al., 2000). 

However, Lim (2001) adds a nuanced perspective, proposing that analysts may issue optimistic 

forecasts strategically to maintain relationships with management and access better information. 

This optimism, while initially biased, can lead to better forecasts in subsequent periods. 

Conversely, regional disparities in Europe, noted by Bolliger (2004), suggest that smaller, 

specialized firms may occasionally outperform larger institutions in specific niches. According 

to their findings, the European labor market of financial analysis may not provide sufficient 

incentives for financial analysts to produce increasingly accurate forecasts as they age. 

Regional Differences and Market Structures: Grandin (1995) finds no evidence of superior 

forecast accuracy in the French market among brokerage houses providing forecasts to the 

“Associés en Finance” database. Similarly, Bolliger (2004) finds that forecast accuracy in 14 

European stock markets improves with firm-specific experience but declines with increased 

country coverage and older forecasts, while general experience and brokerage size show no 

significant impact. These findings suggest that specialized knowledge and the ability to navigate 

regional complexities are crucial for success in European markets. 
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2.2.2.  Forecast Accuracy, Boldness, and Career Outcome 

Research consistently demonstrates that forecast accuracy plays a pivotal role in enhancing 

analysts' career prospects. Analysts with a proven track record of accurate forecasts are more 

likely to secure promotions and less likely to face job separation. Stickel (1992) and Trueman 

(1994) emphasize the importance of accuracy for career advancement in the U.S., noting that 

accurate forecasters are often viewed as competent and reliable, leading to superior career 

outcomes. Jegadeesh and Kim (2010) further corroborate this, showing that accurate forecasters 

gain industry recognition and improved career trajectories in the U.S. Hong and Kubik (2003) 

highlight how the U.S. labor market incentivizes accurate forecasting by increasing the 

likelihood of analysts with strong track records being hired by high-status brokerage houses. 

These opportunities, often linked to analyst experience, are crucial for career growth, as they 

improve compensation and establish analysts as key players in the industry (Phillips & 

Zuckermann, 2001). Bolliger (2004) identifies similar trends in the European market, noting that 

analysts achieving high forecast accuracy are more likely to secure promotions to top-tier 

brokerage houses. However, those managing geographically diverse portfolios or issuing older 

forecasts face greater accuracy challenges, increasing their risk of termination. This underscores 

the importance of specialized expertise and the ability to navigate complex, multi-regional 

markets for sustaining employment and achieving career progression in Europe. 

Bold forecasts also play a pivotal yet nuanced role in shaping analysts' career trajectories. 

Hong et al. (2000) demonstrate that in the United States, inexperienced analysts tend to avoid 

bold forecasts due to the career risks associated with inaccuracy, whereas experienced analysts 

leverage their reputations to make bold predictions with lower personal risk. While accurate bold 

forecasts can enhance an analyst's reputation and accelerate career advancement, their inherent 

risk can also harm career prospects if proven inaccurate. Harford and Schon (2019) highlight the 

delicate balance between boldness and career risk, noting that bold forecasts can yield substantial 

rewards but also carry significant professional stakes. Scharfstein and Stein (1990) and 

Prendergast and Stole (1996) explore this balance further, suggesting that the interplay between 

accuracy and boldness creates a complex dynamic in career outcomes. Analysts who combine 

precise forecasts with occasional bold predictions are often perceived as both skilled and 

innovative, leading to the most favorable career advancements. Jegadeesh and Kim (2010) 

reinforce this view, showing that maintaining a balance between boldness and accuracy is key 

to achieving recognition and career growth in the U.S. market. Overall, career concerns 

significantly influence herding behavior, particularly among less experienced analysts, as 
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highlighted by studies in the United States, including Hong et al. (2000). Fear of adverse career 

outcomes from deviating from the consensus often drives these analysts to align with the 

majority. In contrast, experienced analysts with a proven track record face less career risk, 

enabling them to issue independent and bold forecasts. Welch (2000) and Clement and Tse 

(2005) reinforce this dynamic, showing that career concerns are a critical factor shaping the 

tendency of U.S. analysts to herd, with varying effects based on their level of expertise. 

2.2.2.1. Economic Incentives and Analyst Behavior 

Research consistently demonstrates that Analysts' compensation is deeply linked to trading 

volume and broker votes30. Cowen et al. (2006) note that firms without investment banking 

divisions primarily base analyst pay on the trading volume their research generates. Brown et al. 

(2015) found that success in generating underwriting business or trading commissions was 

critical to compensation, with 44% of analysts emphasizing this factor. Economic incentives 

often drive forecast bias. Michaely and Womack (1999) observed significant optimism in 

forecasts by analysts affiliated with investment banks, aligning with client expectations, while 

Chan et al. (2003) highlighted strategic adjustments to avoid earnings disappointments during 

the 1990s bull market. Ljungqvist et al. (2007) confirmed that conflicts of interest in sell-side 

research result in overly optimistic forecasts, compromising forecast accuracy. Regulatory 

reforms (Hovakimian & Saenyasiri, 2010) have improved accuracy but not eliminated biases 

tied to trading incentives. Guo et al. (2023) found that maintaining relationships with 

management and generating commissions drive optimism, while Lehmer et al. (2022) linked 

forecast optimism to higher trading volumes and lower demotion risks. Analysts who generate 

substantial trading activity avoid penalties, reinforcing the critical role of trading volume in 

career advancement. These findings illustrate how economic pressures push analysts toward 

optimism, benefiting career progression but often compromising forecast objectivity. 

Our motivation stems from a significant research gap in understanding financial analysts’ 

behavior within the banking sector, particularly across global markets. While extensive studies 

have examined analysts' characteristics, career concerns, and forecast precision, most focus 

predominantly on the U.S. market and lack the industry-specific insights necessary for capturing 

the complexities of the banking sector. This omission is critical given the sector’s global 

                                                      
30 Groysberg, Healy, and Maber (2011) found that II all-star analysts earn 61% more than their unrated peers, 

highlighting strong financial incentives to secure these rankings (Bradley, Gokkaya, and Liu, 2017). This higher 

pay is partly due to their role in attracting investment banking deals (Clarke et al., 2007). However, the 2003 Global 

Research Settlement restricted linking analyst pay directly to investment banking. See Appendix A for a review of 

analyst compensation packages. 
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economic importance and inherent opacity. Analysts' optimism, boldness, and forecasting 

reliability are often shaped by economic incentives and potential conflicts of interest, particularly 

in markets where trading commissions dominate revenue streams. Addressing these dynamics 

is essential for improving forecast accuracy, safeguarding the credibility of financial analysis, 

and fostering transparency in the banking industry—a sector where reliable analysis is pivotal 

for market stability and investor confidence. 

2.3. Research Design and Methodology 

2.3.1.  Measurement of the Proportional Mean Forecast Accuracy 

The performance measure employed is the proportional mean absolute forecast error (PMAFE), 

which evaluates an analyst’s forecast accuracy relative to the average forecast accuracy of other 

analysts following the same stock in a given period. This measure, as utilized by Clement (1999), 

Brown (1999), Jacob et al. (2000), and Bolliger (2004), is defined as follows: 

𝑃𝑀𝐴𝐹𝐸𝑖,𝑗,𝑡 =  
 𝐷𝐴𝐹𝐸𝑖,𝑗,𝑡

𝑚𝑒𝑎𝑛( 𝐴𝐹𝐸𝑗,𝑡)
 

(1) 

where  𝐷𝐴𝐹𝐸𝑖,𝑗,𝑡  represents the difference between analyst i’s absolute forecast error and the 

mean absolute forecast error for firm j in year t31.  

𝐷𝐴𝐹𝐸𝑖,𝑗,𝑡 =  𝐴𝐹𝐸𝑖,𝑗,𝑡 −  𝑚𝑒𝑎𝑛( 𝐴𝐹𝐸𝑗,𝑡  )    

(2) 

The absolute forecast error (𝐴𝐹𝐸𝑖,𝑗,𝑡) is calculated as the absolute difference between an 

analyst’s forecasted earnings per share (EPS) and the actual EPS for the firm in that year, 

deflated by the actual EPS at the end of the period:  

𝐴𝐹𝐸𝑖,𝑗,𝑡 = |
𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡 −  𝐴𝐸𝑃𝑆𝑗,𝑡 

 𝐴𝐸𝑃𝑆𝑗,𝑡 
| 

(3) 

where 𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡 is the analyst i EPS forecasts for bank j in fiscal year t, and 𝐴𝐸𝑃𝑆𝑖,𝑡 is the 

actual EPS for firm j in the same period.  PMAFE represents an analyst’s forecast error as a 

fraction of all analysts' average absolute forecast errors for firm j in year t. A negative PMAFE 

                                                      
31 Clement (1998, 1999) shows that large EPS firms exhibit greater variability in DAFE than small EPS firms and 

that deflating DAFE by mean(AFE) mitigates heteroscedasticity. 
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indicates above-average performance, while a positive PMAFE indicates below-average 

performance. Unlike traditional measures like absolute or relative forecast error, PMAFE 

enables a consistent comparison of forecast accuracy across firms and time periods unaffected 

by variations in forecasting difficulty. Factors such as economic conditions (Jacob, 1997) and 

temporal shifts in available information (Dutta & Nelson, 1996) can influence the ease or 

challenge of forecasting, yet this measure effectively controls for these variations (Clement, 

1998; Bolliger et al., 2004). We applied Clement’s (1998) methodology, which highlights that 

accounting for firm-year effects improves the detection of systematic differences in analysts’ 

forecast accuracy compared to using solely firm-fixed and year-fixed effects. Firm-year effects 

may arise from events like management disclosures, mergers, or strikes, which can impact the 

predictability of a firm's earnings for specific years. The PMAFE method addresses these firm-

year effects by adjusting an analyst’s absolute forecast error with the firm-year average, 

incorporating analyst i’s own forecast error in calculating AFEj,t as they too are influenced by 

the firm-year effect. We follow Bolliger et al. (2004), including each analyst’s last forecast made 

between the end of the prior fiscal year and the end of the current fiscal year t to ensure an 

adequate sample size32.  

2.3.2.  Measures of Analyst General Characteristics 

2.3.2.1. Measurement of Experience   

To assess the impact of analyst experience on forecast accuracy and market influence, we 

developed specific metrics to capture both general and specialized expertise, along with two 

new proxies for cross-regional analysis within the banking sector. These experience metrics 

provide insights into how analysts’ tenure and specialization contribute to forecasting accuracy 

and market perceptions: 

- 𝐺𝐸𝑋𝑃𝑖,𝑡 (General Experience) = Cumulative years through t in which analyst i has issued 

forecasts, indicating broad expertise and consistency in the forecasting field.  

- 𝐵𝐸𝑋𝑃𝑖,𝑡 (Bank-Specific Experience) = Cumulative years through t that analyst i has 

forecasted for a specific bank, reflecting deeper familiarity with that institution. 

- 𝐶𝐸𝑋𝑃𝑖,𝑡 / 𝑅𝐸𝑋𝑃𝑖,𝑡 (Country and Region-Specific Experience): Cumulative years through t 

that analyst i has issued forecasts for a particular country or region, reflecting in-depth 

                                                      
32 This restriction applies only to the computation of PMAFE; for other metrics, depending on their definitions, 

we include all forecasts and revisions made by each analyst within the same period. 
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expertise in local and regional economic environments and market dynamics supporting 

robust cross-regional comparisons. 

These experience metrics enable an analysis of analysts’ effectiveness in the banking sector, 

from broad market knowledge to institution-specific familiarity, with each analyst’s level of 

expertise assessed relative to peers based on cumulative forecasting activity from 1982 to 2023. 

2.3.2.2. Measurement of Portfolio Complexity  

To assess the diversity and complexity of an analyst's portfolio, we count the unique IBES 

ticker codes associated with their forecasts each year. We also evaluate the geographic scope 

of their coverage by examining the countries and regions of the banks they follow:  

- 𝑁𝐵𝐴𝑁𝑖,𝑡 (Number of Banks) = The number of unique banks for which analyst i provided 

forecasts in year 𝑡. A higher NBAN reflects greater portfolio complexity, requiring the 

analyst to manage and synthesize information from multiple institutions. 

- 𝑁𝐶𝑂𝑈𝑖,𝑡 (Number of Countries) = The count of distinct two-digit I/B/E/S country codes 

associated with the banks covered by analyst i in year t. A higher NCOU suggests a 

broader specialization across various national markets. 

- 𝑁𝑅𝐸𝐺𝑖,𝑡 (Number of Regions) = The number of regions covered by analyst iii in year t, 

indicating geographic diversification. A higher NREG demonstrates the analyst’s 

capacity to navigate different economic and market environments.  

2.3.2.3. Analyst Engagement Metrics  

This section explores how analyst activity levels relate to forecast accuracy and market 

impact: 

- 𝑁𝐹𝐵𝑖,𝑡 (Number of Forecasts/Revisions per Bank) = The count of forecasts or revisions 

provided by analyst i for each bank in year t. Higher bank-level activity may reflect 

greater expertise and deeper focus in specific institutions, potentially enhancing forecast 

accuracy. 

- 𝑁𝐹𝐶𝑂𝑈𝑖,𝑡 (Number of Forecasts/Revisions per Country) = Tracks the number of 

forecasts or revisions by analyst i at the country level during year t. Frequent country-

level forecasting could indicate macroeconomic insight, improving country-specific 

forecast precision.  

- 𝑁𝐹𝑅𝐸𝐺𝑖,𝑡 (Number of Forecasts/Revisions per Region) = Counts forecasts or revisions 

by analyst i at the regional level in year t. Analysts active at the regional level may have 
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valuable insights into economic conditions and market trends specific to different 

regions.  

- 𝑁𝐹𝐴𝐿𝐿𝐿𝑖,𝑡 (Total Forecasts/Revisions) = The total forecasts or revisions provided by 

analyst i in year t.  

2.3.2.4. Measuring Brokerage House Size  

To assess how brokerage size impacts forecast accuracy, we classify analysts based on their 

affiliated brokerage firm’s size, following Stickel (1995) and Clement (1999). This approach 

targets analysts working within larger firms, which generally have better resources, such as 

superior access to information, advanced analytical tools, and extensive research support, all of 

which can enhance forecast precision. We define brokerage size and identify the top 5% of 

brokerage firms as follows: 

- 𝐵𝑟𝑜𝑘𝑒𝑟𝑆𝑖𝑧𝑒𝑖,𝑡  (Brokerage Size) = Defined by the number of analysts at analyst i’s 

brokerage in year t, with larger firms assumed to provide better resources, supporting 

forecast accuracy.  

- 𝐵𝐼𝐺5𝑖,𝑡 (Top 5% Brokerage Firms) = A dummy variable set to one if analyst i is 

employed by a top 5% brokerage (by active analyst count) in year t; zero otherwise. Top 

brokerages often correlate with higher forecast accuracy and better market performance 

due to superior resources and institutional reputation. 

This classification of brokerage size is specifically tailored to analysts active in the banking 

sector rather than the overall market. By focusing on the banking industry, we aim to align the 

measure with sector-specific resources and expertise, capturing how brokerage resources 

support forecast accuracy within a sector characterized by unique regulatory and economic 

dynamics. However, this approach may not fully reflect brokerages that are widely reputable 

across the market, potentially diverging from prior studies that consider analyst counts across 

all industries. To support our methodology of selecting brokerage houses specifically active in 

the banking industry, we reference Hong and Kubik (2003), which highlights a notable trend in 

brokerage house specialization in certain industries as opposed to the traditional full-service 

brokerage houses. By including only brokerage houses active in banking industry, our sample 

achieves a broker size distribution similar to studies that do not filter by industry. This aligns 

with Hong and Kubik's (2003) findings on the industry shift since 2003 toward smaller, 

specialized firms, with a decrease in average brokerage size—from around 21 analysts per firm 

in 1983 to just over 11 by 2000—reflecting the increasing prevalence of industry-focused 
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brokerage firms. Our reliance on brokerage size data and modeling of analyst movements, such 

as promotions or demotions (section 2. 5.3), therefore aligns with these industry dynamics, as 

our mean brokerage house size shows a similar trend, with an average of 11.5 analysts per 

brokerage, supporting the industry dynamics (Hong and Kubik, 2003 and Hong et al., 2000). 

2.3.2.5. Control Variables 

Prior research suggests that firm-specific, year-specific effects and forecast age (though 

context-dependent) should be controlled when evaluating analysts' forecasting performance. 

The PMAFE method addresses these by adjusting absolute forecast errors to their firm-year 

means, thus accounting for firm-year effects. We mean-adjust the model’s independent 

variables to firm-year values to control for these effects, as outlined by Greene (1991). The 

model is specified as follows: 

𝑌𝑖,𝑗,𝑡 − 𝑚𝑒𝑎𝑛(𝑌𝑗,𝑡) =  (𝑋𝑖,𝑗,𝑡 − 𝑚𝑒𝑎𝑛(𝑋𝑗,𝑡))ß    

(4) 

Two proxies for Forecast Timeliness are used: FAGEi,j,t (Forecast Age), measuring days 

from fiscal year-end to forecast date for company j in year t, and FORDi,j,t(Forecast Order), 

capturing the sequence of forecasts and revisions. Initial forecasts use earlier data, while later 

revisions may improve accuracy with updated information. 

2.3.3.  Measures of Analyst Forecast Boldness and Past Performance 

2.3.3.1. Forecast Boldness Measurement  

We assess an analyst's yearly forecast boldness following a method similar to that of Hong et 

al. (2000). Boldness is measured by the absolute deviation between an analyst's forecast, 

F_(i,j,t), and the consensus forecast, 𝑚𝑒𝑎𝑛(𝐹−𝑖,𝑗,𝑡 ): 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑖,𝑗,𝑡 =  |𝐹𝑖,𝑗,𝑡 −  𝑚𝑒𝑎𝑛(𝐹−𝑖,𝑗,𝑡 )| 

(5) 

where −𝑖 represents all analysts except analyst 𝑖 who provide earnings estimates for firm 𝑗 in 

year 𝑡, and 𝑛 is the number of such analysts. The consensus forecast, 𝑚𝑒𝑎𝑛(𝐹−𝑖,𝑗,𝑡 ), is the 

average of the recent estimates made by other analysts covering firm j in year 𝑡.  Each year, we 

rank analysts by their deviation from consensus, with the analyst showing the highest deviation 

(i.e., boldest) receiving the highest rank. We then calculate a boldness score for each stock in 

an analyst’s coverage portfolio, scaling the analyst's rank by the number of analysts covering 
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the firm. The least bold analyst receives a score of zero, while the boldest analyst receives a top 

score on a scale from 0 to 100: 

𝑆𝑐𝑜𝑟𝑒𝑖,𝑗,𝑡 = |
𝑟𝑎𝑛𝑘𝑖,𝑗,𝑡 −  1 

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡 
| ∗  100 

(6) 

where number of analysts𝑗, 𝑡  is the total count of analysts covering firm j. Each analyst’s 

overall forecast boldness score, BOLDNESS𝑖, j, 𝑡, is their boldness score for bank j over the 

current year t, with higher values indicating bolder forecasts. Additionally, we created a dummy 

variable (BOLDNESS _Top 20%) for scores in the top 20% of boldness. For job separation 

models, we used a cumulative boldness score, averaging the analyst's boldness scores over the 

current year t and the prior three years. 

2.3.3.2. Analyst Past Performance Measurement 

We now focus on constructing indicators of an analyst's past performance to understand how it 

affects their probability of job separation. The goal is to rank and score all analysts based on 

their previous performance. We modified the method of Hong et al. (2000) for this purpose. As 

mentioned in constructing the proportional mean absolute forecast error (PMAFE), we measure 

analysts’ absolute forecast error (𝐴𝐹𝐸𝑖,𝑗,𝑡) as the absolute value of the difference between 

analysts’ forecasts and the corresponding firm-year’s actual earnings per share (EPS), deflated 

by the actual earnings per share at the end of the period. Since an analyst typically covers 

multiple firms in a year, we aggregate their forecasting accuracy across all the firms they cover. 

We calculate the forecast errors for each analyst's forecasts for different firms within a year. 

We then rank and score all analysts based on their previous performance. The average rank of 

an analyst across all the firms they follow measures their overall accuracy for that year.  

To reflect both recent and past forecast accuracy, we compute an overall score as a weighted 

average of the analyst's scores in year t and all previous years of their active participation. 

Recent performance is given higher weights, which gradually reduces back to their first forecast 

performance. This approach overcomes the limitations of prior studies that used a simple 

average of scores over the current and two previous years (Hong, 2000), which did not account 

for progress over time and posed challenges for analysts covering firms with low coverage33. 

                                                      
33 First, certain types of analysts are likely to have extreme average scores (both good and bad) regardless of their 

performance. For instance, analysts who cover few firms over the three-year period are more likely to be in the 

extremes. One very good or poor performance on a firm will greatly affect their average score. Also, analysts who 

cover thinly followed firms are more likely to be in the extremes. For a given firm, it is easier for an analyst to 

earn a score near 100 or 0 if there are few other analysts covering the firm in a year.  
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We then sort all analysts based on their aggregate weighted forecast performance for the year, 

assigning rankings accordingly: the best analyst receives the first rank, the second-best receives 

the second rank, and so on until the worst analyst receives the highest rank. This ranking is 

captured by the metric Past_Per_SCORE, which reflects analyst scores based on their 

Aggregate Weighted Forecast Performance. For simplicity in analysis, we assign five discrete 

ranks to analysts (5 for the best analysts and 1 for the worst analysts). Top analysts, defined as 

those in the top 20th percentile, are indicated by the Top_Performance_index, while the worst 

analyst is marked by the Poor_Performance_index.  

Table B.1 in Appendix B provides a detailed definition of each variable, revealing their 

respective roles in the analysis. 

2.3.4.  Estimation Methodology 

In this analysis, we use a fixed effects regression model to estimate the impact of various factors 

on the forecast error metric (PMAFE). We adopt the methodology of Clement (1998), who 

demonstrated that accounting for firm-year effects enhances the detection of systematic 

differences in analysts’ forecast accuracy compared to models using firm-fixed and year-fixed 

effects. Additionally, we employ the estimation method introduced by Correia (2017), which 

estimates linear regressions with multiple levels of fixed effects, thus supporting individual 

fixed effects with group-level outcomes34. Specifically, we specify the model as follows: 

𝑃𝑀𝐴𝐹𝐸𝑖,𝑗,𝑡 =  ∑ 𝛼𝑘

4

𝑘=1

. 𝐷𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑘,𝑖,𝑗,𝑡 + ∑ ß𝑚

4

𝑚=1

. 𝐷𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜_𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑚,𝑖,𝑗,𝑡

+  ∑ 𝜌𝑛

4

𝑛=1

. 𝐷𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑛,𝑖,𝑗,𝑡 +   𝛾. 𝐷𝐵𝐼𝐺5𝑖,𝑗,𝑡 +  𝜎. 𝐷𝐹𝐴𝐺𝐸𝑖,𝑗,𝑡 + 𝐵𝑎𝑛𝑘

− 𝑌𝑒𝑎𝑟 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝜀𝑖,𝑗,𝑡 

(7) 

PMAFE represents an analyst’s forecast error as a fraction of all analysts' average absolute 

forecast errors for firm j in year t. A negative PMAFE indicates above-average performance, 

                                                      
34 We use the reghdfe command in Stata to implement this model, which is efficient for high-dimensional fixed 

effects and allows for robust clustering. The syntax used is: “reghdfe  pmfae X, absorb(bank-year) cluster (bank 

analyst) nocons”. The absorb(bank-year) option absorbs the bank-year fixed effects, which control for any time-

invariant characteristics specific to each bank-year observation. The cluster (bank analyst) option clusters the 

standard errors at the bank and analyst levels, accounting for serial correlation within banks and analysts over 

time. The nocons option specifies that we omit the constant term, as it is not needed due to the inclusion of bank-

year fixed effects. This model specification allows us to isolate the effect of the independent variables on forecast 

error while controlling for unobserved heterogeneity at the bank-year level and clustering standard errors to 

account for potential within-group correlations. 



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis 

Across Global Banking Markets 

 80 

while a positive PMAFE indicates below-average performance. DExperience represents analyst 

General, regional, country, and bank-specific experience. Portfolio_Complexity represents the 

number of banks and countries analysts follow. DEngagement shows the number of forecasts 

and revisions analysts create manually. BIG5 is a proxy for top brokerage firms. Bank-Year 

Fixed Effects control for unobserved characteristics at the bank-year level that could affect 

forecast accuracy across analysts and time. Clustered Standard Errors are calculated at both the 

bank and analyst levels to account for potential correlation within these groups. All variables 

are adjusted for firm-year means (D indicates differenced). We do not include a constant term, 

as the means have been subtracted from each variable. A positive (negative) value for the 

differenced variable indicates that the analyst i's forecast error or characteristic for stock j was 

above (below) average in year t.  

2.4. Research Data  

2.4.1. Data Collection 

This study utilizes one-year-ahead annual earnings per share (EPS) forecasts (FY1) and actual 

EPS figures sourced from the Institutional Broker Estimate System (I/B/E/S) US and 

International Detail History File35. To construct a comprehensive sample focused on the 

banking sector, we carefully integrated data from multiple I/B/E/S files. Each entry in the 

I/B/E/S Detail Estimate File (DETFILAT) represents an individual forecast or revision, 

capturing critical details such as the I/B/E/S ticker, broker identifier, analyst identifier, earnings 

estimate, and forecast date. The unique Analyst Codes and Broker Codes within I/B/E/S ensure 

consistent identification, even when analysts transition between brokerage firms. However, 

these codes do not have direct mappings to identifiers in other platforms like Eikon, as I/B/E/S 

operates as a standalone system without an integrated mapping file. To specifically target bank 

data, we performed the following steps: 

- Bank Identification via TRBC: Using the TRBC (Thomson Reuters Business Classification) 

file located in the SUPPLEMENTAL_LICENSE folder, we retrieved all tickers classified 

                                                      
35 Note on Data Handling: The IBES FTP system is structured primarily for bulk data retrieval, expecting users to 

download entire datasets and then apply specific filters independently. This setup presents challenges, requiring 

row-by-row data extraction for each I/B/E/S ticker, which is then processed through tools like Notepad++ to 

manage large file sizes efficiently before transfer to Excel or other analytical tools. 
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under the banking industry. The TRBCDESC file provided the necessary descriptions and 

industry codes, with “Banks” at level 4 identified by codes 55101010 and 55102010. 

- Matching and Cross-Referencing: We mapped I/B/E/S tickers to TRBC PermIDs to identify 

companies operating within the banking industry, yielding a refined list of 1,733 I/B/E/S 

tickers across 100 countries from an initial pool of over 44,000 tickers across various sectors. 

- Final Bank-Specific Dataset: Using the list of bank tickers, we downloaded and filtered the 

I/B/E/S estimates file to retain only the data associated with banks. Additionally, from 

Refinitiv I/B/E/S, we derived a list of publicly traded banks, selecting “primary quotes only” 

and limiting our scope to specific sectors, including GICS Banks and TRBC Banking 

Services. Finally, we matched the I/B/E/S and Eikon tickers to confirm a comprehensive 

selection. 

The initial dataset includes forecasts from December 1982 to March 2023, comprising over 

509,868 annual earnings forecasts by more than 1,271 brokers and 7,796 analysts, covering 570 

publicly traded commercial banks across 40 countries. This sample spans four global regions—

U.S., Europe, Asia, and Canada —and captures data from 1981 to 2023. For data consistency, 

we applied several restrictions: forecasts were required to be issued between the fiscal year-end 

of the previous year and the end of the current fiscal year; realized earnings per share (EPS) 

had to be available in the I/B/E/S Actual File; banks needed to be followed by at least three 

analysts; and selected countries had to have substantial analyst coverage and a sufficient 

number of forecasts. Additionally, Canadian banks were excluded from the analysis due to 

statistical discrepancies with U.S. data. These criteria produced a final sample of 398,175 

forecasts from 5,647 analysts employed by 901 brokerages, focusing on 516 publicly traded 

banks across 29 countries. Tables A1 and A2 in the Appendix summarize the I/B/E/S dataset 

statistics and provide a geographical breakdown of the sample. 

2.4.2. Descriptive Statistics of Raw Variables  

This section presents the descriptive statistics for the raw (undifferenced) variables, as 

computed according to the methodology outlined in Section 2. 3. Table 2. 1 offers a 

comprehensive overview of financial analysts' characteristics across different regions, 

encompassing forecast bias, experience, portfolio size, complexity, engagement, activity, 

brokerage house dynamics, and forecast timing preferences. The dataset analysis reveals that 

financial analysts, on average, possess a tenure of slightly over seven years. However, a notable 

discrepancy emerges when comparing regional averages: US financial analysts boast an 
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average tenure of approximately nine years, while their European counterparts exhibit an 

average tenure of about 6.5 years. Asian financial analysts demonstrate the lowest average 

tenure, with an average of 5.8 years. Furthermore, in terms of bank experience (BEXP), US 

analysts also lead with a mean of 4.91 years, while European analysts average 4.16 years and 

Asian analysts average 3.73 years. This observation suggests a higher turnover rate within the 

financial analysis profession in Europe and Asia than in the US, consistent with Bolliger's 

(2003) findings. 

On average, analysts globally track around nine banks annually, with notable regional 

differences. US analysts handle a more significant workload, covering an average of 12.41 

banks annually, compared to 5.85 banks for European analysts and 7.67 banks for Asian 

analysts. Regarding the number of countries (NCOU) analysts cover, European analysts show 

a broader geographical scope with an average of 2.41 countries, whereas Asian analysts cover 

fewer than 1.4 countries. The broader coverage of European analysts indicates a more 

diversified portfolio than their US and Asian counterparts. A key aspect of analyst behavior is 

their level of engagement and activity in issuing forecasts and revisions. Globally, analysts 

issue approximately 4.5 forecasts and revisions per year for each bank. However, regional 

differences are notable: US and European analysts issue around five forecasts per bank 

annually, while Asian analysts issue approximately 3.7. This discrepancy highlights a 

substantial disparity in forecasting intensity. US analysts issue 66 forecasts and revisions per 

year, compared to 31 by their European counterparts and 29 by Asian analysts. The relatively 

lower forecasting activity among European and Asian analysts may be attributed, in part, to less 

stringent corporate disclosure requirements prevalent in many European and Asian countries, 

often resulting in limited availability of timely financial information. The higher activity levels 

among US analysts suggest a more dynamic and competitive market environment, necessitating 

more frequent forecast updates and revisions.  

The average size of brokerage houses (BrokerSize) is relatively consistent across regions, 

with US firms employing about 11.49 analysts on average, European firms employing around 

12.02 analysts, and Asian firms employing about 11.45 analysts. The presence of top-tier 

analysts (BIG5) also shows a similar distribution across regions. These findings align closely 

with the observations documented by Hong and Kubik (2003) for the US market, indicating a 

similar scale of financial analysis of labor markets across the three regions. 

