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Chapitre 1 – Introduction

The main objective of this thesis is to study numerical approximation methods for
different classes of mean field games.
The theory of mean field games, abbreviated as MFG, offers the possibility to analyze
systems involving a multitude of interacting participants. In this framework, players
are considered indistinguishable and rational. Each of them pursues a goal and acts
optimally to achieve it while facing the presence of other players. Specifically, interactions
among players occur exclusively through couplings that depend on measures induced
by other participants, such as the measure induced by their state or their control actions.
The main idea of such a theory is to draw inspiration from statistical physics, bor-
rowing the general principle of a mean field approach to describe equilibriums in
a system of many interacting particles, such as the stars in a galaxy or subatomic
particles (see e.g [102]).
In classic game theory, the focus is on Nash equilibria with a finite number of players.
The applications of Nash equilibria with a large number of players are numerous and
varied, including economics, population dynamics, social networks, finance, and the
economics of fossil and renewable energies. However, their theoretical analysis is often
complex, and their numerical solution is challenging or even impossible due to the large
number of players. Mean field game theory simplifies the study of the statistical behavior
of players by transitioning to an infinite number of players. Thus, the notion of mean field
equilibrium is justified as the limit, as N tends to infinity, of Nash equilibria for games
with N players, assuming that players are symmetrical and rational.
Mean field game theory is a relatively recent field that emerged in the years 2005-2006.
It is the result of independent work conducted by Jean-Michel Lasry and Pierre-Louis
Lions, as well as by Minyi Y. Huang, Peter E. Caines, and Roland E. Malhamé.

1.1 The mean field games theory

1.1.1 N -player games

We introduce here the most straightforward mathematical framework. In the context of
a differential game, time and space variables are considered continuous. The number
of players is represented by N > 1, and the time horizon is denoted as T > 0. We
denote by P(Rd) the space of probability measures on Rd.
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Chapitre 1 – Introduction

Each player, denoted as i ∈ {1, 2, . . . , N}, has a variable state X i(t) that follows a
stochastic dynamics in the time interval [0, T ]. This process can be described by a
stochastic differential equation:

dX i(t) = αidt+
√
2νdW i(t) for t ∈]0, T [ , X i

0 = xi ∈ Rd,

where ν ≥ 0, (W 1, . . . ,WN) is a vector of independent Brownian motions, and αi

represents the control process chosen by player i. In what follows, we consider as
admissible controls those in feedback form and such that X i(t) is well defined.
Each player with index i seeks to minimize an individual cost, given by:

J(αi, (αj)j ̸=i) = E
[∫ T

0

L(X i
t , α

i
t) + F (X i

t ,m
i
t)dt+G(X i

T ,m
i
T )

]
. (1.1.1)

Here, L : Rd × Rd → R and F : Rd × P(Rd) → R represent the instantaneous cost
functions, G : Rd × P(Rd) → R is the final cost function, and mi

t :=
∑

j ̸=i δXj
t

is the
empirical average of other players’ strategies at time t.

Definition 1.1.1 A Nash equilibrium (in closed loop) of the N -player system described
above is a N -tuple (α1, . . . , αN ) of measurable functions from [0, T ]× (Rd)N to Rd, such
that:

J
(
αi, (αj)j ̸=i

)
≤ J

(
α, (αj)j ̸=i

)
, (1.1.2)

for all i ∈ 1, . . . , N and α : [0, T ]× (Rd)N → Rd measurable.

In this context, Nash equilibrium describes the configuration where each player’s chosen
strategy αi is optimal given the strategies chosen by all the other players (αj)j ̸=i.
The condition J(αi, (αj)j ̸=i) ≤ J(α, (αj)j ̸=i) for every admissible control α highlights that,
at this equilibrium, no player has an incentive to unilaterally deviate from her/his strategy.

Define the Hamiltonian of the N−players system as the (modified) Legendre trans-
form of L w.r.t α, i.e.

H(x, p) = sup
α∈Rd

{
− ⟨p, α⟩ − L(x, α)

}
for x, p ∈ Rd.
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Chapitre 1 – Introduction

Then, the Nash system with N players is defined by the following equations:
−∂tuN,i − ν

N∑
j=1

∆xjuN,i +H(xi, DxiuN,i) +
∑
j ̸=i

DxiuN,iHp(x
j, DxiuN,j) = F (xi,mN,i

x )

uN,i(T, x) = G(xi,mN,i
x ),

(1.1.3)
where uN,i : [0, T ] × (Rd)N → R and mN,i

x =
∑
j ̸=i

δxj for i ∈ {1, . . . , N}.

When a solution to system (1.1.3) exists and is regular, a Nash equilibrium is given by
the control functions αi(t, x) = −Hp(x,DxiuN,i(t, x)), and, in this case, the stochastic
equation satisfied by the state of a player becomes:

dX i
t = −Hp(x,DxiuN,i(t, x))dt+

√
2νdW i

t , X i
0 = xi ∈ Rd.

When players use these controls, they achieve their optimal cost uN,i, also called
value function.
System (1.1.3) consists of N coupled Hamilton-Jacobi equations. For a detailed study of
the Hamilton-Jacobi equations and the framework in which they are well-posed, we refer
to the works of M. G. Crandall and P. L. Lions [70], M. Bardi and I. Capuzzo-Dolcetta
[23] and G. Barles [26] on viscosity solution theory. For a specific study of the system
(1.1.3), we refer to the works by A. Bensoussan and J. Frehse [29], [30].
The analysis of system (1.1.3) is complicated due to the coupling between the equations.
Furthermore, the numerical approximation of its solutions is an impossible task with
classical methods if N is large. Finally, similar to statistical physics, the dependency
of data on the empirical mean and the symmetric nature of the system suggest the
transition to the limit as N → ∞.
This idea was the basis of the mean field game theory, which was simultaneously
developed in the seminal works of Jean-Michel Lasry and Pierre-Louis Lions [111]–
[113] on the one hand, and Minyi Y. Huang, Peter E. Caines, and Roland E. Malhamé
[97], [99] on the other hand.

1.1.2 The mean field games system

Let us introduce the mean field games system that describes the limit game of the
differential games described above when the number of players tends to infinity.
The trajectory X(t) of a typical player whose initial condition is x ∈ Rd is determined
by the following stochastic differential equation (SDE):

dXt = αtdt+
√
2νdWt, X0 = x, (1.1.4)
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Chapitre 1 – Introduction

where (Wt)t∈[0,T ] is a standard d−dimensional Brownian motion and (αt)t∈[0,T ] is the con-
trol.
Given a forecast (m(t))t∈[0,T ] ⊂ P(Rd) of the time evolution of the distribution of the
population, the aim of a typical player is to minimize a cost having the form

J(α,m) = E
[∫ T

0

L(αt, Xt) + F (Xt,m(t)) dt+G(XT ,m(T ))

]
. (1.1.5)

The value function u : [0, T ] × Rd → R is defined as

u(s, x) = inf
(αt)t∈[s,T ]

E
[∫ T

s

L(αt, Xt) + F (Xt,m(t))dt+G(XT ,m(T ))

]
, (1.1.6)

where (Xt)t∈[0,T ] is solution to (1.1.4), Xs = x, and the infimum is taken over all adapted
controls (αt)t∈[s,T ]. The value function satisfies the following dynamic programming
equation: for any s ∈ [0, T [, ε ∈]0, T − s[, we have

u(s, x) = inf
(αt)t∈[s,T ]

E
[∫ s+ϵ

s

L(αt, Xt) + F (Xt,m(t))dt+ u(Xs+ϵ, s+ ε)

]
. (1.1.7)

From the dynamic programming equation, we can deduce that the value function
satisfies the Hamilton-Jacobi-Bellman (HJB) equation (see e.g [134, Chapter 4]): −∂tu− ν∆u+H(x,Dxu) = F (x,m(t)) in [0, T ]× Rd,

u(T, x) = G(x,m(T )) in Rd.
(1.1.8)

Under suitable assumptions, the value function u is the unique solution that satisfies
the (HJB) equation (1.1.8) in the viscosity sense (e.g see [23]). The optimal control for
the problem (1.1.5) can be expressed in terms of the value function as

α∗(x, t) = −DpH(x,Dxu(x, t)).

We now discuss the evolution of the population density. Denote by m0 ∈ P(Rd) the
initial distribution of states for our system and suppose that all the agents implement
their optimal control. Then the trajectory of a typical player whose initial condition is
distributed as m0 is governed by the following SDE

dXt = −DpH(Xt, Dxu(t,Xt))dt+
√
2νdWt, L(X0) = m0. (1.1.9)

where for every random variable Y, L(Y ) represents it’s law. We denote by m̃(t)

the distribution of the players at time t. Since m̃(0) = m0, it follows from (1.1.9) that
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Chapitre 1 – Introduction

{m̃(t) | t ∈ [0, T ]} solves the following Fokker-Planck equation: ∂tm̃− ν∆m̃− div (m̃DpH(x,Dxu) = 0

m̃(0, ·) = m0 ∈ P(Rd).
(1.1.10)

In an equilibrium state, the agents’ anticipation m(t) of the distribution aligns with the
actual distribution m̃(t), i.e

m̃(t) = m(t) for all t ∈ [0, T ]. (1.1.11)

Hence, the equilibrium in a mean field game is characterized by all pairs (u,m) that
simultaneously satisfy the coupled HJB and Fokker-Planck equations. In other words,
(u,m) is the solution to the mean field game system

−∂tu− ν∆u+H(x,Dxu) = F (x,m(t)) in (0, T )× Rd,

∂tm− ν∆m− div(DpH(x,Dxu)m) = 0 in (0, T )× Rd,

u(T, x) = G(x,m(T )) in Rd,

m(0, x) = m0(x) in Rd.

(1.1.12)

System (1.1.12) introduces an additional complexity: it is no longer an ordinary evolution
system where time progresses in a single direction. Indeed, we can see that the
(HJB) equation is backward in time and the Fokker-Planck equation is forward in time.
However, this system possesses a distinctive structure: the Fokker-Planck equation
can be viewed as the dual of the linearized Hamilton-Jacobi-Bellman equation. This
particular structure facilitates the analysis of solutions to (1.1.12), providing a priori
estimates, among other advantages.

Remark 1.1.1 Two types of coupling are considered in the mean field game literature:
• Nonlocal Coupling (F = F (x,m(t))): in this case, F (x, ·) depends on the whole

distribution m(t) of the population at time t.
• Local Coupling (F = F (m(t, ·))): in this case, the coupling depends on the density

of the population which explains its local character.
We avoid delving into the case of first-order models (ν = 0) with local coupling because
it’s only understood under specific structural conditions (e.g see [49], [120]).
The existence of a solution that satisfies the MFG system (1.1.12) is established by
employing a fixed point argument in the reasoning process. Indeed, let u[m] (for a given
m ∈ P(Rd)) be the solution to the HJB equation (1.1.8), then define the map T as:

T (m) = m̃,
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Chapitre 1 – Introduction

where m̃ is the solution to the Fokker Planck equation (1.1.10) with u = u[m]. Thus, the
existence of MFG solution is equivalent to find a fixed point m for the map T .
Arguing similarly, one can see the mean field game system (1.1.12) as a fixed point
point problem on u. A summary on existence results for solutions to (1.1.12), un-
der structural assumptions over H,F and G, can be found, for instance, in [5], [51]
and the references therein.

Differently from the stochastic case (ν ̸= 0), the deterministic case (ν = 0) requires
a particular attention because one does not expect to obtain the existence of smooth
solutions. We will delve into these two notions of solutions in subsequent subsections.
However, for existence results of solutions to the system (1.1.12) with ν = 0, one can
refer to [46], [49], [54], [79], [91], [120]. Regarding uniqueness, a monotonicity criterion
introduced by Lasry and Lions [112] has played an important role in previous works.

Definition 1.1.2 We say that functions F and G are monotone in the sense of Lasry-
Lions, if for every t ∈ [0, T ] and m1,m2 ∈ P(Rd),∫

Rd

F (x,m1)− F (x,m2) d(m1 −m2)(x) ≥ 0, (1.1.13)∫
Rd

G(x,m1)−G(x,m2) d(m1 −m2)(x) ≥ 0. (1.1.14)

The impact of the theory

The impact of mean field games is substantial, especially in the context of numerical
approximations for partial differential equations (PDEs). These approximations offer cost-
effective computations for equilibria in complex systems. Additionally, mean field games
have demonstrated significant applications across diverse fields, including finance
[53], [64], [82], [88], [107], autonomous vehicles [95], [132], energy production and
management [14], [68], [74], [103], epidemic control [22], [110], [118], macroeconomic
models [11], [73], [75], [90], as well as in security and communication [105], [123].
We refer to the monograph [85] for an overview on economic models and mean
field games.

It is also insightful to understand how the system (1.1.12) can be regarded as the
limit, in a certain sense, of the Nash system (1.1.3) when the number of players
tends towards infinity.
The fact that a solution to the mean field game system provides a good approximation of
a Nash equilibrium for N players when N is large has been extensively discussed
in [59], [96], [98], [106].
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Chapitre 1 – Introduction

Considering the convergence of Nash equilibria towards solutions of the mean field game
system as the number of players tends to infinity, a lot of work has been undertaken
to delve into this area. In [50], the authors investigate the master equation, which
is a non-local, nonlinear partial differential equation posed in the infinite-dimensional
space of probability measures. The system (1.1.12) can be derived from the master
equation using the method of characteristics in an infinite-dimensional setting along
the distribution measures of the states. Consequently, the existence and uniqueness
of a regular solution to the master equation are closely linked to those of the system
(1.1.12) and its stability concerning the initial condition m0. It is demonstrated in [50]
that, under certain assumptions, a solution to the master equation exists, is unique
and regular, and it constitutes the limit of the solutions of the system (1.1.3) (see [50,
Theorem 2.4.8]). A similar result is presented in [61, Theorem 6.28], allowing treatment
of the linear-quadratic case. However, the previous results rely on the uniqueness of
solutions to the system (1.1.12) Specifically, in the non-monotone case, the master
equation approach has not been shown to yield the desired convergence. D. Lacker
[108] proposes a probabilistic definition of solution to the mean field game system
and shows that when the control space is compact, Nash equilibria for N players
converge to such weak solutions.
In their article [79], Fischer and Silva prove the convergence of symmetric Nash equilibria
for N players to solutions of the mean field game in Lagrangian form for a class of first-
order finite horizon mean field games. They then establish a connection between these
Lagrangian solutions and those obtained through the usual mean field game system.

A brief

The main concepts concerning mean field games discussed this far are summarized
in Figure 1.1, and we refer to the survery [87], the lectures [5] and the monographs
[60], [61], [86] for a thorough overview on MFGs.

Except for a few specific cases, such as the linear-quadratic case [24], [92], mean
field game systems generally lack of explicit solutions, and hence they need numerical
methods for their resolution. In the following subsection, we present a concise overview
of the historical development of numerical methods for MFGs.
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N-players game

Mean field game

PDE system

Approximate equilibrium

N goes to infinity

Optimality conditions

Numerical methods

Figure 1.1: The MFG methodology.

1.1.3 Numerical methods

The study of numerical methods for solving mean field game system is an active area of
research due to the vast range of models and scenarios that have not been fully covered
yet. A discrete analogous of mean field games was proposed by Gomes, Mohr and
Souza in [84], where they have studied the existence of a Nash equilibrium via a fixed
point approach and investigated the long-term behavior of the game. For a review of nu-
merical methods to solve mean field game problems, the reader is referred to [7], [114].
Here, we provide a concise overview of some contributions.

Let us begin with the case of second order mean field games, i.e., when ν > 0 in
system (1.1.12):

• In [4], Achdou and Capuzzo-Dolcetta proposed a finite differences approximation
of (1.1.12). This discrete system preserves the main properties of the continuous
one. The convergence towards a solution to (1.1.12) has been established by
Achdou, Camilli and Capuzzo-Dolcetta in [2].

• In [58], Carlini and Silva, proposed a fully discrete semi-Lagrangian scheme and
proved convergence towards a solution to (1.1.12).
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• In a recent work, Cacace, Camilli, and Goffi proposed a policy iteration method for
separable Hamiltonians in [40]. In [116], an extension of this method to the case
of non-separable Hamiltonians is considered.

• Another approach based on numerical optimization methods for a specific case of
mean field games, known as variational (or potential) mean field games, involve
the use of augmented Lagrangian methods [27] and primal-dual methods [37],
[38].

• In [36], Bonnans et al. proposed a new finite differences scheme, relying on the
theta-method, for solving monotone second order mean field game system and
they show a convergence rate for their method.

• In [117], Lavigne and Pfeiffer proposed the generalized conditional gradient al-
gorithm, which is an extension of the Frank-Wolfe algorithm, to solve variational
second order mean field game problems.

Regarding the case of deterministic mean field games (ν = 0 in system (1.1.12)) we
have:

• A semi-discrete semi-Lagrangian scheme proposed by Camilli and Silva in [42].
Then a fully-discrete scheme has been proposed by Carlini and Silva in [57]. The
convergence of this approximation has been shown in the one dimensional case.
In addition, an extension of this scheme to deal with fractional and non-local
operators was proposed in [66], and an application to solve a price formation MFG
model has been accomplished in [20].

• In [80], [94], the authors propose a semi-Lagrangian scheme without interpolation,
leveraging on the specific structure of the dynamics and a relaxed definition of the
mean field games equilibrium.

• In [15], [89], Gomes et al. proposed gradient flow methods for solving deterministic
mean field games in infinite horizon. Their main idea is that the solution to the
system of PDEs can be recast as a zero of a monotone operator, and can thus be
found by following the related gradient flow.

• In [122], [126], approximations based on the Fourier method are employed.

Let us also mention that there has been a recent surge in interest in machine learning
techniques applied to mean field game problems, such as deep learning and rein-
forcement learning methods [19], [62], [63]. For an overview on learning methods for
mean field games, we refer to [115].

As mentioned before, the first order mean field game system requires the definition
of a weaker notion of solution. In the next section, we provide a brief review of the
main properties of these systems.
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1.2 First order MFG systems

For a given m∗
0 ∈ Lp(Rd)(p ∈]1,∞]), a first order MFG system has the form

−∂tu+H(x,Dxu) = F (x,m(t)) in (0, T )× Rd,

∂tm− div(DpH(x,Dxu)m) = 0 in (0, T )× Rd,

m(0, x) = m∗
0(x) in Rd,

u(T, x) = G(x,m(T )) in Rd,

(1.2.1)

where we recall that F and G : Rd × P1(Rd) → Rd are the coupling terms and H is
the Hamiltonian given by

H(x, p) = sup
a∈Rd

(
⟨a, p⟩ − L(x, a)

)
for all x, p ∈ Rd, (1.2.2)

where L : Rd × Rd → R is of class C2.
Let us recall the definition of a solution (u,m) of (1.2.1) (see [111], [112]).

