Thèse soutenue

Reconstruction d'images pseudo-saines à l'aide de modèles génératifs profonds pour la détection d'anomalies liées à la démence

FR  |  
EN
Auteur / Autrice : Ravi Hassanaly
Direction : Olivier ColliotNinon Burgos
Type : Thèse de doctorat
Discipline(s) : Sciences et technologies de l'information et de la communication
Date : Soutenance le 30/04/2024
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Centre de recherche de Paris (Paris)
Jury : Président / Présidente : Jean-François Mangin
Rapporteurs / Rapporteuses : Carole Lartizien, Shadi Albarqouni

Résumé

FR  |  
EN

La neuroimagerie est devenue un outil essentiel dans l'étude des marqueurs de la maladie d'Alzheimer. Cependant, l'analyse de ces images complexes provenant de différentes modalités d'imagerie cérébrale reste un défi majeur pour les cliniciens. Pour surmonter cette difficulté, les méthodes de deep learning ont émergé comme une solution prometteuse pour l'analyse automatique et robuste des données de neuroimagerie. Dans cette thèse, nous explorons l'utilisation de modèles génératifs profonds pour la détection d'anomalies associées à la démence dans les données de tomographie par émission de positons au 18F-fluorodésoxyglucose (TEP au FDG). Notre méthode repose sur le principe de la reconstruction pseudo-saine, où nous entraînons un modèle génératif à reconstruire des images saines à partir de données pathologiques. Cette approche présente l'avantage de ne pas nécessiter de données annotées, qui sont longues et couteuses à acquérir, ainsi que d'être généralisable à différents types d'anomalies. Nous avons choisi d'implémenter un autoencodeur variationnel (VAE), un modèle simple mais qui a fait ses preuves dans le domaine du deep learning. Cependant, analyser la performance de nos modèles génératifs sans disposer de données labellisées ou de cartes d'anomalies mène à une évaluation incomplète. Pour résoudre ce problème, nous avons mis en place un cadre d'évaluation basé sur la simulation d'hypométabolisme dans les images de TEP au FDG. Ainsi, en créant des paires d'images saines et pathologiques, nous sommes en mesure d'évaluer la capacité du modèle à reconstruire des images pseudo-saines. De plus, cette méthodologie nous a permis de définir de nouvelles métriques pour évaluer la qualité des reconstructions générées par les modèles génératifs. Le cadre d'évaluation a rendu possible une étude comparative sur une vingtaine de variantes du VAE dans le contexte de la reconstruction pseudo-saine de TEP au FDG. Cela nous a permis d'identifier les modèles les plus performants pour la détection des anomalies liées à la démence. Enfin, plusieurs contributions significatives ont été apportées à des logiciels open-source. Un pipeline de traitement d'images TEP a été intégré au logiciel Clinica. De plus, cette thèse a donné lieu à de nombreux apports au logiciel ClinicaDL, avec notamment l'amélioration de sa structure, l'ajout de nouvelles fonctionnalités, la maintenance du logiciel, ou encore la participation à la gestion du projet.