The boldness of forecasts, represented by the BOLDNESS score, shows European analysts 

being the boldest with a mean score of 52.62, followed by Asian analysts at 49.08 and US 
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analysts at 48.51. The proportion of top 20% boldness (BOLDNESS_Top 20%) further 

supports this, with 27.8% of European analysts in the top 20% boldness category, compared to 

24.8% of US analysts and 23.9% of Asian analysts. This indicates that European analysts are 

likelier to deviate from consensus forecasts than their US and Asian peers. Regarding past 

performance scores (Past_Per_SCORE), US analysts have a higher mean score of 2.543 

compared to European analysts at 1.872 and Asian analysts at 2.089. This ranking reflects better 

overall past performance for US analysts. The proportion of top analysts 

(D_TOP_Performance) further supports this, indicating that 32% of US analysts are categorized 

as top performers, compared to 14.7% of European analysts and 20.7% of Asian analysts. This 

distribution highlights the higher concentration of top performers among US analysts. European 

financial analysts exhibit a notable optimistic bias, with a mean value of approximately 0.42, 

while their Asian counterparts display a slightly lower bias, averaging around 0.31. In contrast, 

analysts from the US demonstrate the lowest level of optimism, with a mean bias of 0.23. The 

relative forecast accuracy, measured by the proportional mean absolute forecast error 

(PMAFE), shows US analysts with an average PMAFE of -0.023, European analysts with -

0.013, and Asian analysts with -0.016. These values suggest that US analysts have the highest 

accuracy, followed by Asian and European analysts. These negative values indicate that 

European and Asian analysts overestimate future performance, while US analysts exhibit a 

slightly lower tendency to do so.  

In summary, US analysts demonstrate lower forecast bias, longer tenure, and higher 

engagement levels compared to their European and Asian counterparts. They also cover more 

banks and issue significantly more forecasts annually, indicative of a more dynamic and 

competitive market environment. European analysts, while slightly more experienced than their 

Asian counterparts, exhibit higher forecast bias, specifically higher levels of optimism in their 

forecasts, and cover fewer banks, but their coverage spans a broader geographical area. In 

contrast, Asian analysts tend to cover more banks concentrated within a single country, 

reflecting distinct regional market dynamics. These findings underscore the importance of 

considering regional differences when evaluating financial analysts' performance and the 

factors influencing their forecast accuracy. 
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Table 2. 1 Descriptive Statistics for the Raw Variables 

 

2.5. Empirical Result   

2.5.1. Analyst Characteristics and Relative Forecast Accuracy 

The accuracy of financial forecasts is pivotal to decision-making within the banking sector, yet 

the factors influencing an analyst’s forecasting accuracy are far from uniform across regions. 

This section investigates how specific analyst characteristics, such as experience level, 

brokerage house affiliation, and sector specialization, contribute to forecast accuracy and 

optimism within the U.S., European, and Asian banking markets. By dissecting these regional 

variations, we aim to uncover the underlying dynamics that drive forecasting success in the 

banking sector. 

2.5.1.1. Regression variables  

Table B.4 in Appendix B presents the correlation matrix for the regression variables used in 

Eq. (7), highlighting their relationships with forecast accuracy across global and regional 

Category Obs Mean Std Dev. Median Mean Std Dev. Median Mean Std Dev. Median Mean Std Dev. Median

GEXP 398,175 7.10 5.05 6.00 8.94 5.65 8.00 6.54 4.75 5.00 5.83 4.09 5.00

CEXP 398,175 6.51 4.94 5.00 8.86 5.62 8.00 5.25 4.28 4.00 5.31 3.84 4.00

REXP 398,175 7.02 5.01 6.00 8.86 5.62 8.00 6.46 4.72 5.00 5.76 4.05 5.00

BEXP 398,175 4.31 3.59 3.00 4.91 3.86 4.00 4.16 3.50 3.00 3.73 3.21 3.00

NBAN 398,175 8.68 5.68 7.00 12.41 6.48 12.00 5.85 3.39 5.00 7.67 4.60 7.00

NCOU 398,175 1.55 1.12 1.00 1.04 0.23 1.00 2.41 1.53 2.00 1.35 0.80 1.00

NREG 398,175 1.05 0.21 1.00 1.03 0.17 1.00 1.03 0.18 1.00 1.07 0.26 1.00

NFB 398,175 4.51 3.04 4.00 4.92 2.82 5.00 5.03 3.31 5.00 3.55 2.77 3.00

NFCOU 398,175 36.83 35.80 25.00 65.50 43.10 59.00 17.98 17.81 13.00 25.13 19.90 21.00

NFREG 398,175 41.78 35.23 32.00 65.51 43.09 59.00 30.55 23.77 26.00 28.81 21.94 24.00

NFAll 398,175 42.46 35.46 33.00 66.01 43.36 60.00 31.29 23.83 27.00 29.34 22.24 25.00

FORD 398,175 3.24 2.24 3.00 3.40 2.20 3.00 3.57 2.45 3.00 2.77 2.00 2.00

FAGE 398,175 201 104 195 201 102 186 197 106 198 206 104 204

BOLD 398,175 1.89 5.08 0.13 0.28 0.86 0.08 1.60 4.16 0.25 3.89 7.32 0.19

BOLDNESS 398,175 50.02 33.28 51.35 48.51 34.17 50.00 52.62 32.65 55.38 49.08 32.89 50.00

BOLDNESS_Top 20% 398,175 0.254 0.44 0.000 0.248 0.43 0.000 0.278 0.45 0.000 0.239 0.43 0.000

BrokerSize 398,175 11.49 10.47 7.00 11.49 9.80 7.00 12.02 10.74 8.00 11.45 10.81 7.00

BIG5 398,175 0.364 0.48 0.000 0.358 0.48 0.000 0.361 0.48 0.000 0.387 0.49 0.000

Past_Per 398,175 0.43 0.69 0.18 0.380  0.59 0.17 0.560      0.85 0.25 0.393 0.61 0.17

Past_Per_SCORE 398,175 2.23 1.47 2.00 2.543  1.43 3.00 1.872      1.36 2.00 2.089 1.45 2.00

D_TOP_Performance 398,175 0.25 0.43 0.00 0.320  0.47 0.00 0.147      0.35 0.00 0.207   0.41 0.00

AFE 398,175 0.313 0.69 0.087 0.232 0.57 0.056 0.428 0.79 0.150 0.314 0.71 0.090

PMAFE 106,355 -0.017 0.82 -0.162 -0.023 0.88 -0.200 -0.013 0.81 -0.147 -0.016 0.80 -0.144

Forecast Error

Analyst Performance

Boldness

All Sample US Analysts European Analysts Asian Analysts

Experience

Portfolio Size & Complexity

Analysts Engagement & Activity

Forecast Timing

Brokerage House
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samples. The findings reveal a strong positive correlation between forecast accuracy and the 

four experience measures (DGEXP, DCEXP, DREXP, DBEXP), emphasizing the importance 

of accumulated expertise in enhancing forecast precision. Globally, forecast accuracy increases 

with the number of banks covered (DNBAN) but decreases as geographical diversification 

(DNCOU) rises, reflecting the complexity of managing cross-country institutional contexts—a 

pattern consistent across regions except Europe. Frequent forecasts (DNFB, DNFALL) 

improve accuracy due to greater market engagement and responsiveness to new information. 

Moreover, affiliation with larger brokerage houses (DBIG5) correlates positively with forecast 

accuracy globally and regionally. Lastly, more recent forecasts (DFAGE) are typically more 

accurate, whereas earlier forecasts (DFORD) show lower precision due to limited initial 

information. 

2.5.1.2. Regression Result  

Table 2 presents the findings from Eq. (7), examining the relationship between forecast 

accuracy, measured by Proportional Mean Absolute Forecast Error (PMAFE), and various 

analyst characteristics for the global sample. The analysis incorporates variables such as 

portfolio complexity and geographical diversification (DNBAN, DNCOU), brokerage house 

size (DBIG5), analyst experience (DGEXP, DCEXP, DREXP, DBEXP), forecast frequency 

(DNFALL), and forecast timing (DFAGE) as controls. Due to high multicollinearity among 

experience variables and between portfolio complexity measures (DNBAN, DNCOU) and 

forecast activity (DNFALL), these variables are used separately in the regressions. 

The results reveal that analysts affiliated with larger brokerage houses (DBIG5) tend to 

produce more accurate forecasts, as evidenced by negative and significant coefficients across 

all models. Similarly, all experience variables (DGEXP, DCEXP, DREXP, DBEXP) exhibit 

negative and significant coefficients, with bank-specific experience (DBEXP) having the most 

pronounced effect on improving forecast accuracy. Furthermore, portfolio complexity 

demonstrates a nuanced impact: while the number of banks covered (DNBAN) is negatively 

associated with forecast errors, geographical diversification (DNCOU) is positively and 

significantly linked to errors, particularly in columns 4-6. This divergence from prior research 

underscores the unique challenges of covering diverse institutional contexts in the banking 

sector. Additionally, the analysis shows that frequent updates, as measured by forecast activity 

(DNFB, DNFALL), improve forecast accuracy, as indicated by negative and significant 

coefficients, emphasizing the benefits of timely revisions. Regarding forecast timing, more 

recent forecasts (DFAGE) are consistently associated with higher accuracy, whereas initial 
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forecasts (DFORD) are less precise due to limited early-period information. These findings 

provide critical insights into the interplay of institutional affiliation, analyst experience, 

portfolio complexity, and forecast timing in shaping forecast precision. 

These findings challenge earlier studies (e.g., Clement, 1999; Lim, 2001; Bolliger, 2004; 

Hong et al., 2000), which found that analysts with smaller portfolios produce more accurate 

forecasts. Unlike prior research that included multiple industries, this study focuses exclusively 

on the banking sector, revealing industry-specific dynamics that influence forecast precision. 

This highlights the unique challenges analysts face when balancing portfolio complexity and 

maintaining accuracy in the opaque banking industry. 

 

Table 2. 2: Relative Forecast Error and Individual Analysts' Characteristics 

 

 

 

Dependent  Variable

(1) (2) (3) (4) (5) (6)
DGEXP -0.00608***

(-5.45)
DCEXP -0.00650***

(-5.49)
DREXP -0.00634***

(-5.69)
DBEXP -0.00683*** -0.00647*** -0.00615***

(-4.85) (-4.82) (-4.48)
DNBAN -0.00360*** -0.00397*** -0.00357***

(-2.66) (-3.01) (-2.64)
DNCOU 0.00927* 0.0175*** 0.00962*

1.8 3.15 1.87
DBIG5 -0.0406*** -0.0442*** -0.0411*** -0.0451*** -0.0433*** -0.0420***

(-4.12) (-4.47) (-4.18) (-4.51) (-4.31) (-4.19)
DNFB -0.00537*** -0.00490*** -0.00529*** -0.00565***

(-3.17) (-2.91) (-3.13) (-3.27)
DFORD -0.00110***

(-5.21)
DNFAll -0.0234***

(-5.83)
DFAGE 0.270*** 0.270*** 0.271*** 0.269*** 0.269*** 0.259***

25.48 25.46 25.48 25.49 25.51 25.2

Observations 106124 106124 106124 106124 106124 106124
Number of banks 516 516 516 516 516 516
R-square 0.136 0.136 0.136 0.135 0.135 0.135

Relative Forecast Error _ PMAFE

Global Regression Results

Table 2. 2 shows the regression results (Eq. 7) analyzing the effect of various analyst characteristics on relative 

forecast error (PMAFE), defined as the difference between the absolute forecast error for analyst i for bank j 

at time t and the mean absolute forecast error for that bank at the same time. Key independent variables include 

portfolio complexity and geographical diversification (DNBAN for number of banks covered and DNCOU 

for number of countries covered), brokerage house size (DBIG5, indicating if the analyst is affiliated with a 

top-tier brokerage), analyst experience (DGEXP for general experience, DREXP for regional experience, 

DCEXP for country-specific experience, and DBEXP for bank-specific experience), forecast frequency 

(DNFB for forecasts issued per bank and DNFALL for total forecasts issued by the analyst), forecast order 

(DFORD), and forecast timing (DFAGE) as a control for forecast timing relative to the fiscal period. Statistical 

significance is marked by ***, **, and * for the 1%, 5%, and 10% levels, respectively.  
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2.5.1.3. Determinants of Forecast Accuracy Across Regions 

Table 2.3 presents the results of regional-based regressions, examining how individual analyst 

characteristics affect relative forecast error (PMAFE) across the US, Europe, and Asia. The 

analysis highlights the critical role of financial analysts' experience in shaping forecast accuracy 

across these regions. General experience (DGEXP) consistently demonstrates a negative and 

statistically significant relationship with forecast error, indicating that increased experience 

enhances forecast precision. This trend is most pronounced in the US, where forecast errors see 

the largest reduction, while bank-specific experience (DBEXP) also significantly reduces errors 

across all regions, with the US showing the strongest effect36. A one-standard-deviation 

increase in analyst experience is associated with a 2.5–3.1% reduction in relative forecast error 

(PMAFE), with the effect exceeding 7.2% in the US market. This underscores the critical value 

of accumulated expertise in enhancing forecasting precision, particularly in the complex 

banking sector. 

Portfolio size and complexity reveal divergent effects across regions. In the US, DNBAN 

(number of banks covered) improves forecast accuracy, while in Europe, higher bank coverage 

correlates with increased forecast errors due to the complexity introduced by geographical 

diversification. This phenomenon is further explored in Section 2. 5.1.4, which investigates the 

reasons behind reduced accuracy for European analysts covering more banks. Similar to global 

trends, higher bank coverage in Asia reduces forecast errors. Conversely, DNCOU (number of 

countries covered) consistently increases forecast errors across all regions, particularly in 

Europe. A plausible explanation, as suggested by Bolliger (2003), is that European analysts 

covering companies across diverse countries may lack the institutional familiarity required for 

accurate forecasting in such varied contexts. Economic interpretation also shows that covering 

more banks is linked to a 3.4% reduction in PMAFE globally, with the effect rising to 5.3% in 

the U.S. In contrast, European analysts experience a 2.1% increase in PMAFE, indicating that 

the added complexity of managing diverse portfolios may hinder accuracy in this region. 

Geographical complexity presents another challenge, with a one standard deviation increase in 

cross-country coverage driving a 1.4–2.7% rise in PMAFE. This reflects the difficulty of 

navigating diverse institutional and market conditions, highlighting the trade-offs between 

broader coverage and forecast precision. Brokerage house size (DBIG5) is negatively and 

significantly correlated with forecast error across all regions, indicating that analysts affiliated 

                                                      
36 These findings align with prior research, such as Clement (1999), but contrast with studies by Hong et al. (2000), 

Jacob et al. (2000), and Bolliger (2003), which found no "learning-by-doing" effect among European analysts. 
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with larger brokerage firms benefit from enhanced resources and institutional support, leading 

to more precise forecasts. The impact is strongest in the US and Asia; in Europe, the effect is 

weaker but still statistically significant37. Affiliation with top-tier brokerage houses contributes 

to an approximate 1.6% decrease in PMAFE globally, reaching a pronounced 3.1% reduction 

in the U.S. market. This demonstrates the pivotal role of institutional support and resources in 

improving forecast accuracy.  

These findings underscore the importance of analyst experience, portfolio management, 

forecasting activity, and institutional resources in determining forecast accuracy across regions. 

They also highlight the need for further investigation into the regional disparities, particularly 

in Europe, where institutional and market-specific factors significantly influence forecasting 

precision. 

 

Table 2. 3: Relative Forecast Error and Individual Analysts' Characteristics 

 

                                                      
37 Bolliger (2004) posits that insufficient centralization of research operations within large European brokerage 

houses may reduce their effectiveness, whereas medium and small local brokerage firms specializing in specific 

countries or sectors may hold informational advantages over their larger counterparts. 

Table 3 presents the regression results (Eq. 7) for regional-based regressions, analyzing the impact of individual 

analyst characteristics on relative forecast error (PMAFE) across the US, Europe, and Asia. PMAFE, the dependent 

variable, represents the difference between the absolute forecast error for analyst iii for bank j at time t and the mean 

absolute forecast error for that bank at the same time. Key independent variables include portfolio complexity and 

geographical diversification (DNBAN for number of banks covered and DNCOU for number of countries covered), 

brokerage house size (DBIG5 for top-tier brokerage affiliation), analyst experience (DGEXP for general experience 

and DBEXP for bank-specific experience), forecast frequency (DNFB for total forecasts issued by the analyst for 

each bank), and forecast timing (DFAGE). Statistical significance is indicated by ***, **, and * for the 1%, 5%, and 

10% levels, respectively. 

Dependent  Variable

(1) (2) (3) (4) (5) (6) (7) (8)

US US EU EU EU ASIA ASIA ASIA

DGEXP -0.0128*** -0.00504** -0.00609*** -0.00609***
(-5.72) (-2.10) (-3.36) (-3.36)

DBEXP -0.0120*** -0.00528*** -0.00416** -0.00416**
(-6.82) (-2.74) (-2.14) (-2.14)

DNBAN -0.00516*** -0.00824*** 0.00540* 0.00626** -0.00392** -0.00392**
(-3.19) (-4.71) 1.8 2.05 (-2.12) (-2.12)

DNCOU 0.0137** 0.0137**
2.18 2.18

DBIG5 -0.0511** -0.0648*** -0.0459** -0.0423** -0.0409** -0.0459*** -0.0409** -0.0459***
(-2.54) (-3.34) (-2.41) (-2.23) (-2.12) (-3.48) (-2.12) (-3.48)

DNFB 0.000549 -0.00584** -0.00584**
-0.15 (-2.38) (-2.38)

DFAGE 0.447*** 0.450*** 0.206*** 0.206*** 0.204*** 0.234*** 0.204*** 0.234***
26.77 27.16 14.05 14.07 13.93 19.33 13.93 19.33

Observations 29775 29775 28559 28559 28559 44809 28559 44809

Number of banks 230 230 90 90 90 186 90 186

R-square 0.206 0.208 0.113 0.113 0.113 0.129 0.113 0.129

Relative Forecast Error _ PMAFE

Regional Regression Results
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2.5.1.4. Portfolio Complexity and Regional Disparities 

This section further investigates how portfolio complexity affects forecast accuracy, focusing 

on European analysts. In Section 2. 5.1.2, we observed that while covering more banks 

(DNBAN) improves forecast accuracy globally, it increases forecast errors in Europe, likely 

due to the complexities of a diversified portfolio. Cross-country coverage (DNCOU) also 

consistently raises forecast errors across all regions, suggesting challenges in adapting to 

diverse institutional contexts (Bolliger, 2003). Table 2. 4 presents regression results on how 

portfolio complexity (DNBAN, DNCOU), top brokerage affiliation (DBIG5), and their 

interactions impact relative forecast error (PMAFE) across the EU, US, and AS regions. For 

Europe, Column (2) shows a positive and significant interaction between DNBAN and 

DNCOU, indicating that geographical diversification amplifies the negative effect of covering 

more banks on forecast accuracy. This suggests that managing banks across multiple countries 

adds complexity, reducing accuracy. A similar trend is observed in Asia (Column 4), where 

greater portfolio complexity is linked to higher forecast errors, highlighting the forecasting 

challenges in diverse settings. European analysts generally handle a wider geographic range—

covering an average of 2.41 countries but fewer banks (5.85) than their Asian counterparts, who 

cover 7.67 banks within fewer countries (~1.4). This contrast in approach—European analysts 

with broader geographic scope versus Asian analysts with more banks in concentrated 

regions—helps explain regional disparities in forecast accuracy seen in Tables 2.2 and 2.3. 

Regarding affiliation with a top broker, as all models show, DBIG5 is associated with reduced 

forecast errors, with stronger effects in the U.S. and Asia but weaker impacts in Europe. 

However, the interaction terms suggest that top brokerage affiliation marginally appears to 

alleviate the decrease in forecast accuracy related to managing a larger, diversified portfolio 

(column 3). 

Our findings suggest that industry-specialized financial analysts with large portfolio sizes 

and limited geographical coverage produce more accurate forecasts; we can also conclude that 

more skilled analysts are assigned a more significant number of banks. However, this result is 

challenging for brokerage houses covering Europe that seek to find an optimal structure for 

their research operation. Indeed, an industry-organized research department increases forecast 

accuracy through the industry specialization effect but also increases the number of countries 

to be covered, which, to some extent, challenges the accuracy of earnings forecasts.  
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Table 2. 4: Relative Forecast Error and Portfolio Complexity 

2.5.2. Boldness, Forecasting Accuracy, and Career Concerns 

Economic incentives drive patterns of optimism, boldness, and herding behavior, often 

undermining objectivity. Analysts frequently issue optimistic. Issuing bold forecasts can be a 

strategic career move for analysts, influenced by both ambition and reputation-building. Herding 

theories (e.g., Hong et al., 2000) suggest that future career outcomes may be shaped not only by 

an analyst’s past performance but also by bold or unconventional forecasts that deviate 

significantly from the consensus. The section investigates the incentive-driven dynamics of 

forecasting behavior, focusing on the relationship between boldness, ability, and career 

concerns, investigating whether bold forecasts are perceived as indicators of expertise or risk-

taking. We assess whether seasoned analysts approach boldness differently from their less 

experienced counterparts and examine regional differences in these behaviors. 

 

Table 4 presents the regression results based on Eq. (7), examining how portfolio complexity influences 

relative forecast error (PMAFE) across different regions (EU, US, and AS). Key interaction terms include 

DNBAN (number of banks covered) combined with DNCOU (number of countries covered) and DBIG5 

(affiliation with a top brokerage). The dependent variable, PMAFE, represents the difference between the 

absolute forecast error for analyst iii for bank j at time t and the mean absolute forecast error for that bank 

at the same time. Other variables include analyst general experience (DGEXP), forecast frequency (DNFB), 

and forecast timing (DFAGE). Statistical significance is indicated by ***, **, and * for the 1%, 5%, and 

10% levels, respectively. 

Dependent Variable

(1) (2) (3) (4) (5)

US EU EU ASIA ASIA

DNBAN* DNCOU 0.00348** 0.00365**
2.28 2.14

DNBAN -0.00327* 0.00318 0.00585** -0.00238 -0.00204
(-1.83) 0.8 2.12 (-1.06) (-1.05)

DNCOU 0.00113 0.0177*
0.13 1.8

DNBAN* DBIG5 -0.0018 -0.00935* 0.00562**
(-0.56) (-1.75) 2.01

DBIG5 -0.0652*** -0.0364* -0.0369* -0.0422*** -0.0387***
(-3.36) (-1.97) (-1.97) (-3.22) (-2.92)

DGEXP -0.0120*** -0.00420** -0.00417** -0.00327** -0.00341**
(-6.82) (-2.19) (-2.11) (-2.00) (-2.10)

DNFB 0.000584 -0.00521** -0.00638** -0.00961*** -0.0108***
0.16 (-2.18) (-2.58) (-3.71) (-4.18)

DFAGE 0.450*** 0.203*** 0.204*** 0.232*** 0.232***
27.16 13.9 13.98 19.42 19.36

Observations 29775 28559 28559 44809 44809

Number of banks 230 90 90 186 186

R-square 0.208 0.114 0.114 0.13 0.129

Relative Forecast Error _ PMAFE



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis 

Across Global Banking Markets 

 91 

2.5.2.1. Boldness and Relative Forecast Error  

In this section, we begin by examining whether analysts who issue bold forecasts demonstrate 

higher accuracy than their peers across various regions. Our analysis extends to examine how 

experience level, brokerage size, and portfolio complexity interact with boldness to influence 

forecast accuracy. To conduct this, we extend our baseline model (Eq. 7) by integrating a 

forecast boldness proxy, as introduced in Section 2. 3.3.1: DBOLDNESS i, j, t, representing 

analyst i’s boldness score for bank j at time t. Our enhanced model (Eq. 8) is formulated as 

follows: 

𝑃𝑀𝐴𝐹𝐸𝑖,𝑗,𝑡 =  𝛼𝑫𝑩𝑶𝑳𝑫𝑵𝑬𝑺𝑺 𝑖,𝑗,𝑡 + ∑ 𝛼𝑘

4

𝑘=1

. 𝐷𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑘,𝑖,𝑗,𝑡

+ ∑ ß𝑚

4

𝑚=1

. 𝐷𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜_𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑚,𝑖,𝑗,𝑡 +  ∑ 𝜌𝑛

4

𝑛=1

. 𝐷𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑛,𝑖,𝑗,𝑡

+   𝛾. 𝐷𝐵𝐼𝐺5𝑖,𝑗,𝑡 +  𝜎. 𝐷𝐹𝐴𝐺𝐸𝑖,𝑗,𝑡 + 𝜀𝑖,𝑗,𝑡 

(8) 

In Table 2. 5, we present regression results on the relative forecast error (PMAFE) with a 

particular focus on boldness (DBOLDNESS) alongside experience (e.g., DGEXP), bank 

coverage (DNBAN), and affiliation with a major brokerage (DBIG5) as well as other control 

variables. The results reveal a general trend of higher forecast errors associated with boldness 

in the full sample, implying that bolder forecasts tend to exhibit less accuracy. However, 

regional differences emerge: in the U.S., bolder analysts achieve higher accuracy in forecasts, 

a finding that contrasts with Europe and Asia, where boldness correlates with increased forecast 

errors. This nuanced relationship is consistent with the broader trend yet points to potential 

regional dynamics affecting forecasting efficacy. Notably, our findings in the U.S. align with 

prior research, suggesting that bold forecasts may enhance accuracy in certain contexts, 

whereas Europe and Asia warrant further investigation into the specific factors driving forecast 

errors associated with boldness in these markets. 
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Table 2. 5: Boldness and Relative Forecast Error 

 

 

 

 

 

 

 

 

 

 

 

- Forecast Boldness: Marginal effects of Experience, Brokerage, and Portfolio Size 

This section explores factors moderating forecast errors associated with boldness, particularly 

in European and Asian markets, focusing on bank-specific experience, top brokerage affiliation, 

and portfolio complexity. Table 2. 6 analyzes the interaction effects of boldness 

(DBOLDNESS) with bank-level experience (DBEXP), Big Five affiliation (DBIG5), and the 

number of banks covered (DNBAN). Bold forecasts are consistently associated with higher 

errors, as indicated by positive and significant DBOLDNESS coefficients. In Europe, affiliation 

with a Big Five brokerage (DBIG5) significantly reduces errors, and the negative interaction 

term (DBOLDNESS*DBIG5) shows that bold forecasts from these firms are more accurate. 

While DBEXP lowers forecast errors, its interaction with boldness is insignificant, indicating 

no notable combined effect. Likewise, the DBOLDNESS*DNBAN interaction is insignificant; 

however, in Europe increased bank coverage slightly raises errors for extreme bold predictions 

(DBOLDNESS_Top20% * DNBAN), suggesting portfolio complexity may heighten 

Table 4 presents regression results based on Eq. (8), analyzing the relationship between forecast 

boldness and relative forecast error (PMAFE) across regions: global (All), United States (US), 

Europe (EU), and Asia (ASIA). The dependent variable, PMAFE, captures the difference between 

the absolute forecast error for analyst i forecasting for bank j at time t and the mean absolute 

forecast error for that bank during the same period. Key independent variables include 

DBOLDNESS i,j,t, representing the analyst i's boldness score for bank j at time t, alongside other 

controls: analyst general experience (DGEXP), portfolio size (DNBAN, the number of banks 

covered), top brokerage affiliation (DBIG5), forecast frequency (DNFB), and forecast timing 

(DFAGE). Statistical significance is denoted by ***, **, and * for 1%, 5%, and 10% levels, 

respectively. 

 

Dependent Variable

(1) (2) (3) (4)

All US EU ASIA

DBOLDNESS 0.00232*** -0.00136*** 0.00332*** 0.00328***

6.29 (-3.04) 5.54 5.68

DGEXP -0.00611*** -0.0120*** -0.00421** -0.00353**

(-5.59) (-6.82) (-2.31) (-2.25)

DNBAN -0.000781 -0.00319* 0.00576** 0.000348

(-0.58) (-1.80) 2 0.17

DBIG5 -0.0404*** -0.0651*** -0.0366** -0.0375***

(-4.19) (-3.36) (-2.03) (-2.92)

DNFB -0.00512*** 0.000666 -0.00626** -0.0113***

(-3.06) 0.18 (-2.59) (-4.57)

DFAGE 0.282*** 0.452*** 0.216*** 0.245***

27.11 28.05 15.04 20.55

Observations 106124 29775 28559 44809

Number of banks 516 230 90 186

R-square 0.148 0.208 0.135 0.151

Relative Forecast Error _ PMAFE
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inaccuracies. Similar patterns are evident in Asia, where bold forecasts are more accurate when 

issued by analysts affiliated with top brokerage houses, experienced professionals, and those 

managing focused portfolios. Overall, bold forecasts are generally less accurate, but the impact 

varies across regions and is moderated by factors like institutional affiliation and portfolio 

scope, highlighting a nuanced relationship between boldness, accuracy, and analyst 

characteristics. 

Table 2.6: Relative Forecast Error and Forecast Boldness with Marginal Effect Analysis 

2.5.2.2. Forecast Boldness and Analyst Characteristics  

In this section, we investigate how career concerns influence financial analysts' tendency to 

issue bold forecasts. Specifically, we examine the role of experience and past performance, 

focusing on regional variations to understand how these factors, along with career-related 

motivations, shape analysts' forecasting behavior. Our empirical approach analyzes how career 

concerns affect forecast accuracy and the likelihood of deviating from consensus estimates. We 

link forecast boldness to specific analyst characteristics, particularly the differences between 

younger and more experienced analysts, as captured by past forecast performance. 

Table 6 extends the analysis of the relationship between forecast boldness and relative forecast error (PMAFE), 

incorporating marginal effect interactions. The table explores how boldness (DBOLDNESS) interacts with key variables 

such as portfolio size (DNBAN), bank-specific experience (DBEXP), and top brokerage affiliation (DBIG5) across 

different regions (EU, Asia, and US). The dependent variable, PMAFE, represents the difference between the absolute 

forecast error for analyst iii forecasting for bank j at time t and the mean absolute forecast error for that bank during the 

same period. Key independent variables include DBOLDNESS (i,j,t), representing the boldness score for analyst iii 

covering bank j at time t, and BOLDNESS_Top 20%, a dummy variable indicating if the boldness score falls in the top 

20%. Interacting variables include general experience (DGEXP), portfolio size (DNBAN), and top brokerage affiliation 

(DBIG5). Other control variables include forecast frequency (DNFB) and forecast timing (DFAGE). Statistical 
significance is denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively. 

. 