Definition 1.2.1 The pair (u,m) ∈ W 1,∞([0, T ]×Rd,R)×Lp([0, T ]×Rd,R) is a solution
of (1.2.1) if the first equation is satisfied in the viscosity sense, while the second one is
satisfied in the distributional sense.

We will recall the definition of viscosity solution later. We say m satisfies the continuity
equation in (1.2.1), in distribution sense, if for every test function φ ∈ C∞

c ([0, T ] ×
Rd,R) we have∫
Rd

φ(x, 0)m∗
0(x)dx+

∫ T

0

∫
Rd

[∂tφ(t, x)− ⟨Dxφ(t, x), DpH(x,Dxu(t, x))⟩]m(t, x)dxdt = 0.

(1.2.3)
The existence of solutions to the system (1.2.1) is ensured under assumptions on
couplings F,G, the Hamiltonian H, and the initial measure m∗

0. Before introducing our
assumptions, let us recall the definition of semi-concavity, which is an essential aspect
in the study of first order mean field game systems.

Definition 1.2.2 We say that a function v : Rd → R is semi-concave if there exists
C > 0 such that

v(x+ y) + v(x− y)− 2v(x) ≤ C|y2| for all x, y ∈ Rd. (1.2.4)
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We assume the following:

(FG) Set h = F,G. We suppose that h continuous, bounded, and for every ζ ∈ P1(Rd),
h(·, ζ) satisfies the semiconcavity property (1.2.4) with C indepenedent of ζ .
Moreover, there exists C > 0 such that, for every x, y ∈ Rd and ζ ∈ P1(Rd),

|h(x, ζ)− h(y, ζ)| ≤ C|x− y|.

(L) For every x, a ∈ Rd, we have

L(x, a) ≤ C1(|a|2 + 1),

|DxL(x, a)| ≤ C2(1 + |a|2),

C3|b|2 ≤ ⟨D2
aaL(x, a)b, b⟩ for all b ∈ Rd,

⟨D2
xxL(x, a)y, y⟩ ≤ C4(1 + |a|2)|y|2 for all y ∈ Rd,

with Ci > 0 for i = 1, . . . , 4.

(IC) The initial condition m∗
0 satisfies supp(m∗

0) ⊂ B∞(0, C∗) for some C∗ > 0, where
supp(m∗

0) denotes the support of m∗
0.

Remark 1.2.1 Notice that we do not impose differentiability on F and G in assumption
(FG). Under assumption (L), it follows that H belongs to class C1. Additionally, this
assumption permits the consideration of Hamiltonians in the form

H(x, p) = κ(x)|p|2 + ⟨b(x), p⟩. (1.2.5)

Here, κ : Rd → R is a C2 function with bounded first and second order derivatives,
such that κ ≤ κ(x) ≤ κ for all x ∈ Rd, κ, κ ∈ (0,∞), and b : Rd → Rd is bounded, a C2

function, and possesses bounded first and second order derivatives.

Theorem 1.2.1 Assume (FG), (L) and (IC) and let p ∈ (1,∞]. Then system (1.2.1) ad-
mits a solution (u∗,m∗), in the sense of Definition 1.2.1, such thatm∗ ∈ C([0, T ];P1(Rd))∩
Lp([0, T ]× Rd) and, for C̃ > 0

∥m∗(t, ·)∥Lp(Rd) ≤ C̃∥m∗
0∥Lp(Rd) for all t ∈ [0, T ]. (1.2.6)

If, in addition, the monotonicity conditions (1.1.13)-(1.1.14) hold, and that, for all ζ ∈
P1(Rd), the functions F (·, ζ) and G(·, ζ) are differentiable, then (u∗,m∗) is unique.

Ahmad Zorkot| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

20



Chapitre 1 – Introduction

A proof of existence, under slightly different assumptions, can be found, for instance,
in [55, Section 1.3.4]. The Lp estimate (1.2.6) follows from the results of Chapter 2.

We present next the key properties of solutions to HJB and the continuity equations
under our assumptions within the MFG system (1.2.1). In our numerical approach to
solve (1.2.1), we will ensure that our scheme preserves these properties.

Let us start with the definition of viscosity solution to the HJB equation. Viscosity
solutions were introduced by Crandall and Lions [70] (also see Crandall, Evans, and
Lions [69]) for equations of the HJB type. This approach stemmed from a method called
vanishing viscosity, aiming to define a weak version of solutions suitable for nonlinear
partial differential equations. These weak solutions align with classical solutions if they
possess sufficient regularity. The HJB equation

−∂tu+H(x,Dxu(t, x)) = 0 in [0, T ]× Rd (1.2.7)

does not admit, in general, a smooth solution even for smooth Hamiltonians. Cran-
dall and Lions [70] showed that, as ε ↓ 0 the limit of smooth solutions {uε | ε > 0}
of the perturbed equation

−∂tuε +H(x,Dxu
ε(t, x)) = ε∆uε in [0, T ]× Rd

should satisfy a set of conditions which were used to define the notion of viscosity
solutions. A comparison principle was also shown under rather general assumptions,
implying the uniqueness of such a solution.

Definition 1.2.3 A function u ∈ C([0, T ]× Rd,R) is a viscosity solution of (1.2.7) if:
• u is a subsolution, meaning for every (t, x) ∈ [0, T ] × Rd and each test function
ϕ ∈ C1([0, T ]×Rd) such that u−ϕ has a strict maximum at a point (t∗, x∗), we have

−∂tϕ(t∗, x∗) +H(x∗, Dxϕ(t
∗, x∗)) ≤ 0.

• u is a supersolution, meaning for every (t, x) ∈ [0, T ]× Rd and each test function
ϕ ∈ C1([0, T ] × Rd), such that u − ϕ has a strict minimum at a point (t∗, x∗),

we have
−∂tϕ(t∗, x∗) +H(x∗, Dxϕ(t∗, x∗)) ≥ 0.
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Given µ ∈ C([0, T ];P1(Rd)), we consider the HJB equation−∂tu(t, x) +H(x,Dxu(t, x)) = F (x, µ(t)) for (t, x) ∈]0, T [×Rd,

u(x, T ) = G(x, µ(T )) for x ∈ Rd,
(HJB)

where H is given by (1.2.2).
Under assumptions (FG) and (L), it follows from [23], [71] that equation (HJB) admits
a unique viscosity solution u[µ]. Moreover, for every t ∈ [0, T [, x ∈ Rd

u[µ](t, x) = inf
α∈L2([t,T ];Rd)

∫ T

t

(
L(Xx,t[α](s), α(s)) + F (Xx,t[α](s), µ(s))

)
ds

+G(Xx,t[α](T ), µ(T ))

(1.2.8)

where Xx,t[φ](s) = x +
∫ s

t
α(r)dr.

We present now the main properties of u[µ].

Proposition 1.2.1 Let µ ∈ C([0, T ];P1(Rd)). Then, under assumptions (FG) and (L),
there exist CLip, Csc > 0, independent of µ, such that∣∣u[µ](t, x)− u[µ](t, y)∣∣ ≤ CLip|x− y| (1.2.9)

u[µ](t, x+ y)− 2u[µ](t, x) + u[µ](t, x− y) ≤ Csc|y|2, (1.2.10)

for all t ∈ [0, T ], x, y ∈ Rd.

Under (FG) and (L), we show the existence of an optimal control αt,x of the value
function u in (1.2.8). Thereafter, using (1.2.9), we show the existence of C > 0,
independent of (µ, t, x), such that

∥αt,x∥L∞([0,T ];Rd) ≤ C∗. (1.2.11)

And hence, by (1.2.11), u[µ] is also characterized by the HJB equation−∂tu(t, x) +Hb(x,Dxu(t, x)) = F (x, µ(t)) for (t, x) ∈ (0, T )× Rd,

u(x, T ) = G(x, µ(T )) for x ∈ Rd,
(1.2.12)

where
Hb(x, p) = sup

a∈B(0,C∗)

{
⟨a, p⟩ − L(x, a)

}
for all x, p ∈ Rd. (1.2.13)
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This reformulation of the HJB equation will allow us to simplify the analysis of the
scheme that we will discuss in section 1.4.

We now consider the continuity equation∂tm− div(mHp(x,Dxu[µ]) = 0 for (t, x) ∈ (0, T )× Rd

m(0, x) = m∗
0(x) for x ∈ Rd.

(C.E)

Proposition 1.2.2 Assume (FG), (L) and (IC). Then, (C.E) admits a solution m ∈
C([0, T ];P1(Rd)) ∩ Lp([0, T ]× Rd) in the sense of (1.2.3). Moreover, there exists C̃ > 0

such that
∥m(t, ·)∥Lp(Rd) ≤ C̃∥m∗

0∥Lp(Rd) for all t ∈ [0, T ]. (1.2.14)

If, in addition, for every t ∈ [0, T ], the functions F (·, µ(t)) and G(·, µ(T )) are differentiable,
then the solution m to (C.E) is unique.

We recall, again, that the Lp estimate (1.2.14) is a consequence of results presented in
Chapter 2 where we introduce a Lagrange-Galerkin scheme to solve (1.2.1). The main
argument to prove the convergence of this scheme is based on showing an estimate
of the form (1.2.14) for the discrete version of (C.E).

1.3 Our contribution

The main results of this thesis are divided into three chapters, each corresponding to a
different approach aimed to address a specific approximation of mean field game
problems.
In Chapter 2, we introduce a Lagrange-Galerkin discretization approach for first-order
mean field games and provide a convergence result for the scheme’s solutions in general
state dimensions. Additionally, in seeking an implementable version of the scheme, we
discuss its connections with previous contributions in the literature.
Beyond researchers focusing on the numerical approximation of mean field games,
this chapter might also appeal to those working on approximating continuity equations
involving irregular vector fields, and it has been published in 2023 on SIAM Journal
of numerical analysis [56].

In Chapter 3, our focus remains on the deterministic problem of mean field games,
but we consider a more general scenario. Here, the dynamics of a typical agent are
nonlinear with respect to the state variable and affine with respect to the control variable.
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Additionally, the cost functional exhibits polynomial growth concerning the state variable.
First we recall a relaxed definition of the MFG equilibrium based on a Lagrangian point
of view to the problem. Then, the MFG problem is approximated using a discrete-time
and finite state space MFG introduced by Gomes, Mohr and Souza [84]. To compute
solutions, we employ a fictitious play algorithm for solving our discrete MFG problem.
This algorithm converges under the assumption of monotonicity on the coupling terms.
This chapter builds upon the work of Hadikhanloo and Silva [94] and Gianatti and Silva
[80], extending their results to encompass scenarios with polynomial growth in data,
and it has been published in 2023 on Journal of dynamics and games [81].

Chapter 4 deals with solving (1.1.12) when ν > 0 and the coupling is local (see Remark
1.1.1) using Newton iterations. The Newton iterations are directly applied to continuous
mean field games, yielding a system of two coupled linear partial differential equations
to be solved at each iteration. Under some conditions on the date, it is shown in
[44] (see also [31] for the case of stationary MFG system) that the Newton iterations
exhibit quadratic convergence towards a solution to (1.1.12). We discretize the new
system of partial differential equations using two approaches: a finite difference scheme
and a semi-Lagrangian scheme. The main purpose of this chapter is to compare
these two approaches through numerical tests and it is still a work in progress with
E. Carlini and F. J. Silva.

We summarize in the following sections our main contributions.

1.4 A Lagrange-Galerkin scheme for first order mean

field games systems

We highlight here the key findings from Chapter 2, aiming to devise a convergent
numerical scheme for the first order MFG system in arbitrary dimensions. Our objective
is to formulate a scheme that preserves the fundamental properties of solutions to the
HJB and continuity equations discussed previously.

To achieve this, we propose a Lagrange-Galerkin scheme for the continuity equation
coupled with a semi-Lagrangian scheme for the HJB equation.
The Lagrange-Galerkin method, initially introduced in [100], [128], combines features of
both the method of characteristics and the finite element method. It involves discretizing
the space-time domain using finite elements to approximate the solution of the PDE while
simultaneously tracing characteristic trajectories to capture transport-related information.
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The semi-Lagrangian method was initially introduced for Vlasov-Poisson equations by
Cheng and Knorr in 1976 [65]. The monograph [76] presents a unified framework of
semi-Lagrangian strategies for approximating hyperbolic partial differential equations,
with a specific focus on HJB equations.

The relationship between semi-Lagrangian and Lagrange-Galerkin schemes has been
analyzed in [77], [78].

In the context of MFG theory, Carlini and Silva present in their paper [57] a fully discrete
semi-Lagrangian method for the first order MFG system with a quadratic Hamiltonian,
specifically H(x, p) = |p|2/2 for x, p ∈ Rd. Consequently, the corresponding MFG
system is expressed as follows:

−∂tu+ 1
2
|Du|2 = F (x,m(t)) in (0, T )× Rd,

∂tm(t, x)− div(mDu) = 0 in (0, T )× Rd,

u(T, x) = G(x,m(T )) in Rd,

m(0, x) = m0(x) in Rd.

(1.4.1)

In the proposed scheme, the HJB equation above is discretized using a semi-Lagrangian
approximation, while the continuity equation is approximated by a scheme that is dual
to a linearized version of the HJB equation scheme. A convergence result towards
a solution to (1.4.1) is established when d = 1.

The results concerning the semi-Lagrangian scheme for the HJB equation presented
in Chapter 2 follow a similar approach to those outlined in [57] and [76]. However, we
suppose that (FG), (L) and (IC) hold, so no differentiability assumption is imposed on
the functions F and G and also we can consider more general Hamiltonians.

Given µ ∈ C([0, T ];P1(Rd)), we first describe the semi-Lagrangian approximation of
u[µ], the viscosity solution to (HJB).
For this, let Nt, Ns ∈ N with Ns ≥ Nt. Define ∆t = 1/Nt and ∆x = 1/Ns as the time
and space steps, respectively. Moreover, let I∆t = {0, . . . , Nt}, I∗∆t = I \ {Nt}, and
define the space grid G∆x = {i∆x | i ∈ Zd}.
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The semi-Lagrangian scheme to approximate u[µ] constructed from the dynamic pro-
gramming principle (1.1.7) is given by: find {uk : G∆x → R | k ∈ I∆t} such that
uk,i = inf

a∈Rd
[∆tL(xi, a) + I1[uk+1](xi −∆ta)] + ∆tF (xi, µ(tk)), for all k ∈ I∗∆t, i ∈ Zd,

uN,i = G(xi, µ(T )) for all i ∈ Zd,

(1.4.2)
where I1 : G∆x → Rd is the interpolation operator defined by

I1[ϕ](x) =
∑
i∈Zd

β1
i (x)ϕi for all x ∈ Rd,

with ϕi = ϕ(xi) and {β1
i | i ∈ Zd} is a Q1 linear basis satisfying β1

i (xj) = δij for xj ∈ G∆x.
The scheme (1.4.2) is shown to be consistent, monotone, and stable. Given uk,i,
solution to (1.4.2), and (∆t,∆x) ∈]0,∞[2, let us set

u∆t,∆x[µ](tk, x) = I1[uk](x) for all k ∈ I∆t, x ∈ Rd.

We extend this definition to [0, T ] × Rd, by setting

u∆t,∆x[µ](t, x) = u∆t,∆x[µ](tk, x) if t ∈ [tk, tk+1[, k ∈ I∗∆t. (1.4.3)

Then, we show that u∆t,∆x[µ] possesses the key properties of the solution to the HJB
equation, namely a Lipschitz property and a discrete semi-concavity property. Indeed,
we show the existence of C̃Lip, C̃sc > 0 independent of (µ,∆t,∆x) such that∣∣u∆t,∆x[µ](t, x)− u∆t,∆x[µ](t, y)

∣∣ ≤ C̃Lip|x− y| for all t ∈ [0, T ], x, y ∈ Rd, (1.4.4)

and

u∆t,∆x[µ](t, x+ xi)− 2u∆t,∆x[µ](t, x) + u∆t,∆x[µ](t, x− xi)

≤ C̃sc|xi|2 for all t ∈ [0, T ], x ∈ Rd, i ∈ Zd. (1.4.5)

Let ρ ∈ C∞(Rd) with ρ ≥ 0 and
∫
Rd ρ(x) = 1. For ε > 0, let ρϵ(x) = ρ(x/ϵ)ϵd ∈ Rd and,

for ∆ = (∆t,∆x, ε) and t ∈ [0, T ], we define

u∆[µ](t, ·) = ρε ∗ u∆t,∆x[µ](t, ·). (1.4.6)

We show also that u∆[µ] preserve the Lipshitz property (1.2.9) and its Hessian sat-
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isfies the following estimate:

〈
D2

xu
∆[µ](t, x)y, y

〉
≤ C

(
1 +

(∆x)2

ε4

)
|y|2 for all t ∈ [0, T ], x, y ∈ Rd. (1.4.7)

We consider next the discretization of the continuity equation:∂tm− div(DpH(x,Dxu
∆[µ])m) = 0 in (0, T )× Rd,

m(0, x) = m0(x) in Rd,
(1.4.8)

where we recall that by (IC), m0 ∈ Lp(Rd) for some p ∈ (1,∞], and there exists
C∗ > 0, such that

supp(m0) ⊂ B∞(0, C∗). (1.4.9)

For s ∈ [0, T ), t ∈ [s, T ], and x ∈ Rd, set Φ∆[µ](s, t, x) = X(t), where X is the
unique solution ofẊ(r) = −DpH(X(r), Dxu

∆[µ](r,X(r))) a.e r ∈ (s, T ),

X(s) = x.

Under (FG), (L), (IC), (1.4.8) admits a unique solution m∆[µ] ∈ C([0, T ];P1(Rd)). More-
over, it follows from [18, Proposition 8.1.8] that, for every Borel function φ : Rd → R
with φ(Φ∆[µ](t, ·)) integrable, we have∫

Rd

φ(x)dm∆[µ](x) =

∫
Rd

φ(Φ∆[µ](t, x))dm0(x). (1.4.10)

For k ∈ I∗∆t and x ∈ Rd, let Φ∆
k [µ] be the explicit Euler approximation of Φ∆[µ](tk, tk+1, x),

i.e
Φ∆

k [µ](x) = x−∆tDpH
(
x,Dxv

∆[µ](tk, x)
)
. (1.4.11)

The semi-discrete approximation of (1.4.10) (see e.g [42]) is given by∫
Rd

φ(x)dmk+1(x) =

∫
Rd

φ(Φ∆
k [µ](x))dmk(x). (1.4.12)

Starting from this semi-discrete approximation, our goal is to find an approximation
of m∆[µ], denoted as M∆[µ], using a Galerkin projection, which preserves the main
properties of the solution m∆[µ] to (1.4.8). In other words, given finite element basis
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{βi | i ∈ Zd}, we consider approximation M∆[µ] having the form

M∆[µ](tk, x) =
∑
j∈Zd

mk,jβj(x), for all k ∈ I∆t, x ∈ Rd, (1.4.13)

where the constants {mk,j | k ∈ I∆t, j ∈ Zd} have to be determined. Since we do not
expect m∆[µ] to be regular, we set, for i ∈ Zd, βi := β0

i = IEi
, where

Ei = {x ∈ Rd | ∥x− xi∥∞ ≤ ∆x/2}.

In order to determine the constants mk,j, we replace mk and mk+1 in (1.4.12) by
M∆[µ](tk, ·) and M∆[µ](tk+1, ·), respectively, and, given i ∈ Zd, we take φ = βi to
obtain the following Galerkin-Lagrange scheme:

mk+1,i =
1

(∆x)d

∑
j∈Zd

mk,j

∫
Ej

β0
i (Φ

∆
k [µ](x))dx for all k ∈ I∗∆t, i ∈ Zd,

m0,i =
1

(∆x)d

∫
Ei

m∗
0(x)dx for all i ∈ Zd.

(1.4.14)

In order to provide an interpretation of the scheme, notice that the integral term in the
first equation of (1.4.14) can be written as∫

Ej

β0
i (Φ

∆
k [µ](x))dx =

∫
Rd

IEj∩Φ∆
k [µ]−1(Ei)(x)dx = Ld

(
Ej ∩ Φ∆

k [µ]
−1(Ei)

)
, (1.4.15)

where Ld denotes the Lebesgue measure in Rd. Figure 1.2 illustrates how is computed,
in dimension 2, the term (1.4.15) that multiplies mk,j in (1.4.14).
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Figure 1.2: The surface of the blue area is given by L2(Ej ∩ Φ∆[µ]−1(Ei)).

Remark 1.4.1 Plugging (1.4.15) in the first equation of (1.4.14) yields the scheme
in [127, Section 2.2]. Our primary findings regarding solutions to (1.4.14), outlined in
Chapter 2, stand apart from those in [127], [133]. As a result, the analysis in Chapter
2 complements the study conducted in [127], [133] for the approximation (1.4.14) of
continuity equations.

The (LG) scheme (1.4.14) is explicit, yielding a unique solution {mk,i | k ∈ I∆t, i ∈ Zd}.
Moreover, for each discrete time k ∈ I∆t, the set {mi,k | i ∈ Zd} defines a probability
measure over Rd which, as can be shown from (1.4.9), has a compact support.

The key point to prove the convergence of the discrete mean field game scheme is
to show that the LG scheme preserves the Lp uniform estimate (1.2.6). Indeed, given
constants {mk,i | k ∈ I∆t, i ∈ Zd} computed with (1.4.14), and extending M∆[µ], given
by (1.4.13), to [0, T ] × Rd by

M∆[µ](t, x) =

(
tk+1 − t

∆t

)
M∆[µ](tk, x) +

(
t− tk
∆t

)
M∆[µ](tk+1, x)

for all k ∈ I∗∆t, t ∈ [tk, tk+1), x ∈ Rd, (1.4.16)
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then, if ∆x = O(∆t) and ∆t = O(ε2), there exists C̃ > 0, independent of (∆, µ), such
that M∆[µ](t, ·) ∈ Lp(Rd) for all t ∈ [0, T ] and

∥M∆[µ](t, ·)∥Lp(Rd) ≤ C̃∥m0∥Lp(Rd).

The proof relies on the semi-concavity estimate (1.4.7).

Finally, the first order MFG system (1.2.1) is discretized as follows:

Find µ ∈ C([0, T ];P1(Rd)) such that µ = M∆[µ](tk, xi) for all k ∈ I∗∆t, i ∈ Zd.

(MFG∆)

We establish the existence of solutions to (MFG∆) under the condition that ∆t/ε is
sufficiently small, employing Brouwer’s fixed-point theorem. The convergence of (MFG∆)
is ensured in the general state dimension by the following theorem:

Theorem 1.4.1 Assume that (FG), (L) and (IC) hold. Let ∆n = (∆tn,∆xn, εn) be such
that, as n→∞, ∆xn/∆tn → 0, and ∆tn = O(ϵ2n). Consider the corresponding sequence
mn of solutions to equation (MFG∆n) and set un = u∆n [mn]. Then there exists (u∗,m∗),
solution to system (1.2.1), such that, up to a subsequence, the following hold:

1. (un)n∈N converges to u∗, uniformly over compact subsets of [0, T ]× Rd.

2. (mn)n∈N converges in C([0, T ];P1(Rd)) towards m∗. Moreover, the convergence
also holds weakly in Lp([0, T ] × Rd), if p < ∞, and weakly∗ in L∞([0, T ] × Rd), if
p =∞.

An implementable version of the scheme

As the LG scheme (1.4.14) involves certain integrals depending on discrete characteris-
tics of the equation, we approximate them using a method known as area weighting,
first introduced in [124]. The main idea of the area weighting technique is to replace,
for each k ∈ I∗∆t, the local nonlinear discrete flow Ei ∋ x 7→ Φ∆

k [µ](x) ∈ Rd defined
in (1.4.11), by the locally affine approximation

Ei ∋ x 7→ Φ
∆

k [µ](x) = x−∆tDpH
(
xi, Dxu

∆[µ](tk, xi)
)
∈ Rd.
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Notice that Φ
∆

k [µ](x) = x− xi + Φ∆
k [µ](xi) for all x ∈ Ei. Under this approximation, we

can compute the integrals in (1.4.14) explicitly, to get

1

(∆x)d

∫
Ej

β0
i (Φ

∆

k [µ](y))dy = β1
i (Φ

∆
k [µ](xj)),

which yields, surprisingly, to following scheme initially proposed in [57]:

mk+1,i =
∑
j∈Zd

mk,jβ
1
i (Φ

∆
k [µ](xj)) for all k ∈ I∗∆t, i ∈ Zd,

m0,i = m∗
0,i for all i ∈ Zd,

where we recall that {β1
i | i ∈ Zd} is a Q1 finite element basis defined on G∆x.

A uniform error estimate on the difference between the two schemes in our MFG
setting remains an open question.

To solve the discrete problem (MFG∆), we use (damped) Picard iterations. Let us point
that the convergence of this method has not been shown.

1.5 Approximation of deterministic mean field games

under polynomial growth conditions on the data

In all that we have discussed previously, we have considered the simplest dynamic of a
typical player, given by γ̇(t) = α(t) where α is the control.
In Chapter 3, we tackle a more general case, where, given m ∈ C

(
[0, T ];P1(Rd)

)
, a

typical player positioned at x at time t = 0, solves an optimal control problem of the form

inf

∫ T

0

L (s, α(s)) + F (γ(s),m(s)) ds+G(γ(T ),m(T ))

such that γ̇(s) = A(s, γ(s)) +B(s)α(s) a.e. s ∈ (0, T ),

γ(0) = x,

γ ∈ W 1,p([0, T ];Rd), α ∈ Lp([0, T ];Rr).

(1.5.1)

Unlike Chapter 2, we will not employ the system of partial differential equations to
describe the MFG equilibrium. Instead, we will use a relaxed equilibrium notion in
the deterministic case, called the Lagrangian equilibrium which has been recently
studied in [28], [46], [54], [93].
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For that, let Γ = C([0, T ],Rd), and define

Pm∗
0
(Γ) = {ξ ∈ P1(Γ) | e0♯ξ = m∗

0},

where the evolution map et : Γ→ Rd is given by et(γ) = γ(t) for all γ ∈ Γ. The Lagrangian
MFG equilibrium consists in solving the following problem:

Problem 1 Find ξ∗ ∈ Pm∗
0
(Γ) such that [0, T ] ∋ t 7→ et♯ξ

∗ ∈ P1(Rd) belongs to
C
(
[0, T ];P1(Rd)

)
and for ξ∗-a.e. γ∗ ∈ Γ there exists α∗ ∈ Lp([0, T ];Rr) such that

(γ∗, α∗) solves (1.5.1) with x = γ∗(0) and m(t) = et♯ξ
∗ for all t ∈ [0, T ].

The interpretation of a Lagrangian MFG equilibrium is as follows: the measure ξ∗ concen-
trated only over trajectories in Rd, distributed according to m∗

0 at the initial time, minimiz-
ing a cost that depends on the set of temporal marginals of ξ∗ within the interval [0, T ].

The main goal of Chapter 3 is to approximate the MFG Lagrangian equilibrium as-
sociated to the variational problem (1.5.1). The existence has been demonstrated in
[8], [47] under appropriate assumptions on L, F, and G. In [80], Gianatti and Silva
proposed an approximation of solution to Problem 1 by analogous problems in discrete
time and finite state space (see [84]). In Chapter 3, we consider the same approxi-
mation, but we suppose more general asuumptions on the cost function. Specifically,
we consider cost functionals that allow polynomial growth with respect to both state
and control variables. This type of cost arises in numerous applications, making the
study of such problems appealing. A convergence study of the approximated MFG
Lagrangian equilibrium is provided.

The discrete setting

In order to keep the introduction short and simple, we will assume the simplest dynamics,
i.e., A = 0 and B = Id, allowing us to present a clear and understandable idea about
our scheme (see [94]). The key point for this is to offer an ad-hoc approximation of
the optimal control problem (1.5.1).

First, we show, under appropriate assumptions, the existence of α∗ that solves the
variational problem (1.5.1) and C > 0 such that

|α∗(s)| ≤ Cb(1 + |x|) for all (s, x) ∈ [0, T ]× Rd. (1.5.2)
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Then, adopting the semi-Lagrangian scheme presented in Chapter 2, and taking into
account the estimate (1.5.2), we estimate the value function of a typical player as follows:

Vk(x) = min
a∈B∞(0,Cb(1+|x|))

{
∆t
[
L(tk, a) + F (x,m(tk))

]
+ I[Vk+1](Φ(k, x, a))

}
,

for all k ∈ I∗∆t, x ∈ G∆x,

VNt(x) = G(x,m(T )) for all x ∈ G∆x,

(1.5.3)

where B∞(0, R) denotes the corresponding closed ball centered at 0 and of radius R,
Cb is giving in (1.5.2), I is a P1 interpolation operator and

Φ(k, x, a) = x+∆ta for all k ∈ I∗∆t, x ∈ G∆x, a ∈ Rd. (1.5.4)

Our focus revolves around two primary concepts:

• The estimate (1.5.2) allows us to consider a finite and bounded grid rather.

• Then we can consider controls such that x+∆ta is a grid point, i.e controls having
the form

a =
y − x
∆t

, y ∈ G∆x, (1.5.5)

in order to avoid the interpolation in (1.5.3).

Set K0 = supp(m∗
0). We consider time dependent state grids {Sk | k ∈ I∆t}, constructed

as follows: let α(k, xi, y) = y−xi

∆t
, we define

S(x) ={y ∈ G∆x | |α(k, x, y)| ≤ Cb(1 + |x|},

S0 =G∆x ∩ K0,

Sk+1 =
⋃
x∈Sk

S(x) for all k ∈ I∗∆t.

Figure 1.3 explains the construction of the time dependent grids (Sk)k∈I∆t
.

It follows from Grönwall’s inequality that the sequence of grids (Sk)k∈I∆t
is uniformly

bounded with respect to the discretization parameters. More precisely, there exists a
compact set K ⊂ Rd independent of ∆t and ∆x such that, if ∆x/∆t ≤ 1, then

Sk ⊂ K for all k ∈ I∆t. (1.5.6)
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Figure 1.3: The construction of the grid Sk.

We consider the following scheme, which is a variation of (1.5.3)

Vk(x) = min
p∈P(Sk+1(x))

∑
y∈Sk+1(x)

p(y)
[
∆t[L(tk, α(k, x, y)) + F (x,m(tk))] + Vk+1(y)

]
for all k ∈ I∗∆t, x ∈ Sk,

VNt(x) = G(x,m(T )) for all x ∈ SNt .

(1.5.7)

The finite mean field game approximation

Using the elements outlined in the prior subsection, we introduce an approximation
of MFG equilibria associated to the optimal control problem (1.5.1). Let’s give the
main ideas:

• Define first the space of discrete time marginalsM =
∏

k∈I∆t
P(Sk).
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• Let M ∈M and ε > 0. By considering the scheme (1.5.7), we define

V M
k (x) = min

p∈P(Sk+1(x))

{ ∑
y∈Sk+1(x)

p(y)

[
∆tL(tk, α(k, x, y), x) + V M

k+1(y)

]
+ εp(y) log(p(y))

}
+∆tF (x,Mk) for all k ∈ I∗, x ∈ Sk,

V M
Nt

(x) = G(x,MNt) for all x ∈ SNt .

(1.5.8)

The entropy term in (1.5.8) ensures the existence of a unique solution pMk (x, ·) for
the above optimization problem.

• Given y ∈ Sk+1, we set the transition probabilities

PM
k (x, y) :=

p
M
k (x, y) if y ∈ Sk+1(x),

0 if y ∈ Sk+1 \ Sk+1(x).
(1.5.9)

• We define the best response map br(M) ∈M by

M̂k+1(y) =
∑
x∈Sk

PM
k (x, y)M̂k(x) for all k ∈ I∗, y ∈ Sk+1,

M̂0(x) = m∗
0(E(x)) for all x ∈ S0.

(1.5.10)

• The discretization of the Problem 1 reads as follows:

Find M ∈M such that M = br(M). (1.5.11)

The existence of a fixed point of br follows from Brouwer’s fixed point theorem.
The uniqueness result under the monotonicity assumptions (1.1.13)-(1.1.14) follow
from the arguments in the proof of [80, Proposition 4.2].

Next, we explore the convergence of solutions to (1.5.11) towards a solution to Problem
1 as the discretization parameters ∆t, ∆x, and ε approach zero.

Let (Nn
t )n∈N ⊂ N, (Nn

s )n∈N ⊂ N, (εn)n∈N ⊂ (0,∞), and, for every n ∈ N, set ∆tn =

T/Nn
t , ∆xn = 1/Nn

s , In = {0, . . . , Nn
t }, In,∗ := In \ {Nn

t }, tnk = k∆tn (k ∈ In), and
Gn = {i∆xn | i ∈ Zd}. We assume that Nn

s ≥ Nn
t . For k ∈ In,∗ and x ∈ Gn, we denote

by Sn
k+1(x) the set Sk+1(x) defined in (??) associated with ∆tn and ∆xn.
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Denote by Γn the set of continuous functions γ : [0, T ]→ Rd such that for each k ∈ I∆tn ,
γ(tnk) ∈ Sn

k and, for every k ∈ I∗∆tn
, the restriction of γ to the interval [tnk , t

n
k+1] is affine.

Finally, let Mn ∈M be a solution to (1.5.11) associated with the previous parameters
and, recalling (1.5.9), let us define ξn ∈ P(Γ) as

ξn =
∑
γ∈Γn

Mn
0 (γ(0))P

n(γ)δγ ∈ P(Γ), where P n(γ) :=

Nn
t −1∏
k=0

PMn

k (γ(tnk), γ(t
n
k+1)).

(1.5.12)
We extend Mn to the element in C([0, T ];P1(Rd)) defined by

[0, T ] ∋ t 7→Mn(t) := et♯ξ
n ∈ P1(Rd). (1.5.13)

We have the following convergence result.

Theorem 1.5.1 Assume that, as n → ∞, Nn
t → ∞, Nn

s → ∞, Nn
t /N

n
s → 0, and εn =

o (1/(Nn
t log(Nn

s ))). Then there exists a solution ξ∗ to Problem 1 such that, up to some
subsequence, ξn → ξ∗ narrowly in P(Γ) and Mn → m∗ := e(·)♯ξ

∗ in C([0, T ];P1(Rd)).

In addition, if the Lasry-Lions monotonicity condition (1.1.13)-(1.1.14) holds and for
every m ∈ C([0, T ];P1(Rd)) and m∗

0-a.e. x ∈ Rd problem (1.5.1) admits a unique
solution, then the whole sequence (ξn)n∈N converges narrowly towards the unique
solution to Problem 1.

Given discretization parameters ∆t,∆x and ε, a solution M∗ to the corresponding
mean field games problem can be computed by using the Fictitious play method given
by Algorithm 1, which, by [94, Theorem 3.2], satisfies (MN ,M

N
) −→

N→∞
(M∗,M∗) if

(1.1.13)-(1.1.14) hold.
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Algorithm 1 Fictitious play for deterministic MFG

1: Input: M
0 ∈M arbitrary and a tolerance parameter δ

2: Output: Approximation of M solving (1.5.11)
3: e← δ + 1

4: n← 1

5: M
1 ← M0

6: while e > δ do
7: Mn+1 ← br(M

n
)

8: e← ∥Mn+1 −Mn∥L1

9: M
n+1 ← n

n+1
M

n
+ 1

n+1
Mn+1

10: end while
11: return M

n+1

1.6 Newton iterations for Mean Field Games

We consider the following second order mean field game system with local coupling
(see Remark 1.1.1):

−∂tu− ν∆u+H(x,Du) = F (m(t, x)) in [0, T ]× Td,

∂tm− ν∆m− div(mHp(x,Du)) = 0 in [0, T ]× Td,

m(0, x) = m0(x), u(T, x) = G(x) in Td,

(1.6.1)

where Td := Rd/Zd stands as the d-dimensional torus. We opt to define our MFG system
(1.6.1) on Td to circumvent technicalities related to boundary conditions.
The objective of Chapter 4 is to develop a new scheme to solve system (1.6.1) through
the application of Newton iterations.
Newton iterations were initially introduced in the context of MFGs by Achdou et al.
in [1]. The authors introduced a discrete MFG system using the finite differences
method and employed Newton iterations to solve the resulting discretized non-linear
system. In [40], the authors introduced a policy iteration method to solve (1.6.1). They
interpreted their approach as a quasi-Newton method. In [43], the authors showed that
the convergence rate of the policy iteration method is linear. This motivation prompted
the same authors to apply in [44], Newton iterations to the continuous MFG system
(1.6.1) in the following manner:

• First, define F as follows:

F(u,m) = 0 ⇔ (1.6.1) is satisfied (1.6.2)
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• The corresponding Newton iterations for (1.6.2) can be expressed as follows:

JF(un−1,mn−1)((un,mn)− (un−1,mn−1)) = −F(un−1,mn−1), (1.6.3)

where JF is the Jacobian of F .
• Subsequently, solve the iterative linear system in the unknown (un,mn):
−∂tun − ν∆un + qnDun = qnDun−1 −H(x,Dun−1) + F (mn−1) + F ′(mn−1)(mn −mn−1)

∂tm
n − ν∆mn − div(mnqn) = div(mn−1Hpp(Du

n−1)(Dun −Dun−1))

mn(x, 0) = m0(x), un(x, T ) = uT (x),

(1.6.4)
with qn = Hp(x,Du

n−1).