Dependent Variable

(1) (2) (3) (4) (5) (6)

US EU ASIA US EU ASIA

DBOLDNESS -0.00135*** 0.00327*** 0.00326*** 0.0132 0.288*** 0.293***

(-3.01) 5.5 5.72 -0.43 -6.69 -5.83

DBOLDNESS*DBIG5 0.000457 -0.00204*** -0.000819* 0.0056 -0.144*** -0.0569

0.75 (-3.21) (-1.72) -0.13 (-3.18) (-1.58)

DBOLDNESS*DBEXP -0.0000852 0.0000588 -0.0000332 -0.00622 0.00501 -0.00288

(-1.19) 0.9 (-0.50) (-1.06) -1.02 (-0.51)

DBOLDNESS*DNBAN -0.0000625 0.000135 0.0000561 -0.00948** 0.0128* 0.00574

(-1.24) 1.27 0.83 (-2.58) -1.96 -0.96

DBIG5 -0.0571*** -0.0328* -0.0383*** -0.0562*** -0.0346** -0.0390***

(-3.01) (-1.97) (-3.14) (-2.90) (-2.05) (-3.13)

DBEXP -0.0129*** -0.00369 -0.00337* -0.0132*** -0.00332 -0.00345*

(-5.91) (-1.58) (-1.94) (-5.75) (-1.42) (-1.93)

DNBAN -0.00505*** 0.00444* -0.000426 -0.00552*** 0.00457* -0.000205

(-3.08) -1.69 (-0.23) (-3.32) -1.77 (-0.10)

DFB 0.00333 -0.00638** -0.0108*** 0.00345 -0.00669*** -0.0112***

0.85 (-2.46) (-4.31) -0.89 (-2.71) (-4.53)

DFAGE 0.450*** 0.216*** 0.244*** 0.451*** 0.212*** 0.239***

27.96 14.97 20.54 -27.14 -14.55 -19.88

Observations 29775 28559 44809 29775 28559 44809

Number of banks 230 90 186 230 90 186

R-square 0.206 0.136 0.151 0.205 0.146 0.159

Relative Forecast Error _ PMAFE

BOLDNESS SCORE BOLDNESS_Top 20%
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Additionally, we account for firm-specific influences by including a brokerage house effect as 

a proxy. To further explore the relationship between experience and deviation from consensus 

forecasts, we specify the following regression model, building on prior research (Hong et al., 

2000; Clement, 2005) to capture how analyst characteristics beyond experience contribute to 

forecast boldness. The probit model is structured as follows: 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑖,𝑗,𝑡

= 𝛼 + ß1𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖,𝑗,𝑡 + ß2 𝑃𝑎𝑠𝑡 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑛𝑐𝑒𝑖,𝑡

+  ß3 𝐵𝑟𝑜𝑘𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑢𝑠𝑒𝑖,𝑡 + +ß4𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜_𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖,𝑗,𝑡   +𝜀𝑖,𝑗,𝑡 

    (9) 

Where Deviation from Consensus (BOLDNESS_Top 20%) is A binary variable indicating 

if analyst i's forecast for firm j in year t ranks in the top 20% for boldness. It equals 1 if the 

forecast's boldness score is above the 80th percentile. Experience: Includes both analyst 

regional experience (REXP) and bank-specific experience (BEXP). Past Performance 

(Past_Per_SCORE): A proxy for prior forecasting accuracy, as detailed in section 2.3.3.1. 

Portfolio Complexity (NBAN): Measured as the number of banks an analyst covers. Brokerage 

House Affiliation (BIG5): A variable capturing the effect of affiliation with one of the top five 

brokerage firms.  

Table B.5 in Appendix B presents the Spearman rank correlation coefficients for the 

regression variables across different regions. The results highlight regional variations in the 

relationship between boldness (measured by BOLDNESS and BOLDNESS_TOP20%) and 

other analyst characteristics. In the U.S. and Asia, bold forecasts are associated with analysts 

who have higher bank-specific and regional experience, better past performance, and 

affiliations with top brokerage firms. However, in Europe, this relationship appears to be 

inversed, indicating potential regional differences in how experience and brokerage affiliation 

influence forecast boldness. 

Table 2. 7 highlights key trends in the relationship between analyst experience and the 

likelihood of issuing bold forecasts across regions. First, for the US and Asia, the positive and 

significant coefficients for BEXP suggest that analysts with greater bank-specific expertise are 

more inclined to issue bold forecasts. This indicates that experienced analysts, confident in their 

skills and reputations, are more willing to deviate from the consensus, using their expertise to 

provide unique perspectives. In particular, older analysts in Asia, as indicated by higher REXP, 

are more likely to exhibit boldness and less herding behavior, consistent with findings from 

Bhagwat and Liu (2020). In Europe, however, the results show a contrasting pattern. The 
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negative and significant coefficient for REXP suggests that experienced analysts in this region 

are more conservative, tending to align their forecasts with the consensus. This behavior may 

stem from the increased scrutiny and accountability that senior analysts face, particularly as 

they have survived the industry's rigorous selection processes. Conversely, younger analysts in 

Europe are more likely to issue bold forecasts driven by career advancement motivations and a 

lower degree of professional accountability. 

Second, regarding past performance (Past_Per_SCORE), the positive and significant 

coefficient in the US indicates that analysts with stronger track records are more inclined to 

issue bold forecasts. The high past performance likely enhances analysts' confidence, 

motivating them to take calculated risks in their predictions to maintain a reputation for 

accuracy and insight. In contrast, the negative and significant coefficient in Europe suggests 

that better past performance is associated with more conservative forecasts, as analysts with 

strong reputations may prioritize safeguarding their established credibility. In Asia, the 

coefficient is insignificant, implying that past performance does not strongly influence bold 

forecasting, with other factors likely playing a more substantial role in shaping forecast 

behavior in the region. 

Third, considering the brokerage house effect (BIG5), positive and significant coefficients 

in the US and Asia suggest that analysts affiliated with top brokerage firms in these regions are 

more likely to issue bold forecasts. This could reflect the enhanced confidence and support 

provided by well-resourced firms with strong reputations, enabling analysts to adopt bolder 

positions. Conversely, in Europe, the negative and significant coefficient indicates that analysts 

at major brokerage houses are less likely to issue bold forecasts, suggesting a more conservative 

or risk-averse culture within European brokerage firms. Finally, an analysis of analyst portfolio 

size (NBAN) reveals that bold analysts in the US and Europe tend to cover a larger number of 

banks, possibly using portfolio diversity to enhance visibility and influence. However, the trend 

differs in Asia, where bold analysts are less associated with large portfolio sizes, indicating 

bold Asian analyst tend to maintain more focused portfolio. 

The analysis reveals less experienced European analysts are more likely to issue bold 

forecasts than their seasoned peers. Early-career analysts often take risks to gain recognition 

and face less scrutiny, allowing greater freedom to deviate from consensus. In contrast, 

experienced analysts, shaped by a rigorous selection process, prioritize accuracy and reliability 

over boldness, resulting in more conservative forecasting behavior. 
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Table 2. 7: The link between Analysts' experience, past performance, and Boldness 

2.5.3.  Labor Market Incentives: Balancing Accuracy and Advancement 

The section explores how labor market incentives influence forecasting strategies and career 

trajectories, with a focus on distinctions between younger and more experienced analysts across 

diverse financial markets. To examine career progression, we first construct indicators of job 

separation grounded in career theories that highlight job performance as a key determinant of 

movement within and between firms. We then analyze the relationship between an analyst's past 

forecast accuracy and job transitions. Finally, informed by herding theories, we assess the role 

of bold forecasting as an additional factor influencing job separations. The construction of 

performance and boldness variables is detailed in Section 2. 3.3. 

2.5.3.1. Measures of Job Movements 

In this section, we examine job movement measures by tracking each analyst forecast and 

employment history within the I/B/E/S sample, focusing on those in the banking sector. Studies 

like Hong et al. (2000) note that analysts often specialize within industries, a trend that Hong 

and Kubik (2003) further highlighted, showing a shift toward smaller, specialized brokerage 

firms since 2003. By including only banking-focused brokerage houses, our sample achieves a 

brokerage size distribution that aligns with this industry shift and supports our methodology. 

Table 7 presents the regression results (Eq. 9), examining the relationship between analysts' experience, past 

performance, and their deviation from the consensus, with a focus on top 20% boldness scores (BOLDNESS-

Top20%). The results are reported for all regions combined (All) and separately for the US, EU, and Asia (AS). 

The dependent variable is a dummy set to one if an analyst's forecast ranks in the top 20% for boldness. 

Independent variables include regional experience (REXP), bank-specific experience (BEXP) and past 

performance (Past_per_score). Control variables are portfolio size (NBAN), top brokerage affiliation (BIG5). 

Statistical significance is denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively. 

 

Dependent Variable

(1) (2) (3) (4) (5) (6) (7) (8)

All US EU AS All US EU AS

BEXP 0.00399*** 0.00327*** -0.000976 0.00684***

6.3 3.27 (-0.86) 5.6

REXP -0.000643 -0.00346*** -0.00272*** 0.00378***

(-1.35) (-4.74) (-3.18) -3.75

BIG5 -0.00327 0.0352*** -0.0644*** 0.0175** -0.00188 0.0343*** -0.0627*** 0.0172**

(-0.72) 4.48 (-7.83) 2.27 (-0.41) 4.38 (-7.60) 2.23

Past_Per_SCORE -0.00139 0.0115*** -0.0120*** 0.000975 -0.000136 0.0114*** -0.0114*** 0.00214

(-0.89) -4.28 (-4.14) 0.36 (-0.09) 4.24 (-3.94) -0.8

NBAN -0.00170*** 0.00158*** 0.00405*** -0.00278*** -0.000999** 0.00320*** 0.00470*** -0.00293***

(-4.27) 2.61 3.46 (-3.35) (-2.38) 5.01 3.95 (-3.42)

_cons -0.659*** -0.757*** -0.563*** -0.722*** -0.647*** -0.730*** -0.555*** -0.720***

(-123.70) (-69.68) (-56.94) (-76.78) (-121.45) (-66.42) (-56.05) (-76.09)

Observations 383926 131962 117212 134752 383926 131962 117212 134752

Deviation of Analysts' Forecasts from the Consensus_Top 80% Boldness



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis 

Across Global Banking Markets 

 97 

Our approach also accounts for career dynamics, such as promotions and demotions, reflecting 

the evolving structure of specialized brokerage firms in banking.  

In our global sample, the typical brokerage house employs around 12 analysts, while those in 

the top 5%—classified as top brokerage firms (BIG5)—average approximately 23 analysts. This 

number differs by region, with top brokerage firms employing an average of 22 analysts in the 

U.S., 24 in Europe, and 23 in Asia. Being part of a top brokerage often correlates with higher 

forecast accuracy and enhanced market performance, attributed to the superior resources and 

strong institutional reputation these firms hold. Career movements are measured in four ways: 

(1) the number of analysts who change brokerage houses during a year (determined by changes 

in the analyst’s unique brokerage house code), (2) the number of analysts who upgrade to a 

higher-status brokerage firm during a year, (3) the number of analysts who move from a low-

tier brokerage house to a top-tier house during a year, and (4) the number of analysts who 

downgrade from a high-status brokerage house to a low-status one during a year.  

Table 2. 8 presents summary statistics for various measures of career mobility and forecast 

performance, providing insights into different dimensions of analyst job movements. The table 

categorizes the data for the overall sample, as well as for US, European, and Asian analysts. The 

data reveals that, on average, 14.45% of analysts change their brokerage firms over the sample 

period. US analysts show the highest rate of change at 18.54%, compared to 14.07% for 

European analysts and 13.46% for Asian analysts. The annual probability of an analyst 

changing their brokerage firm is approximately 5.2%, slightly higher for US and Asian analysts 

at 5.5% and 5.7%, respectively, and significantly lower for European analysts at 3.8%. The 

probability of analysts upgrading to a higher-status brokerage firm is around 1.9%, with US 

analysts having a slightly higher upgrade rate (2.17%) compared to European analysts (1.58%) 

and Asian analysts (1.95%). Approximately 1.26% of analysts move to firms of similar size, 

with this rate being slightly higher for Asian analysts (1.67%) and lower for European analysts 

(0.71%). The probability of moving to or from a top-tier brokerage firm is relatively low: the 

likelihood of upgrading to a top-tier firm is 0.37%, while the probability of downgrading from 

a top-tier firm is 0.28%. US analysts are more likely to upgrade to a top-tier firm (0.43%) 

compared to European (0.36%) and Asian analysts (0.29%). 
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Table 2. 8: Descriptive Statistics of Job Movements Dataset 

 

 

 

 

 

 

 

 

- The characteristics of Top-tier brokerage houses in different regions 

Our findings show a positive correlation between brokerage house size and forecast accuracy 

globally and regionally. In the United States, analysts at top brokerage houses tend to issue 

bolder forecasts, follow more concentrated portfolios, and have more bank-specific experience, 

though they do not necessarily possess high general experience or top past forecast accuracy. 

Conversely, European analysts exhibit high general experience levels, manage more extensive 

and complex portfolios, are less bold, and have average past performance records. Asian 

analysts demonstrate high experience levels, maintain moderate portfolio sizes, are bold, and 

show good past performance. These results highlight the distinct characteristics and behaviors 

of analysts across different regions, reflecting the varying dynamics of financial markets and 

institutional practices (see Appendix C, Table C.1). 

2.5.3.2. Past Forecast Accuracy and Career Advancement: High and Low-Experience 

Analysts 

This section explores the relationship between analysts' forecast accuracy and career mobility, 

including promotions, lateral moves, and exits from the profession. Specifically, we analyze 

how forecast performance affects the likelihood of analysts transitioning within or between 

brokerage houses—either moving up to top-tier firms or down to lower-status brokerages. By 

examining high- and low-experience subsamples, we capture experience-based differences in 

how forecast accuracy influences these career outcomes. We adopt the methodology outlined 

by Bolliger (2004), utilizing probit regressions to examine the likelihood of career transitions 

based on past forecast performance. We estimate separate probit models for each experience 

subsample, categorized as high or low relative to median experience in each region (8 years in 

Category Mean Mean Mean Mean

BrokerChange_ttl 0.578 0.742 0.426 0.538

D_BrokerChange_Year 5.15% 5.48% 3.75% 5.75%

D_Upgrade 1.946% 2.170% 1.581% 1.954%

D_Downgrade 1.945% 2.107% 1.461% 2.131%

D_Samesize 1.263% 1.200% 0.711% 1.665%

D_Upgrade_top5 0.374% 0.427% 0.357% 0.286%

D_Downgrade_top5 0.283% 0.166% 0.441% 0.145%

D_Samesize 4.497% 4.884% 2.954% 5.318%

Probability That Analyst Moves to  Higher-Status Brokerage House

Probability That Analyst Moves to  Top5 Brokerage House

Brokerage House Change 

All Sample US Analysts European Analysts Asian Analysts
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the U.S., 6 years in Europe, and 5 years in Asia). This approach allows us to compare the impact 

of forecast performance on career mobility between less experienced and more experienced 

analysts. The model specifications are as follows: 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [𝑈𝑝𝑔𝑟𝑎𝑑𝑒𝑖,𝑡+1  = 1]   = 𝑃𝑟𝑜𝑏𝑖𝑡 (𝛼 + ß1 Top_Performance_index𝑖,𝑡 + 𝜀𝑖,𝑡) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [𝐷𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒𝑖,𝑡+1  = 1] = 𝑃𝑟𝑜𝑏𝑖𝑡 (𝛼 + ß1 Poor_Performance_index𝑖,𝑡  𝜀𝑖,𝑡) 

(10) 

 here, "upgrade" refers to the likelihood of an analyst moving to a top-tier brokerage, while 

"downgrade" refers to moving to a lower-status brokerage. Past_Per_SCORE represents the 

analyst’s Aggregate Weighted Forecast Performance score, with top-performing analysts 

(Top_Performance_index) in the top 20th percentile and poor performers marked by the 

Poor_Performance_index. This approach allows us to capture the extremes of analyst 

performance and better understand how these factors influence career outcomes across different 

regions and experience levels. Moreover, the analysis spans a three-year period to determine 

each analyst's general experience level, classifying them into high- and low-experience groups. 

This classification enables a nuanced understanding of how career concerns and performance 

metrics affect career progression, particularly highlighting the varying incentives faced by 

analysts at different career stages.  

Table 2. 9 presents regression results analyzing the effect of past performance on career 

outcomes, with subsamples for low- and high-experience analysts and distinctions between top 

and poor performers. The analysis spans the U.S., Europe, and Asia, highlighting regional 

differences in how past performance influences career trajectories. The findings reveal 

significant positive relationships in all regions between past performance and the likelihood of 

promotion to a higher-status brokerage house. Specifically, higher past performance 

significantly increases the probability of moving up in Europe and Asia, though the effect is 

smaller in Asia. In contrast, in the U.S., high past performance does not necessarily correlate 

with promotions to top brokerage firms. Regarding downgrades, the U.S. shows that lower past 

performance significantly increases the likelihood of downgrading, particularly for less 

experienced analysts. In Europe, there is no significant relationship between past performance 

and downgrading overall, though poor past performance among low-experience analysts does 

increase the likelihood of a downgrade. In Asia, the positive coefficient indicates that market 

dynamics may interact uniquely with analyst experience level, necessitating further 

investigation. 
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Overall, the findings demonstrate that high past performance influences career outcomes, 

though the effects differ by region. In the U.S., poor past performance, especially for less 

experienced analysts, increases the likelihood of downgrading, while high past performance 

alone does not guarantee promotion. In Europe, high past performance is linked to upward 

mobility, with no significant trend for downgrading except for poor, low-experience 

performers. In Asia, high past performance boosts advancement to top firms, while lower past 

performance does not notably increase downgrading risks, highlighting unique market 

dynamics. 

 

Table 2. 9: Effect of Past Performance on Career Outcomes by Experience 

 

2.5.3.3. Boldness and Career Trajectories: High- and Low-Experience Analysts 

Building on herding theories (e.g., Hong et al., 2000), we extend our analysis of career mobility 

to include forecast boldness as a potential factor influencing job separation probabilities. These 

models suggest that future career outcomes may be shaped not only by past performance but 

also by past actions—such as bold or unconventional forecasts that deviate significantly from 

the consensus—thereby signaling the quality of an analyst's private information. To investigate 

this, we estimate the relationship between the probability of career advancement or downgrade 

Panel A (1) (2) (3) (4) (5) (6)
US US EU EU ASIA ASIA

<Median >Median <Median >Median <Median >Median

Top_Performance_index -0.0476 -0.391*** 0.431*** 0.166*** -0.542*** 0.0338

(-1.13) (-6.03) -7.91 -2.79 (-4.54) -0.63

_cons -2.542*** -2.593*** -2.844*** -2.682*** -2.717*** -2.761***

(-98.68) (-118.78) (-83.33) (-114.13) (-92.64) (-112.28)

Observations 55115 69524 48243 62039 49233 75702

Panel B (1) (2) (3) (4) (5) (6)

US US EU EU ASIA ASIA

<Median >Median <Median >Median <Median >Median

Poor_Performance_index 0.140*** 0.0371 0.0952* 0.0523 -0.258*** -0.204***

-2.72 -0.37 -1.84 -1.31 (-2.83) (-3.13)

_cons -2.909*** -3.216*** -2.753*** -2.707*** -2.951*** -2.795***

(-61.73) (-43.61) (-53.29) (-65.53) (-46.04) (-61.00)

Observations 55115 69524 48243 62039 49233 75702

Probability That Analyst Moves to Top  Brokerage House

Probability That Analyst Downgrades to a Lower-Status  Brokerage House

General Experience

Table 9 presents regression results (Eq. 10) assessing the impact of past performance on analysts' career outcomes. 

The analysis is structured into two panels: Panel A evaluates the probability of an analyst moving to a top brokerage 

house, while Panel B examines the likelihood of downgrading to a lower-status brokerage house. Each panel is 

divided by region and general experience (GEXP) above or below the median. Key variables include 

Top_Performance_index, a dummy set to 1 if the analyst’s past performance is in the top 20%, and 

Poor_Performance_index, a dummy set to 1 for the bottom 20%. Statistical significance is denoted by ***, **, and 

* for 1%, 5%, and 10% levels, respectively. 



Chapter 2: The Influence of Financial Analyst Characteristics on Forecast Accuracy: A Comparative Analysis 

Across Global Banking Markets 

 101 

and forecast boldness, while controlling for forecast accuracy. We specifically explore how the 

combined effects of forecast accuracy and boldness may vary according to analysts’ experience 

levels. Our model specification builds on Eq. (10), incorporating a dummy variable 

(BOLDNESS_Top 20%) to capture analysts who rank in the top 20% of the boldness-score 

distribution in year t. This variable serves as an indicator of bold forecasting behavior38.  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [𝑈𝑝𝑔𝑟𝑎𝑑𝑒𝑖,𝑡+1  = 1] = 𝑃𝑟𝑜𝑏𝑖𝑡 (𝛼 + ß1𝐵𝑂𝐿𝐷𝑁𝐸𝑆𝑆_𝑇𝑜𝑝 20%𝑖,𝑡 +

ß2 𝑇𝑜𝑝_𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝑖𝑛𝑑𝑒𝑥𝑖,𝑡 +  𝜀𝑖,𝑡)  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [𝐷𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒𝑖,𝑡+1  = 1] = 𝑃𝑟𝑜𝑏𝑖𝑡 (𝛼 + ß1𝐵𝑂𝐿𝐷𝑁𝐸𝑆𝑆𝑇𝑜𝑝20%𝑖,𝑡 +

ß2 𝑃𝑜𝑜𝑟_𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝑖𝑛𝑑𝑒𝑥𝑖,𝑡 + 𝜀𝑖,𝑡)  

(11) 

This model allows us to analyze how both past performance and boldness influence career 

mobility, providing insights into the role of unconventional forecasting as a potential driver of 

career advancement or risk, particularly across varying levels of analyst experience. Table 2. 

10 examines how bold forecasts (top 20%) and top performance affect career mobility for 

analysts with varying experience levels across the U.S., European (EU), and Asian markets. In 

the U.S., bold forecasts by less experienced analysts correlate with a lower likelihood of 

advancement to top brokerage houses and a greater probability of downgrade if performance is 

poor. For experienced analysts, particularly those with robust bank-specific experience (general 

experience (GEXP) > median (~8 years) and bank-specific experience (BEXP) > mean (~5.1 

years)), boldness enhances the likelihood of moving to top firms (see Appendix C, Table C.2). 

For younger analysts, boldness and strong performance alone do not secure promotions, 

emphasizing the critical role of experience, especially within specialized sectors, for career 

growth. Essentially, high performance alone does not ensure advancement without sufficient 

experience (GEXP> mean (~9.2 years)), while poor performance significantly increases 

downgrade risk for less experienced analysts (see Appendix C, Table C.3).  

In Europe, strong past performance facilitates upward mobility to top brokerage houses, with 

bold forecasts significantly boosting promotion prospects for less experienced analysts (GEXP 

< median (~6 years)). Among lower-experience analysts, bold forecasts are associated with 

better chances of advancing to top firms, though their impact on avoiding downgrades is 

minimal. For more seasoned analysts, boldness slightly improves promotion prospects, mainly 

                                                      
38 For our job separation models, we use a cumulative boldness score by averaging each analyst's boldness scores 

over the current year 𝑡 and the prior three years, providing a more stable measure of boldness over time. Please 

see Section 2.3.3. 
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when coupled with substantial bank-specific experience (BEXP > mean (~4.3 years); see 

Appendix C, Table C.2). This regional variation highlights the need for further analysis into 

how boldness affects career trajectories for younger, career-driven European analysts. In Asia, 

bold forecasts positively impact career advancement across both less and more experienced 

analysts, with inexperienced analysts benefiting the most from bold moves (GEXP < median 

(~5 years)). Additionally, bold forecasts reduce the likelihood of downgrades for experienced 

analysts, suggesting that a combination of high experience and boldness provides resilience and 

career stability against potential setbacks. These findings underscore the complex interplay 

between boldness and experience in career mobility, with notable regional differences.  

 

 

Table 2. 10: Impact of Boldness on Career Advancement Across Regions 

Panel A (1) (2) (3) (4) (5) (6)

US US EU EU ASIA ASIA

<Median >Median <Median >Median <Median >Median

BOLDNESS_Top 20% -0.326*** 0.159* 0.245** 0.00409 0.742*** 0.162*

(-3.49) 1.83 2.35 0.05 5.71 1.81

Top_Performance_index -0.0569 -0.429*** 0.417*** 0.185*** -0.552*** 0.000255

(-1.29) (-6.12) 7.11 2.8 (-4.13) 0

_cons -2.456*** -2.618*** -2.902*** -2.656*** -2.931*** -2.773***

(-74.17) (-82.89) (-60.56) (-75.58) (-52.32) (-79.92)

Observations 49787 63137 40470 49341 40688 60571

Panel B (1) (2) (3) (4) (5) (6)

US US EU EU ASIA ASIA

<Median >Median <Median >Median <Median >Median

BOLDNESS_Top 20% 0.356*** -0.3 0.0679 0.271*** -0.0405 -0.324**

3.41 (-1.20) 0.62 3.29 (-0.27) (-2.33)

Poor_Performance_index 0.186*** 0.0815 0.000908 -0.0832* -0.308*** -0.136*

3.41 0.76 0.02 (-1.76) (-2.97) (-1.96)

_cons -2.909*** -3.216*** -2.719*** -2.605*** -2.951*** -2.795***

(-61.73) (-43.61) (-50.23) (-51.95) (-46.04) (-61.00)

Observations 49787 63137 40470 49341 40688 60571

Probability That Analyst Moves to Top  Brokerage House

Probability That Analyst Downgrades to a Lower-Status  Brokerage House

General Experience

Table 10 presents the regression results (Eq. 11), analyzing the impact of past boldness on the probability that 

an analyst experiences desirable or undesirable career outcomes, separated by experience levels and across 

different regions (US, EU, and ASIA). The analysis is structured into two panels: Panel A shows the probability 

of an analyst moving to a top brokerage house, while Panel B examines the likelihood of an analyst downgrading 

to a lower-status brokerage house. Each panel is further divided by region and by experience level (general 

experience (GEXP) above or below the median. The main variable of interest is the Top 20% Boldness: A 

dummy variable is set to one if the analyst Boldness rank is above 80% and set to zero otherwise.  Statistical 

significance is indicated by ***, **, and * for 1%, 5%, and 10% levels, respectively. 
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2.5.3.4. Career Mobility and Strategic Forecasting 

Analysts' forecasts are often shaped by brokerage firms' trading incentives, showing increased 

optimism, boldness, or broader coverage to boost trading volumes and client relationships, even 

at the risk of reduced accuracy (Lehmer et al., 2022; Ljungqvist et al., 2007; Michaely & 

Womack, 1999). This analysis explores how portfolio complexity and expanded coverage affect 

promotion prospects, particularly for career-focused analysts, highlighting how bold 

forecasting combined with broad coverage can strategically enhance career mobility. The probit 

model in Eq. (11) is extended to include subsamples for varying levels of portfolio size, 

complexity, and engagement. Table 2. 11 shows how expanded bank (NBAN) and country 

coverage (NCOU) amplify promotion probability for bold, career-motivated analysts, while 

Table 2. 11 examines the marginal effect of increased market activity, with all variables 

averaged over a three-year window.  In the European market, analysts with above-median bank 

or country coverage who issue bold forecasts experience a significantly higher likelihood of 

promotion to top brokerage firms, a trend reinforced by positive performance indicators. Active 

engagement in forecasting further enhances career mobility, as high engagement and broad 

coverage amplify the benefits of boldness. In contrast, analysts with smaller portfolios have 

reduced promotion prospects, highlighting the importance of extensive coverage and visibility 

for advancing in their careers. Unlike Europe, where boldness is rewarded with career mobility, 

both the U.S. and Asian markets show different dynamic. In Asia, bold forecasts significantly 

boost promotion prospects, particularly for analysts with moderate portfolio complexity. 

Analysts with below-median bank or country coverage benefit the most from boldness, while 

extensive country coverage diminishes its impact, indicating that boldness is more effective 

when paired with a focused portfolio. In the U.S., however, bold forecasts tend to reduce the 

likelihood of promotion to top brokerage houses, regardless of whether the analyst's bank 

coverage is below or above the median. This negative impact is stronger for analysts with higher 

coverage, suggesting that for less experienced analysts, boldness is not rewarded in the U.S. 

market and may even be penalized. 

These findings indicate that in the European market, less experienced analysts can 

strategically leverage bold forecasting, extensive portfolio coverage, and active engagement to 

enhance their career trajectories. However, bold forecasts are often associated with younger 

analysts, those with lower past performance, and analysts from smaller firms. These analysts 

tend to cover a broader range of banks and countries, using their diversified portfolios and 

regional expertise to stand out early in their careers. Notably, bold forecasts in Europe are linked 
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to higher forecast errors, highlighting a trade-off between visibility and accuracy. This trend 

aligns with theories on economic incentives and strategic forecasting, where bold, optimistic 

forecasts that drive trading volumes can lead to career advancement, particularly for early-

career analysts (Lehmer et al., 2022). This underscores the complex dynamics of boldness, 

accuracy, and economic motivations in shaping career progression within competitive financial 

markets. 

Table 2. 11: Boldness and Career Advancement by Portfolio Complexity 

Table 2. 12: Boldness and Career Advancement by Analyst Engagement 

 

 

 

 

 

 

 

Table 11 presents the regression results (Eq. 11), evaluating how past boldness influences career outcomes while accounting 

for portfolio size and complexity across the EU, US, and Asia. The analysis incorporates key portfolio characteristics, including 

the number of banks covered (DNBAN) and country coverage (DNCOU), to examine the interaction between bold forecasting 

and portfolio structure on career advancement. The results are further segmented by region and by whether the portfolio size 

and complexity variables (DNBAN and DNCOU) are above or below the median. All variables are calculated as cumulative 

averages over a three-year window. The primary variable of interest is the Top 20% Boldness, a dummy variable set to one if 

the analyst's boldness rank is above the 80th percentile and zero otherwise. Statistical significance is denoted by ***, **, and 
* for 1%, 5%, and 10% levels, respectively. 

 

(1) (2) (3) (4) (5) (6)

US US EU EU AS AS

<Median >Median <Median >Median <Median >Median

BOLDNESS_Top 20% 0.107 -0.451*** -0.166 0.384*** 0.829*** 0.161

-0.59 (-4.11) (-0.77) -3.12 -5.84 -0.52

Top_Performance_index 0.468*** -0.190*** 0.612*** 0.339*** -0.589*** -0.384

-4.41 (-3.59) -5.48 -4.78 (-3.93) (-1.27)

_cons -2.937*** -2.364*** -3.063*** -2.816*** -2.946*** -2.837***

(-31.57) (-66.03) (-32.33) (-48.77) (-47.09) (-23.91)

Observations 11977 37602 18024 22200 33868 6788

Probability That Analyst Moves to Top  Brokerage House

Active Analyst

Table 2.12 presents the regression results (Eq. 11), extending the analysis in Table 11 to evaluate the impact of 

analysts' activity and engagement levels on career outcomes, across EU, US, and Asia. The analysis incorporates 

the number of all forecasts and revisions issued by analysts in each period (NFALL) as a measure of activity, 

examining its interaction with boldness and portfolio characteristics on career advancement. The results are 

segmented by region and by whether NFALL, representing analyst activity levels, is above or below the median. 

All variables are calculated as cumulative averages over a three-year window. The primary variable of interest 

remains the Top 20% Boldness, a dummy variable set to one if the analyst's boldness rank is above the 80th 

percentile and zero otherwise. Statistical significance is denoted by ***, **, and * for 1%, 5%, and 10% levels, 
respectively. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

US US EU EU AS AS EU EU AS AS

<Median >Median <Median >Median <Median >Median <Median >Median <Median >Median

BOLDNESS_Top 20% -0.258** -0.525** -0.112 0.359*** 1.190*** 0.528*** -0.145 0.317*** 0.777*** -0.757

(-2.49) (-2.35) (-0.51) 2.74 -5.18 3.14 (-0.59) 2.65 5.86 (-0.97)

Top_Performance_index -0.215*** 0.631*** 0.506*** 0.429*** -0.136 0 0.605*** 0.345*** -0.551*** 0

(-4.03) 4.83 4.16 6.11 (-0.89) (.) 4.29 5.27 (-4.05) (.)