The following existence and convergence result for the Newton iteration method holds
(see also [31] for the case of a stationary MFG system).

Proposition 1.6.1 [44] Under suitable assumptions,on the data, there exists a unique
solution (un,mn) to system (1.6.4). Moreover there exists C > 0 independent of n such
that, if (u,m) solves (1.6.1), then

∥un − u∥C1,0 + ∥mn −m∥C0 ≤ C(∥un−1 − u∥C1,0 + ∥mn−1 −m∥C0)2. (1.6.5)

Remark 1.6.1 Equation (1.6.5) means that if we start with an initial guess (u0,m0) close
enough to the solution (u,m), then ∥un − u∥C1,0 + ∥mn −m∥C0 → 0 with a quadratic rate
of convergence.

Numerical study

The main goal of Chapter 4 is to study the numerical approximation of (1.6.1) through
the discretization of the linear system (1.6.4) at each iteration. On the one hand, with
a suitable discretization of the system, one can expect promising results in terms of
computing time and accuracy due to the quadratic rate of convergence. On the other
hand, the linearity of the system simplifies the discretization process. Two distinct
methodologies will be considered. The first approach implements an explicit semi-
Lagrangian scheme, readily derivable for linear parabolic equations (see e.g [34]),
and called Newton-SL. The scheme is showed to be well-posed and a comparative
analysis is conducted against the non-linear semi-Lagrangian scheme for system (4.1.1),
proposed in [58] and solved via fixed point iterations, which we will refer to as SL-FP. The
second method involves a well posed implicit upwind finite differences scheme called
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Newton-FD, which, as established through numerical tests, demonstrates a simpler
structure and analogous performance to the Newton scheme studied in [1], [4], which
will be referred as the FD-Newton.
The Newton iterations process is explained in Algorithm 2, and the primary objective of
the chapter is to undertake a comparative analysis of the four mentioned schemes.

Algorithm 2 Solving the discrete Newton iterations system

1: Input: Initial guesses U0, M0, Q0 and tolerance τ
2: Output: Approximate solution to (1.6.4)
3: n← 0
4: repeat
5: Compute Mn+1 and Un+1 by solving the discrete system Newton-SL or Newton-

FD
6: err(M)← ∥Mn+1 −Mn∥∞
7: err(U)← ∥Un+1 − Un∥∞
8: n← n+ 1
9: Update Qn, by the derivative of Un using central differences

10: until err(M) < τ and err(U) < τ
11: return Mn+1, Un+1

We begin our comparative analysis with two numerical tests in dimension one.
In the first test, we consider H(x, p) = |p|2 and a reference solution is computed in order
to conduct a comparative analysis in terms of the uniform norm of the approximation
errors. Additionally, we examine the computational time and the required number of
Newton iterations. The analysis shows that Newton-SL has a better performance in
terms of computational time and number of iterations, and shows comparable accuracy
to SL-FP, FD-Newton, and Newton-FD.
We also note that Newton-FD and FD-Newton exhibit comparable performance in
terms of accuracy, computational time, and number of iterations. It is noteworthy that
Newton-FD uses directly system (1.6.4), eliminating the necessity to define a numerical
Hamiltonian as in the FD-Newton scheme. Consequently, Newton-FD emerges as a
considerably simpler variant of FD-Newton.

In the second test, we consider H(x, p) = |p|2 + V (x) for a given potential V , and we
change the diffusion parameter, considering first ν = 0.4 and then ν = 0.02.

In the case ν = 0.4, the results show a similar performance for Newton-SL, Newton-FD
and FD-Newton. Taking then ν = 0.02, Newton-SL iterations demonstrate convergence
reaching the associated threshold. In contrast, both Newton-FD and FD-Newton itera-
tions encounter breakdowns after only few iterations. This indicates a higher robustness
offered by the Newton-SL scheme, in scenarios characterised by small diffusion terms.
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Remark 1.6.2 In [6], the authors solve a finite difference discretization of the MFG
system by employing Newton’s method combined with a continuation method with
respect to the diffusion parameter ν. The latter is particularly useful to deal with the
case small diffusion parameters. The problem is solved first for a high value of ν and,
subsequently, the authors use this solution as an initial guess to solve, still by using
Newton’s method, the discrete MFG system with a smaller viscosity. The method
proceeds in this manner until reaching the desired (small) viscosity.

We end Chapter 4 with a two dimensional MFG system that we solve using Newton-SL.
Finally, Figure 1.4 summarize the main ideas discussed in Chapter 4.

L

R

</>

S

MFG system (1.6.1)

Discrete MFG problem System of two linear parabolic equations
 in continuous time (1.6.4) 

High dimension discrete PDE
system

Solution to (1.6.1) 
The least number of iterations
Robustness to small diffusion
terms

Tap the right experts to manage and
launch your new project successfully.
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Figure 1.4: Solving the MFG system (1.6.1).
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2
A Lagrange-Galerkin scheme for first

order mean field games systems

In this chapter, we consider a first order mean field game system with non-local couplings.
A Lagrange-Galerkin scheme for the continuity equation, coupled with a semi-Lagrangian
scheme for the Hamilton-Jacobi-Bellman equation, is proposed to discretize the mean
field games system. The convergence of solutions to the scheme towards a solution to
the mean field game system is established in arbitrary space dimensions. The scheme is
implemented to approximate two mean field games systems in dimension one and two.
This chapter is a joint work with Elisabetta Carlini and Francisco J. Silva [56].
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2.1 Introduction

In view of its applications in Economics, Physics, and Social Sciences, the study of
optimal control problems and differential games with a large number of agents has
attracted the attention of several researchers during the last two decades. An important
step in this direction has been achieved with the introduction of the theory of Mean
Field Games (MFGs) by J.-M. Lasry-Lions [111]–[113] and, independently, by M. Huang,
R.P. Malhamé, and P.E. Caines [99]. The main purpose of this theory is to characterize
Nash equilibria for a class of symmetric differential games with a continuum of agents.
One of the main applications of MFGs theory is that such equilibria can be used to
provide approximate equilibria for the corresponding games with a large, but finite,
number of players. In its standard form, MFGs are described by a system of two Partial
Differential Equations (PDEs); a Hamilton-Jacobi-Bellman (HJB) equation, describing
the optimal cost of a typical player in the game, and a Fokker-Planck (FP) equation,
describing the evolution of the initial distribution when all the players act optimally. We
refer the reader to the monographs [60], [61], [86], the survey [87], and the lectures [5]
for a thorough overview on MFGs.
The numerical approximation of MFGs with nonlocal couplings has been an active
research topic in recent years. In the case where the MFGs system includes nondegen-
erate second order terms, finite-difference schemes have been studied in [2], [4], [9],
[15], [92], semi-Lagrangian scheme where investigated in [58], and machine learning
methods such as deep learning and reinforcement learning have been analyzed in [19],
[62], [63]. In the case where the dynamics of the underlying differential games are
deterministic, the resulting MFGs system is of first order and several numerical methods
have been proposed to approximate its solutions; see e.g. [42], [57] for semi-Lagrangian
discretizations, [80], [94] for the approximation by discrete-time finite state space MFGs
(see [83]), and [121], [126] for Fourier analysis techniques. We refer the reader to [7],
[114], and the references therein, for an overview on numerical methods to approximate
MFGs equilibria including also the case of local couplings and variational methods.
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In this paper we focus our attention on the approximation of first order MFGs systems.
Namely, we consider the PDE system

−∂tv +H(x,Dxv) = F (x,m(t)) in ]0, T [×Rd,

v(T, x) = G(x,m(T )) in Rd,

∂tm− div
(
DpH(x,Dxv)m

)
= 0 in Rd×]0, T [,

m(0) = m∗
0,

(MFG)

where H : Rd × Rd → R is convex with respect to its second argument and, denoting by
P1(Rd) the set of probability measures over Rd with finite first order moment, F : Rd ×
P1(Rd) → Rd, G : Rd × P1(Rd) → Rd, and m∗

0 ∈ P1(Rd). In the article [42], the authors
propose a convergent semi-discrete scheme to approximate solutions to (MFG). A
fully-discrete version has been proposed in [57]. In the proposed scheme, the HJB
equation is discretized by using a semi-Lagrangian approximation of the HJB equation
(see e.g. [76]), while the FP equation, or continuity equation, is approximated by a
scheme which is dual to a linearized version of the scheme for the HJB equation. The
existence of solutions to this approximation is shown and a convergence result to a
solution to (MFG) is established when the dimension d of the space variable is equal
to one. An extension of this scheme to the case where (MFG) involves non-local and
fractional diffusions terms has been studied in [66]. If the resulting system has non-
smooth solutions, the convergence of solutions of the scheme is also shown when
the space dimension is equal to one.
In order to obtain a convergent scheme for general state dimensions, the key point
is to provide a scheme which preserves, under standard conditions on the data (see
Section 2.2.2 below), the main properties of solutions to both equations in (MFG).
Namely, the boundedness, Lipschitzianity, and semiconcavity of the solution to the HJB
equation and a uniform compact support, equicontinuity, and uniform bounds in Lp

spaces for solutions to the continuity equation. As shown in [3], [57], [66], the standard
semi-Lagrangian scheme for the HJB equation, which is a monotone scheme, enjoys
the former properties under suitable assumptions on the discretization parameters. In
order to treat the continuity equation, we consider the Lagrange-Galerkin (LG) scheme
introduced in [124] and recalled in Section 2.4 below. As we show, it turns out that, for a
specific choice of the basis functions, the resulting scheme for the continuity equation,
which is explicit and has non-negative coefficients, coincides with the one introduced
in [127] and further studied in [133] for Lipschitz velocity fields. The desired properties
for the solutions to this scheme are established in Section 2.4.2. In particular, we provide
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a uniform Lp estimate, not available in the schemes considered in [57], [66] in arbitrary
space dimensions, which will play a key role in our main convergence result. Combining
the semi-Lagrangian scheme for the HJB equation and the LG scheme for the continuity
equation, we obtain a discretization of (MFG) for which the existence of solutions is
established and, using stability and compactness arguments, the convergence to a
solution to (MFG) is established.
The rest of this article is organized as follows. In Section 2.2 we fix some standard
notation, and we state our main assumptions on the data of (MFG). Some important
results about solutions to HJB and continuity equations are recalled, as well as existence
and uniqueness results for solutions to (MFG). The next two sections deal with the
discretization of the HJB and continuity equations in (MFG) separately. Section 2.3
recalls a standard semi-Lagrangian scheme to approximate the solution to the HJB
equation in (MFG). Several important properties of this scheme are reviewed and a new
semiconcavity estimate for the solution to the scheme is provided in Proposition 2.3.5.
This estimate will play a crucial role in Section 2.4, which is devoted to the study of a
LG scheme to approximate the continuity equation in (MFG). Notice that, in general,
this continuity equation is driven by a non-smooth velocity field. We show that the
solutions to the LG scheme inherit the equicontinuity and Lp-stability of the solution
to the original equation and we establish in Proposition 2.4.6 a convergence result as
the discretization steps tend to zero. In Section 2.5 we couple the schemes studied in
the previous sections to obtain a discretization of (MFG). The existence of a solution
to the discretized MFG system is provided in Theorem 2.5.1 and the convergence
result, valid in arbitrary dimensions, is shown in Theorem 2.5.2. Finally, Section 2.6 is
devoted to the numerical implementation of the scheme for the MFGs system. Since
the LG scheme for the continuity equation involves some integrals depending on the
discrete characteristics of the equation, we approximate them by numerical quadrature
and by the so-called area-weighting method introduced in [124]. The performances of
these two approximations are compared in a one-dimensional example with an explicit
solution, and the area-weighting method is implemented to approximate the solution
to a MFGs in a two-dimensional space.
Acknowledgements. F. J. Silva and A. Zorkot where partially supported by l’Agence
Nationale de la Recherche (ANR), project ANR-22-CE40-0010. For the purpose of
open access, the authors have applied a CC-BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this submission.
The three authors were partially supported by KAUST through the subaward agreement
ORA-2021-CRG10-4674.6.
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2.2 Preliminaries

2.2.1 Notation

Let d ∈ N. In what follows, ⟨·, ·⟩ and | · | denote the standard scalar product in Rd and its
induced norm, respectively. We set | · |∞ for the maximum norm in Rd and B∞(0, C) and
B∞(0, C) for the associated open and closed balls, centered at 0 and of radius C > 0,
respectively. Let P(Rd) be the set of probability measures on Rd. For every ν ∈ P(Rd)

we denote by supp(ν) its support. Let P1(Rd) = {ν ∈ P(Rd) |
∫
Rd |x|dν(x) < ∞}, and,

for every ν1, ν2 ∈ P1(Rd), set

d1(ν1, ν2) = inf
γ∈Π(ν1,ν2)

∫
Rd×Rd

|x− y|dγ(x, y), (2.2.1)

where Π(ν1, ν2) denotes the set of probabilities measures on Rd × Rd with first and
second marginals given by ν1 and ν2, respectively. By the Kantorovich-Rubinstein
theorem (see e.g. [18, Section 7.1]) we have

d1(ν1, ν2) = sup

{∫
Rd

φ(x)d(ν1 − ν2)(x)
∣∣φ ∈ Lip1(Rd)

}
, (2.2.2)

where Lip1(Rd) denotes the set of all nonexpansive functions on Rd. Given ν ∈ P(Rd)

and a Borel function Ψ : Rd → Rq (q ∈ N), the push-forward measure Ψ♯ν, defined
on the σ-algebra of Borel sets B(Rq), is defined by

Ψ♯ν(A) = ν(Ψ−1(A)) for all A ∈ B(Rq), (2.2.3)

or, equivalently (see e.g. [32, Theorem 3.6.1]), for every φ : Rd → R such that φ ◦ Ψ
is integrable with respect to ν, one has∫

Rq

φ(x)d(Ψ♯ν)(x) =

∫
Rd

φ
(
Ψ(x)

)
dν(x). (2.2.4)

2.2.2 Assumptions

Our hypothesis on the data of (MFG) are the following:
(H1) It holds that

H(x, p) = sup
a∈Rd

(
⟨a, p⟩ − L(x, a)

)
for all x, p ∈ Rd, (2.2.5)
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where L : Rd × Rd → R is of class C2, bounded from below, and, for every x,
a ∈ Rd, we have

L(x, a) ≤ CL,1|a|2 + CL,2, (2.2.6)

|DxL(x, a)| ≤ CL,3(1 + |a|2), (2.2.7)

CL,4|b|2 ≤ ⟨D2
aaL(x, a)b, b⟩ for all b ∈ Rd, (2.2.8)

⟨D2
xxL(x, a)y, y⟩ ≤ CL,5(1 + |a|2)|y|2 for all y ∈ Rd, (2.2.9)

for some constants CL,i > 0 (i = 1, . . . , 5).

(H2) The functions F and G are continuous and, for every x, y ∈ Rd and ν ∈ P1(Rd),
we have

|F (x, ν)| ≤ CF,1, (2.2.10)

|G(x, ν)| ≤ CG,1, (2.2.11)

|F (x, ν)− F (y, ν)| ≤ CF,2|x− y|, (2.2.12)

|G(x, ν)−G(y, ν)| ≤ CG,2|x− y|, (2.2.13)

F (x+ y, ν)− 2F (x, ν) + F (x− y, ν) ≤ CF,3|y|2, (2.2.14)

G(x+ y, ν)− 2G(x, ν) +G(x− y, ν) ≤ CG,3|y|2, (2.2.15)

for some constants CF,i > 0, CG,i > 0 (i = 1, 2, 3).

(H3) The initial condition m∗
0 is absolutely continuous with respect to the Lebesgue

measure and satisfies:
(i) There exists C∗ > 0 such that supp(m∗

0) ⊂ B∞(0, C∗).
(ii) There exists p ∈]1,∞] such that the density ofm∗

0, still denoted bym∗
0, belongs

to Lp(Rd).

Remark 2.2.1 (i) Since L is bounded from below, the strong convexity assump-
tion (2.2.8) on L(x, ·), which is uniform with respect to x ∈ Rd, and (2.2.6), imply
the existence of CL,6 > 0 and CL,7 > 0 such that

L(x, a) ≥ CL,6|a|2 − CL,7 for all x, a ∈ Rd. (2.2.16)

It follows from (2.2.5), (2.2.6), and (2.2.16), that there exist CH,i > 0 (i = 1, 2, 3, 4)
such that

CH,1|p|2 − CH,2 ≤ H(x, p) ≤ CH,3|p|2 + CH,4 for all x, p ∈ Rd. (2.2.17)
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Moreover, by (2.2.5), (2.2.16), and Danskin’s theorem (see e.g. [35, Theorem
4.13]), we deduce that H is of class C1 and, for every x, p ∈ Rd, the following
equalities hold

DaL(x,DpH(x, p)) = p, (2.2.18)

DxH(x, p) = −DxL(x,DpH(x, p)). (2.2.19)

Since DpH(x, p) is the unique maximizer of supa∈Rd

(
⟨a, p⟩ − L(x, a)

)
, (2.2.6),

and (2.2.16), yield the existence of CH,5 > 0 such that

|DpH(x, p)| ≤ CH,5(1 + |p|) for all x, p ∈ Rd. (2.2.20)

Finally, since L is of class C2, by (2.2.8) and the implicit function theorem applied
to (2.2.18), it follows that DpH is of class C1 and hence, by (2.2.19), we obtain
that H is of class C2.
A typical example of a function H satisfying (H1) is given by H(x, p) = κ(x)|p|2 +
⟨b(x), p⟩, where κ : Rd → R is of class C2, with bounded first and second order
derivatives, there exist κ, κ ∈]0,∞[ such that κ ≤ κ(x) ≤ κ for all x ∈ Rd,
and b : Rd → Rd is bounded, of class C2, with bounded first and second order
derivatives. In this case we have

L(x, a) =
1

4κ(x)

∣∣a− b(x)|2 for all x, a ∈ Rd. (2.2.21)

(ii) Assumption (H3)(i) on the compactness of supp(m∗
0) plays an important role in

Section 2.4 dealing with the discretization of the continuity equation in (MFG).
Let us point out that in [66] the authors are able to handle initial conditions with
unbounded support under a different set of assumptions over H. In that framework,
we expect that our techniques can be adapted in order to deal with more general
initial conditions.

2.2.3 The first order mean field games system

Given µ ∈ C([0, T ];P1(Rd)), consider the HJB equation

−∂tv(t, x) +H(x,Dxv(t, x)) = F (x, µ(t)) for (t, x) ∈]0, T [×Rd,

v(x, T ) = G(x, µ(T )) for x ∈ Rd. (2.2.22)
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It follows from [23], [71] that (2.2.22) admits a unique viscosity solution v[µ] and, for
every t ∈ [0, T [, x ∈ Rd, and α ∈ L2

(
[t, T ];Rd

)
, setting X t,x,α(·) = x−

∫ (·)
t
α(s)ds and

J t,x[µ](α) =

∫ T

t

(
L
(
X t,x,α(s), α(s)

)
+ F

(
X t,x,α(s), µ(s)

))
ds+G(X t,x,α(T ), µ(T )),

(2.2.23)
we have

v[µ](t, x) = inf
{
J t,x[µ](α)

∣∣α ∈ L2
(
[t, T ];Rd

)}
. (2.2.24)

The proof of the following result follows from standard arguments (see e.g. [48]). How-
ever, for the sake of completeness, we provide its proof in the appendix of this work.

Proposition 2.2.1 Assume (H1)-(H2) and let µ ∈ C([0, T ];P1(Rd)). Then the following
hold:

(i) [Existence of an optimal control] For every (t, x) ∈ [0, T [×Rd, there exists αt,x ∈
L∞([t, T ];Rd

)
such that v[µ](t, x) = J t,x[µ](αt,x). Moreover, there exists Cb > 0,

independent of (µ, t, x), such that ∥αt,x∥L∞([0,T ];Rd) ≤ Cb.

(ii) [Uniform bound] We have

|v[µ](t, x)| ≤ Cv for all (t, x) ∈ [0, T ]× Rd, (2.2.25)

where Cv > 0 is independent of µ.
(ii) [Lipschitz property] We have

∣∣v[µ](t, x)− v[µ](t, y)∣∣ ≤ CLip|x− y| for all t ∈ [0, T ], x, y ∈ Rd, (2.2.26)

where CLip > 0 is independent of µ.
(vi) [Semi-concavity] We have

v[µ](t, x+ y)− 2v[µ](t, x) + v[µ](t, x− y) ≤ Csc|y|2 for all t ∈ [0, T ], x, y ∈ Rd,

(2.2.27)
where Csc > 0 is independent of µ.

Remark 2.2.2 Assertion (i) in Proposition 2.2.1 implies that, for every µ ∈ C([0, T ];P1(Rd)),
we have

v[µ](t, x) = inf
{
J t,x[µ](α)

∣∣α ∈ L∞([0, T ];Rd), ∥α∥L∞([0,T ];Rd) ≤ Cb

}
(2.2.28)
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for all (t, x) ∈ [0, T [×Rd. In particular, v[µ] is also characterized by the HJB equation

−∂tv(t, x) +Hb(x,Dxv(t, x)) = F (x, µ(t)) for (t, x) ∈]0, T [×Rd,

v(x, T ) = G(x, µ(T )) for x ∈ Rd, (2.2.29)

where
Hb(x, p) = sup

a∈B(0,Cb)

{
⟨a, p⟩ − L(x, a)

}
for all x, p ∈ Rd. (2.2.30)

Consider the set-valued map D+
x v[µ] : [0, T ] × Rd → 2R

d defined by

D+
x v[µ](t, x) =

{
p ∈ Rd

∣∣∣ lim supy→x
v[µ](t,y)−v[µ](t,x)−⟨p,y−x⟩

|y−x| ≤ 0

}
for all (t, x) ∈ [0, T ]× Rd.

It follows from Proposition 2.2.1(iii) and [48, Proposition 3.1.5 and Proposition 3.3.4]
that D+

x v[µ] takes nonempty and closed values and its graph is closed. In particular,
since Proposition 2.2.1(ii) and [48, Theorem 3.3.6] imply that D+

x v[µ](t, x) ⊂ B(0, CLip)

for all (t, x) ∈ [0, T ]× Rd, by [21, Chapter 1, Corollary 1] we have that D+
x v[µ] is upper-

semicontinuous, i.e. for every M ⊂ Rd closed, D+
x v[µ]

−1(M) is closed. Therefore,
D+

x v[µ] is a Borel measurable set-valued map and hence admits a Borel measurable
selection (see e.g. [131, Corollary 14.6]). Notice that Proposition 2.2.1(ii), Rademacher’s
theorem, and [48, Proposition 3.1.5] imply that all the measurable selections of D+

x v[µ]

coincide almost everywhere in [0, T ]× Rd and hence, hereafter, we will denote likewise
by Dxv[µ] any choice among them.
Let p ∈]1,∞[ be as in (H3). We say thatm ∈ Lp([0, T ]×Rd) solves the continuity equation

∂tm− div (DpH(x,Dxv[µ])m) = 0 in ]0, T [×Rd,

m(0) = m∗
0 in Rd, (2.2.31)

if, for every φ ∈ C∞
0 (Rd) and t ∈ [0, T ], we have∫

Rd

φ(x)m(t, x)dx =

∫
Rd

φ(x)m∗
0(x)dx−

∫ t

0

∫
Rd

〈
DpH(x,Dxv[µ](s, x)), Dφ(x)

〉
m(s, x)dxds.

(2.2.32)

Proposition 2.2.2 Assume (H1)-(H3) and let µ ∈ C([0, T ];P1(Rd)). Then (2.2.32) ad-
mits a solution m ∈ C([0, T ];P1(Rd)) ∩ Lp([0, T ] × Rd) and there exists C̃ > 0 such
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that
∥m(t, ·)∥Lp(Rd) ≤ C̃∥m∗

0∥Lp(Rd) for all t ∈ [0, T ]. (2.2.33)

If, in addition, for every t ∈ [0, T ], the functions F (·, µ(t)) and G(·, µ(T )) are differentiable,
then the solution m to (2.2.31) is unique.

Proof. The first assertion in the statement follows from Proposition 2.4.6 below, while
the second one follows by arguing as in the proof of [55, Lemma 1.10]. The crucial steps
in the latter are the use of the superposition principle in [16] for solutions to (2.2.31) and
the fact that, under the differentiability assumptions over F (·, µ(t)) and G(·, µ(T )), the
optimal control problem inf

{
J0,x[µ](α)

∣∣α ∈ L2
(
[0, T ];Rd

)}
admits a unique solution for

almost every x ∈ Rd. □

Finally, we say that (v∗,m∗), with m∗ ∈ C([0, T ];P1(Rd)) ∩ Lp([0, T ]× Rd), solves (MFG)
if v∗ = v[m∗] and m∗ solves (2.2.31) with µ = m∗.

Proposition 2.2.3 Assume (H1)-(H3). Then system (MFG) admits a solution (v∗,m∗).

Proof. A proof of this result, under slightly different assumptions, can be found,
for instance, in [55, Section 1.3.4]. In the present context, the result follows from
Theorem 2.5.2 below. □

A uniqueness result for solutions to (MFG) can be shown under additional assumptions
on the coupling terms F and G. A sufficient condition is the so-called Lasry-Lions
monotonicity condition which states that, for h = F, G, it holds∫

Rd

(
h(x,m1)− h(x,m2)

)
d
(
m1 −m2)(x) ≥ 0 for all m1, m2 ∈ P1(Rd). (2.2.34)

Proposition 2.2.4 Assume (H1)-(H3), the monotonicity condition (2.2.34) and that, for
all ν ∈ P1(Rd), the functions F (·, ν) and G(·, ν) are differentiable. Then system (MFG)
admits a unique solution.

Proof. The existence of a solution to (MFG) follows from Proposition 2.2.3 while,
under (2.2.34) and the differentiability assumptions on F (·, ν) and G(·, ν), the proof of
the uniqueness of the solution follows by arguing as in the proof of [55, Theorem 1.8]. □
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2.3 A semi-Lagrangian scheme for the HJB equation

Let µ ∈ C([0, T ];P1(Rd)). In this section we recall a standard semi-Lagrangian scheme
to approximate the viscosity solution v[µ] to (2.2.22). Most of the results for the semi-
Lagrangian scheme that will be needed in the remainder of the article follow similarly
to those in the monograph [76] and the contributions [57], [58], [66]. The principal
differences come from our assumptions on L in (H1), which allow us to consider
cost functionals not covered in these references (see e.g. the example in the last
paragraph of Remark 2.2.1). Therefore, we confine ourselves to explain the main
changes in the proofs of the aforementioned properties. On the other hand, the estimate
in Proposition 2.3.5 below seems to be new and will play a key role later in this article.
In order to define the scheme, let N ∈ N∗ be the number of time steps, let ∆t = T/N

be the time step, let I∆t = {0, . . . , N}, let I∗∆t = I∆t \ {N}, let tk = k∆t for all k ∈ I∆t,
and set G∆t = {tk | k ∈ I∆t}. Given a space step ∆x > 0 and i = (i1, . . . , id) ∈
Zd, define β1

i : Rd → R as

β1
i (z) =

d∏
l=1

β̂
( zl
∆x
− il

)
for all z = (z1, . . . , zd) ∈ Rd, (2.3.1)

where
β̂(ξ) = max{0, 1− |ξ|} for all ξ ∈ R. (2.3.2)

Notice that β1
i ≥ 0,

∑
i∈Zd β1

i (x) = 1 for all x ∈ Rd and, setting xi = i∆x, we have
β1
i (xj) = 1, if i = j, and β1

i (xj) = 0, otherwise. Let G∆x = {i∆x | i ∈ Zd} be the uniform
grid and, given ϕ : G∆x → R, define its interpolate as

I1[ϕ](x) =
∑
i∈Zd

β1
i (x)ϕi for all x ∈ Rd,

where, for notational simplicity, we have set ϕi = ϕ(xi). For every φ : Rd → R denote by
φ|G∆x

its restriction to G∆x. If φ is of class C2 and has bounded second order derivatives,
it follows from [129, Remark 3.4.2] that

∥φ(x)− I[φ|G∆x
](x)∥∞ ≤ Cφ(∆x)

2, (2.3.3)

where Cφ > 0 depends only on φ.
We consider the following fully-discrete semi-Lagrangian scheme:
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find {vk : G∆x → R | k ∈ I∆t} such that

vk,i = S fd
k,i[µ](vk+1) for all k ∈ I∗∆t, i ∈ Zd,

vN,i = G(xi, µ(T )) for all i ∈ Zd, (2.3.4)

where, for every ϕ : G∆x → R, bounded, k ∈ I∆t, and i ∈ Zd,

S fd
k,i[µ](ϕ) = inf

a∈B(0,Cb)

[
∆tL(xi, a) + I1[ϕ](xi −∆ta)

]
+∆tF (xi, µ(tk)). (2.3.5)

Notice that, being explicit, scheme (2.3.4) admits a unique solution. By definition,
S fd[µ] is monotone, i.e. for every ϕ1, ϕ2 : G∆x → R, bounded, with ϕ1

i ≤ ϕ2
i for all

i ∈ Zd, we have that

S fd
k,i[µ](ϕ

1) ≤ S fd
k,i[µ](ϕ

2) for all k ∈ I∗∆t, i ∈ Zd. (2.3.6)

Moreover, using (H1) and (H2), standard arguments (see e.g. [76, Section 5.2.3])
yield the following consistency property for S fd[µ]: let (µn)n∈N ⊂ C([0, T ];P1(Rd)), µ ∈
C([0, T ];P1(Rd)),

(
(∆tn,∆xn)

)
n∈N ⊂]0,∞[2,

(
(tkn , xin)

)
n∈N ⊂ G∆tn × G∆xn, and (t, x) ∈

]0, T [×Rd such that, as n → ∞, µn → µ, (∆tn,∆xn) → 0, (∆xn)
2/∆tn → 0, and

(tkn , xin) → (t, x). Then, recalling the definition of Hb in (2.2.30), for every φ : [0, T ] ×
Rd → R of class C1, with bounded derivatives, we have

lim
n→∞

1

∆tn

(
φ(xin , tkn)−S fd

kn,in [µn]
(
φ(tkn+1, ·)|G∆xn

))
= −∂tφ(x, t)+Hb(x,Dxφ(t, x))−F (x, µ(t)).

(2.3.7)
Given (∆t,∆x) ∈]0,∞[2, let us set

v∆t,∆x[µ](tk, x) = I1[vk](x) for all k ∈ I∆t, x ∈ Rd, (2.3.8)

where, for every k ∈ I∆t, vk : G∆x → R is computed with (2.3.5). We extend this
definition to [0, T ] × Rd, by setting

v∆t,∆x[µ](t, x) = v∆t,∆x[µ](tk, x) if t ∈ [tk, tk+1[, k ∈ I∗∆t. (2.3.9)

The following result provides properties for v∆t,∆x[µ] that are analogous to those in
Proposition 2.2.1(ii)-(iv) for v[µ].

Proposition 2.3.1 Assume (H1)-(H2), let µ ∈ C([0, T ];P1(Rd)), and let
(∆t,∆x) ∈]0,∞[2. Then the following hold:
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(i) [Stability] We have

|v∆x,∆t[µ](t, x)| ≤ C̃v for all (t, x) ∈ [0, T ]× Rd, (2.3.10)

where C̃v > 0 is independent of (µ,∆t,∆x).

(ii) [Lipschitz property] We have

∣∣v∆t,∆x[µ](t, x)−v∆t,∆x[µ](t, y)
∣∣ ≤ C̃Lip|x−y| for all t ∈ [0, T ], x, y ∈ Rd, (2.3.11)

where C̃Lip > 0 is independent of (µ,∆t,∆x).

(iii) [Discrete semi-concavity] We have

v∆t,∆x[µ](t, x+ xi)− 2v∆t,∆x[µ](t, x) + v∆t,∆x[µ](t, x− xi)

≤ C̃sc|xi|2 for all t ∈ [0, T ], x ∈ Rd, i ∈ Zd, (2.3.12)

where C̃sc > 0 is independent of (µ,∆t,∆x).

Proof. (i): This follows directly from (2.3.4), (2.2.6), (2.2.16), (2.2.10), (2.2.11),
and iteration.
(ii): It follows from (2.2.7) that

|L(x, a)− L(y, a)| ≤ CL,3(1 + C2
b)|x− y| for all x, y ∈ Rd, a ∈ B(0, Cb). (2.3.13)

Using this inequality, (2.2.12), and (2.2.13), the result follows from the same arguments
than those in [58, Lemma 3.1(i)] (see also the proof of [66, Lemma 5.3(a)]).
(iii): It follows from (2.2.9) that

L(x+ y, a)− 2L(x, a) + L(x− y, a) ≤ CL,5(1 + C2
b)|y|2 for all x, y ∈ Rd, a ∈ B(0, Cb).

(2.3.14)
In turn, using (2.2.14) and (2.2.15), the result follows by arguing as in the proof of [3,
Lemma 4.1] (see also the proof of [66, Lemma 3.2(ii)]). □

Using the monotonicity of S fd[µ], the consistency property in (2.3.7), and the stability
result in Proposition 2.3.1(i), the Barles-Souganidis relaxed limit method (see [25])
yields the following convergence result (see [57, Theorem 3.3] for a detailed proof).

Proposition 2.3.2 Assume (H1)-(H2), let (µn)n∈N ⊂ C([0, T ];P1(Rd)), and let(
(∆tn,∆xn)

)
n∈N ⊂]0,∞[2. Suppose that, as n→∞, µn → µ, for some µ ∈ C([0, T ];P1(Rd)),
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(∆tn,∆xn) → 0, and (∆xn)
2/∆tn → 0. Then (v∆tn,∆xn [µn])n∈N converges to v[µ] uni-

formly over compact subsets of [0, T ]× Rd.
Given ε > 0, consider the mollifier Rd ∋ x 7→ ρε(x) = ρ(x/ε)/εd ∈ Rd, where ρ ∈ C∞(Rd)

has bounded derivatives of any order and satisfies ρ(Rd) ⊂ [0,∞[ and
∫
Rd ρ(x)dx = 1.

Given φ ∈ W 1,∞(Rd), a standard computation shows that

sup
x∈Rd

∣∣(ρε ∗ φ)(x)− φ(x)∣∣ ≤ ε∥Dφ∥L∞(Rd), (2.3.15)

sup
x∈Rd

∥∥Dℓ(ρε ∗ φ)(x)
∥∥ ≤ cℓε

1−ℓ for all ℓ ∈ N, (2.3.16)

where
∥∥Dℓ(ρε ∗ φ)(x)

∥∥ denotes the operator norm of Dℓ(ρε ∗ φ)(x) and cℓ > 0 depends
only on ℓ. Let us set ∆ = (∆t,∆x, ε) and define

v∆[µ](t, ·) = ρε ∗ v∆t,∆x[µ](t, ·) for all t ∈ [0, T ]. (2.3.17)

The function v∆[µ] satisfies similar properties than v∆t,∆x[µ], as the following propo-
sition shows.

Proposition 2.3.3 Assume (H1)-(H2), let µ ∈ C([0, T ];P1(Rd)), and let ∆ = (∆t,∆x, ε) ∈
]0,∞[3. Then the following holds:

(i) [Stability] We have

|v∆[µ](t, x)| ≤ C̃v for all (t, x) ∈ [0, T ]× Rd, (2.3.18)

with C̃v > 0 being as in Proposition 2.3.1(i).

(ii) [Lipschitz property] We have

∣∣v∆[µ](t, x)− v∆[µ](t, y)∣∣ ≤ C̃Lip|x− y| for all t ∈ [0, T ], x, y ∈ Rd, (2.3.19)

with C̃Lip > 0 being as in Proposition 2.3.1(ii).

(iii) [Approximate semi-concavity] We have

v∆[µ](t, x+ y)− 2v∆[µ](t, x) + v∆[µ](t, x− y)

≤ C̃asc

(
|y|2 + (∆x)2 +

(∆x)2

ε

)
for all t ∈ [0, T ], x, y ∈ Rd, (2.3.20)

where C̃asc > 0 is independent of (µ,∆).
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Proof. Assertions (i) and (ii) follow directly from (2.3.17) and the corresponding
assertions in Proposition 2.3.1. The proof of (iii) follows from Proposition 2.3.1(iii) and
arguing as in the proof of [3, Lemma 4.2] (see also the proof of [66, Lemma 5.5(b)]). □
In the following, given A ⊂ Rd, we denote by IA the indicator function of A. The conver-
gence result in the following proposition will play an important role in the next section.

Proposition 2.3.4 Assume (H1)-(H2), let (µn)n∈N ⊂ C([0, T ];P1(Rd)), and let(
(∆tn,∆xn, εn)

)
n∈N ⊂]0,∞[3. Set ∆n = (∆tn,∆xn, εn) and let µ ∈ C([0, T ];P1(Rd)).