_cons -2.284*** -3.170*** -3.173*** -2.761*** -3.328*** -2.663*** -3.156*** -2.802*** -2.886*** -3.237***

(-61.22) (-28.91) (-31.67) (-47.86) (-27.59) (-41.23) (-28.41) (-51.58) (-50.18) (-14.35)

Observations 28451 19360 20541 19929 21478 12704 15141 25329 33705 5360

Coverage _ Bank Coverage _ Country

Probability That Analyst Moves to Top  Brokerage House
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2.6. Summary and Conclusion 

This study analyzes the influence of financial analyst characteristics and career motivations on 

forecast accuracy, boldness, and career trajectories across global regions, focusing on the 

banking sector. Utilizing the I/B/E/S Detail History Database, we uncover significant regional 

differences in the factors influencing forecast behavior and career outcomes, highlighting the 

complexity of financial analysis in a global context. US analysts exhibit lower forecast bias, 

longer tenure, and higher engagement levels than their European and Asian counterparts, 

reflecting a more dynamic and competitive environment. European analysts, though slightly 

more experienced than Asian analysts, show higher optimism and broader geographical 

coverage, whereas Asian analysts concentrate on more banks within a single country.  

We examine determinants of financial analysts' forecast accuracy, revealing that analyst 

experience, portfolio management, forecasting activity, and institutional resources significantly 

impact forecast accuracy globally. General experience reduces forecast error across the US, 

Europe, and Asia, with the US showing the most substantial improvement. Bank-specific 

experience is particularly impactful in the US and Asia. Larger brokerage houses are associated 

with lower forecast errors, especially in the US, due to better resources and support. However, 

this effect is weaker in Europe, indicating regional disparities. Frequent forecasts and revisions 

correlate with higher accuracy, underscoring the benefits of continuous market engagement. 

Interestingly, portfolio size enhances accuracy globally but increases errors in Europe due to 

complexity. This finding contradicts previous studies that linked extensive firm coverage with 

reduced accuracy, likely due to industry specialization. Higher geographical coverage 

consistently increases forecast errors across all regions, with Europe being the most affected. 

Our findings suggest that industry-specialized analysts with large portfolio sizes and limited 

geographical coverage produce more accurate forecasts. However, this presents challenges for 

European brokerage houses seeking an optimal research structure. We then explore the dynamics 

between boldness, ability, and career concerns. Our research reveals regional differences in 

forecasting behavior, showing how career concerns, boldness, and forecast accuracy interplay. 

In the US, bold forecasts are more accurate than herding forecasts. Analysts issuing bold 

forecasts typically have significant bank-specific experience, come from major brokerage 

houses, and have strong past performance. Career concerns drive less experienced analysts to 

herd, while experienced analysts make independent, bold forecasts. In Europe, bold forecasts 

are generally linked with higher forecast errors. Younger analysts, those with less favorable past 

performance, and those from smaller brokerage houses are more likely to issue bold forecasts. 
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Boldness here is closely tied to career concerns, with younger analysts taking risks to gain 

recognition, often compromising prediction accuracy. In Asia, bold forecasts are less accurate 

overall, though the negative impact is less pronounced for analysts from top brokerage houses 

and those with focused portfolio coverage who are the main issuers of bold forecasts in Asian 

markets. 

Furthermore, across global financial markets, the interplay between forecasting performance, 

and career progression reveals distinct regional dynamics that shape analysts' career paths. In 

the US market, Inexperienced analysts who make bold forecasts generally face challenges in 

moving to top-tier firms and are more likely to experience downgrades if they perform poorly. 

However, experienced analysts, particularly those with robust bank-specific expertise, see 

greater upward mobility when exhibiting boldness, suggesting that boldness combined with 

experience enhances career prospects in top firms. Essentially, high performance alone does 

not ensure advancement without sufficient experience, while poor performance significantly 

increases downgrade risk for less experienced analysts. In the European market, boldness 

emerges as a key factor for less experienced analysts, markedly enhancing their prospects for 

advancing to top-tier firms. This finding suggests that early in their careers, European analysts 

can strategically use bold forecasts, broad portfolio coverage, and active market engagement to 

advance professionally. Notably, while boldness and extensive coverage increase career 

mobility, this approach often comes at the expense of forecast accuracy. This trade-off 

underscores the influence of economic incentives and strategic forecasting behaviors, where 

bold, optimistic forecasts that drive trading volumes can serve as a powerful catalyst for career 

growth, especially for ambitious early-career analysts aiming to establish visibility and influence 

in competitive financial markets. In Asia, bold forecasts significantly enhance career 

advancement for both experienced and less experienced analysts, with a more pronounced 

impact on younger analysts. For seasoned analysts, boldness drives career progression and 

lowers the risk of downgrades, indicating that boldness, when combined with extensive 

experience, stabilizes career trajectories. Notably, the positive impact of boldness is strongest 

when analysts maintain a focused portfolio, highlighting the strategic advantage of concentrated 

expertise in amplifying the benefits of bold forecasts.   

Overall, bold forecasts represent a calculated risk that can yield career benefits under certain 

conditions. In the U.S., experience and strong past performance are prerequisites for leveraging 

boldness effectively, whereas in Europe, early-career analysts use boldness to stand out but must 

navigate its trade-offs with accuracy. Asia demonstrates a more consistent advantage of boldness 
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across experience levels, reflecting the regional interplay of market dynamics, institutional 

structures, and cultural acceptance of risk-taking.  

These findings underscore the nuanced and strategic dimensions of analysts' forecasting 

behaviors, revealing that career progression in financial analysis is influenced not only by 

traditional skills like forecast accuracy but also by calculated behaviors such as portfolio 

expansion, optimism, and boldness in predictions. These behaviors are strategically employed, 

particularly by early-career analysts, to heighten visibility and increase advancement prospects 

in competitive financial markets. However, such strategies often lead to trade-offs, as boldness 

and optimism can compromise forecast precision, especially in markets with different regulatory 

frameworks and economic incentives. By providing valuable insights for investors, financial 

institutions, and policymakers, this study aims to enhance the integrity and effectiveness of 

market discipline mechanisms, fostering greater trust and stability in the banking sector. 

Our findings collectively illustrate that while experience, firm resources, and specialization 

contribute to forecast accuracy, the influence of economic incentives—particularly those tied to 

trading volumes—significantly shapes analysts' forecast behavior. This strategic adjustment of 

forecasts suggests that analysts may prioritize their brokerage firm's business interests over the 

provision of unbiased and accurate information. 

2.6.1. Policy Implications and Recommendations 

The findings in this study underscore the need for comprehensive and harmonized regulations 

to improve transparency, integrity, and reliability in financial analysis, especially within the 

opaque banking sector. Current regulations across the U.S., Europe, and Asia show varied 

strengths and weaknesses: while the U.S. leads in addressing conflicts of interest through clear 

mandates (e.g., the Global Research Analyst Settlement and Reg BI), Europe focuses on 

transparency measures, such as unbundling research costs in MiFID II, but faces enforcement 

challenges due to market fragmentation. In Asia, flexible yet diverse regulations are often 

inconsistently applied, potentially weakening their effectiveness (see Appendix D). To address 

these regional disparities, further regulatory efforts should prioritize enhanced disclosure 

standards, regular independent audits, and mandatory reporting of analysts’ compensation and 

incentives. Emphasizing ongoing professional development and stringent oversight would help 

reinforce the quality of financial analysis, ensuring that conflicts of interest are minimized and 

the integrity of market information is upheld.  Strengthening these regulatory frameworks can 

enhance transparency, reliability, and integrity in financial analysis, reinforcing market 

discipline and contributing to economic stability and investor trust across key regions. 
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Appendix II 

 

 
 

Appendix A:  

Financial Analyst Compensation Package in Global Markets:  

Financial analyst compensation varies significantly by region and firm size. In the U.S., salaries 

typically range from $60,000 to $120,000, with top firms offering up to $150,000. Bonuses 

generally add 10% to 50% of the base salary, particularly in major financial hubs like New York. 

In Europe, analysts earn between €50,000 and €90,000, with higher pay in London. Bonuses are 

also 10% to 50%, though the European Union imposes stricter regulations on bonuses, especially 

in the financial sector. Analysts in cities like Frankfurt and Paris earn competitive salaries, albeit 

slightly lower than in London. In Asia, compensation is more variable. Hong Kong and Singapore 

offer salaries ranging from €47,000 to €100,000, while Japan and China have lower ranges. India 

is at the lower end of the spectrum. Bonuses across Asia typically range from 10% to 40% of the 

base salary, with the highest bonuses in Hong Kong and Singapore. Large brokerage firms generally 

offer higher pay, with U.S. base salaries from $70,000 to $90,000 and bonuses up to 100%. These 

firms provide extensive benefits and greater career growth opportunities. In contrast, smaller firms 

offer lower salaries, typically $50,000 to $70,000 in the U.S., with more modest bonuses, although 

they may offer faster career progression with broader responsibilities.  
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Appendix B:  

Details On the dataset 

Table B.1 Variable definition 

 

 

 

 

 

 

Variable Description

Experience

GEXP General Experience: Cumulative years through t in which analyst i has issued forecasts.

CEXP Country-Specific Experience:  Cumulative years through t that analyst i has forecasted for a specific bank.

REXP Region-Specific Experience: Cumulative years through t that analyst i has issued forecasts for a particular country.

BEXP Bank-Specific Experience: Cumulative years through t that analyst i has issued forecasts for a particular region.

NBAN
This represents the number of banks for which the analyst has supplied at least one forecast during the current year. It indicates portfolio 

complexity.

NCOU
This number reflects the number of countries for which analysts have supplied at least one forecast during the current year; it provides 

insight into their specialization in particular countries.

NREG
Indicates the number of regions for which the analyst has supplied at least one forecast during the current year. It reflects the geographic 

diversification of their portfolio.

NFB The number of forecasts/revisions that the analyst supplied for each bank during the current year.

NFCOU The number of forecasts/revisions that the analyst supplied for each country during the current year.

NFREG The number of forecasts/revisions that the analyst supplied for each region during the current year.

NFAll The number of the total forecasts/revisions that the analyst supplied during the current year. 

FORD Forecast order for each analyst during the period. This variable captures the chronological order of analysts' forecasts and revisions

FAGE Forecast age (in days) represents the number of days between fiscal year-end and forecast date for company j in the year t. 

BOLD
The measure of an analyst's boldness is the deviation from the consensus forecast. The absolute value of the difference between Fi,j,t 

and F-i,j,t ,If the analyst’s current forecast is greater than (less than) the consensus forecast.

BOLDNESS(Score)

Analyst Boldness score: For each bank in each year, rank all the analysts covering a bank by how much they deviate from the consensus 

forecast of that year (the boldest analyst receives the first rank, the second-boldest, the second rank, etc.). From these rankings,  a 

boldness score for each analyst for each bank is made.

BOLDNESS_Top 20% A dummy variable is set to one if the analyst Boldness rank is above 80% and set to zero otherwise. 

BrokerSize Brokerage size is defined as the number of analysts working for the I/B/E/S brokerage firm that analyst i is associated with in year Y.

BrokerSize_INT Brokerage houses are ranked yearly according to the number of analysts employed. Small, medium, and large brokers get 1, 2, and 3.

BIG5
A dummy variable is set to one if the analyst is employed by a firm ranked in the top 5% during the current year and set to zero 

otherwise. 
BrokerChange A number of times analyst has moved to another broker house during his job as an analyst.

D_BrokerChange_Year A dummy variable is set to one if the analyst has changed the broker in the last 365 days.

D_Upgrade
D_BrokerSize_Change: This dummy variable equals one in case of Upgrade to higher status brokerage house, -1 in case of downgrade, 

and 0 if there is no change.

D_Upgrade_BIG5
D_BrokerSize_Change: Dummy variable equals one in case of Upgrade to top 5 brokers, -1 in case of downgrade, and 0 if there is no 

change.

Past_Per
The aggregated forecasting accuracy across all the banks an analyst covers: This represents the weighted average of the analyst’s prior 

period forecast accuracy from the first forecast, assigning higher weights for recent forecasts. 

Past_Per_SCORE
Soring and ranking all analysts based on their previous performance and scoring them; the best analyst receives the first rank, the second-

best analyst receives the second rank, and onward until the worst analyst receives the highest rank.

Top_Performance_index A dummy variable is set to one if the analyst's past performance rank is in the top 20% and set to zero otherwise. 

Poor_Performance_index A dummy variable should be set to one if the analyst's past performance rank is down 20% and set to zero otherwise. 

AFE
Absolute Forecast error represents the absolute spread between actual earnings per share for stock j and forecasted earnings per share in 

year t deflated by the actual earnings per share at the end of year t. 

PMAFE
IProportional Mean Forecast Accuracy. The ratio of the current year individual analyst’s forecast error for a particular firm divided by 

the mean current year forecast error of all analysts for the firm, minus one. 

Portfolio Complexity

Analysts Engagement 

Forecast Timing

Analyst Boldness

Brokerage House  and Career Movement

Analyst Forecast Error & Past Performance
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     Table B.2 I/B/E/S Dataset Summary Statistics                         Table B.3. Geographical distribution of the data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table B.4: Correlation Matrix Relative Forecast Error and Analyst Characteristics (Eq. 7) 

Region Nb. Forecasts Nb. Countries Nb. Banks Nb. Analysts Nb. Brokers

US 131,962         1 230 869 186

EU 117,212         15 90 2108 321

Asia 134,752         12 186 2518 343

CA 14,249           1 10 152 51

Total 398,175         29 516 5647 901

Region/Country Nb. Forecasts

131,962       

EU

United Kingdom 18,105         

Italy 13,083         

Spain 11,504         

Switzerland 10,775         

Sweden 10,317         

Norway 10,278         

Germany 9,453            

France 9,197            

Denmark 6,822            

Netherlands 5,184            

Finland 3,573            

Austria 3,081            

Ireland 2,634            

Belgium 2,480            

Portugal 726               

117,212      

Asia

India 28,737         

China 20,850         

South Korea 12,911         

Malaysia 11,611         

Thailand 10,338         

Japan 10,217         

Australia 8,378            

Indonesia 7,911            

Singapore 7,399            

Hong Kong 7,136            

Taiwan 6,100            

Philippines 3,164            

134,752       

14,249         CA

US

Nb. Forecasts represent the number of annual earnings forecasts made each 

year. Nb. Analysts denote the number of analysts who produced a forecast 

during fiscal year t. Nb. Brokers refer to the number of brokerage 

companies for which analysts work each year. Nb. Banks represent the 

number of banks included in the sample each year. Nb. Countries represent 

the number of countries included in the sample each year per region.  

Year TTL Forecasts Nb. Brokers/year Nb. Banks/year Nb. Analyst/year

2000 7,827              297 234 1,073                  

2001 9,744              296 240 1,033                  

2002 9,356              259 260 947                     

2003 11,215            272 278 982                     

2004 10,558            299 295 916                     

2005 12,630            313 322 978                     

2006 12,038            321 335 1,020                  

2007 13,719            325 354 1,045                  

2008 17,154            335 351 1,097                  

2009 18,976            379 377 1,217                  

2010 18,129            407 382 1,203                  

2011 22,294            398 400 1,280                  

2012 22,055            380 410 1,253                  

2013 21,030            373 421 1,166                  

2014 20,881            369 439 1,147                  

2015 21,856            363 448 1,181                  

2016 22,687            347 466 1,106                  

2017 21,964            339 485 1,058                  

2018 21,448            315 504 907                     

2019 21,458            303 513 835                     

2020 23,993            282 524 762                     

2021 20,537            280 529 726                     

2022 16,626            256 526 653                     

Total 398,175          901 516 5,647                  

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

PMAFE 1 1

DGEXP -0.029 1 -0.030 1

DCEXP -0.031 0.909 1 -0.025 0.808 1

DREXP -0.029 0.988 0.922 1 -0.028 0.988 0.818 1

DBEXP -0.027 0.673 0.750 0.682 1 -0.024 0.689 0.862 0.695 1

DNBAN -0.022 0.285 0.229 0.281 0.184 1 0.009 0.197 0.088 0.188 0.077 1

DNCOU 0.008 0.127 0.011 0.114 0.031 0.458 1 0.019 0.120 -0.031 0.114 -0.009 0.776 1

DNFB -0.055 0.197 0.227 0.198 0.356 0.184 0.078 1 -0.057 0.249 0.333 0.252 0.391 0.124 0.034 1

DNFAll -0.046 0.299 0.262 0.297 0.271 0.752 0.334 0.543 1 -0.033 0.313 0.249 0.308 0.246 0.704 0.508 0.565 1

DFORD -0.167 0.167 0.188 0.167 0.279 0.181 0.061 0.780 0.458 1 -0.144 0.213 0.273 0.214 0.308 0.121 0.032 0.809 0.474 1

DFAGE 0.245 -0.044 -0.042 -0.042 -0.027 -0.049 0.004 -0.125 -0.120 -0.498 1 0.220 -0.061 -0.056 -0.060 -0.019 0.002 0.034 -0.133 -0.090 -0.484 1

DBIG5 -0.021 0.073 0.019 0.063 0.059 0.060 0.136 0.150 0.153 0.126 -0.063 1 -0.017 0.108 0.026 0.100 0.025 0.136 0.182 0.123 0.200 0.105 -0.052 1

PMAFE 1 1

DGEXP -0.0337 1 -0.0315 1

DCEXP -0.0335 0.991 1 -0.0392 0.8964 1

DREXP -0.0335 0.991 1 1 -0.0313 0.9902 0.9095 1

DBEXP -0.0246 0.5953 0.5996 0.5996 1 -0.0359 0.7121 0.8002 0.7234 1

DNBAN -0.0305 0.2913 0.3006 0.3006 0.1962 1 -0.0346 0.3484 0.2712 0.3438 0.2519 1

DNCOU 0.0227 -0.0245 -0.0311 -0.031 0.0027 0.1041 1 0.0016 0.2459 0.0896 0.2305 0.0987 0.4785 1

DNFB -0.0261 0.0711 0.0683 0.0683 0.2531 0.1231 0.043 1 -0.0709 0.2632 0.2879 0.2605 0.4172 0.2846 0.1396 1

DNFAll -0.0316 0.225 0.2335 0.2335 0.2239 0.7662 0.0739 0.4497 1 -0.0669 0.3809 0.3258 0.3725 0.3467 0.7845 0.3958 0.6111 1

DFORD -0.1732 0.0633 0.0627 0.0627 0.19 0.1339 -0.0976 0.7363 0.3846 1 -0.1743 0.2247 0.2446 0.2219 0.3376 0.2677 0.1215 0.7861 0.5141 1

DFAGE 0.2398 0.0224 0.0238 0.0238 0.033 -0.014 0.1323 -0.0905 -0.0987 -0.5112 1 0.2688 -0.0816 -0.0845 -0.0787 -0.0709 -0.0952 -0.0414 -0.1239 -0.1443 -0.4822 1

DBIG5 -0.0233 -0.0791 -0.0852 -0.0853 0.0394 -0.0656 0.0972 0.1802 0.0785 0.14 -0.0501 1 -0.0225 0.1776 0.1077 0.1652 0.1084 0.1102 0.1384 0.1528 0.1854 0.1293 -0.0706 1

All data EU Sub-sample

US Sub-sample ASIA Sub-sample

Table B.4 presents the correlation matrix for the differenced variables in the regression model Eq. (7). PMAFE = difference 

between the absolute forecast error for analyst i for firm j at time t and the mean absolute forecast error for firm j at time t 

scaled by the mean absolute forecast error for firm j at time t.  
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Table B.5: Spearman Rank Correlation among the regression variables (Eq. 9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C:  

Furthered Analysis:  

 

 

 

Table C.1: The Link Between Boldness and Top Brokerage House.  

 

 

 

 

Table C.1 presents the regression analysis exploring the relationship between boldness and the likelihood of an 

analyst being associated with a top brokerage house. The dependent variable is the likelihood of being associated 

with a top brokerage house, with boldness being a key independent variable.  Statistical significance is indicated 

by ***, **, and * for 1%, 5%, and 10% levels, respectively. 

Dependent Variable

(1) (2) (3) (4) (5) (6) (7) (8)

All US EU ASIA All US EU ASIA

BOLDNESS_Top 20% -0.00349 0.0356*** -0.0663*** 0.0183** -0.00206 0.0348*** -0.0642*** 0.0182**

(-0.73) -4.36 (-7.85) -2.25 (-0.43) -4.25 (-7.60) -2.24

BEXP 0.0160*** 0.0189*** 0.00138 0.0269***

-27 -20.12 -1.27 -24.51

Top_Performance_index -0.0382*** -0.126*** -0.0859*** 0.131*** -0.0412*** -0.173*** -0.0580*** 0.131***

(-7.72) (-16.37) (-7.93) -15.27 (-8.31) (-22.33) (-5.33) -15.26

REXP 0.00559*** -0.0183*** 0.0181*** 0.0338***

-12.53 (-26.35) -22.05 -37.52

DNBAN 0.00225*** -0.00446*** 0.0490*** 0.000945 0.00256*** 0.00397*** 0.0440*** -0.00480***

-6.09 (-7.92) -43.82 -1.22 -6.56 -6.67 -38.64 (-5.98)

_cons -0.413*** -0.372*** -0.621*** -0.427*** -0.387*** -0.207*** -0.709*** -0.479***

(-91.52) (-41.27) (-68.34) (-53.74) (-85.43) (-22.70) (-76.64) (-59.00)

Observations 29775 29775 29775 28559 28559 28559 44809 44809

Link between Top Brokerage House and Boldenss

1 2 3 4 5 6 1 2 3 4 5 6

REXP 1 1

BEXP 0.7213* 1 0.7453* 1

BOLDNESS 0.0274* 1 -0.0081* 1

BOLDNESS_TOP20% 0.0128* 0.7549* 1 -0.0079* 0.7762* 1

BIG5 0.0435* 0.0529* 0.0043* 1 0.1084* 0.0363* -0.0219* 1

Past_Per_Score 0.2447* 0.2130* -0.0124* 0.0074* 1 0.2292* 0.2282* -0.0200* -0.0126* 0.0199* 1

REXP 1 1

BEXP 0.6565* 1 0.7511* 1

BOLDNESS 0.0149* 0.0572* 1 0.0096* 0.0231* 1

BOLDNESS_TOP20% 0.0158* 0.7503* 1 0.0127* 0.0178* 0.7395* 1

BIG5 -0.0524* 0.0554* 0.0150* 0.0122* 1 0.0980* 0.0771* 0.0073* 1

Past_Per_Score 0.0742* 0.0537* 0.0126* -0.0617* 1 0.3297* 0.3129* 0.0723* 1

All data EU Sub-sample

US Sub-sample ASIA Sub-sample

Table B.5 presents the Spearman rank correlation coefficients for the variables used in regression model 

Eq. (9) across different regions. This table provides insights into the relationships between boldness, 

measured by both BOLDNESS and BOLDNESS_TOP20%, and other analyst characteristics, such as 

experience, past performance, brokerage affiliation, and portfolio complexity.  
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Table C.2: Impact of Past Boldness and Performance on Career Outcomes by Bank-Specific Experience 

 

 

 

 

Table C.3: Impact of Past Boldness and Performance on Career Outcomes by General Experience  

 

 

Appendix D:  

Overview of Key Regulations Governing Financial Analysts and Brokerage Firms in 

Global Markets 

Given the vital role that financial analysts play in reducing information asymmetries and bolstering 

market discipline—especially within the opaque banking sector—robust regulation is essential to 

ensure transparency, mitigate conflicts of interest, and maintain market integrity. In the U.S., 

Europe, and Asia, financial analysts and brokerage firms operate under various regulations designed 

to achieve these goals. Key regulations include the Global Research Analyst Settlement in the U.S., 

Table C.2 extends the analysis of Table 10 (Eq. 11) by examining how past boldness and performance influence an 

analyst's likelihood of moving to a top brokerage house across the US, Europe, and Asia while accounting for varying 

experience levels. Each region is further categorized into three sub-groups based on whether the analyst's bank-

specific experience is above or below the median or above the mean, capturing strong bank-level expertise. The key 

independent variable, Top 20% Boldness, is a dummy set to 1 if the analyst’s boldness rank is above 80% and 0 

otherwise. Statistical significance is denoted by ***, **, and * for 1%, 5%, and 10% levels, respectively. 
 

Table C.3 extends the analysis of Table 10 (Eq. 11) by examining how past boldness and performance influence an 

analyst's probability of advancing to a top brokerage house across the US, Europe, and Asia. This analysis considers 

variations in general experience, with results categorized into two subgroups: analysts with experience levels above 

and below the mean within each region. The independent variable of interest, Top 20% Boldness, is a binary indicator 

equal to one if the analyst's boldness rank is in the top 20% and zero otherwise. Statistical significance is denoted by 

***, **, and * at the 1%, 5%, and 10% levels, respectively.  

(1) (2) (3) (4) (5) (6) (7) (8) (9)

<Median >Median >Mean(~5.1Y) <Median >Median >Mean(~4.3Y) <Median >Median >Mean(~3.9Y)

BOLDNESS_Top 20% -0.125* 0.138 0.387** 0.0762 0.177* 0.111 0.644*** -0.0598 0.00786

(-1.75) 0.97 2.4 0.89 1.72 0.96 6.21 (-0.57) 0.07

Top_Performance_index -0.248*** -0.147* -0.223* 0.312*** 0.167** 0.225*** -0.252*** 0.111* 0.0209

(-6.35) (-1.72) (-1.89) 6.02 2.28 2.62 (-3.15) 1.87 0.29

_cons -2.351*** -2.970*** -3.123*** -2.730*** -2.796*** -2.822*** -2.892*** -2.769*** -2.788***

(-91.08) (-59.35) (-49.45) (-73.02) (-65.87) (-59.66) (-67.34) (-73.86) (-65.70)

Observations 62846 56971 48135 48220 47746 38937 55751 54219 44694

Bank-Specific Experience
US

Probability That Analyst Moves to Top  Brokerage House_ Bank-Specific Experience

EU ASIA

(1) (2) (3) (4) (5) (6)

US US EU EU ASIA ASIA

<Mean(~9.2Y) >Mean(~9.2Y) <Mean(~6.5Y) >Mean(~6.5Y) <Mean(~6Y) >Mean(~6Y)

BOLDNESS_Top 20% -0.175** -0.224 0.261*** 0.0213 0.550*** 0.0909

(-2.35) (-1.17) -2.67 -0.24 -4.58 -0.89

Top_Performance_index -0.247*** 0.254*** 0.372*** 0.199*** -0.111 0.00808

(-6.17) -2.94 -6.62 -3 (-1.53) -0.12

_cons -2.373*** -3.114*** -2.901*** -2.666*** -2.906*** -2.756***

(-89.67) (-46.67) (-64.76) (-74.85) (-62.26) (-73.75)

Observations 63527 50445 47260 48706 50251 52410

Probability That Analyst Moves to Top  Brokerage House_ Above the Mean General Experience

General-Experience
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MiFID II in Europe, and various local regulations in Asia. These regulations differ in scope, 

enforcement strength, and impact, reflecting the distinct market structures and regulatory 

philosophies of each region (see Appendix D, Table D.1). 

- Comprehensive Separation of Research and Investment Banking (Global Research 

Analyst Settlement, 2003): In the U.S., this regulation mandates a strict physical and 

operational separation between research and investment banking divisions within brokerage 

firms. This separation prevents investment banking activities from influencing the objectivity 

of analysts' recommendations, thereby addressing conflicts of interest at their root. In Europe, 

MiFID II, effective in 2018, enhances transparency and manages conflicts by unbundling 

research costs from trading fees, but it doesn’t mandate the same strict separation. Similarly, in 

Asia, while there are guidelines and directives addressing conflicts of interest, they often lack 

the stringent separation required in the U.S. This leaves more room for potential conflicts to 

influence analysts' work in both Europe and Asia. 

- Targeted Rules Addressing Conflicts of Interest (FINRA Rule 2241, 2015): FINRA Rule 

2241 in the U.S. provides detailed guidelines for managing conflicts of interest within brokerage 

firms. It prohibits analysts from being compensated based on specific investment banking 

activities they might influence. It also requires firms to disclose potential conflicts and ensures 

that research reports are not compromised by business pressures. While European regulations, 

such as MiFID II, address conflicts broadly, they lack the detailed, prescriptive measures seen 

in FINRA Rule 2241. Similarly, Asian regulations, though present, are generally less specific 

and enforceable. 

- Enforcement Strength and Accountability (Sarbanes-Oxley Act, 2002): The Sarbanes-

Oxley Act (SOX) in the U.S. enhances accountability through stringent internal controls and 

executive certifications of financial reports, promoting ethical behavior within firms. SOX 

indirectly influences analysts and research reports by enforcing a broader culture of compliance 

and integrity. While Europe and Asia have their own regulations, such as CRD IV and MAR in 

Europe, they do not match SOX's enforcement strength and direct impact on internal firm 

operations. 

- Investor-Centric Regulation (Regulation Best Interest, 2020): Reg BI in the U.S. requires 

broker-dealers to act in the best interest of retail customers, prioritizing client interests over the 

firm's financial incentives. This helps ensure that analysts' recommendations remain unbiased. 

While MiFID II in Europe also focuses on investor protection, it does not mandate a "best 

interest" standard as explicitly as Reg. BI. Asian regulations vary and generally do not enforce 

a client-first standard to the same extent. 
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The regulatory frameworks in the U.S., Europe, and Asia each have unique strengths and 

weaknesses shaped by their market structures and philosophies. The U.S. regulatory framework 

benefits from a long history of managing conflicts of interest, transparency, and investor protection. 

It combines broad transparency mandates (Regulation Fair Disclosure, 2000), structural separation 

(Global Research Analyst Settlement, 2003), detailed conflict management (FINRA Rule 2241, 

2015), and strong investor protection (Reg. BI, 2020) to create a robust and comprehensive system, 

albeit with higher compliance costs and complexity. Europe has strengthened investor protection 

and transparency with key regulations, including the separation of research and trading fees (MiFID 

II, 2018) and stringent disclosure rules (Market Abuse Regulation, 2016; ESMA Guidelines, 2013). 

However, its fragmented market structure challenges consistent enforcement. Asia’s regulatory 

approach, driven by flexibility and rapid development, includes key standards like Japan’s Financial 

Instruments and Exchange Act (2007) and Hong Kong’s Securities and Futures Ordinance (2003), 

which promote transparency and ethical conduct, though inconsistent enforcement across the region 

can undermine effectiveness. Understanding these differences is essential for developing effective 

global policies that enhance financial analysis transparency and reliability, particularly in the 

opaque banking sector. 