Suppose that, as n → ∞, µn → µ, ∆n → 0, and (∆xn)
2/∆tn → 0. Then the following

hold:
(i) (v∆n [µn])n∈N converges to v[µ] uniformly over compact subsets of [0, T ]× Rd.
(ii) If, in addition, ∆xn/εn → 0, then, for every K ⊂ [0, T ]×Rd compact and q ∈ [1,∞[,

IKDpH(·, Dxv
∆n [µn])→ IKDpH(·, Dxv[µ]) in Lq([0, T ]× Rd). (2.3.21)

Proof. (i): This follows from Proposition 2.3.3(ii), estimate (2.3.15), and Proposi-
tion 2.3.2.
(ii): It follows from Proposition 2.3.3(iii) and [3, Remark 6] that

〈
Dxv

∆[µ](t, y)−Dxv
∆[µ](t, x), y−x

〉
≤ c

(
|y−x|2+(∆x)2

ε2

)
for all t ∈ [0, T ], x, y ∈ Rd.

(2.3.22)
Using this inequality and arguing as in the proof of [57, Theorem 3.5], one deduces
that, as n→∞, Dxv

∆n [µn]→ Dxv[µ] almost everywhere in [0, T ]× Rd. In turn, since H
is of class C2, we get that DpH(·, Dxv

∆n [µn]) → DpH(·, Dxv[µ]) almost everywhere in
[0, T ]× Rd. Thus, (2.3.21) follows from Proposition 2.3.3(ii) and Lebesgue’s dominated
convergence theorem. □

We conclude this section with a useful estimate for D2v∆[µ].

Proposition 2.3.5 Assume (H1)-(H2), let µ ∈ C([0, T ];P1(Rd)), and let ∆ = (∆t,∆x, ε) ∈
]0,∞[2×]0, 1[. Then it holds that

〈
D2

xv
∆[µ](t, x)y, y

〉
≤ C̃hb

(
1 +

(∆x)2

ε4

)
|y|2 for all t ∈ [0, T ], x, y ∈ Rd, (2.3.23)

where C̃hb > 0 is independent of (µ,∆).
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Proof. Let us fix t ∈ [0, T ] and x, y ∈ Rd. If y = 0 the result is true and, hence, let
us assume that y ̸= 0 and set τ = ∆x/(

√
ε|y|). In what follows, C > 0 denotes a

constant, independent of (µ,∆) which may change from line to line. It follows from
Proposition 2.3.3(iii) that

v∆[µ](t, x+ τy)− 2v∆[µ](t, x) + v∆[µ](t, x− τy) ≤ Cτ 2|y|2. (2.3.24)

On the other hand, a Taylor expansion of order 4 and (2.3.16) imply that

v∆[µ](t, x+ τy) ≥ v∆[µ](t, x) + ⟨Dxv
∆[µ](t, x), τy⟩+ 1

2
⟨D2

xv
∆[µ](t, x)τy, τy⟩

+
1

6
D3

xv
∆[µ](t, x)(τy)3 − 1

ε3
C|τy|4,

v∆[µ](t, x− τy) ≥ v∆[µ](t, x)− ⟨Dxv
∆[µ](t, x), τy⟩+ 1

2
⟨D2

xv
∆[µ](t, x)τy, τy⟩

− 1

6
D3

xv
∆[µ](t, x)(τy)3 − 1

ε3
C|τy|4,

Adding both inequalities, using (2.3.24) and the relation τ |y| = ∆x/
√
ε, we get

⟨D2
xv

∆[µ](t, x)τy, τy⟩ ≤ C

(
1 +

(∆x)2

ε4

)
τ 2|y|2. (2.3.25)

Dividing by τ 2 yields (2.3.23). □

2.4 A Lagrange-Galerkin type scheme for the continu-

ity equation

Given µ ∈ C([0, T ];P1(Rd)) and ∆ = (∆t,∆x, ε) ∈]0,∞[3, let v∆[µ] be defined as in
(2.3.17). Consider the continuity equation

∂tm− div
(
DpH(x,Dxv

∆[µ])m
)
= 0 in ]0, T [×Rd,

m(0) = m∗
0 in Rd. (2.4.1)

Since H is of class C2 and Dxv
∆[µ] is bounded and Lipschitz, by [18, Proposition 8.1.8]

equation (2.4.1) admits a unique solution m∆[µ] ∈ C
(
[0, T ];P1(Rd)

)
, which can be
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represented as

m∆[µ](t) = Φ∆[µ](0, t, ·)♯m∗
0 for all t ∈ [0, T ], (2.4.2)

where, for all s ∈ [0, T ) and x ∈ Rd, Φ∆[µ](s, ·, x) denotes the unique solution to

Ẋ(t) = −DpH(X(t), Dxv
∆[µ](t,X(t))) for a.e. t ∈ (s, T ),

X(s) = x. (2.4.3)

Relations (2.4.2) and (2.4.3) imply that

m∆[µ](t) = Φ∆[µ](s, t, ·)♯m∆[µ](s) for all s, t ∈ [0, T ], s ≤ t. (2.4.4)

On the other hand, notice that (2.2.20) and the uniform bound ∥Dxv
∆[µ](t, ·)∥L∞(Rd) ≤

C̃Lip for all t ∈ [0, T ], which follows from Proposition 2.3.3(ii), yield the existence of
Cbf > 0, independent of (µ,∆), such that

sup
(t,x)∈[0,T ]×Rd

∣∣DpH(x,Dxv
∆[µ](t, x))

∣∣ ≤ Cbf. (2.4.5)

Relation (2.4.4) and estimate (2.4.5) have two straightforward consequences. The
first one is that, by (H3)(i), we have

|Φ∆[µ](0, t, x)| ≤ C∗ + TCbf for all t ∈ [0, T ], x ∈ supp(m∗
0) (2.4.6)

and, hence, by (2.4.2),

supp
(
m∆[µ](t)

)
⊂ B(0, C∗ + TCbf) for all t ∈ [0, T ]. (2.4.7)

The second one, is the uniform equicontinuity of the familly
{
m∆[µ]

∣∣∆ ∈]0,∞[3
}

in
C([0, T ];P1(Rd)). More precisely, using (2.2.2), an easy computation shows that

d1
(
m∆[µ](t),m∆[µ](s)

)
≤ Cbf|t− s| for all s, t ∈ [0, T ]. (2.4.8)

The purpose of the following two propositions is to provide some stability estimates
for m∆[µ], which, together with (2.4.7) and (2.4.8), motivate the forthcoming analysis
for a LG discretization of (2.4.1).

Proposition 2.4.1 Assume (H1)-(H3), let µ ∈ C([0, T ];P1(Rd)), and let ∆ = (∆t,∆x, ε) ∈
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]0,∞[3. Then for every c > 0 there exists c̃ > 0, independent of µ, such that, if ∆x ≤ cε2,
it holds that

∥m∆[µ](t, ·)∥Lp(Rd) ≤ c̃∥m∗
0∥Lp(Rd) for all t ∈ [0, T ]. (2.4.9)

Proof. Let c > 0 and suppose that ∆x ≤ cε2. Proposition 2.3.5 implies that

〈
D2

xv
∆[µ](t, x)y, y

〉
≤ C̃hb

(
1 + c2

)
|y|2 for all t ∈ [0, T ], x, y ∈ Rd. (2.4.10)

Using this inequality, the proof of (2.4.9) follows from exactly the same arguments than
those in the proof of [79, Proposition 4.1]. For the sake of completeness, we sketch
the main points of the analysis and refer the reader to [79] for the details. Let t ∈ [0, T ]

and suppose first that p ∈]1,∞[. It follows from (2.4.2), (H3), and the change of variable
formula, that m∆[µ](t) is absolutely continuous, with density given by

m∆[µ](t, x) =
m∗

0

(
Φ̃−1

t (x)
)∣∣ det (DΦ̃t(Φ̃

−1
t (x))

)∣∣ for a.e. x ∈ Rd,

where, for notational convenience, we have set Φ̃t(·) := Φ∆[µ](0, t, ·). Then, by the
change of variable formula, we get that∫

Rd

|m∆[µ](t, x)|pdx =

∫
supp(m∗

0)

m∗
0
p(x)|det(DxΦ̃t(x))|1−pdx. (2.4.11)

On the other hand, thanks to (2.4.6) and [17, Section 2], for a.e. x ∈ Rd, one has

|det(DxΦ̃t(x))|1−p ≤ exp
(
(p− 1)

∫ t

0

max
y∈B(0,C∗+TCbf)

[
div
(
DpH(y,Dxv

∆[µ](s, y))
)]

+
ds
)

≤ exp
(
p

∫ T

0

max
y∈B(0,C∗+TCbf)

[
div
(
DpH(y,Dxv

∆[µ](s, y))
)]

+
ds
)
.

(2.4.12)

Using (2.4.10), it is easy to check that there exists a constant C1 > 0, independent
of t and µ, such that

[
div
(
DpH(y,Dxv

∆[µ](s, y))
)]

+
≤ C1 for all s ∈ [0, T ], y ∈ B(0, C∗ + TCbf).

Thus, it follows from (2.4.11) and (2.4.12) that (2.4.9) holds with c̃ > 0, independent of t,
µ, and p. Finally, the case where p =∞ follows from the previous one by letting p→∞
in (2.4.9). □
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Proposition 2.4.2 Assume (H1)-(H3), let (µn)n∈N ⊂ C([0, T ];P1(Rd)), and let(
(∆tn,∆xn, εn)

)
n∈N ⊂ (0,∞)3. Set ∆n = (∆tn,∆xn, εn) and let µ ∈ C([0, T ];P1(Rd)).

Suppose that, as n→∞, µn → µ, ∆n → 0, (∆xn)2/∆tn → 0, and ∆xn = O(ε2n). Then,
up to some subsequence, the following hold:

(i) (v∆n [µn])n∈N converges to v[µ], uniformly over compact subsets of [0, T ]×Rd, and,
for every K ⊂ [0, T ]× Rd compact and q ∈ [1,∞[, (IKDxv

∆n [µn])n∈N converges to
IKDxv[µ] in Lq([0, T ]× Rd).

(ii)
(
m∆n [µn]

)
n∈N converges in C([0, T ];P1(Rd)) towards a solution to (2.2.31). More-

over, the convergence also hold weakly in Lp([0, T ]× Rd), if p <∞, and weakly∗

in L∞([0, T ]× Rd), if p =∞.

Proof. For every n ∈ N, let us set vn = v∆n [µn] and mn = m∆n [µn].
(i): This follows from Proposition 2.3.4.
(ii): It follows from (2.4.7) that, for every t ∈ [0, T ], mn(t) belongs to the set K = {µ ∈
P(Rd) | supp(µ) ⊆ B(0, C∗ + TCbf)}. The set K is tight and has uniformly integrable
moments (see [18, Chapter 5]) and hence, by [18, Proposition 7.1.5], it is a compact
subset of P1(Rd). Thus, it follows from (2.4.8) and the Ascoli-Arzelà theorem (see
e.g. [125, Theorem 47.1]), that there exists m∗ ∈ C([0, T ];P1(Rd)) such that, as n→∞
and up to some subsequence, mn → m∗ in C([0, T ];P1(Rd)). By Proposition 2.4.1, the
convergence also hold weakly in Lp([0, T ]×Rd), if p <∞, and weakly∗ in L∞([0, T ]×Rd),
if p = ∞. Since mn solves (2.4.1), for every t ∈ [0, T ], and φ ∈ C∞

0 (Rd), we have∫
Rd

φ(x)mn(t, x)dx =

∫
Rd

φ(x)m∗
0(t, x)dx

+

∫ t

0

∫
Rd

〈
Dφ(x), DpH

(
x,Dxv

n(s, x)
)〉
mn(s, x)dxds.

(2.4.13)
Thus, by (2.4.2), we can pass to the limit in the previous expression to deduce that m∗

solves (2.2.31). □

2.4.1 The Lagrange-Galerkin approximation

The main purpose of the this section is to provide some results in the vein of Propo-
sitions 2.4.1 and 2.4.2 for solutions M∆[µ] to a LG approximation of (2.4.1) that we
proceed to construct.
Let µ ∈ C([0, T ];P1(Rd)) and let ∆ = (∆t,∆x, ε) ∈]0,∞[3. For every k ∈ I∗∆t and x ∈ Rd,
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let Φ∆
k [µ](x) be the explicit Euler approximation of Φ∆[µ](tk, tk+1, x), i.e.

Φ∆
k [µ](x) = x−∆tDpH

(
x,Dxv

∆[µ](tk, x)
)

for all x ∈ Rd. (2.4.14)

As in [42], we consider the following semi-discrete approximation of (2.4.4):

mk+1 = Φ∆
k [µ]♯mk for all k ∈ I∗∆t,

m0 = m∗
0,

(2.4.15)

or, equivalently, for every k ∈ I∗∆t and every Borel function φ : Rd → R, such that
φ
(
Φ∆

k [µ](·)
)

is integrable with respect to mk,∫
Rd

φ(x)dmk+1(x) =

∫
Rd

φ
(
Φ∆

k [µ](x)
)
dmk(x). (2.4.16)

Following [124], which mainly deals with a LG approximation of the dual (or trans-
port) equation associated to (2.4.1), let us formaly deduce from (2.4.16) a time-space
approximation of (2.4.1). For every i ∈ Zd, set

Ei = {x ∈ Rd | |x− xi|∞ ≤ ∆x/2} (2.4.17)

and define

m0,i =
1

(∆x)d

∫
Ei

m∗
0(x)dx. (2.4.18)

Given the regular mesh defined by {Ei | i ∈ Zd}, let {βi | i ∈ Zd} be a finite element
basis. In the following, we look for an approximation M∆[µ] of the solution m∆[µ]

to (2.4.1) such that

M∆[µ](tk, x) =
∑
j∈Zd

mk,jβj(x) for all k ∈ I∆t, x ∈ Rd, (2.4.19)

for some constants {mk,j | k ∈ I∆t, j ∈ Zd}. In order to determine the latter, we replace
mk and mk+1 in (2.4.16) by M∆(tk, ·) and M∆(tk+1, ·), respectively, and, given i ∈ Zd,
we take φ = βi to obtain the following equations

∑
j∈Zd

mk+1,j

∫
Rd

βj(x)βi(x)dx =
∑
j∈Zd

mk,j

∫
Rd

βi(Φ
∆
k [µ](x))βj(x)dx for all k ∈ I∗∆t.

(2.4.20)
In the context of second-order MFGs with smooth solutions, scheme (2.4.20) is con-
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sidered in [41], with a high-order finite element basis and coupled with a high-order
semi-Lagrangian scheme for the HJB equation, to provide a high-order scheme for
second-order MFGs with smooth solutions. Notice that, in that reference, the authors
consider symmetric Lagrangian basis of odd order which preserve the mass but not
the positivity of the initial condition {m0,i | i ∈ Zd}. In particular, at each time step, the
solution to the scheme does not define a probability measure over Rd.
Since we aim to approximate solutions to (2.4.1), which in general are not smooth, from
now on we take βi = β0

i := IEi
for all i ∈ Zd. Under this choice, (2.4.20) and (2.4.18)

yield the following LG scheme for (2.4.1):

mk+1,i =
1

(∆x)d

∑
j∈Zd

mk,j

∫
Ej

β0
i (Φ

∆
k [µ](x))dx for all k ∈ I∗∆t, i ∈ Zd, (2.4.21)

m0,i =
1

(∆x)d

∫
Ei

m∗
0(x)dx for all i ∈ Zd. (2.4.22)

The scheme above is explicit and hence admits a unique solution {mk,i | k ∈ I∆t, i ∈ Zd}.
Moreover, as shown in Proposition 2.4.3 below, at each time k ∈ I∆t, {mi,k | i ∈ Zd}
can be identified with a probability measure over Rd with compact support. In view
of standard compactness results in P1(Rd), this fact will play an important role in our
convergence analysis (see the proofs of Proposition 2.4.6 and of Theorem 2.5.2 below).
Interestingly, the scheme (2.4.21)-(2.4.22) coincides with the one proposed in [127]
(see also [133]) to approximate solutions to continuity equations. Indeed, we have∫

Ej

β0
i (Φ

∆
k [µ](x))dx =

∫
Rd

IEj∩Φ∆
k [µ]−1(Ei)(x)dx = Ld

(
Ej ∩ Φ∆

k [µ]
−1(Ei)

)
, (2.4.23)

where Ld denotes the Lebesgue measure in Rd. Plugging this expression in (2.4.21)
yields the scheme in [127, Section 2.2]. Notice that our main results for solutions
to (2.4.21)-(2.4.22), contained in Propositions 2.4.5 and 2.4.6 below, do not follow
from the results in [127], [133]. Therefore, the analysis in this section provides a com-
plementary study to the one in [127], [133] for the approximation (2.4.21)-(2.4.22)
of continuity equations.

2.4.2 Properties of LG scheme

We begin with a preliminary result stating that the solution to (2.4.21)-(2.4.22) is sup-
ported on a compact set, which is independent of the discretization parameters provided
that ∆x is of the order of ∆t.
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Lemma 2.4.1 Assume (H1)-(H3), let µ ∈ C([0, T ];P1(Rd)), let ∆ = (∆t,∆x, ε) ∈]0,∞[3,
and let {mk,i | k ∈ I∆t, i ∈ Zd} be the solution to (2.4.21)-(2.4.22). Then for every c > 0

there exists C̃∗ > 0, independent of µ, such that, if ∆x ≤ c∆t, for every k ∈ I∆t we have
mk,i = 0 if xi /∈ B∞(0, C̃∗).

Proof. Let c > 0 and suppose that ∆x ≤ c∆t. For every k ∈ I∗∆t, set rk =

sup{|xi|∞ |mk,i ̸= 0, i ∈ Zd} ∈ [0,∞]. By (2.4.5), (2.4.21), and (H3)(i), we have

rk+1 ≤ rk+∆tCbf+
∆x

2
≤ rk+∆t

(
Cbf+

c

2

)
≤ C∗+N∆t∆t

(
Cbf+

c

2

)
= C∗+T

(
Cbf+

c

2

)
,

(2.4.24)
for all k ∈ I∗∆t. The result follows by letting C̃∗ = C∗ + T (Cbf + c/2). □

Let µ ∈ C([0, T ];P1(Rd)) and let ∆ = (∆t,∆x, ε) ∈]0,∞[3. As a consequence of the
previous result, in (2.4.21) it suffices to compute mi,k+1 for i ∈ I∆x, where

I∆x :=
{
i ∈ Zd |xi ∈ B∞(0, C̃∗)

}
. (2.4.25)

Given the constants {mk,i | k ∈ I∆t, i ∈ Zd}, computed with (2.4.21)-(2.4.22), we extend
M∆[µ], given by (2.4.19), to [0, T ] × Rd as follows:

M∆[µ](t, x) =

(
tk+1 − t

∆t

)
M∆[µ](tk, x) +

(
t− tk
∆t

)
M∆[µ](tk+1, x)

for all k ∈ I∗∆t, t ∈ [tk, tk+1), x ∈ Rd. (2.4.26)

In the following proposition, we state, for later use, some simple properties of the
solution to (2.4.21)-(2.4.22).