- Furthered Enforcements 

Given the strengths and weaknesses of existing regulations, further enforcement is crucial to 

enhance the reliability of financial analysis and mitigate conflicts of interest, particularly within the 

opaque banking sector. To strengthen market discipline, policies should mandate standardized 

disclosures of forecasting assumptions and conflicts of interest supported by rigorous regulatory 

oversight. This should be coupled with continuous professional development, certification 

programs, and the promotion of independent analysis to reduce biases. Additionally, regulations 

could require mandatory disclosure of analyst compensation and incentives, enforce the separation 

of research and trading activities, and mandate independent audits of research reports. These 

measures aim to improve transparency, reliability, and integrity in financial analysis across the U.S., 

Europe, and Asia, ultimately reinforcing the information environment, strengthening market 

discipline, and contributing to overall economic stability in the banking sector across these key 

regions. 
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Table D.1 Key Regulations Governing Financial Analysts and Brokerage Firms in Global Markets 

 

 

 

 

 

 

 

Regulation Purpose Date Started

Regulation Fair Disclosure (Reg FD) Prevents selective disclosure of material information, ensuring all investors have equal access. 2000

Sarbanes-Oxley Act (SOX)
Enhances the quality and reliability of corporate financial reporting, including for banks and brokerage firms, requiring stricter 

internal controls and independent audits.
2002

Global Research Analyst Settlement Requires separation of research and investment banking within brokerage firms, mandates independent research. 2003

FINRA Rule 2241
Mandates that brokerage firms manage conflicts of interest, separate research from investment banking, and disclose conflicts. No 

investment banking influence over the compensation of research analysts.
2015

Dodd-Frank Wall Street Reform and 

Consumer Protection Act

Imposes stricter regulations on financial institutions, including banks and brokerage firms, to improve transparency, accountability, 

and financial stability.
2010

Volcker Rule (Part of Dodd-Frank) Restricts proprietary trading by banks and brokerage firms, limits their involvement in hedge funds and private equity. 2013

SEC Regulation Best Interest (Reg BI) Requires broker-dealers to act in the best interest of retail customers, affecting how brokerage firms conduct business. 2020

Generally Accepted Accounting 

Principles (GAAP)

Provides a standardized set of accounting principles used by public companies, including banks, to ensure consistency, 

transparency, and accuracy in financial reporting.
Ongoing 

Markets in Financial Instruments 

Directive II (MiFID II)

Requires unbundling of research costs from trading fees, enhances transparency in financial analysis, and sets standards for 

conflict of interest disclosures. Impacts brokerage firms by separating research from trading activities.
2018

Market Abuse Regulation (MAR)
Includes measures to prevent market abuse, to ensure the integrity of EU financial markets, and to enhance investor protection and 

confidence in those markets.
2016

ESMA Guidelines
Provides guidelines for transparency and conflict of interest management in financial analysis.To improve investor protection and 

promote stable, orderly financial markets. 
2013

Capital Requirements Directive IV and 

Capital Requirements Regulation 

Sets stringent capital adequacy standards, risk management requirements, and disclosure obligations for financial institutions to 

ensure financial stability and transparency in their financial reporting. 
2013

Code of Conduct by EFFAS
Promotes integrity, transparency, and professionalism in financial analysis and reporting, indirectly affecting banks' reporting 

standards.
Widely followed

International Financial Reporting 

Standards (IFRS)

Mandates standardized financial reporting for banks and other companies, ensuring transparency, comparability, and accuracy in 

financial disclosures across Europe.
2005 (Ongoing)

Financial Instruments and Exchange Act 

(FIEA)

Aims to regulate securities markets and financial instruments to ensure investor protection and market transparency. It includes 

measures to prevent unfair trading practices, enforce corporate disclosure, and oversee financial intermediaries
2007

Securities and Futures Ordinance (SFO)
Ensures transparency and ethical conduct in financial analysis. Sets standards for financial disclosures by financial institutions and 

banks to prevent market abuse and maintain fair market practices.
2003

Securities and Futures Act (SFA)
Regulates brokerage firms and financial analysts, mandates ethical conduct and transparency, and enforces strict financial 

reporting standards for banks.
2001

Guidelines for the Conduct of Securities 

Analysts
Sets standards for brokerage firms, promoting transparency and ethical conduct in financial analysis. 2011

Pan-Asian Regulatory Cooperation
Harmonizes regulations across Asian markets, impacting how banks and financial institutions manage disclosures, transparency, 

and financial reporting.

Ongoing efforts, 

varies by country

China Accounting Standards (CAS)
Provides a set of accounting and financial reporting standards for companies, including banks, ensuring high-quality and consistent 

financial reports. CAS is converged with IFRS but tailored to China's specific needs.

2006 (ongoing 

updates)

Specific Financial Reporting 

Requirements by CSRC

Regulates financial reporting by banks and other companies in China, ensuring transparency, accuracy, and compliance with 

national standards.
Ongoing

International Financial Reporting 

Standards (IFRS)

Sets standardized financial reporting requirements for banks and financial institutions, ensuring transparency and comparability in 

financial disclosures across the region.

Adopted different 

times

Europe

Asia

USA
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Abstract 

This study introduces EFSGA, an evolutionary-based ensemble learning and feature selection 

technique inspired by the genetic algorithm, tailored as an optimized application-specific credit 

classifier for dynamic default prediction in FinTech lending. Our approach addresses existing 

gaps in metaheuristic applications for credit risk optimization by (i) hybridizing metaheuristics 

with machine learning to accommodate the dynamic nature of time-evolving systems and 

uncertainty, (ii) leveraging distributed and parallel computing for real-time solutions in 

complex risk decision processes, and (iii) enhancing applicability to unbalanced learning 

scenarios. The proposed model utilizes a heterogeneous ensemble of machine learning 

algorithms, incorporating a genetic algorithm to simultaneously optimize model 

hyperparameters and classification thresholds based on decision-maker objectives over time. 

This approach substantially improves out-of-sample model performance, providing valuable 

insights for timely post-loan risk management. The feature selection technique contributes to a 

balanced trade-off between model performance and interpretability—a pivotal consideration in 

metaheuristic-based models. Results obtained from the EFSGA model applied to a dataset 

spanning 2007 to 2014 unveiled an average improvement of 23% in application-specific 

evaluation metrics compared to conventional heterogeneous ensemble techniques across 

diverse risk-taking scenarios. Noteworthy is the proposed dynamic framework, featuring a 

tunable class-weighted fitness function, demonstrating significant superiority in delivering real-

time solutions adaptable to evolving decision processes. We validate the EFSGA classification 

model against established credit evaluation models.  

 

JEL classification : C61, C63, G32, E17, G11, G17 

Keywords: Decision-Making Optimization, Dynamic Risk Management, Ensemble Learning, 

Feature Selection Metaheuristic Optimization
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3.1.Introduction 

The rapid evolution of FinTech credit markets39 has significantly improved access to financing 

for households and small enterprises traditionally underserved by conventional banking systems. 

By leveraging digitization, these platforms have enhanced transparency, reduced costs, and 

streamlined financial processes (He Li, 2018; Frost et al., 2019). However, the accelerated 

growth and interconnectedness of these markets have raised concerns regarding information 

asymmetries and regulatory oversight (FSB, 2019; Abbasi et al., 2021). Despite the initial 

positive credit performance, empirical evidence points to an increasing risk of delinquency over 

time, underscoring the need for continuous monitoring and adaptive risk management strategies 

(Di Maggio & Yao, 2018; Chava et al., 2021). To mitigate these emerging risks, dynamic credit 

scoring algorithms are crucial for financial institutions (Dia et al., 2022; Granja et al., 2022). The 

importance of real-time early warning systems in FinTech credit markets, secondary trading, 

and loan resale markets cannot be overstated. Monitoring borrower behavior and intervening 

proactively during the repayment process has been shown to significantly reduce delinquencies 

and minimize financial losses (He Liu, 2018; Wang et al., 2018). However, the complexities of 

FinTech-driven peer-to-peer (P2P) lending, characterized by high-dimensional and imbalanced 

credit data, present significant challenges for traditional credit risk models and conventional 

machine learning algorithms, necessitating advanced statistical and optimization techniques for 

effective risk assessment (Zhou et al., 2019). Recent advancements in credit risk prediction have 

focused on three key areas: (i) hybridizing metaheuristics with heterogeneous ensemble machine 

learning classifiers, (ii) applying hybrid feature selection techniques to balance interpretability 

and performance, and (iii) developing methodologies to address imbalanced learning scenarios. 

Metaheuristic algorithms, particularly Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO), have emerged as powerful tools in computational finance, optimizing 

complex decision variables and improving the accuracy of credit-scoring models (Goldberg, D. 

E., 1989; Metawa et al., 2017; Doering et al., 2019; Pławiak et al., 2019). These algorithms are 

also widely used for feature selection in credit risk analysis (Hall, 1998; Wang et al., 2015; Feng 

et al., 2019), refining models by identifying key features, removing redundancies, and enhancing 

interpretability and accuracy (Lappas & Yannacopoulos, 2021; Lu et al., 2022). These methods 

                                                      
39 The term “FinTech credit” encompasses all credit activity facilitated by electronic platforms that connect borrowers 

directly with lenders. These entities are commonly referred to as “loan-based crowd funders”, “peer-to-peer (P2P) 

lenders “or “marketplace lenders”.  
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are frequently combined with individual machine learning models, neural networks, or ensemble 

approaches (Calvet et al., 2017; Pławiak et al., 2020), offering enhanced accuracy and reduced 

computational complexity40.  

Researchers have increasingly focused on advanced techniques to improve model 

performance in response to the challenges posed by high-dimensional and imbalanced datasets. 

Such datasets often exhibit a significant bias toward the minority class, requiring refined 

approaches. Acceptance threshold optimization, which adjusts decision thresholds to balance 

class representation, has proven effective in mitigating this bias. Genetic Algorithms (GA), in 

particular, excel at optimizing these thresholds in large search spaces with complex performance 

metrics (Kazemi et al., 2022). Furthermore, cost-sensitive learning plays a crucial role in 

addressing class imbalances by adjusting thresholds based on the unequal importance of 

different classes and mitigating the asymmetrical misclassification costs between default and 

non-default loans (Herasymovych et al., 2019; Junior et al., 2020; Tang et al., 2021; Das, 

Mullick, & Zelinka, 2022; Jiang et al., 2023; Khalili & Rastegar, 2023).  

Despite these advancements, the broader adoption of metaheuristics in credit risk assessment 

remains constrained by challenges related to model interpretability and handling imbalanced 

datasets (Dastile et al., 2020). Improving feature extraction methods to balance performance, 

computational efficiency, and interpretability is critical for the advancement of metaheuristic-

based models (Lopez & Maldonado, 2019; Liu et al., 2022c). Additionally, oversized feature 

sets often lead to overfitting, increased computational complexity, and reduced transparency41. 

To address these limitations, more robust methodologies are needed that can integrate dynamic 

risk factors into decision-making processes while handling imbalanced data classification 

effectively. Moreover, further exploration of multi-objective optimization strategies is required 

to simultaneously maximize predictive accuracy while adapting to evolving data environments 

and financial landscapes. Developing robust methodologies for dynamically adjusting 

acceptance thresholds in real time is essential to ensure that credit risk models remain adaptive 

and effective under volatile economic conditions. Addressing these significant gaps is crucial 

for enhancing credit risk predictions in complex and dynamic financial environments.  

                                                      
40 Heterogeneous ensemble machine learning classifiers have become increasingly popular for their superior 

performance in credit risk prediction and feature selection, as demonstrated in various studies (Jiang et al., 2018; 

Chen et al., 2020; Mahbobi et al., 2021; Lu et al., 2022; Liu et al., 2022a; Abdoli et al., 2023; Bai et al., 2022; Liu 

et al., 2022c; Zhang et al., 2023). 
41 Research shows that only 8% of studies focus on model transparency (Dastile et al., 2020), a critical gap given 

regulatory mandates like the Basel II Accord, which require credit scoring models to be interpretable and 

explainable. Thus, transparency is not just beneficial but essential for compliance. 
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Our study pioneers an innovative approach by leveraging metaheuristic-driven ensemble 

learning and feature selection techniques to advance risk management within the FinTech sector. 

We propose the EFSGA model—an Evolutionary-based Ensemble Learning and Feature 

Selection technique inspired by Genetic Algorithms. This approach offers a tailored, application-

specific credit risk optimization framework designed for dynamic default prediction and 

adaptable to imbalanced data environments, aligning with specific management objectives. The 

EFSGA model integrates a heterogeneous ensemble of machine learning algorithms and uses 

Genetic Algorithms to simultaneously optimize model hyperparameters and classification 

thresholds over time, enhancing both performance and decision-maker objectives.  

Our research introduces several key innovations to address gaps in the application of 

metaheuristics for credit risk optimization: (i) the hybridization of metaheuristic algorithms with 

machine learning techniques to better account for dynamic behaviors and uncertainty in time-

evolving systems, (ii) the integration of distributed and parallel computing paradigms to 

facilitate real-time decision-making in complex risk environments, (iii) the joint application of 

hybrid feature selection to balance performance, computational complexity, and interpretability, 

and (iv) the enhanced management of imbalanced learning scenarios through GA-based multi-

objective optimization, including dynamic adjustments to decision thresholds. To the best of our 

knowledge, this study is the first to apply metaheuristics to credit risk optimization using this 

comprehensive, multi-faceted approach, with a focus on four key areas: 

First, Simultaneous Optimization of Ensemble Learning and Feature Selection: Our model 

pioneers a unique approach by simultaneously optimizing ensemble learning and feature 

selection using Genetic Algorithms (GA). Unlike conventional methods, which typically 

require all ensemble classifiers to operate on the same feature set, our model selects distinct 

feature subsets tailored to each classifier. This optimization technique significantly enhances 

predictive accuracy and represents an advancement over traditional approaches that, to our 

knowledge, has not been previously explored in research.  

Second, Ensemble Feature Selection with Genetic Algorithm (EFSGA): Our study 

introduces a novel framework designed to tackle the persistent challenge of balancing 

performance and interpretability in metaheuristic-driven models. By simultaneously optimizing 

weights and feature subsets for each base learner, EFSGA enhances the understanding of 

variable importance, reduces redundancies, and refines the balance between accuracy and 

transparency, thus advancing metaheuristic applications for credit risk assessment.  It delivers 
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valuable implications for risk management and policy decisions by providing deeper insights 

into variables influencing borrower defaults. 

Third, Dynamic Optimized Decision Threshold for Imbalanced Data: Our EFSGA model 

addresses challenges posed by high-dimensional, imbalanced datasets through a multifaceted 

strategy. This includes dynamically adjusting the decision threshold using Genetic Algorithms 

(GA) to account for varying class importance and objectives. Additionally, it integrates a 

Genetic Class-Weighted, tunable Objective Function that incorporates distinct misclassification 

costs, enhancing its suitability for application-specific evaluation frameworks42. 

Fourth, Adaptive Framework for Evolving Decision-Maker Needs: Traditional risk 

assessment methods often face limitations in scenario modeling and accommodating diverse 

decision-making processes due to their reliance on fixed rules. Our adaptive framework 

addresses these challenges by offering a dynamic approach that aligns with evolving decision-

maker needs and credit risk assessment tasks. Central to this framework is a tunable multi-

objective fitness function, enabling customized, real-time risk assessments tailored to specific 

decision-maker objectives. 

Our research provides a nuanced and in-depth analysis of the performance characteristics of 

diverse machine learning models, from individual classifiers to both homogeneous and 

heterogeneous ensembles. Rather than focusing solely on minority class identification, we 

prioritize ensuring model robustness and consistency across a variety of risk scenarios, 

iterations, and imbalanced datasets, while adhering to computational efficiency. By leveraging 

real-world P2P lending datasets—well-known for their class imbalance—we employ a 

metaheuristic algorithm to optimally weigh machine learning classifiers within the ensemble 

system. This approach enables financial institutions to precisely balance risk mitigation with 

operational performance, ensuring effective credit risk management across various strategic 

priorities. 

The EFSGA model offers adaptable, real-time solutions for complex risk decision-making, 

significantly enhancing predictive accuracy and delivering actionable insights. By addressing 

the limitations of traditional methods, it presents a transformative approach to risk management, 

capable of adapting to dynamic borrower profiles and shifting macroeconomic conditions. This 

                                                      
42 Optimizing the decision threshold in credit default identification is pivotal in addressing the disproportionate 

cost of false negatives compared to false positives. Our method strategically emphasizes recall to reduce the 

incidence of defaults while ensuring specificity to preserve profitable lending opportunities. This balanced 

approach not only mitigates risk but also enhances profitability, providing a refined model that aligns risk 

management with revenue optimization for more effective credit decision-making. 
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framework enhances credit and post-lending risk management for FinTech firms, banks, and 

non-bank financial institutions, supporting key areas such as loan approval, portfolio 

management, regulatory compliance, and risk assessment. Additionally, the model benefits 

secondary trading and loan resale markets by enabling investors to hedge default risks and adapt 

to evolving market conditions, making it a versatile tool for diverse financial scenarios. 

Furthermore, the framework aligns with stringent regulatory requirements, offering transparent 

and explainable models critical for compliance with standards such as the Basel II Accord, 

ensuring that financial institutions can meet both operational and regulatory expectations. 

The paper is structured as follows: Sect. 3.2 presents the literature review. Section 3. 3 

outlines the Proposed EFSGA Model. Section 3.4 details the Empirical Evaluation. Section 3.5 

provides the Discussion and Conclusion, and Sect. 3.6 highlights Future Research Directions. 

3.2. Related Work 

Credit risk prediction has long been a focal point in the financial sector due to its critical role in 

managing loan portfolios and mitigating potential defaults. Extensive empirical research has 

explored various modeling techniques, including dynamic credit risk scoring, the integration of 

metaheuristics with machine learning, feature selection methodologies, and improved strategies 

for addressing imbalanced data. While substantial progress has been made, several key gaps 

remain, particularly in the adaptability, accuracy, and interpretability of credit risk models. The 

following sections review the most relevant work in the field, focusing on dynamic credit risk 

assessment, ensemble methods, metaheuristic algorithms, feature selection, and imbalanced 

learning. This review identifies existing limitations and highlights how our approach addresses 

these challenges. 

3.2.1.  Dynamic Credit Risk Assessment   

In credit risk management, two primary models—credit scoring and behavioral scoring—are 

traditionally employed to evaluate borrower creditworthiness and repayment potential. 

However, traditional behavioral models often fail to capture the evolving nature of borrower 

behavior throughout the loan lifecycle. These static classification approaches may overlook 

critical changes over time, limiting both predictive accuracy and effectiveness. Recent 

advancements in credit risk assessment have begun to address these limitations by incorporating 

dynamic behavioral data into predictive models. This shift involves the use of variables such as 
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repayment history and management interventions, which change over time. Techniques like 

neural networks, ensemble machine learning models, and continuous-time Markov chains have 

been particularly effective in capturing the temporal dynamics of borrower behavior, 

significantly enhancing default risk prediction. For example, Lessmann et al. (2015) underscore 

the importance of continuously monitoring borrower behavior with machine learning techniques 

to dynamically adapt credit scoring models. Similarly, Li et al. (2020) propose an ensemble 

approach that integrates real-time borrower data, improving prediction accuracy in response to 

changing economic conditions. Chen et al. (2021) also explore continuous-time Markov chains 

to model the transition probabilities of borrower states, providing deeper insights into credit risk 

dynamics. Despite these advances, challenges remain in dynamic credit risk assessment. Issues 

such as data availability and quality, the complexity of modeling dynamic behaviors, and the 

need to account for macroeconomic conditions and management interventions persist (Foo et 

al., 2017; Dastile et al., 2020; Li et al., 2020). Overcoming these challenges is essential to further 

improving the predictive power and generalizability of dynamic credit risk models. 

3.2.2.  Ensemble of Classifiers in Credit Risk Research Area 

Ensemble methods have become a dominant approach in credit risk prediction due to their 

superior performance over traditional models. Numerous studies (Jiang et al., 2018; Chen et al., 

2020; Cao et al., 2021; Mahbobi et al., 2021; Lu et al., 2022; Liu et al., 2022a; Abdoli et al., 

2023; Bai et al., 2022; Liu et al., 2022c; Zhang et al., 2023) demonstrate the effectiveness of 

ensemble techniques in improving credit risk assessment and feature selection. Malekipirbazari 

and Aksakalli (2015) showed that a random forest-based model outperformed traditional FICO 

scores in predicting trustworthy borrowers on the Lending Club platform, emphasizing the 

importance of credit history variables. Kim and Cho (2019) found that an ensemble semi-

supervised learning model surpassed the decision tree and support vector machine models for 

default prediction. Further advancements have included the use of Gradient Boosting Decision 

Trees (GBDT) and Auto-Encoder in multi-stage ensembles (Chen et al., 2019) and the 

development of heterogeneous ensemble models for credit scoring, such as the model proposed 

by Li et al. (2020). Innovations like Xia et al.'s (2020) tree-based ensemble method and Liu et 

al.'s (2022a) AugBoost-RFS and AugBoost-RFU have further reinforced ensemble methods’ 

ability to improve accuracy, particularly in handling imbalanced datasets. Research also 

highlights the importance of data preprocessing, feature selection, and addressing class 

imbalance to enhance both model performance and interpretability (Galar et al., 2012; Xiao et 

al., 2016; Wang et al., 2018). Overall, ensemble techniques present a robust solution to credit 
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risk modeling, effectively tackling key issues like feature selection and class imbalance in 

financial datasets. 

3.2.3.  Metaheuristic Algorithms in Credit Risk Assessment and Feature Selection 

3.2.3.1.  Hybrid Approaches with Metaheuristic Algorithms 

In recent years, metaheuristic algorithms have garnered significant attention in credit risk 

assessment due to their ability to handle complex and dynamic datasets. Among these, Genetic 

Algorithms (GAs), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) 

have emerged as effective tools for improving both the accuracy and efficiency of credit-scoring 

models. These algorithms have been widely employed in hybrid models, often combined with 

machine learning techniques such as neural networks or ensemble methods. Specifically, GAs 

have been instrumental in optimizing parameters and enhancing the performance of credit 

scoring models across various contexts. Several key studies exemplify the application of 

metaheuristic algorithms in credit risk assessment. Tran et al. (2016) developed a hybrid model 

integrating Genetic Programming (GP) and Deep Learning (DL), leveraging GAs to optimize 

neural network architectures. This approach not only improved the model’s predictive accuracy 

but also demonstrated the synergy between evolutionary computation and deep learning in 

handling complex credit datasets. Similarly, Ye et al. (2018) applied GAs to optimize Random 

Forest models for Peer-to-Peer (P2P) lending platforms, improving the prediction of loan 

profitability and refining loan decision-making processes.  Moreover, Pławiak et al. (2019) 

introduced DGHNL, a deep genetic hierarchical network for credit scoring, which combined the 

strengths of hierarchical learning with genetic algorithm optimization. This model demonstrated 

superior accuracy compared to traditional deep learning architectures. Soui et al. (2019) further 

explored the integration of multi-objective evolutionary algorithms in rule-based credit risk 

models, which enhanced both accuracy and interpretability by optimizing rule extraction and 

minimizing complexity. These studies collectively highlight the advancements in the application 

of metaheuristic-driven models for credit risk assessment. However, challenges remain in 

balancing performance and interpretability, particularly when dealing with complex, high-

dimensional datasets. This gap underscores the need for further research into hybrid approaches 

that integrate metaheuristic optimization with modern machine learning techniques. 

3.2.3.2. Feature Selection Using Metaheuristic Algorithms 

Feature selection has become a central focus in risk management studies, particularly in 

identifying key factors influencing credit risk. While model accuracy remains a primary concern, 
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interpretability poses significant challenges in machine learning, deep learning, and ensemble 

models (Lopez & Maldonado, 2019; Liu et al., 2022c). Efforts to improve interpretability 

through approaches like LogR (Dumitrescu et al., 2022) or model-agnostic methods such as 

LIME and SHAP (Bücker et al., 2022) often face challenges, including high computational costs 

and stability issues (Aas et al., 2021; Slack et al., 2020). Metaheuristic algorithms, including 

genetic algorithms (GA), particle swarm optimization (PSO), and simulated annealing, are 

gaining prominence in feature selection for credit risk assessment. These techniques offer more 

robust solutions compared to traditional methods by effectively identifying influential features 

(Wang et al., 2015; Feng et al., 2019). For instance, Šušteršic et al. (2009) introduced a hybrid 

model combining Principal Component Analysis and GAs with neural networks, enhancing 

feature selection. Similarly, Oreski et al. (2014) developed the Hybrid Genetic Algorithm Neural 

Network (HGA-NN) to optimize feature subsets for improving classification accuracy. Recent 

advancements include the use of multi-objective GAs in feature selection, as demonstrated by 

Deniz et al. (2017), who achieved superior performance over conventional methods like PSO 

and Greedy algorithms. Hancer et al. (2018) combined differential evolution with information 

theory to improve feature ranking, while Taradeh et al. (2019) proposed an evolutionary 

algorithm for more efficient feature selection. Additionally, Lappas and Yannacopoulos (2021) 

incorporated expert knowledge with GA-based feature selection, improving accuracy in 

unbalanced credit datasets. Lu et al. (2022) further expanded the field by integrating the binary 

opposite whale optimization algorithm (BOWOA) with the Kolmogorov–Smirnov (KS) statistic 

for feature selection in credit risk. Other studies have successfully integrated feature selection 

algorithms with ensemble classifiers to enhance predictive performance (Tripathi et al., 2019; 

Nalić et al., 2020). These studies underscore the growing importance of metaheuristic-driven 

feature selection in credit risk, addressing complex data challenges while balancing 

interpretability and model accuracy. 

3.2.4. Imbalanced Learning and Threshold Optimization Techniques  

Imbalanced learning is a persistent challenge in credit risk and default prediction, where datasets 

often display a significant skew toward one class, such as non-default loans outnumbering 

defaults. Researchers have developed various techniques to improve model performance under 

these conditions. A common approach is threshold optimization, which fine-tunes the decision 

boundary to balance sensitivity (identifying defaults) and specificity (correctly identifying non-

defaults). Genetic Algorithms (GAs) have proven effective in this domain by iteratively 

adjusting thresholds based on performance metrics (Kazemi et al., 2022). Cost-sensitive learning 
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is another critical method, assigning different costs to misclassifications based on their real-

world consequences. For example, false positives (approving risky loans) and false negatives 

(rejecting safe loans) carry different risks. By prioritizing the minority class, cost-sensitive 

approaches provide a balanced representation of classes (Junior et al., 2020; Tang et al., 2021). 

In addition, recent studies propose dynamic selection techniques that adapt to varying data 

characteristics in real time. Junior et al. (2020) introduced dynamic local region selection for 

imbalanced credit scoring, and Tang et al. (2021) applied a cost-sensitive kernel method with 

the Blinex loss function to adjust misclassification costs dynamically. Das, Mullick, and Zelinka 

(2022) reviewed advancements in handling class-imbalanced datasets, emphasizing the 

importance of these strategies for improving model reliability in real-world scenarios. Khalili 

and Rastegar (2023) further developed a hybrid metric that integrates traditional and cost-

sensitive considerations, enhancing model accuracy while minimizing the financial impact of 

misclassifications. Kazemi et al. (2022) also demonstrated the efficacy of GAs in optimizing 

decision thresholds for credit-scoring applications. Their method improved model performance 

by dynamically adjusting thresholds, which helped balance false positives and negatives, thus 

enhancing the discriminatory power of credit scoring models. 

3.2.5.  Our Motivation  

While the application of metaheuristics in credit risk assessment has demonstrated significant 

promise, several critical limitations remain unaddressed in the existing literature. Specifically, 

the following gaps persist (a) the effective hybridization of metaheuristic algorithms with 

machine learning techniques to better account for the dynamic behaviors of financial systems 

and inherent uncertainties, (b) the need for improved feature extraction and selection techniques 

that balance model performance, computational complexity, and interpretability, (c) the 

development of flexible frameworks that enable real-time risk decision-making in complex and 

evolving scenarios, and (d) more robust solutions for handling imbalanced data, including 

dynamic threshold optimization and the incorporation of broader economic factors into 

predictive models.  To address these limitations, our study introduces a novel hybrid model that 

combines the strengths of evolutionary algorithms with ensemble learning techniques. By 

integrating Genetic Algorithms (GAs) for dynamic threshold optimization and feature selection, 

our approach enhances the adaptability, accuracy, and interpretability of credit risk models. 

Furthermore, we propose a flexible, real-time decision-making framework that accounts for 

management objectives and changing risk factors, improving the generalizability of credit risk 

assessments across diverse economic conditions. Through these innovations, our research aims 
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to advance the field of credit risk modeling and provide more effective solutions for financial 

institutions facing complex, dynamic credit risk environments. 

3.3. Proposed EFSGA Model 

Generally, in pattern recognition systems, an optimal feature subset is chosen from a set of 

original features to maximize system performance. Indeed, the system eliminates unnecessary 

and redundant features that may be represented as continuous or discrete binary variables. 

Hence, the selected feature set constitutes the “features vector” (Ansari et al., 2017). Each 

machine learning classifier has advantages and disadvantages in classifying samples into 

different classes based on a distribution of data samples in an N-dimensional feature space. 

Therefore, an ensemble of heterogeneous classifiers may result in better performance. 

Moreover, each classifier can achieve the best accuracy via a specific feature subset. In other 

words, the optimal feature subset for a classifier may differ from another classifier. Therefore, 

the feature selection procedure is also a classifier-dependent problem. Fig.1 illustrates the 

simplified flow diagram representing the " Data, Methodology, and Output " structure of the 

proposed combined evolutionary-based ensemble learning and ensemble feature selection 

technique for early credit risk warning systems in P2P lending. The proposed EFSGA utilizes a 

hybrid ensemble learning and feature selection technique based on GA. This optimized 

application-specific loan classifier compromises an ensemble of heterogeneous machine 

learning structures as base learners. The GA is employed to simultaneously optimize the weights 

and feature subsets for each base learner within the ensemble model. Additionally, the GA 

optimizes the classification decision threshold to address the misclassification challenge 

associated with imbalanced datasets with varying class importance, particularly for the minority 

class (the default class in this study).  

3.3.1. Ensemble Learning and Feature Selection 

The optimization process of the EFSGA model is facilitated through the collective learning 

system within the proposed ensemble model. Our study utilizes a parallel, heterogeneous 

ensemble learning algorithm to enhance performance and reduce overfitting. Therefore, using 

GA enhances result interpretability and improves system performance by individually selecting 

the most compelling features for each classifier. The feature selection process eliminates 
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redundant and unnecessary features, leading to a simplified model that maximizes system 

accuracy.  

Fig. 3.1. The simplified flow diagram representing the " Data, Methodology, and Output " structure of the proposed 

EFSGA model. 

 

3.3.1.1. Heterogeneous Ensemble Model 

Our Heterogeneous Ensemble Model integrates high-performing machine learning algorithms 

through a rigorous performance evaluation process. This evaluation encompasses individual 

models as well as homogeneous and heterogeneous ensembles, with a specific focus on 

identifying minority classes. To ensure robustness, stability, and consistency, we assess model 

performance across multiple iterations, varied risk modeling scenarios, and imbalanced data 

distributions while adhering to computational constraints. The evaluation leverages real-world 

P2P lending datasets, known for their imbalanced nature, across two critical prediction periods: 

the loan application stage and the post-loan repayment period. A Genetic Algorithm (GA) is 

employed to optimize key parameters, including algorithm weights (ranging from 0 to 1), feature 

subsets, and classification thresholds for each classifier to enhance the ensemble's overall 
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ensemble model, where values closer to 1 signify a higher impact on the model's predictions, 

and values closer to 0 indicate a more limited role. This adaptive weighting system enables the 

model to effectively balance the contributions of individual algorithms, prioritizing those that 

perform consistently well while down-weighting less effective ones. By ranking classifiers based 

on weighted averages across multiple genetic iterations, the GA provides critical insights into 

their consistency and effectiveness across diverse risk scenarios. The initial selection of 

algorithms for integration into the ensemble model was driven by their demonstrated ability to 

address data imbalance challenges. Prior research highlights substantial differences in the 

performance, strengths, and limitations of various machine learning algorithms for identifying 

default instances. While some models excel in predicting minority classes, their applicability 

in broader or imbalanced contexts remains under scrutiny, especially given the computational 

demands of certain algorithms43. In response, our approach strategically balances the selection 

of initial ensemble models by incorporating a diverse set of individual algorithms—both linear 

(e.g., Linear Discriminant Analysis, Naïve Bayesian) and non-linear (e.g., K-Nearest Neighbors, 

Adaptive Neuro-Fuzzy Inference System)—along with homogeneous ensemble models (e.g., 

Random Forest, AdaBoost, LogitBoost, Random Subspace). This comprehensive strategy 

harnesses the diverse strengths of each model, reduces computational complexity, and enhances 

overall predictive performance (Altman, 1992; Jang et al., 1991; Winterfeldt et al., 1986; Detlof 

et al.,1986; Breiman, 2001; Ernst & Wehenkel, 2006; Freund et al., 1999; Friedman et al., 2000). 

These algorithms were tested on real-world, imbalanced P2P lending datasets across two key 

stages: loan application and post-loan repayment. The development of the ensemble learning 

model followed a systematic selection process based on three core criteria: (i) classification 

performance, particularly in identifying minority classes, aligning with our main objectives (ii) 

consistency and stability across different data imbalance ratios and risk scenarios, and (iii) 

computational efficiency, achieved through hyperparameter tuning to ensure optimal resource 

use. 

 

                                                      
43 Linear models like Logistic Regression (LR) and Support Vector Machines (SVMs) with linear kernels are widely used for 

their simplicity, ease of implementation, and good classification accuracy in balanced datasets. They work well when the 

relationship between predictors and the target is linear, making them fast and reliable. In contrast, non-linear models such as 

Decision Trees, k-Nearest Neighbors (KNN), and SVMs with non-linear kernels excel in handling imbalanced datasets, where 

minority class instances are fewer but crucial, as they capture complex relationships better than linear models. However, 

ensemble methods like Boosting (e.g., AdaBoost, XGBoost) and Bagging (e.g., Random Forest) outperform both linear and non-

linear models for predicting minority classes. These methods reduce bias and variance by combining multiple models, improving 

accuracy in imbalanced datasets despite higher computational costs (Kim & Cho, 2019; Liu et al., 2022a; Malekipirbazari & 

Aksakalli, 2015; Chen et al., 2019; Xia et al., 2020). This underscores the trade-offs between model complexity, efficiency, and 

performance, with ensemble methods consistently offering superior results for minority class predictions. 
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3.3.1.2. Ensemble Feature Selection  

Furthermore, to enhance the interpretability of the results, build a simpler model, maximize 

system performance, and eliminate unnecessary and redundant features, we have developed the 

ensemble feature selection and feature importance analysis technique using a genetic algorithm. 

The proposed ensemble feature selection analysis technique aims to determine each feature 

subset's predictive power and significance as significant predictors of default. It selects the most 

efficient features for each classifier separately (as the optimal feature subset for a classifier may 

differ from another classifier due to their different classification algorithms). It performs 

weighted optimization of collective learning coefficients for all heterogeneous machine learning 

classifiers accordingly.  

The output of the proposed EFSGA system for ith input sample is expressed as a weighted 

average of the outputs of M different classifiers, represented as follows: 
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where wk is the weight of the kth classifier in the proposed ensemble learning model, SFk is the 

selected features for the kth classifier, and Outi
k is the output of the kth classifier for the ith input 

sample.44  

Moreover, in a binary classification problem, the output of a model is a probability score 

indicating the likelihood of the instance belonging to the positive class. The decision threshold 

separates the positive and negative classes based on the model's probability scores. Typically, a 

threshold of 0.5 is used. However, in imbalanced data, since the probability distribution tends to 

be biased toward the minority class, the default classification threshold of 0.5 may not be the 

best choice. The choice of threshold depends on the problem and the importance of false 

positives and false negatives. We employ a Genetic Algorithm (GA) to optimize the threshold, 

which mimics natural selection to find the most suitable value. The GA is a powerful approach 

to finding an optimal threshold value, especially when the search space is large or the 

relationship between the threshold and performance is complex. The GA generates a population 

                                                      
44 We utilized ten individual machine learning algorithms and homogeneous ensemble methods to construct our 

collective heterogeneous ensemble learning model (M = 10). Furthermore, our loan dataset comprises 47 features, 

encompassing loan characteristics, borrower demographics and financial records, as well as macroeconomic 

characteristics (N = 47) 
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of thresholds, evaluates their performance, selects the best ones, and creates new populations. 

This systematic approach using a GA provides a powerful tool for improving the performance 

of machine learning models.  

Solution.T = T,  T∈[0,1]                                                                                                  
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Where T is the optimized threshold by genetic algorithm, and Label (i) is a final decided class 

(Default, Non-default) for each ith input sample. Further details are provided in Appendix A.  

3.3.2. Optimization of EFSGA Model 

3.3.2.1.  Problem Representation  

A genetic algorithm (GA) is an efficient optimization procedure. The mechanisms of biological 

evolution inspire the basic principle of the GA. GA uses a set of genetic-inspired operators to 

evolve an initial population of solutions into a new population. Each population comprises 

chromosomes representing genetically encoded solutions to a specific problem. Each individual 

has a fitness score _ based on the GA fitness function_ assigned to them, which represents their 

ability in terms of a solution. A new population is evolved by using operators of crossover, 

mutation, and selection, where selection is based on the individual’s fitness and influences the 

ability to reproduce into the next generation (Mitchell,1996; Michalewicz,1996; Šušteršic et al., 

2009; Kozeny, 2015). The process begins with producing a random population of chromosomes 

(Feasible Solution). For many optimization problems, GA does not operate directly on the 

solutions for the problems. Instead, they make use of problem-specific representations of the 

solutions. The genetic operators modify the representation, which is then transformed into a 

solution using a decoding procedure. More specifically, each chromosome can be represented 

as a hybrid structure containing an integer vector W of length 1*M (weights of M Machine 

learning classifiers of the heterogeneous ensemble learning) and a binary matrix F of dimension 

M*N (each raw represents the feature selection for each classifier from N original features). In 

reference to Eq. (1), if the j attribute is present in class i, the i, j derivative in a binary matrix is 

equal to "1", and if the j attribute for class i is eliminated in the corresponding solution, the 
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derivative i, j is equal to "0". Also, the weight coefficients of different classes are expressed 

according to Eq. (4).  

                   

   Solution. W:  

   Heterogeneous Regressors 
w1      w2 w3 … WM 

 

 f11 f12 f13 … f1N 

 f21 f22 f23 … f2N 

Solution. F : f31 f32 f33 … f3N 

Heterogonous Feature extraction   : : : … : 

 FC1 FC2 FC3 … FMN 

        

   

 

Fig. 3.2. Representation of a feasible solution (chromosome encoding) for optimizing the EFSGA model. 

 

 

 (4)                                                                                                                                                                                    
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if j feature is selected for k classifier
f

otherwise
                                                                   

(5) 

In each iteration of the GA, there are two general steps. The first is to evaluate the 

competence of the solutions produced, and the second is to update the population (generate a 

new population). These two consecutive steps are performed repeatedly until the termination 

criterion is satisfied. The final condition in this study is to determine the number of repetitions 

of the algorithm.  

3.3.2.2. Proposed Fitness Function 

This paper introduces a class-weighted, multi-objective function (ObjF) in the GA framework 

as a tunable, application-specific evaluation metric for optimizing the EFSGA model. To 

enhance interpretability, our initial evaluation applies weighted aggregation of precision, 

accuracy, and recall rates within the genetic objective function. The objective function (ObjF) 

is defined as the minimization of the weighted sum of the overall error (1 - Accuracy), 

imprecision (1 - Precision), and missed predictions (1 - Recall): 

Solution.W( ) [0,1]; 1,2,...,   kk w k M

                            Solution. T:   

                            Optimized Decision Threshold                             
    T 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗𝐹 =  𝑤𝑐𝑓1 × (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + 𝑤𝑐𝑓2 × (1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑤𝑐𝑓3 ×

(1 − 𝑅𝑒𝑐𝑎𝑙𝑙)                           
(6) 

where wcf1, wcf2, and wcf3 are constant weights that regulate the influence of each metric, 

ensuring the sum equals 1. Further details are provided in Section 3. 4.2. 

We use K-fold cross-validation to compute the fitness function, averaging accuracy, 

precision, and recall across folds for evaluation. Our model prioritizes minimizing the false 

negative rate to mitigate financial loss from defaulted loans, even with a minor trade-off in 

overall accuracy. Additionally, we aim to sustain an optimal true negative rate (specificity) to 

preserve potential revenue from performing loans. Our model's design reflects this dual 

objective—minimizing defaults while maximizing profit. Recognizing the limitations of single-

metric evaluations in imbalanced datasets, which can bias results toward minority classes, our 

approach incorporates a suite of performance measures, including the Fß-Score, for a more 

comprehensive evaluation. 

The optimization process is tailored to accommodate varying risk strategies through a 

customizable genetic cost function that reflects management objectives (e.g., risk tolerance, 

trade-offs between risk and profit). By adjusting the weights in the GA cost function, the model 

adapts to diverse risk preferences. Our approach prioritizes recall and the F2-Score, particularly 

in scenarios requiring high recall while maintaining sufficient accuracy and precision for 

practical decision-making. The model's optimization balances objectives such as maximizing 

recall with minimal precision loss, balancing recall with modest accuracy and precision trade-

offs, and achieving optimal performance across all metrics. These objectives shape the 

weightings in the GA’s cost function, enabling the model to strike a balance between 

minimizing defaults and maximizing profits, ensuring its flexibility across different risk 

management contexts. 

3.3.2.3. GA Optimization Process  

The Genetic Algorithm (GA) begins by generating a randomly initialized population. This 

initial stage is followed by an iterative cycle of two key processes: fitness evaluation and 

population updating, which continue until the predefined number of iterations is reached. In 

each iteration, the fitness of the current population is evaluated, and a subset of high-performing 

chromosomes is selected as parents for the next generation. These selected parents undergo a 

crossover operation to produce offspring, ensuring genetic diversity and enabling the 

exploration of new solutions within the search space. Following the creation of the offspring, a 
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mutation operator is applied to introduce random alterations to certain genes, which helps 

prevent premature convergence and fosters a broader exploration of the solution space. The 

optimization process is guided by the objective of improving model performance at each 

iteration, ensuring the population evolves toward optimal solutions. The overall structure of the 

proposed hybrid GA-based optimization algorithm is illustrated in Fig. 5, which outlines the 

following key steps: 

Generating a Random Initial Population:  Population initialization marks the first step in the 

GA process. The population represents a subset of solutions in the current generation, with each 

solution encoded as a chromosome. The initial population P (0), or the first generation, is 

generated randomly. Each chromosome is represented as a binary matrix and a quantitative 

vector, expressed as a vector of length M X N + MT.  The M X N portion corresponds to the 

feature selection phase, while MT represents the collective learning segment. Each gene within 

a chromosome has an equal probability of being "0" or "1," ensuring randomness in the initial 

population. 

Assessing the competence of the proposed solutions: Following the population update, the 

solutions are evaluated based on a fitness score. This score guides the evolutionary process. If 

necessary, the weights of the error components in the objective function (ObjF) are tuned to 

improve optimization. The fitness evaluation plays a crucial role in determining the quality of 

each chromosome. 

Population update: The GA iteratively generates new populations by applying genetic 

operators to the current population. The population update consists of three stages: 

recombination, crossover, and mutation. The proportions of the new generation produced using 

these three operators are defined as PRecombination, PCrossover, and PMutation, respectively. 

In this study, these values are set to 0.1, 0.5, and 0.4. This balanced approach facilitates 

exploration while preserving optimal genetic material. 

Parent selection: Parent selection is critical to the GA's convergence rate, as it determines 

which chromosomes will combine to form offspring for the next generation. Following the 

research by Li Zhan et al. (2021), we utilize the Roulette Wheel selection method, which has 

shown superior optimization capabilities. In this approach, the probability of selecting a 

chromosome is proportional to its fitness, as determined by the objective function (ObjF). The 

Roulette Wheel selection with power two is applied in this study to ensure effective parent 

selection. 
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Combination Operator (Crossover): The crossover operator combines the genetic material 

from two selected parents to produce a new generation (offspring).  In this study, we use the 

Uniform Crossover method, where genes from the offspring are randomly selected from either 

parent with a probability of PCrossover. For example, in Fig. 3, specific genes (second, fourth, 

sixth, and ninth) are inherited from the first parent, while the remaining genes come from the 

second parent. This process ensures diversity and enhances the search for optimal solutions. 

 

 

 

 

 

     

 Fig.3.3 Population updating in GA: Uniform Crossover Operator. 

 

Mutation operator: The mutation operator introduces random variations to the offspring’s 

genes to prevent premature convergence. In this study, we apply Binary Swap mutation for the 

feature selection structure (FS) and Evolution Strategies (ES) for the other components. The 

mutation operator alters genes with a probability Pm (Mutation probability ), ensuring that new 

genetic material is explored. In the Binary Swap mutation, two randomly selected genes are 

interchanged to maintain diversity, as illustrated in Fig. 4. This process allows the algorithm to 

explore a wider range of potential solutions while preserving essential features of the parents.  

 

 

 

 

 

 

 

 

Fig. 3.4: Population updating in GA: Binary Swap Mutation Operator. 

Parent 1 1 0 1 1 0 0 1 0 1 0 

Parent 2 0 0 1 0 1 0 1 1 1 0 

           

Child 0 0 1 1 1 0 1 1 1 0 

Before Mutation Operation     1 0 1 1 0 0 1 0 1 0 

After Mutation Operation 1 0 1 1 1 0 1 0 1 0 
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Fig. 3.5 Flowchart of the proposed hybrid method for Ensemble Feature Selection using the genetic algorithm. 

 

3.4. Empirical Evaluation of Proposed Method 

All experiments reported in this section have been executed in MATLAB R2018b on a PC with 

a 1.80 GHz Intel® Core™ i5-8250U CPU and 12 GB of RAM using the Windows 10 operating 

system.   

3.4.1. Data Collection 

3.4.1.1. P2P Lending Dataset 

The dataset for this study was sourced from "Lending Club," a leading P2P lending platform in 

the US, in November 2019. It includes both defaulted and non-defaulted loans issued between 

Q3 2007 and the end of 201845. After excluding non-funded loans, the dataset contains 622,682 

observations, with 24% representing defaults and 76% non-defaults. The raw data is divided 

into four feature groups, comprising 128 attributes relevant to loan applications: Group 1 

includes borrower financial characteristics (76 attributes), Group 2 encompasses loan attributes 

                                                      
45 https://www.lendingclub.com/info/statistics.action .Since 2019, Lending Club has modified its download policies and data 

accessibility, now exclusively offering data on accepted loans while removing information on rejected loans. Additionally, a 

new copyright notice has been introduced. It's important to note that data collection is currently restricted to US residents. 
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(18 attributes), Group 3 captures post-loan performance (34 attributes), and Group 4 

incorporates macroeconomic indicators. Each feature group contributes essential data for 

evaluating borrower credit risk and predicting default probability (Appendix B provides 

detailed feature descriptions).  

Additionally, to ensure the robustness and generalizability of our findings, we performed a 

robustness test using data from Mintos, a European marketplace lending platform. This analysis 

covers loans issued across the US and various EU countries, incorporating recent economic 

disruptions, such as the COVID-19 pandemic and the Russia-Ukraine war, thus providing a 

broader perspective on the study's implications. 

3.4.1.2. General Economy data collection 

This study examines the real-time influence of macroeconomic factors on borrower risk 

behavior, particularly during periods of financial crisis and market instability. Departing from 

prior P2P lending research, which primarily focused on individual factors like interest rates or 

default probabilities, we aim to establish a direct connection between default risk and broader 

economic conditions (Foo et al., 2017). Our analysis incorporates six key macroeconomic 

indicators: the unemployment rate, stock market performance (total shares), consumer price 

index (CPI), household debt, GDP growth, and the TED spread. These variables provide a 

comprehensive view of economic health and its relationship to credit risk. The data on Treasury 

yields and general economic indicators were retrieved from the FRED database of the Federal 

Reserve Bank of St. Louis. 

3.4.2. Simulation Settings  

The implementation of the EFSGA model’s assessment involves multiple stages: (i) data pre-

processing, (ii) adjustments to the real-time prediction framework, (iii) configuring data 

sampling for training, validation, and testing using techniques like FCM, K-Fold Cross-

validation, and PCA, and (iv) hyperparameter tuning of EFSGA through the Genetic Algorithm 

(GA). 

3.4.2.1. Data Pre-processing  

The first stage in the process is data pre-processing, which includes instance selection, missing 

value imputation, data transformation, feature normalization, outlier detection, and data 

randomization. These steps ensure that the data is properly formatted for model training and 

evaluation. Detailed information on the pre-processing procedures is provided in Appendix C. 
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3.4.2.2. Real-Time Prediction Framework  

The next phase involves generating a real-time loan default prediction framework. The model 

is designed to operate at two prediction points: at the loan application stage and during post-

loan repayment before maturity. The model uses Feature Groups 1, 2, and 4 for loan 

applications, while post-loan predictions utilize all Feature Groups. The system dynamically 

updates borrower information, such as repayment history and total paid amounts, to capture 

delayed payments and their durations. The framework tracks each borrower's progress every 

three months, refining the prediction based on updated macroeconomic factors and allowing 

for a real-time, adaptive risk prediction during the loan settlement period. 

3.4.2.3. Representative Data Selection and Training  

A key component of the EFSGA implementation is the selection of representative data for 

training, validation, and testing. We employ the Fuzzy C-Means (FCM) algorithm, configured 

with specific parameters (e.g., an exponent for the membership matrix of 1.2, a maximum of 

50 iterations, and a minimum improvement of 1e-5). To ensure generalizability, we employ a 

10-fold cross-validation approach. Initially, the dataset is divided into training and test sets, 

comprising 60% and 40% of the data, respectively. The training set is then partitioned into 10 

equal-sized folds, with the model trained on 9 folds and validated on the remaining fold during 

each iteration. This iterative process ensures the model is exposed to diverse data subsets, 

improving robustness and reducing the risk of overfitting. As a result, this method enhances the 

model's ability to generalize effectively to new, unseen data.  

Additionally, we apply Principal Component Analysis (PCA) to reduce data dimensionality 

while retaining 95% of the explained variance (Li et al., 2023). PCA is performed separately 

on the training, validation, and test sets to prevent information leakage and maintain model 

integrity. By eliminating noise and irrelevant features, PCA enhances model efficiency and 

improves predictive accuracy, making it particularly valuable in optimizing credit risk 

assessment models. 

3.4.2.4. GA Simulation Settings   

In optimizing the EFSGA model, several GA parameters were fine-tuned to achieve optimal 

performance. After experimenting with various parameter values, the best results were selected 

based on the objective function (ObjF) performance in the final simulations. The specific 

parameters for the EFSGA algorithm are outlined in Table 3. 1. For instance, the next-

generation chromosomes were produced using PRecombination, PCrossover, and PMutation 

values of 0.1, 0.5, and 0.4, respectively. The population size and maximum iterations were set 
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to 50 and 200. These configurations allowed us to refine the model’s ability to predict default 

probability over time while improving generalization to new datasets. Notably, the EFSGA can 

be customized based on specific application needs by adjusting the weights assigned to 

objectives in the multi-objective function (Eq. 6). We conducted multiple simulations across 

different settings for wcf1, wcf2, wcf3 and varied data imbalances to evaluate model consistency. 

Results are based on the average outcome over ten iterations.  

After completing data pre-processing, system tuning, and parameter optimization, the full 

implementation involved two main steps: first, we developed a collective learning system 

integrating heterogeneous machine learning classifiers; second, we fine-tuned the ensemble 

learning approach using a metaheuristic algorithm. This process enhanced performance, 

enabling an effective real-time early credit risk warning system. 

Table 3. 1. Setting the controllable parameters of GA. 

 

 

 

 

 

 

 

 

 

3.4.3. Performance Comparison of Individual and Homogenous Ensemble Algorithms 

To construct our ensemble learning model from the best-performing individual and homogenous 

ensemble algorithms, in this stage, we evaluated the classification performance of several 

diverse individual linear non-linear machine learning algorithms (KNN, LDA, NB, ANFIS, 

SVM, MLP & DT) and homogenous ensemble models (RF, AdaBoost, LogitBoost, TotalBoost, 

and Random Subspace) on real datasets of P2P lending with imbalanced data, in two prediction 

periods including the loan application point and the post-loan repayment period. The spot-check 

criteria include evaluating (i) overall classification performance focusing on identifying the 

minority class, aligning with our main objectives, (ii) the consistency and stability of their 

performance across different data imbalance ratios and different risk modeling scenarios, and 

Parameter Value 

Maximum Iteration 200 

Population 50 

Selection Method Roulette Wheel 

Crossover Operator Uniform 

PRecombination % 10% 

PCrossover % 50% 

PMutuation % 40% 

Mutation Operator Binary Swap & Value 

Pm 0.02 

Wcf1 0.25 

Wcf2 0.15 

Wcf3 0.60 
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(iii) computational complexity using hyperparameter tuning with a limited need for 

computational resources. Our principal objective is to achieve the lowest false negative rate 

while maintaining the true negative rate and system accuracy at optimized levels. We prioritize 

selecting algorithms that yield the highest recall and Fß-Score (ß=2) without sacrificing accuracy 

and precision rates. Refer to Appendix D for a detailed presentation of our crucial evaluation 

metrics. The summarized out-of-sample results are shown in Table 3. 2. 

3.4.3.1. Individual Linear Models  

Linear algorithms, such as LDA and NB, are extremely fast and simple to implement, with an 

average computation time of just 3.48 seconds. These models provide good overall 

classification performance, delivering an average accuracy of 84.62% and precision of 96.48%. 

However, despite their speed and accuracy, linear models struggle to effectively capture 

minority class instances, as indicated by their lower average recall of 70.25% and F2-Score of 

74.29%. This reflects a trade-off between computational efficiency and their ability to handle 

imbalanced datasets, particularly in identifying the minority class, where recall and F2-Score 

are critical. Linear models are useful for quick and efficient classification tasks, but they are 

less effective in scenarios requiring high recall, such as those dealing with imbalanced data. 

Their high precision is offset by the reduced ability to detect minority class instances, making 

them less suitable for tasks where identifying minority class events is crucial. 

3.4.3.2. Individual Non-Linear Models 

Regarding computational efficiency, KNN, ANFIS, and DT significantly outperform SVM and 

MLP. The average computation time for KNN, ANFIS, and DT is 56 seconds, while SVM (both 

Polynomial and Linear Kernels) and MLP require much more time, with an average of 2,311 

seconds. SVM models, particularly SVM Polynomial and Linear, are the slowest due to the 

complexity of kernel operations. MLP also demands considerable time, primarily because its 

computational complexity depends on the depth and size of the neural network layers. When 

optimizing KNN, increasing the value of k generally improves accuracy, precision, and 

specificity by reducing noise in the classification. However, larger values of k led to less distinct 

boundaries between classes, reducing the recall rate. KNN tends to be biased towards the 

majority class, especially with smaller k values (e.g., k=1) because of its majority voting 

mechanism. Decision Trees (DT), while showing the highest recall rates, deliver relatively 

lower accuracy than other models. The trade-off here is between capturing more true positives 

at the expense of overall prediction accuracy. 
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Across all non-linear algorithms—KNN, ANFIS, SVM, MLP, and DT—the average 

accuracy and precision rates are 82.75% and 89.2%, respectively. These non-linear models also 

demonstrate superior performance in handling imbalanced classes, with an average recall of 

74.2% and an F2-Score of 76.56%, outperforming linear models in recall and F2-Score. This 

suggests that non-linear models are well-suited for addressing class imbalances. 

3.4.3.3. Homogenous Ensemble Algorithms  

Homogeneous ensemble algorithms, including boosting and bagging, demonstrated superior 

overall performance compared to individual models (both linear and non-linear). The average 

accuracy for boosting, bagging, and individual models was 85.23%, 85.22%, and 83.02%, 

respectively. In terms of precision, bagging performed the best with 95.92%, followed by 

boosting at 90.68% and individual models at 90.24%. Boosting methods, however, excelled in 

the more critical metrics for imbalanced datasets—recall and F2-Score. Boosting achieved an 

average recall of 77.14% and an F2-Score of 79.36%, surpassing bagging (recall: 71.91%, F2-

Score: 75.7%) and individual models (recall: 71.63%, F2-Score: 76.24%). This makes boosting 

particularly effective in addressing the challenge of identifying minority classes in highly 

imbalanced datasets. Among bagging methods, Random Forest (RF) improved precision over 

individual decision trees, making it highly effective at identifying borrowers with strong credit 

profiles (Breiman et al., 1996). However, RF struggled to detect the minority class, resulting in 

a lower recall rate. This limitation arises because RF, like other bagging methods, treats all 

samples equally during classification, which diminishes its ability to focus on minority class 

instances. In contrast, boosting algorithms like AdaBoost and LogitBoost consistently 

outperformed RF and other bagging techniques in minority class detection. Boosting assigns 

higher weights to minority class samples during each iteration, increasing the sensitivity of the 

model towards those harder-to-detect instances. As a result, these algorithms achieved better 

recall and F2-Scores than bagging techniques, making them ideal for imbalanced datasets. 

TotalBoost, which initially demonstrated the highest recall rate among boosting algorithms, 

was excluded due to its prohibitively high computational cost. AdaBoost and LogitBoost 

performed similarly, with AdaBoost minimizing exponential loss and LogitBoost focusing on 

logistic loss. Both are particularly effective in improving minority class prediction when paired 

with tree-based weak learners, which perform well in imbalanced classification tasks. 

In summary, boosting algorithms, particularly AdaBoost and LogitBoost, consistently 

outperformed both individual models and bagging techniques in predicting minority class 

instances. Their superior recall and F2-Score metrics demonstrate their effectiveness in 
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handling imbalanced datasets, making them more suitable for applications where identifying 

the minority class is critical (Liu et al., 2022a). 

3.4.3.4. Analysis of Algorithm Performance On Varied Imbalanced Ratios 

This analysis reveals notable variations in algorithm performance on imbalanced datasets. 

While some algorithms show promise, their superiority is not necessarily universal or consistent 

across all imbalance scenarios. To investigate this further, datasets were intentionally balanced, 

starting with an initial 25%-75% imbalance ratio, followed by simulations at a more severe 

15%-85% ratio. The focus remained on evaluating the classification performance of these 

algorithms in identifying default cases, prioritizing recall as the key metric. 

The outcomes of these simulations are presented in Table 3. 3 and Table 3. 4 As the 

imbalance ratio became more severe, new insights emerged regarding algorithm performance. 

Boosting algorithms maintained their maintained superiority, except for TotalBoost. 

Interestingly, Random Forest's (RF) ranking in terms of recall decreased as the imbalance ratio 

increased, highlighting its struggle to adapt to more extreme data imbalances. In contrast, 

Decision Trees (DT) continued to excel in recall but showed a drop in precision. MLP and 

ANFIS performed consistently well across different imbalance ratios, while SVMs displayed 

mixed results. Notably, RBF-SVM showed relative stability. KNN, while achieving a 

comparatively high precision score, suffered from a lower recall, demonstrating its weakness 

in classifying risky loans under severe imbalanced conditions (Liu et al., 2022a). This analysis 

highlights different algorithms' diverse strengths and weaknesses across varying imbalanced 

scenarios. The performance of each model fluctuated based on the severity of the data 

imbalance, reinforcing the need for targeted algorithm selection based on specific classification 

objectives. 
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Table 3. 2. An Empirical Comparison of Individual and Homogenous Ensemble Algorithms_ Post–Loan 

Repayment Period46 

 

Table 3. 3. Analysis of Algorithm Performance in Varied Imbalanced Ratios 

 

Table 3. 4. Analysis of Algorithm Rankings in Varied Imbalanced Ratios 

3.4.4. Results of the Heterogeneous Ensemble Model  

Following the comprehensive evaluation of individual models and homogeneous ensembles in 

earlier stages, the Heterogeneous Ensemble Model was constructed by integrating the top-

                                                      
46 Table E.1. in Appendix E shows the performance of each individual and homogenous classifier in the loan 

allocation period. 

Imbalanced 

Ratio
Rank LDA NB NN KNN ANFIS SVM-L SVM-RBF SVM-P MLP DT RF LogitBoostTotal BoostAdaBoostM1

Recall 12 13 5 9 8 14 11 1 7 3 9 6 2 4

F2-Score 12 14 5 9 8 13 11 6 7 3 10 4 1 2

Recall 12 11 3 8 7 13 10 14 6 2 9 5 1 4

F2-Score 9 11 12 7 4 10 6 14 3 13 5 1 8 2

25%-75%

15%-85%

Algorithms

Imbalanced 

Ratio
Metrics LDA NB NN KNN ANFIS SVM-L SVM-RBF SVM-P MLP DT RF LogitBoostTotal BoostAdaBoostM1

Gen. ObjF 0.216 0.228 0.210 0.214 0.211 0.220 0.210 0.233 0.205 0.209 0.212 0.192 0.192 0.184

Recall 70.31 70.19 77.37 72.57 73.78 69.51 71.67 82.12 74.68 79.55 71.91 76.31 81.28 77.98

F2-Score 74.65 73.94 78.25 75.89 76.65 74.02 75.70 78.02 77.46 79.05 75.70 78.90 80.77 79.83

Gen. ObjF 0.206 0.232 0.250 0.220 0.218 0.204 0.207 0.500 0.200 0.252 0.209 0.201 0.228 0.214

Recall 68.99 69.62 77.22 73.51 74.46 68.63 70.78 60.05 75.85 79.30 71.60 75.90 79.93 75.91

F2-Score 73.30 71.74 71.07 73.94 74.28 73.20 74.01 42.00 74.48 70.55 74.20 76.24 73.58 74.99

25%-75%

15%-85%

Algorithms

Algorithm Accuracy Recall Precision Specificity F2-Score B.Accuracy Time(s) Gen. ObjF

85.5 70.31 98.92 99.45 74.65 84.88 2.77 0.216

83.74 70.19 94.04 95.98 73.94 83.08 4.2 0.228

1 81.19 77.37 81.98 84.64 78.25 81.005 52 0.210

7 84.34 72.57 92.88 94.98 75.89 83.775 54 0.214

9 84.47 71.98 93.89 95.77 75.5 83.875 56 0.216

19 84.96 70.78 96.64 97.78 74.78 84.28 52 0.218

Adaptive Neuro-Fuzzy Inference 

System (ANFIS)

Membership 

simulations
3 84.01 73.78 90.8 93.25 76.65 83.515 115.5 0.211

Linear 85.38 69.51 99.94 99.96 74.02 84.735 2930 0.220

RBF 85.33 71.67 97.73 98.55 75.7 85.11 1715 0.210

Polynomial 70.54 82.12 65.02 60.08 78.02 71.1 4860 0.233

 Multi-Layer Perceptron (MLP) Hidden layers [35 20 5] 84.93 73.04 93.8 95.63 76.42 84.34 1855 0.209

[30 10 25] 84.24 74.68 90.99 93.32 77.46 0.00 1270 0.205

79.09 79.55 77.12 80.44 79.05 79.995 6.6 0.209

Ensemble  Algorithms
Random Forest           

NumTree: #100
Bagging 85.22 71.91 95.92 97.24 75.7 84.575 141 0.212

Tree LogitBoost 85.3 76.31 91.3 93.43 78.9 84.43 81 0.192

Tree TotalBoost 80.73 81.28 78.79 80.23 80.77 80.755 3493 0.192

Tree AdaBoostM1 85.15 77.98 90.07 92.31 79.83 84.77 81 0.184

KNN Random.Subspace 72.5 76.79 69.16 68.55 75.13 72.67 121 0.254

Discriminants AdaBoostM1 85.11 69.35 99.06 99.35 73.77 84.35 24 0.223

Ensemble of the collective base learners (Weighted Average) 85.86 71.09 98.52 99.11 75.28 85.44 116 0.211

Decision Tree (DT)

Specification 

Linear Discriminant Analysis (LDA)

Naïve Bayesian (NB)

K-Nearest Neighborhood (KNN)

K

Support Vector Machine (SVM)

Post-Loan Repayment Period

Standard Classification Imbalanced Classification
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performing algorithms. The selection was based on each algorithm's ability to consistently 

classify risky loans while maintaining manageable computational demands and stability across 

various imbalance ratios. The final model combined linear, non-linear, and boosting algorithms, 

all of which surpassed traditional bagging methods in predicting minority class instances. Each 

algorithm in the final ensemble was carefully configured to optimize performance and minimize 

complexity. 