Proposition 2.4.3 Assume (H1)-(H3), let µ ∈ C([0, T ];P1(Rd)), let
∆ = (∆t,∆x, ε) ∈]0,∞[3, and let {mk,i | k ∈ I∆t, i ∈ Zd} be the solution to (2.4.21)-
(2.4.22). Then the following hold:

(i) M∆[µ](t, x) ≥ 0 for all t ∈ [0, T ], x ∈ Rd.
(ii) Let c > 0. If ∆x ≤ c∆t and C̃∗ > 0 is given by Lemma 2.4.1, we have

supp
(
M∆[µ](t, ·)

)
⊆ B∞(0, C̃∗) for all t ∈ [0, T ]. (2.4.27)
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(iii) Let a = (ai)i∈Zd ⊂ R and set φa(x) =
∑

i∈Zd aiβ
0
i (x) for all x ∈ Rd. Then we have∫

Rd

φa(x)M
∆[µ](tk+1, x)dx =

∫
Rd

φa(Φ
∆
k [µ](x))M

∆[µ](tk, x)dx for all k ∈ I∗∆t.

(2.4.28)
(iv)

∫
Rd M

∆[µ](t, x)dx = 1 for all t ∈ [0, T ].

Proof.
(i): Using that m∗

0 ≥ 0 and β0
i ≥ 0 for all i ∈ Zd, this assertion follows directly

from (2.4.21)-(2.4.22).
(ii): This follows from Lemma 2.4.1 and (2.4.26).
(iii): For every k ∈ I∗∆t, by (2.4.21), we have∫

Rd

φaM
∆[µ](tk+1, x)dx =

∑
i∈Zd

∑
j∈Zd

ajmk+1,i

∫
Rd

β0
i (x)β

0
j (x)dx =

∑
i∈Zd

aimk+1,i(∆x)
d

=
∑
i∈Zd

ai
∑
j∈Zd

mk,j

∫
Ej

β0
i (Φ

∆
k [µ](x))dx =

∑
j∈Zd

mk,j

∫
Rd

φa(Φ
∆
k [µ](x))β

0
j (x)dx

=

∫
Rd

φa(Φ
∆
k [µ](x))M

∆[µ](tk, x)dx. (2.4.29)

Notice that the changes of the order of summation above are justified by (2.4.3).

(iv): By (2.4.3), with φa(x) :=
∑

i∈Zd β0
i (x) = 1, we obtain the result for t = tk, with

k ∈ I∆t. The result for every t ∈ [0, T ] follows from (2.4.26). □

In what follows, given φ : Rd → R we set

I0[φ](x) =
∑
i∈Zd

φ(xi)β
0
i (x) for all x ∈ Rd. (2.4.30)

We will need the following estimate in some of the proofs below.

Lemma 2.4.2 Assume (H1)-(H3), let µ ∈ C([0, T ];P1(Rd)), let ∆ = (∆t,∆x, ε) ∈]0,∞[3,
and, given L > 0, let φ : Rd → R be L-Lipschitz. Then, for every k ∈ I∗∆t, we have∣∣∣∣∣

∫
Rd

φ(x)M∆[µ](tk+1, x)dx−
∫
Rd

φ(Φ∆
k [µ](x))M

∆[µ](tk, x)dx

∣∣∣∣∣ ≤ L
√
d∆x. (2.4.31)
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Proof. Since
∑

i∈Zd β0
i (x) = 1 for all x ∈ Rd, we have

∣∣φ(x)− I0[φ](x)∣∣ = ∣∣∣∣∑
i∈Zd

(φ(x)− φ(xi))β0
i (x)

∣∣∣∣
≤
∑
i∈Zd

∣∣φ(x)− φ(xi)|β0
i (x) ≤

L
√
d

2
∆x for all x ∈ Rd. (2.4.32)

It follows that ∥φ − I0[φ]∥∞ ≤ (L
√
d/2)∆x and, hence,∣∣∣∣∣ 1

(∆x)d

∫
Ei

φ(x)dx− φ(xi)

∣∣∣∣∣ =
∣∣∣∣∣ 1

(∆x)d

∫
Ei

(φ(x)− φ(xi))dx

∣∣∣∣∣ ≤ L
√
d

2
∆x, (2.4.33)

from which we deduce that, for every k ∈ I∗∆t and j ∈ Zd,∣∣∣∣∣∑
i∈Zd

1

(∆x)d

∫
Ei

φ(x)dx

∫
Ej

β0
i (Φ

∆
k [µ](y))dy −

∫
Ej

I0[φ](Φ∆
k [µ](x))dx

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈Zd

(
1

(∆x)d

∫
Ei

φ(x)dx− φ(xi)
)∫

Ej

β0
i (Φ

∆
k [µ](y))dy

∣∣∣∣∣ ≤ L
√
d

2
∆x
∑
i∈Zd

∫
Ej

β0
i (Φ

∆
k [µ](y))dy

=
L
√
d

2
(∆x)d+1. (2.4.34)

Therefore, by (2.4.34) and (2.4.32), we obtain∣∣∣∣∣∑
i∈Zd

1

(∆x)d

∫
Ei

φ(x)dx

∫
Ej

β0
i (Φ

∆
k [µ](y))dy −

∫
Ej

φ(Φ∆
k [µ](x))dx

∣∣∣∣∣ ≤ L
√
d(∆x)d+1.

(2.4.35)
Finally, from (2.4.21), (2.4.35), and Proposition 2.4.3(iv), we get∣∣∣∣∣
∫
Rd

φ(x)M∆[µ](tk+1, x)dx−
∫
Rd

φ(Φ∆
k [µ](x))M

∆[µ](tk, x)dx

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈Zd

∫
Ei

φ(x)dx
1

(∆x)d

∑
j∈Zd

mk,j

∫
Ej

β0
i (Φ

∆
k [µ](y))dy −

∑
i∈Zd

mk,i

∫
Ei

φ(Φ∆
k [µ](x))dx

∣∣∣∣∣
=

∣∣∣∣∣∑
j∈Zd

mk,j

(∑
i∈Zd

1

(∆x)d

∫
Ei

φ(x)

∫
Ej

β0
i (Φ

∆
k [µ](y))dy−

∫
Ej

φ(Φ∆
k [µ](x))dx

)∣∣∣∣∣ ≤ L
√
d(∆x),

(2.4.36)

which shows (2.4.31). □
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In the next result, we study the equicontinuity of the family {M∆[µ] |∆ ∈]0,∞[3}, under
the condition that ∆x is, at most, of the order of ∆t.

Proposition 2.4.4 Assume (H1)-(H3), let µ ∈ C([0, T ];P1(Rd)), and let
∆ = (∆t,∆x, ε) ∈]0,∞[3. Then, for every c > 0, if ∆x ≤ c∆t, we have

d1(M
∆[µ](t),M∆[µ](s)) ≤ (Cbf + c

√
d)|t− s| for all t, s ∈ [0, T ], (2.4.37)

where, for every t ∈ [0, T ], M∆[µ](t) ∈ P1(Rd) denotes the measure dM∆[µ](t)(x) =

M∆[µ](t, x)dx.

Proof. Let φ ∈ Lip1(Rd) and define ψφ : [0, T ] → R by

ψφ(t) =

∫
Rd

φ(x)M∆[µ](t, x)dx for all t ∈ [0, T ]. (2.4.38)

It follows from (2.4.26) that ψφ is continuous and affine on every interval [tk, tk+1]

(k ∈ I∗∆t). Thus, ψφ ∈ W 1,∞(]0, T [) and

∥∥∥ d

dt
ψφ

∥∥∥
∞

=
1

∆t
max
k∈I∗

∆

∣∣∣∣∣
∫
Rd

φ(x)

(
M∆[µ](tk+1, x)−M∆[µ](tk, x)

)
dx

∣∣∣∣∣. (2.4.39)

In order to estimate the right-hand side of (2.4.39), fix k ∈ I∗∆t and notice that, by
Lemma 2.4.2, (2.4.14), (2.4.5), Proposition 2.4.3(iv), and ∆x ≤ c∆t, we have∫
Rd

φ(x)

(
M∆[µ](tk+1, x)−M∆[µ](tk, x)

)
dx ≤

∫
Rd

(
φ(Φ∆

k [µ](x))− φ(x)
)
M∆[µ](tk, x)dx

+
√
d∆x

≤
∫
Rd

∣∣∣Φ∆
k [µ](x)− x

∣∣∣M∆[µ](tk, x)dx+
√
d∆x

≤ (Cbf + c
√
d)∆t. (2.4.40)

Changing φ by −φ in the previous computation, (2.4.40) implies that∣∣∣∣∣
∫
Rd

φ(x)

(
M∆[µ](tk+1, x)−M∆[µ](tk, x)

)
dx

∣∣∣∣∣ ≤ (Cbf + c
√
d)∆t. (2.4.41)
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and hence, by (2.4.39),
∥∥∥ d
dt
ψφ

∥∥∥
∞
≤ (Cbf + c

√
d). Thus, we deduce that

∫
Rd

φ(x)

(
M∆[µ](t, x)−M∆[µ](s, x)

)
dx ≤ (Cbf+c

√
d)|t−s| for all t, s ∈ [0, T ] (2.4.42)

and (2.4.37) follows from (2.2.2). □

The following result state a stability property for M∆[µ] which is analogous to the one
in Proposition 2.4.1 for m∆[µ].

Proposition 2.4.5 Assume (H1)-(H3), let µ ∈ C([0, T ];P1(Rd)), and let ∆ = (∆t,∆x, ε) ∈
]0,∞[3. Then for every c1, c2 > 0, there exists C̃ > 0, independent of µ, such that, if ∆ is
small enough, ∆x ≤ c1∆t, and ∆t ≤ c2ε

2, we have M∆[µ](t, ·) ∈ Lp(Rd) for all t ∈ [0, T ]

and
∥M∆[µ](t, ·)∥Lp(Rd) ≤ C̃∥m∗

0∥Lp(Rd) for all t ∈ [0, T ]. (2.4.43)

Proof. Let c1, c2 > 0, suppose that ∆x ≤ c1∆t, ∆t ≤ c2ε
2, fix k ∈ I∗∆t, and let C̃∗ > 0

be as in Lemma 2.4.1. Then, by (2.4.5), there exists R > 0, independent of (µ,∆, k),
such that

(
Φ∆

k [µ]
)−1(

B∞(0, C̃∗)
)
⊂ B∞(0, R). The regularity of H and estimate (2.3.16),

with ℓ = 2, yield the existence of CR > 0, independent of (µ,∆, k), such that, for every
x ∈ B∞(0, R), the norm of the matrix

Dx

(
DpH(x,Dxv

∆[µ](tk, x))
)

= D2
pH
(
x,Dxv

∆[µ](tk, x)
)
D2

xv
∆[µ](tk, x) +D2

xpH
(
x,Dxv

∆[µ](tk, x)
)
, (2.4.44)

induced by the 2-norm in Rd, is bounded by CR/ε. In particular, DpH(·, Dxv
∆[µ](tk, ·)) is

(CR/ε)-Lipschitz on B∞(0, R). Thus, expression (2.4.14) and the inequality ∆t/ε ≤ c2ε

imply that, if ε is small enough, there exists C1 > 0, independent of (µ,∆, k), such that

∣∣Φ∆
k [µ](x)− Φ∆

k [µ](y)
∣∣ ≥ C1|x− y| for all x, y ∈ B∞(0, R), (2.4.45)

which implies that Φ∆
k [µ] is injective on B∞(0, R), and, denoting by Id the d × d iden-

tity matrix,

DxΦ
∆
k [µ](x) = Id −∆tDx[DpH(x,Dxv

∆[µ](tk, x))] (2.4.46)

is invertible for x ∈ B∞(0, R). In particular, Φ∆
k [µ] is a diffeomorphism of B∞(0, R)

onto Φ∆
k [µ](B∞(0, R)). Let us suppose first that p ∈]1,∞[. By the change of vari-
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able formula, we have∫
Rd

(
M∆[µ]

(
tk+1,Φ

∆
k [µ](x)

))p
dx =

∫
B∞(0,R)

(
M∆[µ]

(
tk+1,Φ

∆
k [µ](x)

))p
dx

=

∫
Φ∆

k [µ](B∞(0,R))

(
M∆[µ](tk+1, y)

)p∣∣∣det
(
DxΦ

∆
k [µ]

(
Φ∆

k [µ]
−1(y)

)) ∣∣∣−1

dy. (2.4.47)

Using again that the norm ofDx

(
DpH(·, Dxv

∆[µ](tk, ·))
)

is bounded by CR/ε onB∞(0, R),
relation (2.4.46) and a Taylor expansion for the determinant yield the existence of C2 > 0,
independent of (µ,∆, k), such that∣∣∣det

(
DxΦ

∆
k [µ](x)

)
−
(
1−∆tTr

(
Dx

(
DpH(x,Dxv

∆[µ](tk, x))
)) )∣∣∣ ≤ C2(∆t/ε)

2

for all x ∈ B∞(0, R),

where, given B ∈ Rd×d, Tr(B) denotes its trace. In turn, we get the existence of C3 > 0,
independent of (µ,∆, k), such that∣∣∣ ∣∣det

(
DxΦ

∆
k [µ](x)

) ∣∣−1 −
(
1 + ∆tTr

(
Dx

(
DpH(x,Dxv

∆[µ](tk, x))
)) )∣∣∣ ≤ C3(∆t/ε)

2,

(2.4.48)
for all x ∈ B∞(0, R). Since ∆x ≤ c1c2ε

2, Proposition 2.3.5 implies that D2
xv

∆[µ](tk, x)−
C̃hb(1 + (c1c2)

2)Id is negative semidefinite. Using that H(·, ·) is of class C2 and convex
with respect to its second argument, it follows from (2.4.44) and [48, Lemma 1.6.4] that
there exists C4 > 0, independent of (µ,∆, k), such that

Tr(Dx[DpH(x,Dxv
∆[µ](tk, x))]) ≤ C4 for all x ∈ B∞(0, R), (2.4.49)

which, together with (2.4.48), yields∣∣∣det
(
DxΦ

∆
k [µ](x)

) ∣∣∣−1

≤ 1 + C5∆t for all x ∈ B∞(0, R), (2.4.50)

where C5 = C4 + C3c2. Therefore, by (2.4.47), we get∫
Rd

(
M∆[µ]

(
tk+1,Φ

∆
k [µ](x)

))p
dx ≤ (1 + C5∆t)

∫
Rd

(
M∆[µ](tk+1, x)

)p
dx. (2.4.51)
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Setting p∗ = p/(p − 1), it follows from (2.4.28) and Hölder’s inequality that

∥M∆[µ](tk+1, ·)∥pLp(Rd)
=

∫
Rd

(
M∆[µ](tk+1, x)

)p−1
M∆[µ](tk+1, x)dx

=

∫
Rd

(
M∆[µ](tk+1,Φ

∆
k [µ](x))

)p−1
M∆[µ](tk, x)dx

≤
(∫

Rd

(
M∆[µ](tk+1,Φ

∆
k [µ](x))

)p
dx

) 1
p∗

∥M∆[µ](tk, ·)∥Lp(Rd)

≤ (1 + C5∆t)
1
p∗ ∥M∆[µ](tk+1, ·)∥

p
p∗

Lp(Rd)
∥M∆[µ](tk, ·)∥Lp(Rd)

≤ (1 + C5∆t)∥M∆[µ](tk+1, ·)∥p−1
Lp(Rd)

∥M∆[µ](tk, ·)∥Lp(Rd). (2.4.52)

In turn, we deduce that

∥M∆[µ](tk+1, ·)∥Lp(Rd) ≤ (1 + C5∆t)∥M∆[µ](tk, ·)∥Lp(Rd). (2.4.53)

By (2.4.22) and Jensen’s inequality, we have ∥M∆[µ](0, ·)∥Lp(Rd) ≤ ∥m∗
0∥Lp(Rd), and hence

∥M∆[µ](tk+1, ·)∥Lp(Rd) ≤ (1 + C5∆t)
N∥M∆[µ](0, ·)∥Lp(Rd)

≤ eC5T∥m∗
0∥Lp(Rd), (2.4.54)

which, by (2.4.26), shows (2.4.43), with C̃ = eC5T . If p =∞, then (2.4.43) holds for every
p′ ∈]1,∞[. Noticing that C̃ is independent of p′ and that, by Proposition 2.4.3(ii), for
every t ∈ [0, T ], the support of M∆[µ](t, ·) is contained in B∞(0, C̃∗), (2.4.43) for p =∞
follows by letting p′ →∞. □

The next result provides the analogous for M∆[µ] of Proposition 2.4.2 for m∆[µ].

Proposition 2.4.6 Assume (H1)-(H3), let (µn)n∈N ⊂ C([0, T ];P1(Rd)), and let(
(∆tn,∆xn, εn)

)
n∈N ⊂ (0,∞)3. Set ∆n = (∆tn,∆xn, εn) and let µ ∈ C([0, T ];P1(Rd)).

Suppose that, as n→∞, µn → µ, ∆n → 0, ∆xn = o(∆tn), and ∆tn = O(ε2n). Then, up
to some subsequence, the following hold:

(i) (v∆n [µn])n∈N converges to v[µ], uniformly over compact subsets of [0, T ]×Rd, and,
for every K ⊂ [0, T ]× Rd compact and q ∈ [1,∞[, (IKDxv

∆n [µn])n∈N converges to
IKDxv[µ] in Lq([0, T ]× Rd).

(ii)
(
M∆n [µn]

)
n∈N converges in C([0, T ];P1(Rd)) towards a solutionm ∈ C([0, T ];P1(Rd))∩

Lp([0, T ] × Rd) to (2.2.31). Moreover, the convergence also hold weakly in
Lp([0, T ] × Rd), if p < ∞, and weakly∗ in L∞([0, T ] × Rd), if p = ∞. In addi-
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tion, there exists C̃ > 0 such that

∥m(t, ·)∥Lp(Rd) ≤ C̃∥m∗
0∥Lp(Rd) for all t ∈ [0, T ]. (2.4.55)

Proof. Let us set vn := v∆n,εn [µn], Mn = M∆n,εn [µn], and Φn
k = Φ∆n,εn [µn] for all k ∈ I∗∆tn

.
(i): This corresponds to Proposition 2.4.2(i)
(ii): Arguing as in the proof of Proposition 2.4.2(ii), it follows from Proposition 2.4.3(ii),
[18, Proposition 7.1.5], Proposition 2.4.4, and the Arzelá-Ascoli theorem, that there
exists m ∈ C([0, T ];P1(Rd)) such that, as n → ∞ and up to some subsequence,
Mn → m in C([0, T ];P1(Rd)). Moreover, by Proposition 2.4.5, the convergence holds
weakly, if p <∞, and weakly∗ in L∞([0, T ]× Rd), if p =∞, and m satisfies (2.4.55). It
remains to show that m solves (2.2.31). Let t ∈]0, T ] and let k(n) ∈ I∗∆tn

be such that
t ∈]tk(n), tk(n)+1]. For every φ ∈ C∞

0 (Rd), we have

∫
Rd

φ(x)Mn
(
tk(n), x

)
dx =

∫
Rd

φ(x)Mn(0, x)dx+

k(n)−1∑
k=0

∫
Rd

φ(x)
(
Mn(tk+1, x)−Mn(tk, x)

)
dx.