From the linear models, LDA and Naive Bayes (NB) were included for their simplicity and 

precision. Among the non-linear models, K-Nearest Neighbors (KNN) was selected with 

configurations of k=1 and k=9, offering a balance between noise reduction and localized 

decision-making. Decision Trees (DT), powered by the CART (Classification and Regression 

Trees) algorithm, were included for their strong recall, particularly in identifying defaulted 

loans. However, DT required careful tuning to avoid overfitting, a common challenge with tree-

based models. ANFIS (Adaptive Neuro-Fuzzy Inference System) was incorporated to model 

complex relationships, and to address its computational cost, Principal Component Analysis 

(PCA) was used to enhance performance and speed. For Support Vector Machines (SVM), the 

RBF (Radial Basis Function) kernel was chosen after eliminating Polynomial and Linear 

kernels due to inefficiency. The RBF kernel handled the complexities of imbalanced data 

effectively while maintaining robustness and computational efficiency. Multi-Layer Perceptron 

(MLP), using a two-layer network configuration ([30, 10]), was also integrated, offering a good 

balance between complexity and performance.  

The inclusion of AdaBoost and LogitBoost was critical for improving the model’s ability to 

detect risky loans. These boosting algorithms are particularly suited to imbalanced datasets, as 

they assign greater weight to minority class instances during training. AdaBoost, by minimizing 

exponential loss, and LogitBoost, by minimizing logistic loss, significantly enhanced recall and 

the F2-Score. TotalBoost, which initially showed the highest recall, was excluded from the final 

model due to its prohibitive computational cost, making AdaBoost and LogitBoost the most 

effective trade-offs between computational efficiency and predictive power. The integration of 

diverse classifiers, each with its own strengths, created a model that was both flexible and 

powerful in tackling the complexities of imbalanced datasets.  

The performance of the ensemble model was evaluated during two critical prediction 

periods: the loan application point and the post-loan repayment period, using a weighted 

average strategy to aggregate results. As indicated in Table 3. 5, during the loan application 

phase, the ensemble model outperformed individual and homogeneous models in terms of 
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predictive accuracy. However, the model's true strength became apparent in the post-loan 

repayment period, where it achieved an overall accuracy of 85.89%, a precision rate of 98.9%, 

and a recall rate of 71.95%. These results highlight the ensemble’s ability to effectively identify 

high-risk loans with minimal false positives, a crucial factor in credit risk prediction. The recall 

rate of 71.95% and the F2-Score of 75.28% further underscore its capacity to detect defaulted 

loans, particularly within the minority class, where accurate prediction is most critical. 

Although there remains room for improvement, particularly in reducing false negatives, the 

ensemble’s ability to surpass both individual and homogeneous models demonstrate its 

robustness and efficiency in managing imbalanced datasets. 

Table 3. 5. Ensemble of collective learning from heterogeneous individual and ensemble algorithms 

3.4.5. Performance Evaluation of the Proposed Application-Specific EFSGA Model  

To enhance the ensemble's overall performance, a Genetic Algorithm (GA) was employed to 

optimize key parameters, including algorithm weights, feature selection, and classification 

thresholds. The weights, ranging from 0 to 1, reflect each algorithm’s relative contribution to the 

final model, with higher values indicating greater influence on predictions. This adaptive 

weighting framework ensures the ensemble prioritizes the most effective classifiers while 

attenuating the impact of less reliable ones. By iterating across multiple genetic cycles, the GA 

systematically ranks classifiers based on their weighted contributions, offering critical insights 

into their stability and performance across various risk scenarios. This process ensures a finely-

tuned, balanced model with optimized predictive accuracy.  

The GA optimizes the ensemble by fine-tuning each classifier’s weight according to 

predefined objectives tied to varying risk and profit scenarios. By iterating through multiple 

genetic cycles, the GA systematically ranks classifiers based on their contributions, providing 

critical insights into their stability and effectiveness across different risk environments. This 

process ensures that the model is well-calibrated for diverse situations, with optimized 

predictive accuracy. The primary goal of the EFSGA model optimization was to enhance recall 

and F2-Score, prioritizing these metrics over accuracy and precision. This approach ensures 

that the model minimizes defaults (false negatives) while maintaining an acceptable true 

Algorithm Specification Accuracy Recall PrecisionSpecificity F2-Score B.Accuracy Time(s) Gen. ObjF

Loan Allocation Period 82.76 55.85 94.79 98.23 60.85 77.04 230 0.316

Post Loan Repayment Period 85.89 71.95 98.9 99.11 75.28 85.44 116 0.205

Ensemble of the collective base 

learners (weighted average)

Imbalanced ClassificationStandard Classification
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negative rate (specificity) to avoid overlooking potential revenue from good loans. This dual 

optimization strategy focuses on balancing the reduction of defaults and maximizing profit. 

The EFSGA model was simulated under three distinct risk-taking strategies, each with 

different weighted coefficients to reflect the importance of accuracy, precision, and recall in the 

GA objective function: [wcf1, wcf2, wcf3]. 

 Scenario 1: Prioritizing maximum recall, even at the expense of some loss in precision: 

[0.25,0.1,0.65]. 

 Scenario 2: Maximizing recall without significantly sacrificing accuracy and precision: 

[0.25,0.15,0.6]. 

 Scenario 3: Achieving an optimal balance between all performance metrics: 

[0.35,0.15,0.5]. 

3.4.5.1. EFSGA Classification Results 

The final EFSGA model exhibited marked advancements across all key performance metrics, 

decisively surpassing the ensemble models from earlier stages. As detailed in Table 3. 6, the 

EFSGA model achieved a 29% improvement in the genetic fitness function, alongside a 24% 

increase in recall and a 14% enhancement in the F2-Score when compared to traditional 

heterogeneous ensemble techniques. These results underscore the model's exceptional 

capability to effectively manage imbalanced datasets and dynamically adjust to varying risk-

taking scenarios, demonstrating its robustness and adaptability in high-stakes predictive 

environments. 

Notably, the EFSGA model demonstrated an impressive out-of-sample sensitivity, achieving 

an 88.20% recall rate, a 24% improvement over the previous Ensemble of Collective Top 

Learners. With an F2-Score of 86.17%—representing a 14% increase—the model exhibited a 

remarkable ability to minimize both false positives and false negatives. This performance 

illustrates the model's proficiency in accurately identifying genuine risks without over-

triggering unnecessary alarms, ensuring both risk minimization and revenue maximization from 

loans. 

The results affirm the value of leveraging a metaheuristic algorithm to optimize ensemble 

learning and feature selection techniques, yielding substantial performance gains. The 

robustness of the EFSGA model was consistently demonstrated across various test scenarios. 

Moreover, the model's computational efficiency far exceeded that of prior ensembles. For 

example, in Scenario No. 1, the EFSGA required just 55 seconds to execute, significantly 
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outperforming the previous top algorithms, which required 230 seconds during the Loan 

Allocation Period and 116 seconds during the Post Loan Repayment Period. 

The proposed dynamic flexible risk decision-making framework, driven by the Genetic 

Algorithm, further enhanced real-time default prediction accuracy, especially during the post-

loan repayment period. The EFSGA model’s combination of superior optimization and 

computational efficiency positions it well ahead of the ensemble models developed earlier, with 

consistently lower execution times and more favorable general objective values across all tested 

scenarios. Additionally, the model's flexibility allows it to be seamlessly adapted to the specific 

goals of decision-makers, making it both an effective and efficient solution for real-world 

applications where accuracy and operational costs are critical. For the sake of visualization, we 

summarize our results in Fig. 6.  

The comparative results presented in Table 3. 7 validate the EFSGA model's performance, 

clearly establishing its superiority over other leading algorithms in key metrics such as the 

genetic objective function, recall, and F2-Score. These findings solidify the EFSGA model's 

status as the optimal choice for handling imbalanced datasets and ensuring high-quality 

predictive performance. 

Table 3. 6. EFSGA prediction performance based on different risk-taking scenarios – Post-Loan repayment 

prediction 

 

 

Fig. 3.6. Post-loan repayment prediction result by EFSGA 

Algorithm Specification Accuracy Recall Precision Specificity F2-Score B.Accuracy Time(s) Gen. ObjF

Scenario no.1 74.69 92.04 68.63 56.79 86.16 74.42 55 0.146

Scenario no.2 82.63 88.20 78.9 76.55 86.17 82.38 75 0.146

Scenario no.3 83.62 84.94 81.88 79.22 84.31 82.08 51 0.160

Evaluation Metrics

Standard Classification Imbalanced Classification

EFSGA               
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Table 3. 7. EFSGA prediction performance comparison against top selected and heterogeneous ensemble 

algorithms  

3.4.5.2. Optimized Weights of Classifiers in the Ensemble Model  

Our ensemble model employs a metaheuristic algorithm to optimize the weight of each 

classifier within the collective learning system47. These weights, tailored to different risk-taking 

scenarios, are presented in Table 8. Classifiers were further ranked based on their average 

weights across ten genetic iterations, providing insights into their stability and effectiveness 

across multiple iterations and risk scenarios, as shown in Table 3. 9. 

In the second scenario (the prefered scenrio) , which focused on maximizing recall while 

maintaining accuracy and precision, the Genetic Algorithm (GA) assigned higher weights to 

advanced classifiers such as LogitBoost, SVM-RBF, MLP, and ANFIS. Simpler algorithms, 

including KNN, LDA, and Naive Bayes (NB), received lower weights. Decision Trees (DT) 

ranked highest in the first scenario, where recall was prioritized. However, in the third scenario, 

which focused on precision, DT lost its top position. In contrast, MLP and LogitBoost 

consistently secured the top ranks, demonstrating superior performance in identifying risky 

credits with minimal loss of good credits. SVM-RBF maintained a strong position across all 

scenarios, reflecting its robust and stable performance. MLP proved to be particularly reliable 

and effective, consistently ranking among the top five classifiers. ANFIS also performed well, 

especially in the recall-focused first scenario, though DT, while effective, was slightly less 

competitive when compared to the leading classifiers.  

These results highlight the efficacy of advanced classifiers—LogitBoost, SVM-RBF, MLP, 

ANFIS, and DT—in managing credit risk by accurately identifying high-risk loans while 

preserving the integrity of low-risk classifications. A more detailed analysis of these top-

performing classifiers can be found in Fig. E.1 in Appendix E. 

                                                      
47 Specifically, the Genetic Algorithm (GA) generated an integer vector, W, with a length of 1*M, representing 

the weights of M machine learning classifiers in the heterogeneous ensemble. 

Imbalanced 

Ratio
Metrics EFSGA ANFIS SVM-RBF MLP DT RF LogitBoostAdaBoostM1Het.Ensemble

Gen. ObjF 0.146 0.211 0.210 0.205 0.209 0.212 0.192 0.184 0.205

Recall 88.20 73.78 71.67 74.68 79.55 71.91 76.31 77.98 71.95

F2-Score 86.17 76.65 75.70 77.46 79.05 75.70 78.90 79.83 75.28

Precision 78.90 90.80 97.73 90.99 77.12 95.92 91.30 90.07 98.90

Accuracy 82.63 84.01 85.33 84.24 79.09 85.22 85.30 85.15 85.89

25%-75%

Algorithms
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Table 3. 8. Optimized weights of each ML classifier by GA based on the genetic objective function 

 

 

 

Table 3. 9. Top Ranked algorithms based on GA-assigned weights 

 

3.4.5.3. Dynamic Optimized Decision Threshold  

Optimizing the decision threshold in credit default identification is vital due to the higher cost 

associated with false negatives than false positives. While lowering the decision threshold 

improves recall, it may compromise precision. Striking an optimal balance between recall and 

precision is crucial. Our proposed model leverages a Genetic Algorithm (GA) as a search 

heuristic to optimize the decision threshold. The model employs a class-weighted, tunable 

objective function in the GA to address imbalanced datasets and varying class importance. This 

function prioritizes recall, which is especially critical in credit default identification while 

maintaining an optimal true negative rate (specificity) to prevent overlooking potential revenue 

from good loans. This dual objective ensures a balanced optimization focus on minimizing 

defaults while maximizing profit. The GA fine-tunes the classification threshold to achieve an 

optimal balance, considering specific problem goals and trade-offs. The model's performance 

is rigorously assessed using imbalanced classification metrics to ensure robust identification of 

both majority and minority classes.  

We fine-tune the weighted coefficients (wcf1, wcf2, and wcf3) in the GA objective function 

to determine the optimized decision threshold, influencing the trade-off between accuracy, 

precision, and recall. The optimal thresholds for three risk strategy scenarios are as follows: 0.1 

in scenario 1, maximizing recall and F2-Score; 0.18 in scenario 2, maximizing recall while 

maintaining balanced accuracy and precision; and 0.25 in scenario 3, achieving a balance 

between recall, precision, and accuracy. Fig. 7 illustrates these results. Our proposed model 

effectively addresses the challenges associated with high-dimension imbalanced datasets, 

optimizing credit default identification by minimizing the risk of misclassifying normal credits 

while maximizing expected profit. Leveraging a class-weighted, tunable objective function, 

optimizing the classification threshold, and utilizing imbalanced classification metrics for 

Algorithm Specification LDA NB NN KNN ANFIS SVM-RBF MLP DT LogitBoost AdaBoostM1

Scenario no.1 0.14 0.01 0.05 0.03 0.17 0.12 0.09 0.18 0.12 0.09

Scenario no.2 0.09 0.01 0.10 0.06 0.11 0.13 0.13 0.10 0.14 0.11

Scenario no.3 0.06 0.07 0.07 0.09 0.04 0.17 0.17 0.05 0.19 0.10

Solution W: Optimized Weights of the Ensemble Model

EFSGA

Algorithm Specification LDA NB NN KNN ANFIS SVM-RBF MLP DT LogitBoost AdaBoostM1

Scenario no.1 3.0 9.0 5.4 7.3 3.3 5.0 5.0 4.3 4.0 5.1

Scenario no.2 5.4 9.0 5.2 6.3 4.4 3.2 3.6 4.9 3.2 4.6

Scenario no.3 6.5 6.0 7.0 5.0 7.0 2.0 2.0 7.0 1.0 4.0

Solution W: Algorithm Ranking (1~10)

EFSGA                 
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evaluation, our model attains a high level of sensitivity and precision in credit default 

identification problems. 

    

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

Fig.3.7: Optimized threshold according to genetic objective function parameter adjustment. 
 

3.4.5.4. Ensemble Feature Importance Analysis - Model Interpretability 

To improve interpretability, simplify the model, and eliminate redundancy, we applied an 

ensemble feature selection approach using a genetic algorithm (GA). This method 

simultaneously optimizes both feature subsets and weights for each base learner within the 

ensemble model. The GA autonomously selects the most relevant features for individual 

classifiers while optimizing collective learning coefficients across all heterogeneous 

classifiers48. Our findings demonstrate that the EFSGA model effectively extracts critical 

features, reduces overfitting, and significantly outperforms both individual classifiers and 

homogeneous ensemble methods. Notably, the GA reduced the number of selected features by 

over 50%, from 47 to 24, without sacrificing model performance49. In the context of achieving 

optimal recall rates (our second scenario), we prioritize the contribution of each variable to 

defaults rather than overall accuracy. This approach provides valuable insights into which 

variables most strongly predict borrower default, supporting risk management and policy 

decisions. By running the GA 10 times, we calculate the importance of each feature based on 

its selection frequency across iterations.  

The results, shown in Table 3. 6, reveal the following key findings: Key insights reveal that 

loan characteristics, such as maturity and interest rate, play a crucial role in predicting defaults. 

Borrowers opting for longer loan terms, such as five years, tend to have lower credit scores, 

face higher interest rates, and are more likely to default. The purpose of the loan is also 

significant, with small business loans presenting the highest risk, as default rates surpass 73%, 

                                                      
48 Optimizing Performance and Cost: Base learners are categorized into two groups based on training speed and 

complexity. Feature selection is applied to the first group, comprising NN, KNN, LDA, NB, and DT. 
49 Number of selected features = [NN:24, KNN:26, LDA:24, NB:25, DT:24] 

Scenario 2. 

THR=0.185; 

Recall=87.4 

 
Scenario n.2 

THR=0.18; 

Recall=88.1 

Scenario n.3 

THR=0.25; 

Recall=84.9

4 

Scenario n.1 

THR=0.1; 

Recall=92.04 
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while wedding loans carry the lowest risk. In contrast, loan amounts and installments are found 

to be less impactful. Socioeconomic characteristics also provide valuable predictive insights. 

Homeownership and annual income stand out as strong indicators of credit risk, whereas 

employment length shows minimal effect. Renters, compared to homeowners, exhibit a higher 

likelihood of default, with default rates exceeding 45%. In terms of Borrower's financial profile 

and credit history, critical predictors include delinquencies, public records (such as overdue 

accounts), debt-to-income ratio, and credit utilization. Additionally, the number of satisfactory 

bankcard accounts, the average balance across all accounts, recent trade activity, and total 

revolving credit balance significantly influence default risk. Lastly, macroeconomic variables, 

those associated with actual economic activity such as inflation rates, GDP, and stock market 

indices, consistently emerged as key contributors to default rates across all scenarios. 

 

Table 3. 6. Feature Importance Scores from Iterative Genetic Algorithm Optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NN KNN DA NB DT

>80% >60% 24 26 24 25 24

delinq_2yrs 1 64% 50% 70% 0.9 0.7 0.4 0.6 0.7

delinq_amnt 2 64% 50% 80% 0.7 0.6 0.6 0.6 0.7

num_bc_sats 3 62% 50% 70% 0.6 0.7 0.6 0.4 0.7

avg_cur_bal 4 62% 30% 80% 0.4 0.9 0.4 0.9 0.7

annual_inc 5 62% 40% 60% 0.4 0.6 0.9 0.6 0.7

term 6 62% 40% 70% 0.7 0.6 0.9 0.7 0.3

acc_open_past_24mths 7 62% 30% 60% 0.6 0.6 0.4 0.7 0.7

purpose 8 62% 30% 60% 0.4 0.7 0.7 0.6 0.6

TTL All Shares 9 61% 30% 70% 0.7 0.4 0.4 0.7 0.9

acc_now_delinq 10 60% 30% 60% 0.7 0.6 0.7 0.6 0.4

dti 11 59% 10% 70% 0.6 0.6 0.6 0.4 0.7

revol_bal 12 59% 30% 60% 0.1 0.7 1.0 0.7 0.3

revol_util 13 59% 30% 60% 0.7 0.3 0.9 0.6 0.4

bc_open_to_buy 14 58% 40% 60% 0.7 0.3 0.4 0.6 0.7

home_ownership 15 58% 20% 50% 0.6 0.7 0.4 0.6 0.6

Inflation (cpi) 16 58% 20% 50% 0.4 0.6 0.6 0.6 0.7

mths_since_last_delinq 17 57% 20% 50% 0.7 0.4 0.7 0.4 0.6

sub_grade 18 56% 20% 60% 0.4 0.4 0.6 0.7 0.6

bc_util 19 56% 0% 60% 0.6 0.6 0.6 0.6 0.3

num_rev_tl_bal_gt_0 20 54% 0% 70% 0.6 0.6 0.6 0.4 0.6

mths_since_recent_inq 21 54% 20% 50% 0.4 0.4 0.4 0.6 0.7

installment 22 53% 20% 70% 0.4 0.6 0.4 0.4 0.7

int_rate 23 53% 40% 40% 0.7 0.4 0.4 0.4 0.6

TED 24 52% 10% 60% 0.6 0.6 0.3 0.9 0.3

num_tl_op_past_12m 25 52% 0% 60% 0.4 0.6 0.4 0.6 0.4

GDP Growth 26 52% 30% 50% 0.7 0.6 0.4 0.4 0.4

Income status _ verified 27 52% 30% 50% 0.3 0.6 0.6 0.6 0.4

pub_rec 28 51% 20% 50% 0.4 0.9 0.6 0.3 0.4

Loan_Amnt 29 51% 20% 50% 0.3 0.4 0.7 0.3 0.7

tax_liens 30 51% 20% 60% 0.7 0.7 0.6 0.3 0.4

total_bal_ex_mort 31 51% 10% 70% 0.4 0.7 0.6 0.4 0.4

Unemployment rate 32 50% 10% 40% 0.4 0.6 0.7 0.6 0.1

pct_tl_nvr_dlq 33 50% 20% 50% 0.6 0.3 0.4 0.6 0.4

num_sats 34 50% 20% 50% 0.4 0.7 0.4 0.6 0.6

inq_last_6mths 35 50% 10% 50% 0.4 0.6 0.4 0.4 0.6

mort_acc 36 49% 10% 40% 0.1 0.6 0.6 0.6 0.7

HH Debt 37 49% 20% 50% 0.7 0.4 0.4 0.6 0.6

pub_rec_bankruptcies 38 49% 10% 50% 1.0 0.6 0.3 0.6 0.1

open_acc 39 48% 20% 30% 0.6 0.1 0.7 0.4 0.4

emp_length 40 46% 10% 50% 0.1 0.6 0.6 0.4 0.4

num_actv_bc_tl 41 46% 10% 50% 0.6 0.6 0.1 0.7 0.3

num_bc_tl 42 46% 20% 40% 0.4 0.6 0.7 0.4 0.3

num_rev_accts 43 44% 10% 40% 0.4 0.6 0.1 0.6 0.6

chargeoff_within_12_mths 44 44% 20% 30% 0.6 0.4 0.4 0.4 0.4

percent_bc_gt_75 45 41% 10% 40% 0.3 0.4 0.4 0.4 0.6

month(earliest_cr_line) 46 32% 10% 20% 0.1 0.3 0.6 0.3 0.3

Genetic Solutions

Selected by X% of Classifers
AVG %

Feature 

Importance 

Rank

Occurrence % 

Attributes
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Fig. 3.8 Top features contributing to default risk selected by EFSGA 

 

3.4.6. Optimization of Credit Risk Management  

The proposed approach has the potential to revolutionize credit risk optimization in FinTech 

lending by employing evolutionary algorithms to optimize feature scaling, classifier weights, 

and decision thresholds within a collective learning framework. Traditional risk assessment 

models, often constrained by fixed rules, fail to adapt to the dynamic nature of borrowers and 

overlook critical factors such as macroeconomic conditions and management interventions. 

These limitations can be particularly problematic in complex risk decision-making processes 

where risk tolerance levels and objectives may vary. Our study introduces a flexible and 

dynamic decision-making framework that addresses these shortcomings by offering tailored, 

real-time risk assessments. By leveraging distributed and parallel computing paradigms, this 

approach provides timely solutions, particularly valuable in the fast-paced FinTech industry. 

The framework's adaptability ensures that decision-makers receive customized risk insights, 

aligning with specific management goals and evolving market conditions. This high level of 

customization is crucial for enhancing credit risk management, as it allows organizations to 

make more informed decisions across diverse sectors and risk scenarios, ultimately improving 

decision-making processes in industries beyond FinTech. 
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3.4.7. Robustness Tests 

To ensure the reliability and broader applicability of our findings, we conducted a robustness 

test using data from Mintos, a European marketplace lending platform. This dataset, spanning 

loan listings from January 2018 to September 2023 across 10 European countries, captures the 

effects of economic fluctuations, including the COVID-19 pandemic and the Russia-Ukraine 

war. Detailed information on the dataset and variables is provided in Appendix F, with Table 

F.1 offering a comprehensive description. After preprocessing, the dataset included 23 variables 

and 484,912 loan listings, with 19% defaulted loans and 81% non-defaulted loans. The data 

underwent a similar preprocessing procedure as described in Section 3. 4-2, except for utilizing 

alternative configurations50 . All detailed results are presented in Appendix F (Tables F2 to F6), 

covering individual and homogeneous ensemble algorithm performance (Table F.2), results 

from the heterogeneous ensemble model (Table F.3), EFSGA model classification results 

(Table F.4), optimized classifier weights (Table F.5), and feature selection analysis (Table F.6).  

The key findings from the robustness tests are as follows: Firstly, the proposed EFSGA 

model demonstrates sustained robustness across various scenarios. Notably, the model achieved 

a 14% improvement in recall, a 9% increase in F2-Score, and a 3% boost in balanced accuracy 

compared to the previous Ensemble of Collective Top Learners51. Secondly, compared with the 

previous results, where the optimized weights and rankings of machine learning classifiers were 

detailed, the current analysis shows consistency in the top five ranked classifiers across 

different risk-taking scenarios. Although the specific order of rankings has changed, boosting 

algorithms, ANFIS, SVM-RBF, Decision Trees (DT), and MLP consistently occupy the leading 

positions. This stability reinforces the robustness of our findings and the effectiveness of these 

classifiers, even with varying emphases on recall, precision, and accuracy. Lastly, the EFSGA 

model excels in extracting valuable features, surpassing alternative methods, and notably 

reducing the number of features while maintaining superior model performance. Detailed 

insights into the significance of features regarding borrower credit default are available in 

Appendix F. 

                                                      
50 For this new dataset, we employed a distinctive train-test split, allocating 70% for training and 30% for testing 

to rigorously assess model performance. Additionally, we introduced a different imbalanced ratio of 20-80. 

PRecombination, PCrossover, and PMutation operators were set to 0.2, 0.4, and 0.4, respectively. The Genetic 

Algorithm parameters included a population size of 30 and a maximum of 100 iterations. 
51 The Mintos dataset differs from typical credit risk datasets by excluding borrower personal information, focusing 

only on loan-related data such as Issue Date, Rate, Term, and Type. This divergence results in lower classification 

accuracy for individual and ensemble algorithms compared to the results from our primary dataset. 



Chapter 3: Evolutionary-Based Ensemble Feature Selection Technique for Dynamic Application-Specific Credit 

Risk Optimization in FinTech Lending 

 154 

3.5. Discussion and Conclusion  

The EFSGA methodology introduces a novel approach to credit risk optimization, addressing 

challenges faced by traditional metaheuristics in dynamic default prediction for FinTech 

lending. The Evolutionary-based Ensemble Feature Selection with a Genetic Algorithm 

(EFSGA) leverages diverse machine learning structures, optimizing both hyperparameters and 

classification thresholds through a Genetic Algorithm. This dual optimization enhances the 

model's performance, offering a comprehensive and efficient solution. Our approach fills the 

gap in metaheuristic applications for credit risk optimization by hybridizing with machine 

learning, utilizing distributed and parallel computing for real-time solutions, and enhancing 

adaptability to unbalanced learning scenarios.  

The proposed "dynamic flexible risk decision-making framework," inspired by GA, has 

significantly improved real-time default prediction during the post-loan repayment period. The 

EFSGA model shows superior computational efficiency and optimization compared to the 

ensemble of top algorithms, with notably lower execution times and general objective values 

across various scenarios. It demonstrated substantial improvements in overall model 

performance during the post-loan repayment period, including a 29% improvement in the 

genetic fitness function, a 24% boost in recall, and a 14% increase in F2-Score, outperforming 

conventional heterogeneous ensemble techniques across diverse risk-taking scenarios. 

Moreover, the framework is highly flexible and can be adapted to the specific objectives of 

decision-makers. Our ensemble feature selection and analysis technique, driven by a genetic 

algorithm, achieves a balanced trade-off between model performance and interpretability. By 

simultaneously optimizing weights and feature subsets for each base learner within the 

ensemble model, the proposed technique extracts valuable features, reduces overfitting, and 

outperforms other classifiers. It significantly reduces the feature set from 47 to 24 while 

maintaining superior performance. We conducted ten iterations of the GA to comprehensively 

assess feature importance, deriving scores from the occurrence rates across iterations. The 

EFSGA model adeptly addresses challenges associated with the misclassification of 

imbalanced datasets and variable class importance through dynamic decision threshold 

adjustments using a Genetic Algorithm. Employing cost-sensitive learning algorithms 

prioritizes the minority class, optimizing a class-weighted objective function for a balanced 

recall-precision trade-off. 

Our research thoroughly assesses the performance dynamics of diverse machine learning 

algorithms, spanning individual models and homogeneous and heterogeneous ensembles. 
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Emphasizing the identification of minority classes, we ensure robustness, stability, and 

consistency across multiple iterations, varied risk modeling scenarios, and different imbalanced 

data distributions, all while adhering to computational constraints. This evaluation leverages 

real-world P2P lending datasets known for their imbalanced nature across two key prediction 

periods: the loan application stage and the post-loan repayment period. To further optimize the 

ensemble, a Genetic Algorithm (GA) is employed to determine the optimal weights for each 

classifier based on predefined objectives across different risk scenarios. This approach enabled 

the model to adapt to various conditions by balancing the contribution of each algorithm. The 

Genetic Algorithm (GA) strategically allocated higher weights to advanced classifiers such as 

LogitBoost, SVM-RBF, MLP, and ANFIS, while simpler algorithms like KNN, LDA, and NB 

received lower weights. These findings indicate that boosting algorithms, particularly 

LogitBoost, which consistently holds the first rank, followed by SVM-RBF, MLP, ANFIS, and 

DT, are the most effective in identifying risky credits while maintaining optimal accuracy and 

minimizing the loss of good credits. These insights can guide financial institutions in selecting 

appropriate machine-learning models to minimize credit risk while maintaining optimal 

performance across different operational priorities. The proposed "flexible, dynamic decision-

making-based framework" with its tunable class-weighted fitness function offers 

transformative potential for risk management in the FinTech sector. Providing real-time, 

adaptable solutions for complex decision-making processes, this approach enhances risk 

management and offers valuable insights across industries where diverse risk tolerances and 

objectives necessitate adaptable strategies. 

3.6. Future Research Directions 

While the EFSGA model marks a significant advancement in credit risk optimization, several 

avenues for further exploration remain. First, the reliance on Genetic Algorithms (GA) for 

optimization can be expanded by exploring alternative metaheuristics, such as Grey Wolf 

Optimization or the Aquila Optimizer, to enhance flexibility and efficiency (Mirjalili et al., 

2014; Abualigah et al., 2021). Additionally, integrating advanced deep learning techniques like 

deep neural networks or reinforcement learning could improve the model’s ability to manage 

complex, imbalanced datasets. Another limitation is the restricted access to post-loan borrower 

data, which limits real-time risk monitoring. Future research should incorporate richer datasets, 

such as borrower payment histories and behavioral patterns, to refine dynamic predictions. 

Furthermore, although the EFSGA model has shown promise in FinTech, its application in 
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traditional banking and high-risk finance requires further exploration. Evaluating the model in 

volatile, high-risk environments will help assess its scalability and robustness across diverse 

credit risk settings. Incorporating EFSGA into decision support systems (DSS) with scenario-

based simulations would further enhance its practical utility for decision-makers managing 

complex risk profiles. Altogether, advancing the EFSGA model through alternative 

metaheuristics algorithms, richer data integration, and broader application will enhance its 

adaptability and effectiveness in diverse financial contexts. 
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Appendix III 

 

 

Appendix A 

Threshold Optimization Method Based On Genetic Algorithms: This framework outlines the basic 

steps for optimizing the classification threshold using a genetic algorithm. Here is a brief 

explanation of each step: 

(i) Objective function: The objective function is a metric that measures the model's performance 

at different threshold values. We used accuracy, precision, and recall in this study and analyzed 

them based on F2-Score. 

(ii) Initial population: The initial population is a set of potential threshold values that the objective 

function will evaluate. These values are typically chosen randomly. 

(iii) Fitness evaluation: The fitness of each potential threshold value in the population is evaluated 

using the objective function. This determines how well each threshold value performs on the 

classification problem. 

(iv) Selection: The best-performing threshold values with the highest fitness scores are selected to 

move on to the next generation. This process is repeated until specific threshold values have been 

set. 

(v) Reproduction and mutation: New threshold values are created by combining the selected 

individuals and introducing random mutations to promote diversity. This creates a new population 

of potential threshold values. So, the fitness of the new population is evaluated, and the process is 

repeated until a termination criterion is met. This could be a certain number of generations or a 

specific fitness level. 

(vi) Solution: Once the genetic algorithm has converted to a solution, the threshold value with the 

highest fitness score is chosen as the optimized threshold. This threshold value can predict new 

data in the classification problem. 
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Appendix B 

Lending Club Lending Dataset  

 

Table B.1. Overview of Lending Club Features and Associated Economic Indicators 

 

 

Min Max Mean SD

Loan Indicators

term The number of payments on the loan. 36.0 60.0 42.2 10.5

int_rate Interest Rate on the loan 0.1 0.3 0.1 0.0

installment The monthly payment owed by the borrower . 21.6 1408.1 428.7 244.2

purpose A category provided by the borrower for the loan request. House, education , Small buisness,… (1~14) 1.0 14.0 4.7 2.8

Loan_Amnt The listed amount of the loan applied for by the borrower. 1,000    35,000       13,866 8,186   

LC sub_grade Lending Club assigned loan subgrade, A1~G5 , codes (1~35) 1.0 35.0 13.1 6.7

Loan_status Current status of the loan: Fully paid, Charged off, Default, In grace period, Late ,… 0 5 1 1.41

Borrower's Financial Characteristics and Credit History indicators

Demographics

home_ownership The home ownership status provided by the borrower including Own, Mortgage, Rent (Codes: 1,2,3) 1.0 3.0 2.3 0.6

emp_length Employment length in years. 0.0 10.0 5.7 3.7

annual_inc The self-reported annual income provided by the borrower during registration.(*1000) 4 1 70 46

Income status _ verified Income verification status by LendingClub :Verified, Source verified, Not verified  (Codes: 1,2,3) 1.0 3.0 1.8 0.86

Credit Hisory & Performnce

dti
Borrower’s total monthly debt payments on the total debt obligations,excluding mortgage, divided by his  

self-reported monthly income.
0

35 17 8

percent_bc_gt_75 Percentage of all bankcard accounts > 75% of limit. 0 100 46 37

bc_util Ratio of total current balance to high credit/credit limit for all bankcard accounts. 0 340 57 34

inq_last_6mths The number of inquiries in past 6 months (excluding auto and mortgage inquiries) 0 8 1 1

mths_since_recent_inq Months since most recent inquiry. 0 24 6 6

mort_acc Number of mortgage accounts. 0 24 2 2

revol_util The amount of credit the borrower is using relative to all available revolving credit. 0 148% 57% 0

acc_now_delinq The number of accounts on which the borrower is now delinquent. 0 5 0 0

delinq_2yrs The number of 30+ days past-due incidences of delinquency in the borrower's credit file for the past 2 years 0 18 0 1

delinq_amnt The past-due amount owed for the accounts on which the borrower is now delinquent. 0 63,453       8 527

mths_since_last_delinq The number of months since the borrower's last delinquency. 1 151 35 22

pub_rec Number of derogatory public records 0 9 0 0

pub_rec_bankruptcies Number of public record bankruptcies 0 5 0 0

chargeoff_within_12_mths Number of charge-offs within 12 months 0 4 0 0

pct_tl_nvr_dlq Percent of trades never delinquent 0 100 78 38

acc_open_past_24mths Number of trades opened in past 24 months. 0 40 4 3

month(earliest_cr_line) The month the borrower's earliest reported credit line (LOC) was opened - Loan Issue date 36 683 174 80

num_tl_op_past_12m Number of accounts opened in past 12 months 0 25 2 2

total_bal_ex_mort Total credit balance excluding mortgage 0 1,924,200 37,502 41,092 

revol_bal Total credit revolving balance 0 1,743,266 15,237 18,955 

avg_cur_bal Average current balance of all accounts 0 958,084    11,273 16,327 

bc_open_to_buy Total open to buy on revolving bankcards. 0 278,899    6,828   12,329 

open_acc The number of open credit lines in the borrower's credit file. 0 53 11 5

num_rev_accts Number of revolving accounts 0 63 12 9

tax_liens Number of tax liens 0 9 0 0

num_sats Number of satisfactory accounts 1 53 11 5

num_bc_tl Number of bankcard accounts 0 44 9 5

num_actv_bc_tl Number of currently active bankcard accounts 0 22 3 2

num_bc_sats Number of satisfactory bankcard accounts 0 29 5 3

num_rev_tl_bal_gt_0 Number of revolving trades with balance >0 1 30 5 3

Macroeconomic indicators

Unemployment rate The number of unemployed as a percentage of the labor force. 25.5 33.6 29.9 2.2

TTL All Shares Total Share Prices for All Shares for the United States -22.5 12.7 0.4 3.7

Inflation Inflation as measured by the consumer price index. -0.4 3.8 2.2 1.0

HH Debt Household Debt Service Payments as a Percent of Disposable Personal Income 9.7 13.2 11.3 1.2

GDP Growth The inflation adjusted value of the goods and services produced by labor and property located in the US. -1.9% 2.4% 1.0% 0.7%

TED The spread between 3-Month LIBOR based on US dollars and 3-Month Treasury Bill. 0.1 3.4 0.4 0.4

Post Loan Performance

Loan_Paid % Total paid amount at loan maturation or closure 1 1.4 0.79 0.3

Loan_last_first Payment Months before loan maturation or closure(last_pymnt_d)-(Issue_d) 1 60 11 6

Recovery Recovery plan for problematic loans 0 1 0.15 0.35

3M_interval_loan status Timing every 3 Months before loan maturation
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Appendix C 

We meticulously conducted the following critical steps in data preprocessing to ensure the data is 

well-suited for effective utilization in our prediction model. 

 

(i) Instance selection: 

• The data set is filtered to select only the loans issued between 2007 and 2014, as we choose 

only finished credits that have reached their final state during the standard term of the credit –

36 or 60 months. 

• Eliminating features and rows with more than 5 percent missing values. 

• Removing categorical variables with only one possible value and irrelevant variables such as 

member ID, URL, emp_title, grade, description, address, etc. As a result, 64 variables have been 

dropped. 

(ii) Handling missing values:  

• Various techniques, including mean, mode, and KNN imputations, are employed to address 

missing values. In a comprehensive experiment involving 1000 samples, KNN imputation 

demonstrated superior performance, yielding the smallest values for rmse (root mean squared 

error), mse (mean squared error), and mae (mean absolute error). Consequently, KNN 

imputation has been chosen as the preferred method over alternative approaches. 

(iii) Data transformation:  

• Categorical variables are encoded using one-hot encoding, and date variables are transformed 

into numerical features. In this step, several variables are transformed into new forms: 

• The loan status attribute describes the current state of the loan and has the following values: 

“Current,” “Fully Paid,” “Default,” “Charged Off,” “In Grace Period,” “Late (16 - 30 days)”, 

and “Late (31 – 120 days)”. These statuses are transformed to a binary classification problem, 

i.e., the loan with the status “Charged Off,” “Late (31 – 120 days)”, and “Default” will be 

changed into “Default” and loan with the status “Fully Paid” will be transformed into “Normal.” 

Loans with statuses “In Grace Period,” “Current,” and “Late (16 – 30 days)” will be filtered out 

because those loans are considered immature or do not have final statuses.  

• Nominal variables such as subgrade, employment length, Loan Purpose, Term, Home 

Ownership, Verification status, … are transformed into continuous variables. 

• Some new variables have been calculated, such as Credit history_ yrs by subtracting Loan 

application date from earliest_cr_line (The month the borrower's earliest reported credit line 

(LOC) was opened). 

(iv) Normalization of features:  

• The features are normalized and standardized through the Min-Max Scaling 

Standardization/Variance Scaling  

(v)Data randomization:  

• After normalization and before the dataset is divided into training and validation sets, deliberate 

data randomization has been implemented, prioritizing a randomized arrangement over an 
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ordered one. This approach is crucial for mitigating potential biases arising from inherent order 

or patterns in the data. We aim to foster a diverse and representative training experience by 

opting for randomization, enhancing the model's ability to generalize effectively across 

different scenarios. 

(vi) Handling Outliers:  

• To ensure dataset quality, a rigorous outlier treatment has been implemented. Various methods, 

including outlier removal, capping, and discretization, have been selectively applied to specific 

variables based on the percentage and distribution of outliers detected. 

After completing these comprehensive preprocessing steps, our final dataset comprises 84,440 

observations and 49 variables. This refined dataset is primed for optimal utilization in building an 

accurate and robust prediction model. 

 

 

 

Appendix D 

Fitness evaluation 

Table D. CONFUSION MATRIX 

A confusion matrix is a summary of prediction results on a classification problem. In  the above 

confusion matrix, TP is the number of test samples with a default class tag that are properly assigned 

to a default class. TN is the number of test samples with the Normal class tag that are correctly 

placed in the Normal class. FP is the number of samples with a Normal label mistakenly classified 

by the classification system. Finally, FN is the number of samples with a Default label incorrectly 

identified by the system as default.  
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Appendix E 

Table E. An Empirical Comparison of Individual and Homogenous Ensemble Algorithms_ Loan Allocation 

Period 

 

 

 

Fig. E.1. Top Algorithms Performance Based On Each Scenario 

 

 

 

Algorithm Accuracy Recall Precision Specificity F2-Score B.Accuracy Time(s) Gen. ObjF

82.62 57.43 91.96 97.11 74.65 84.88 2.77 0.311

81.25 54.21 90.7 96.8 73.94 83.08 4.2 0.336

1 77.6 65.47 70.94 84.57 66.49 75.02 52 0.307

7 81.43 58.03 86.71 94.98 62.14 76.46 54 0.318

9 81.61 56.74 88.89 95.77 61.16 76.33 56 0.322

19 82.15 54.43 94.26 97.78 74.78 84.28 52 0.327

Adaptive Neuro-Fuzzy Inference 

System (ANFIS)

Membership 

simulations
3 81.22 57.58 86.48 94.82 76.65 83.515 56.9 0.322

Linear 85.38 69.51 99.94 99.96 74.02 84.735 2930 0.220

RBF 82.4 53.16 97.51 99.22 75.46 85.11 225 0.329

Polynomial 77.74 65.51 71.23 84.78 78.02 71.1 503 0.306

 Multi-Layer Perceptron (MLP) Hidden layers [35 20 5] 78.49 65.22 72.99 86.12 76.42 84.34 1160 0.303

[30 10 25] 80.14 62 79.08 90.56 64.80 76.28 340 0.309

75.72 68.07 66.32 80.11 79.05 79.995 6.6 0.303

Ensemble  Algorithms
Random Forest           

NumTree: #100
Bagging 82.59 55.92 93.95 97.93 75.7 84.575 67 0.317

Tree LogitBoost 82.77 62.43 86.67 94.47 78.9 84.43 81 0.288

Tree TotalBoost 80.73 81.28 78.79 80.23 80.77 80.755 3493 0.192

Tree AdaBoostM1 82.9 63.51 86.01 94.05 79.83 84.77 81 0.283

KNN Random.Subspace 72.5 76.79 69.16 68.55 75.13 72.67 121 0.254

Discriminants AdaBoostM1 85.11 69.35 99.06 99.35 73.77 84.35 24 0.223

Ensemble of the collective base learners (Weighted Average) 82.76 55.85 94.79 98.23 60.85 77.04 230 0.316

Decision Tree (DT)

Specification 

Linear Discriminant Analysis (LDA)

Naïve Bayesian (NB)

K-Nearest Neighborhood (KNN)

K

Support Vector Machine (SVM)

Loan Allocation Period

Standard Classification Imbalanced Classification
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Appendix F 

Mintos Lending Dataset: 

The countries included in the database are Bulgaria, Denmark, Estonia, Finland, Latvia, Lithuania, 

Poland, Spain, Romania and the United Kingdom. These countries are similar in their regulatory 

framework and business environment and represent an excellent opportunity for analyzing the 

current tendencies in marketplace lending markets. We combine each loan recorded in the database 

with the country-specific economic variables and variables representing COVID-19 risk and the 

Russia-Ukraine war. The loan status attribute describes the current state of the loan and has the 

following values: “Current,” “Bad debt or Default,” “finished (as scheduled or prematurely),” “In 

Grace Period,” and “Late” loans. These statuses are transformed to a binary classification problem, 

i.e., the loan with the status “Bad debt or Default,” “finished prematurely_ Buyback Guarantee,” 

“Late (31 – 60)”, and “Late (60+)” will be changed into “Default.” Loans with the status “finished 

as scheduled” and “finished prematurely due to early repayment” will be transformed into 

“Normal.” Loans with statuses “In Grace Period,” “Current,” and “Late less than 30 days will be 

filtered out because those loans are considered immature or do not have final statuses.  

 

Table F.1. Description and Summary Statistics of Mintos Features and Associated Economic Indicators 

 

Attributes Description

Min Max Mean SD Count

Loan indicators

Loan Type

A category provided by the borrower for the loan request. 1-Business Loan, 2-Car 

Loan, 3-Invoice Financing, 4-Mortgage Loan, 5-Pawnbroking Loan, 6- Personal 

Loan, 7-Shert-Term Loan

1.00 8.00 7.44 0.75 484,912 

Loan Rate% Interest Rate on the loan 4.00 18.50 11.67 2.81 484,912 

Term Duration of loan 1.00 238.00 3.89 10.52 484,912 

Initial LTV Initial Loan-to-Value (LTV) Ratio 0.00 650.00 8.51 23.84 484,912 

LTV Final Loan-to-Value (LTV) Ratio 0.00 99.00 1.08 8.84 484,912 

Initial Loan Amount The listed amount of the loan applied for by the borrower. 12.59 70000.00 424.81 593.70 396,536 

Collateral
Dummy variable representing the loan type in terms of a provision of collateral. 

Equal to 1 if the loan is collateralised, 0 otherwise
0.00 1.00 0.12 0.32 484,912 

Loan Status
Current status of individual loan.Dummy variable equal to 1 if the loans is 

overdue, defaulted or buyback and 0 otherwise (current or repaid) 0.00 1.00 0.19 0.42 484,912 

Borrower's Financial Characteristics

Mintos Risk Score Mintos assigned Rating’ ranging between A+ (1) and D (7) 5.50 8.60 6.80 0.60 412,813 

Macroeconomic indicators

Covid_DUM
Dummy variable equal to 1 for the

dates between March 11, 2020 & Jan 2021 and 0 otherwise
0.00 1.00 0.18 0.38 484,912 

War_DUM Dummy variable equal to 1 for the dates later than Feb. 24th 2022 and 0 otherwise 0.00 1.00 0.55 0.50 484,912 

GDP Gross domestic product (GDP) -20.32 16.78 0.76 0.99 484,912 

unemployment rate Country based Unemployment rateTotal, % of labour(Monthly) 2.70 16.50 9.21 4.30 484,912 

Inflation Inflation as measured by the consumer price index.(CPI monthly Growth) -1.68 21.84 6.89 6.69 484,912 

HH debt Household Debt Service Payments as a Percent of Disposable Personal Income 36.90 256.86 84.14 34.07 484,912 

Stcok Mkt index Dow Jones EURO STOXX indices - Benchmark - Broad Index 308.5 478.7 422.9 38.8 484,912 

Death_cases
Number of WHO reported daily COVID-19 related deaths in country i at time t 

(Monthly acc.)
0 121,852 60,941   50,473   484,912 

Post Loan

In Recovery Recovery plan for problematic loans 0.00 1.00 0.07 0.26 484,912 

Extendable schedule
Dummy variable representing the restructuring of a loan. Equal to 1 if the original 

maturity date of the loan has been increased by more than 60 days, 0 otherwise
0.00 1.00 0.78 0.42 484,912 

Buyback Dummy variable Equal to 1 if the loan uses buyback guarantee, 0 otherwise 0.00 1.00 0.65 0.48 484,912 

Loan Originator Status Timing every 3 Months before loan maturation

Summary Statistics



Chapter 3: Evolutionary-Based Ensemble Feature Selection Technique for Dynamic Application-Specific Credit 

Risk Optimization in FinTech Lending 

 163 

Table F.2. An Empirical Comparison of Individual and Homogenous Ensemble Algorithms_ Post–Loan 

Repayment Period 

 
 

Table F.3. Ensemble of collective learning from heterogeneous individual and ensemble algorithms 

 

Table F.4. EFSGA prediction performance based on different risk-taking scenarios – Post-Loan repayment 

prediction 

 

 
Fig. F.1. Post-loan repayment prediction result by EFSGA 

Algorithm Accuracy Recall PrecisionSpecificity FBScore B.Accuracy Time(s)

80.85 74.22 83.01 84.23 75.82 79.22 0.32

81.25 73.58 86.24 88.96 75.81 81.27 4.2

1 77.64 77.65 76.01 77.85 74.10 77.75 149

7 78.74 76.54 77.64 79.64 77.73 78.09 152

9 79.75 76.28 79.60 81.44 76.92 78.86 52

Adaptive Neuro-Fuzzy 

Inference System (ANFIS)

Membership 

simulations
3 79.80 75.92 79.44 78.65 76.60 77.29 2050

Linear 85.38 71.51 86.97 88.23 74.15 79.87 3150

RBF 79.50 75.86 84.13 85.09 77.38 80.48 210

Polynomial 52.44 57.15 65.56 83.08 58.65 70.12 3780

 Multi-Layer Perceptron (MLP) Hidden layers [35 20 5] 76.94 75.32 76.04 78.42 75.47 76.87 18

[25 5 15] 78.29 75.68 87.24 88.20 77.45 81.94 1270

76.82 79.73 77.29 78.95 79.23 79.34 54

Ensemble Algorithms
Random Forest           

[NumTree, #100]
Bagging 77.08 76.85 79.13 80.99 77.30 78.92 567

Tree LogitBoost 77.98 77.19 80.64 82.56 77.86 79.87 256

Tree TotalBoost 73.95 73.05 72.47 74.76 72.94 73.91 4835

Tree AdaBoostM1 78.30 76.26 81.01 82.39 77.16 79.32 287

Specification 

Post-Loan Repayment Period

Standard Classification Imbalanced Classification

Linear Discriminant Analysis (LDA)

Naïve Bayesian (NB)

K-Nearest Neighborhood 

(KNN) K

Support Vector Machine (SVM)

Decision Tree (DT)

Algorithm Accuracy Recall Precision Specificity FBScore B.Accuracy Time(s) Gen. ObjF

Loan Allocation Period 75.26 70.02 78.56 77.88 73.29 73.03 226 0.274

Post Loan Repayment Period 78.92 76.26 81.27 82.65 76.78 78.36 258 0.223

Evaluation Metrics

Ensemble of the 

collective base learners 

Standard Classification Imbalanced Classification

Specification 

Algorithm Specification Accuracy Recall Precision Specificity FBScore B.Accuracy Time(s) Gen. ObjF
Decision 

Threshold

Scenario no.1 71.22 92.54 63.57 75.01 84.81 83.78 55 0.316 0.100

Scenario no.2 76.05 87.02 71.33 74.69 83.35 80.86 75 0.181 0.130

Scenario no.3 82.350 83.48 80.31 81.31 82.83 82.40 51 0.185 0.210

Evaluation Metrics

Standard Classification Imbalanced Classification

EFSGA               
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Table F.5. Optimized weights of each ML classifier by GA based on the genetic objective function 

 

 

 

 
 

 

 

 

 

Table F.6. Feature Importance Scores from Genetic Algorithm Optimization 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The EFSGA model effectively extracts valuable features and outperforms other methods, 

significantly reducing the number of features. The key findings are as follows: 

 Loan Specific Characteristics: Essential factors, such as loan maturity and interest rates, carry 

significant weight for classifiers. Our analysis reveals a notable correlation: borrowers opting for 

higher loan amounts (averaging 40% higher) and longer loan terms generally face elevated 

interest rates (approximately 10% higher) and an increased propensity for default. Loan purpose 

is another determinant; invoice financing and pawnbroking loans present the lowest risk, while 

business and car loans bear the highest risk, with default rates exceeding 75% and 69%, 

respectively. The loan originator, Creditstar, primarily offers various short-term loans (mostly 

less than one year), with only approximately 25% classified as favorable. A more appealing 

option could be Everest Finanse, exhibiting a superior rate of non-delinquent short-term loans. 

Additionally, riskier borrowers tend to exhibit higher loan-to-value (LTV) ratios. Examining the 

binary variable "Buyback," 65% of loans entail the buyback obligation, with 70% classified as 

Algorithm Specification LDA NB NN KNN ANFIS SVM-RBF MLP DT LogitBoost AdaBoostM1

Scenario no.1 0.05 0.02 0.06 0.06 0.12 0.15 0.13 0.18 0.13 0.08

Scenario no.2 0.06 0.07 0.07 0.08 0.10 0.12 0.13 0.12 0.14 0.12

Scenario no.3 0.07 0.09 0.05 0.08 0.10 0.11 0.13 0.12 0.14 0.11

Solution W: Optimized Weights of the Ensemble Model

EFSGA

Attributes

NN KNN DA NB DT

TTL # 14  17   15  16  14       

Loan Chracteristics

Loan Type 3 1 1 1

Loan Rate% 5 1 1 1 1 1

Term 4 1 1 1 1

Initial LTV 3 1 1 1

LTV 2 1 1

Initial Loan Amount 5 1 1 1 1 1

Loan Originator 3 1 1 1

Loan Originator Status 4 1 1 1 1

Collateral 3 1 1 1

Mintos Risk Score 3 1 1 1

Macroeconomic indicators

Covid_DUM 4 1 1 1 1

War_DUM 3 1 1 1

GDP 5 1 1 1 1 1

unemployment rate 4 1 1 1 1

Inflation 5 1 1 1 1 1

HH debt 3 1 1 1

Stcok Mkt index 2 1 1

Death_cases 3 1 1 1

Post Loan

In Recovery 3 1 1 1

Extendable schedule 2 1 1

Buyback 4 1 1 1 1

Loan Originator Status 3 1 1 1

Feature Selection by ML Classifiers
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good borrowers and 30% categorized as riskier. Similar trends are observed in loans with an 

"extendable schedule." Mintos' estimated credit scores show that 69% fall into the mid-risk 

range, 16% in the low-risk range, and 15% as Score Withdrawn (SW). Significantly, the default 

risk does not necessarily increase as Mintos' estimated loan risk transitions from the low to 

medium-risk range. 

 Macroeconomic Variables and Default Risk: The primary drivers of default rates encompass 

elements tied to actual economic activity, inflation rates, and GDP. Notably, the impact of 

European stock market indexes on credit risk is less pronounced compared to our observations 

in the US. More precisely, our analysis reveals that a decline in GDP is associated with an 

increase in default probabilities within the Euro area, mirroring a similar pattern observed for 

the inflation rate. This aligns with well-established findings in the existing literature. The effect 

of stock market indexes varies across sectors, prompting scrutiny regarding its effectiveness in 

elucidating credit quality trends in the present dataset. 

 COVID‑19 Pandemic Risk and Default Risk: While a limited number of studies have delved into 

early-stage implications of the pandemic on risk levels and defaults in FinTech lending markets 

(Baig et al., 2020; Demirguc-Kunt et al., 2020b; Najaf et al., 2021), our study extends the horizon 

(2018–2023) to capture the full extent after the easing of government restrictions. The 

pandemic's influence on credit risk becomes evident by late 2021 as short-term liquidity 

challenges transform into insolvency for businesses and households. Our analysis reveals a 

delayed yet impactful rise in default risk from the second half of 2021, persisting until the first 

quarter of 2022. Borrower risk profiles notably deteriorated during the pandemic, with the two 

pandemic risk proxies (Covid_DUM and Death_cases) consistently selected by classifiers. 

Specifically, the surge in COVID-19-related deaths significantly increases the likelihood of 

default. The probability of default, late payments, and the inclusion of 'buyback' guarantees for 

loans increases from 22% pre-pandemic to 26% post-pandemic. We emphasize a decline in loan 

quality amid the pandemic, with the loan ratings shifting from low risk to the middle to near low-

risk range (8.3 to 6.8). It can be asserted that the decrease in loan ratings inherently leads to 

changes in default or overdue loans. Furthermore, we uncover variations in the magnitude of 

COVID-19 risk impact based on borrower credit score and country, providing nuanced insights 

into the evolving landscape of default risk in Europe. 

 Effect of Russia–Ukraine War on Default Risk: Following the Russia-Ukraine invasion, we 

observed a notable uptick in default risk during the first six months, as opposed to the preceding 

period. Our analysis reflects a gradual change in defaulted loans, instances of significant 

repayment delays, and the use of a buyback guarantee. The overall incidence has increased from 

20% before the invasion to 23% after, with some countries experiencing rates surpassing 40%. 
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General Conclusion  

 

 

 This thesis aims to investigate the complex interplay between bank opacity, the role of financial 

analysts, and risk optimization within the banking and FinTech sectors. It explores how opacity 

influences stability, how financial analysts can both mitigate and exacerbate risks in different 

market environments, and introduces innovative approaches to credit risk management in 

FinTech lending. Through these objectives, the research seeks to provide policymakers and 

financial institutions with actionable insights to foster systemic resilience in an increasingly 

interconnected financial landscape. 

The findings challenge the traditional perception of financial analysts as purely stabilizing 

agents in the financial ecosystem, revealing a dual role where analysts, especially in opaque 

institutions, can inadvertently amplify risk. This thesis identifies specific conditions—such as 

economic uncertainty and market overvaluation—under which analyst coverage may heighten 

instability rather than reinforce discipline. By highlighting these dynamics, the research calls 

for a more nuanced regulatory approach, recognizing the situations where analysts might 

unintentionally serve as catalysts for risk. Furthermore, the thesis underscores the often-

overlooked systemic implications of opacity in financial institutions. Rather than being a 

localized issue, opacity has far-reaching consequences that, when compounded by market 

pressures, can destabilize entire financial systems. The findings suggest a need for enhanced 

transparency measures and adaptive regulatory frameworks capable of responding to evolving 

market conditions, thereby minimizing the destabilizing potential of opacity across highly 

opaque sectors. 

The research also sheds light on the implications of dividend policies in opaque banks, 

revealing that excessive payouts can exacerbate the negative impact of opacity, particularly 

within U.S. markets. This insight suggests that dividend policies should be reconsidered as 

regulatory tools, as they may not only signal financial strength but also indicate vulnerability 

in certain contexts. Policymakers are encouraged to view dividend restrictions as a strategic 

mechanism to mitigate instability where opacity and market pressures converge. 

The comparative analysis of financial analysts’ behavior across the U.S., Europe, and Asia 

illustrates significant regional variations in forecasting accuracy, boldness, and career 
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motivations. These differences underscore the importance of region-specific regulatory 

approaches that address the distinct incentives, experience levels, and affiliations influencing 

analysts’ behaviors. Such tailored oversight can help mitigate the potential risks of overly 

optimistic or bold forecasts that may prioritize career advancement over market discipline, 

ensuring that the regulatory environment aligns with the unique characteristics of each region’s 

financial landscape. 

In the FinTech sector, this thesis introduces the EFSGA model, a dynamic, evolutionary-

based ensemble learning technique tailored for real-time credit risk optimization. By integrating 

genetic algorithms with machine learning, EFSGA provides adaptive solutions to the specific 

challenges of FinTech lending, such as unbalanced datasets and rapidly shifting risk profiles. 

This model demonstrates the potential of evolutionary-based algorithms to enhance credit risk 

management, setting a foundation for future research in machine learning applications within 

finance and underscoring the value of adaptable frameworks that can meet evolving market 

needs. 

Ultimately, this research bridges traditional banking and FinTech risk management, 

proposing that key principles such as transparency and market discipline can be adapted to 

bolster stability in FinTech platforms. This cross-sector perspective supports a unified 

regulatory approach that addresses both traditional and digital financial institutions, fostering 

systemic stability through a holistic framework. As a crucial recommendation, the thesis 

advocates for transparency as a cornerstone of financial stability. Opacity not only obscures 

risks but also creates vulnerabilities to market shocks, making transparency essential in an 

interconnected global financial system. This emphasis on transparency calls for policy reforms 

at both national and international levels, ensuring that financial stability is underpinned by clear, 

reliable, and comprehensive information across diverse sectors. 
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Abstract 

 

 

This thesis examines the interplay between bank opacity, financial analyst influence, and risk 

optimization in banking and FinTech. It comprises three studies exploring systemic stability, analyst 

behaviors, and innovative credit risk management tools. Chapter one focuses on U.S. and European 

banks, demonstrating how opacity, measured via analyst forecast errors and dispersion, exacerbates risk, 

particularly in smaller, opaque U.S. banks. Analyst coverage amplifies market sensitivity to negative 

signals, while high dividend payouts intensify opacity-driven risks. Chapter two analyzes global 

forecasting behaviors, revealing that experience, portfolio breadth, and regional incentives shape 

accuracy and boldness. U.S. analysts show accuracy and boldness, while European analysts prioritize 

boldness, often sacrificing precision. Chapter three introduces EFSGA, an evolutionary-based ensemble 

learning model for dynamic credit risk optimization in FinTech, balancing accuracy and interpretability. 

This thesis advances understanding of opacity, analyst behavior, and adaptive risk assessment, offering 

critical insights for resilience in modern finance. 

 

 

 

Résumé  

 

 

Cette thèse explore l’interaction entre l’opacité bancaire, l’influence des analystes financiers et 

l’optimisation du risque dans les secteurs bancaire et FinTech. Le premier chapitre révèle que l’opacité, 

mesurée par les erreurs et dispersions des prévisions des analystes, accroît les risques, notamment dans 

les petites banques opaques américaines, où la couverture par les analystes amplifie la sensibilité du 

marché. Le deuxième chapitre analyse le rôle des analystes à l’échelle mondiale, montrant que 

l’expérience, les portefeuilles et les incitations régionales influencent précision et audace des prévisions. 

Enfin, le troisième chapitre introduit EFSGA, un modèle d’apprentissage évolutif pour l’optimisation 

dynamique du risque de crédit dans les FinTech, équilibrant précision et interprétabilité. Cette thèse 

éclaire l’impact de l’opacité et des pressions des analystes sur la stabilité financière, tout en proposant 

des outils innovants pour gérer les risques dans les marchés modernes. 

 