(2.4.56)
Let k ∈ I∗∆t. Since (2.4.14) and (2.4.5) yield |Φn

k(x) − x| = O(∆tn) for all x ∈ supp(φ),
by Lemma 2.4.2, a Taylor expansion, and Proposition 2.4.3(2.4.3), we have∫
Rd

φ(x)
(
Mn(tk+1, x)−Mn(tk, x)

)
dx =

∫
Rd

(
φ(Φn

k(x))− φ(x)
)
Mn(tk, x)dx+O(∆xn)

= −∆tn
∫
Rd

〈
Dφ(x), DpH(x,Dxv

n(tk, x))
〉
Mn(tk, x)dx

+O(∆xn) +O((∆tn)
2), (2.4.57)

which, combined with (2.4.56), yields∫
Rd

φ(x)Mn(tk(n), x)dx =

∫
Rd

φ(x)Mn(0, x)dx

−∆tn

k(n)−1∑
k=0

∫
Rd

〈
Dφ(x), DpH(x,Dxv

n(tk, x))
〉
Mn(tk, x)dx

+O

(
∆xn
∆tn

+∆tn

)
. (2.4.58)

Since φ has a compact support, it follows from (2.3.16), with ℓ = 2, that there exists Cφ >

0 such that
〈
Dφ(·), DpH(·, Dxv

n(tk, ·))
〉

is (Cφ/εn)-Lipschitz. Thus, by Proposition 2.4.4,
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for every k ∈ I∗∆t, we have

∣∣∣∣∫
Rd

〈
Dφ(x), DpH(x,Dxv

n(tk, x))
〉(
Mn(s, x)−Mn(tk, x)

)
dx

∣∣∣∣ = O

(
∆tn
εn

)
for all s ∈ [tk, tk+1].

Recalling that Dxv
n(s, x) = Dxv

n(tk, x) for all s ∈ [tk, tk+1[ and x ∈ Rd, we obtain

∆tn

∫
Rd

〈
Dφ(x), DpH(x,Dxv

n(tk, x))
〉
Mn(tk, x)dx

=

∫ tk+1

tk

∫
Rd

〈
Dφ(x), DpH(x,Dxv

n(s, x))
〉
Mn(s, x)dxds+O

(
(∆tn)

2

εn

)
(2.4.59)

and hence, in view of (2.4.58), we deduce that, for n large enough,∫
Rd

φ(x)Mn
(
tk(n), x

)
dx

=

∫
Rd

φ(x)Mn(0, x)dx−
∫ T

0

∫
Rd

I[0,tk(n)]

〈
Dφ(x), DpH(x,Dxv

n(s, x))
〉
Mn(s, x)dxds

+O

(
∆xn
∆tn

+
∆tn
εn

)
. (2.4.60)

Finally, by (2.4.6),

I[0,tk(n)](·)
〈
Dφ(·), DpH(x,Dxv

n(·, ·))
〉
−→
n→∞

I[0,t](·)
〈
Dφ(·), DpH(x,Dxv[m](·, ·))

〉
,

(2.4.61)
in Lq([0, T ]×Rd), for every q ∈ [1,∞[, and, hence, we can pass to the limit in (2.4.60) to
obtain that m satisfies (2.2.31). □

2.5 A Lagrange-Galerkin scheme for the the mean field

games system

In this section, we combine the schemes discussed in Sections 2.3 and 2.4 to obtain
a scheme for system (MFG) and we provide a convergence result.
Let ∆ = (∆t,∆x, ε) ∈]0,∞[3, let C̃∗ > 0 be as in Lemma 2.4.1, and define

D∆t,∆x =

{
µ = (µk,i)

∣∣∣µk,i ≥ 0,
∑
j∈Zd

µk,j(∆x)
d = 1 for all k ∈ I∆t, i ∈ I∆x

}
, (2.5.1)
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where I∆x is defined in (2.4.25). Notice that D∆t,∆x is a convex and compact subset
of R(N∆t+1)×(2N∆x+1)d. Given µ ∈ D∆t,∆x define µ̃ ∈ C([0, T ];P1(Rd)) as

dµ̃(t)(x) =

(
t− tk
∆t

) ∑
i∈I∆x

µk+1,iβ
0
i (x)dx+

(
tk+1 − t

∆t

) ∑
i∈I∆x

µk,iβ
0
i (x)dx

for all k ∈ I∗∆t, t ∈ [tk, tk+1[. (2.5.2)

The discretization of (MFG) that we propose is the following: find µ ∈ D∆t,∆x such that

µk,i = M∆[µ̃](tk, xi) for all k ∈ I∗∆t, i ∈ I∆x, (MFG∆)

where we recall that M∆[µ̃] is defined in (2.4.26).

Theorem 2.5.1 Assume that (H1)-(H3) hold. Then, if ∆t/ε is small enough, sys-
tem (MFG∆) admits at least one solution.

Proof. Consider the application T : D∆t,∆x → R(N∆t+1)×(2N∆x+1)d defined by

(T (µ))k,i = M∆[µ̃](tk, xi) for all k ∈ I∗∆t, i ∈ I∆x.

It follows from Proposition 2.4.3(i),(ii),(iv) that T (D∆t,∆x) ⊆ D∆t,∆x. Moreover, if
(µn)n∈N ⊂ D∆t,∆x converges to µ then the continuity of L, F , and G, imply that, as
n→∞, v∆t,∆x

k,i [µn]→ v∆t,∆x
k,i [µ] for all k ∈ I∆t and i ∈ Zd. Thus, (v∆t,∆x[µn])n∈N, defined

in (2.3.9), converges to v∆t,∆x[µ] pointwisely and hence, by Lebesgue’s dominated
convergence, the sequence (v∆[µn])n∈N, defined in (2.3.17), satisfies that v∆[µn] →
v∆[µ] and Dxv

∆[µn] → Dxv
∆[µ] pointwisely. Consequently, given k ∈ I∗∆t, it fol-

lows from (2.4.14) that Φ∆
k [µn] → Φ∆

k [µ] pointwisely. In particular, β0
i (Φ

∆
k [µn](x)) →

β0
i (Φ

∆
k [µ](x)) for all x ∈ Rd \

(
Φ∆

k [µ]
−1(∂Ei)

)
. If R > 0 is as in the proof of Proposi-

tion 2.4.5 and ∆t/ε is small enough, we have that Φ∆
k [µ] is a diffeomorphism of B∞(0, R)

onto Φ∆
k [µ](B∞(0, R)). Therefore, since Ld(∂Ei) = 0, we have Ld

(
Φ∆

k [µ]
−1(∂Ei)

)
= 0

and hence β0
i (Φ

∆
k [µn](x)) → β0

i (Φ
∆
k [µ](x)) for almost every x ∈ Rd. Therefore, by

Lebesgue’s dominated convergence,∫
Ej

β0
i

(
Φ∆

k [µn](x)
)
dx −→

n→∞

∫
Ej

β0
i

(
Φ∆

k [µ](x)
)
dx for all k ∈ I∗∆t, i, j ∈ Zd.

Altogether, it follows from (2.4.21) that, as n→∞, T (µn)→ T (µ), i.e. T is continuous.
Finally, the existence of a solution to (MFG∆), i.e. of a fixed point of T , follows from
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Brouwer’s fixed-point theorem. □

In the next result we provide our main result, which shows the convergence, up to some
subsequence, of solutions to (MFG∆) towards a solution to (MFG).

Theorem 2.5.2 Assume (H1)-(H3), let
(
(∆tn,∆xn, εn)

)
n∈N ⊂]0,∞[3, and set ∆n =

(∆tn,∆xn, εn). Suppose that, as n→∞, ∆n → 0, ∆xn = o(∆tn), and ∆tn = O(ε2n). For
every n, large enough, let mn ∈ S∆n be a solution to (MFG∆n), define m̃n by (2.5.2),
and set vn = v∆n [m̃n]. Then there exists a solution (v∗,m∗) to (MFG) such that, up to
some subsequence, the following hold:

(i) (vn)n∈N converges to v∗, uniformly over compact subsets of [0, T ]× Rd.
(ii) (m̃n)n∈N converges in C([0, T ];P1(Rd)) towards m∗. Moreover, the convergence

also hold weakly in Lp([0, T ] × Rd), if p < ∞, and weakly∗ in L∞([0, T ] × Rd), if
p =∞. In addition, there exists C̃ > 0 such that

∥m∗(t, ·)∥Lp(Rd) ≤ C̃∥m∗
0∥Lp(Rd) for all t ∈ [0, T ]. (2.5.3)

Proof. For all n ∈ N, large enough, we have m̃n = M∆n [m̃n]. Arguing as in the
proof of Proposition 2.4.6(ii), we obtain the existence of m∗ ∈ C([0, T ];P1(Rd)) and a
subsequence, still labelled by n, such that (m̃n)n∈N converges to m∗ in C([0, T ];P1(Rd)).
It follows from Proposition 2.4.6(ii) that m∗ solves (2.2.31), with µ = m∗, i.e. (v[m∗],m∗)

solves (MFG). Therefore, assertions(i)-(ii) follow from the corresponding assertions in
Proposition 2.4.6. □

Remark 2.5.1 (i) Theorem 2.5.2 shows, in particular, that system (MFG) admits at
least one solution (v∗,m∗). If the solution to (MFG) is unique, then the entire se-
quence (vn,mn) converges to (v∗,m∗) (see Theorem 2.2.4 for a sufficient condition
ensuring uniqueness).

(ii) The condition on ∆xn = o(∆tn) in Theorem 2.5.2 is stronger than the condition
(∆xn)

2 = o(∆tn) needed for convergence, when the space dimension is equal
to one, in the scheme studied in [57] (see also [66]). This can be explained by
the estimate (2.4.31) in Lemma 2.4.2, which seems difficult to improve, even if
φ is smooth, and it is in compliance with Assumption 3.1 in [133], which plays
an important role in the LG approximation of continuity equations with Lipschitz
vector fields.

(iii) Let us point out that our method of proof, based on compactness arguments,
does not provide rates of convergence for the solutions to the scheme. The
establishment of convergence rates for the approximation of solutions to first order
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MFGs remains as an interesting challenge.

2.6 Numerical results

In this section, given ∆ = (∆t,∆x, ε), we use (MFG∆) to approximate the solutions
to two first order MFGs systems. In order to obtain an implementable version, we
need to approximate the integrals in the LG scheme (2.4.21)-(2.4.22). We consider
two methods. In the first one, the integrals are approximated by numerical quadrature,
while, in the second one, we use the so-called area weighting technique, introduced
in [124] and recalled in Section 2.6.1 below.
In the first example, the state dimension is equal to one and the data of the MFGs
system does not satisfy some of the assumptions in Section 2.2.2. On the other hand,
the PDE system admits an explicit solution, which allows to compare the quadrature
and area weighting methods to solve (MFG∆). For comparable accuracies, the area
weighting method is less expensive than the quadrature method and, hence, we use
the former in order to treat the second example, where the state dimension is equal
to two and no explicit solution is known. Let us point out that the data of the second
example fulfills all the assumptions in Section 2.2.2.
We solve (MFG∆) heuristically by fixed point iterations that are stopped as soon as
the uniform norm of the difference between two consecutive iterates is smaller than
a given threshold τ , which in the simulations is set to 10−3. In particular, we use the
classical Picard iterations in the first test, as in [57], and Picard iterations with damping
parameter 0.5 in the second test, as in [66].
All proposed tests are implemented in MATLAB R2023a and run in a computer with
MacOS 10.15.7, 2.8 GHz Intel Core i7 Dual Core 16GB RAM.

2.6.1 Area-weighted LG approximation

Let µ ∈ C([0, T ];P1(Rd)) and consider the continuity equation (2.4.1). The main idea of
the area-weighting technique is to replace, for each k ∈ I∗∆x, the local nonlinear discrete
flow Ei ∋ x 7→ Φ∆

k [µ](x) ∈ Rd, defined by (2.4.14), by the local affine approximation

Ei ∋ x 7→ Φ
∆

k [µ](x) = x−∆tDpH
(
xi, Dxv

∆[µ](tk, xi)
)
∈ Rd. (2.6.1)

Notice that Φ
∆

k [µ](x) = x−xi+Φ∆
k [µ](xi) for all x ∈ Ei. Under this approximation, we can

compute the integrals in (2.4.21)-(2.4.22) explicitly. Indeed, for all i = (i1, . . . , id) ∈ Zd
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and l = 1, . . . , d, let us set Til = [(xi)l −∆x/2, (xi)l +∆x/2], and observe that

β0
i (y) =

d∏
l=1

ITil
(yl) for all y = (y1, . . . , yd) ∈ Rd. (2.6.2)

It follows from (2.6.1) and (2.6.2) that, for every i, j ∈ Zd, we have∫
Ej

β0
i (Φ

∆

k [µ](y))dy =

∫
Ej

β0
i (y − xj + Φ∆

k [µ](xj))dy

=
d∏

l=1

∫ (xj)l+∆x/2

(xj)l−∆x/2

ITil

(
yl − (xj)l +

(
Φ∆

k [µ](xj)
)
l

)
dyl =

d∏
l=1

∫ (Φ∆
k [µ](xj)

)
l
+∆x/2(

Φ∆
k [µ](xj)

)
l
−∆x/2

ITil
(yl)dyl

(2.6.3)

=
d∏

l=1

L1

(
[(xi)l −∆x/2, (xi)l +∆x/2] ∩

[
(Φ∆

k [µ](xj))l −∆x/2, (Φ∆
k [µ](xj))l +∆x/2

])
.

On the other hand, for every l = 1, . . . , d, it follows from (2.3.2) that

L1

(
[(xi)l −∆x/2, xi)l +∆x/2] ∩

[
(Φ∆

k [µ](xj))l −∆x/2, (Φ∆
k [µ](xj))l +∆x/2

])

=


∆x+

(
Φ∆

k [µ](xj)
)
l
− (xi)l if

(
Φ∆

k [µ](xj)
)
l
∈ [(xi)l −∆x, (xi)l],

∆x+ (xi)l −
(
Φ∆

k [µ](xj)
)
l

if
(
Φ∆

k [µ](xj)
)
l
∈](xi)l, (xi)l +∆x],

0 otherwise,

= ∆xβ̂
((
Φ∆

k [µ](xj)
)
l
/∆x− il

)
,

which, combined with (2.3.1) and (2.6.3), yields

1

(∆x)d

∫
Ej

β0
i (Φ

∆

k [µ](y))dy = β1
i (Φ

∆
k [µ](xj)). (2.6.4)

Thus, replacing Φ∆
k [µ] by Φ

∆

k [µ] in (2.4.21) and, for every i ∈ Zd, denoting by m∗
0,i

any approximation of
∫
Ei
m∗

0(x)dx/(∆x)
d, we obtain the following area-weigthed LG

version of (2.4.21)-(2.4.22):

mk+1,i =
∑
j∈Zd

mk,jβ
1
i (Φ

∆
k [µ](xj)) for all k ∈ I∗∆t, i ∈ Zd, (2.6.5)

m0,i = m∗
0,i for all i ∈ Zd. (2.6.6)
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Remark 2.6.1 (i) Notice that (2.6.5)- (2.6.6) corresponds to the scheme proposed
in [57] for the continuity equation (2.4.1). Therefore, the latter can be seen as an
area-weighted version of the LG scheme of Section 2.4.

(ii) Let us point out that we have not been able to provide a satisfactory uniform error
estimate for the difference between the solution {mk,i | k ∈ I∆t, i ∈ Zd} to (2.4.21)-
(2.4.22) and the solution {mk,i | k ∈ I∆t, i ∈ Zd} to (2.4.21)-(2.4.22). The main
issue is that, as suggested by the analysis in [124, Section 3], this estimate should
depend of the Lipschitz constant of the map x 7→ −DpH

(
x,Dxv

∆[µ](t, x)
)
, which,

in our case, is not uniform with respect to ε.

2.6.2 Non-local MFG with analytical solution.

We consider system (MFG) with a quadratic Hamiltonian H(x, p) = p2

2
, coupling terms

F (x, ν) =
1

2

(
x−

∫
Rd

y dν(y)
)2
, G(x, ν) = 0, (2.6.7)

and initial data m∗
0 given by the distribution of a d-dimensional Gaussian random variable

with mean µ∗ ∈ Rd and covariance matrix Σ0 ∈ Rd×d assumed, for simplicity, to be diago-
nal. Notice that the coupling term F in (2.6.7) and the initial distribution m∗

0 do not satisfy
assumptions (H2) and (H3), respectively. On the other hand, the MFG system admits in
this case an explicit solution, which allows to compare the performance of quadrature
and area-weighting methods to approximate the continuity equation. Indeed, setting

Π(t) =

(
e2T−t − et

e2T−t + et

)
Id, s(t) = −Π(t)µ∗, c(t) =

1

2
⟨Π(t)µ∗, µ∗⟩ for all t ∈ [0, T ],

and arguing as in [41, Section 5.2], one finds that (MFG) admits a unique solution
(v∗,m∗) given by

v∗(t, x) =
1

2
⟨Π(t)x, x⟩+ ⟨s(t), x⟩+ c(t) for all (t, x) ∈ [0, T ]× Rd

and, for every t ∈ [0, T ], m∗(t) is the joint distribution of d independent Gaussian
random variables {Xl(t) | l = 1, . . . , d} with means µℓ(t) and variances σ2

ℓ (t) (l =

1, . . . , d), given by

µℓ(t) = µ∗
l and σ2

ℓ (t) =

(
e2T−t + et

e2T + 1

)2

(Σ0)l,l.
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In the numerical test, we take T = 0.25, d = 1, µ∗ = 0.1, and Σ0 = 0.105. Since the exact
solution m∗(t) does not have a compact support, we approximate the system on the
bounded domain O =]− 2, 2[ and we impose Dirichlet boundary conditions at x = −2
and x = 2, which are equal to the values of the exact solution at these points. In order
to implement the latter, we proceed as in [76, Section 5.1.5].
We test our scheme for different values of ∆x, the time step is chosen as ∆t = (∆x)2/3/2,
and the mollifier in (2.3.17) is defined with R ∋ x 7→ ρ(x) = e−x2/2/

√
2π ∈ R and ε =√

∆t. We denote by (v∆,M∆) and (v∆,M
∆
) the approximations of solutions to (MFG∆)

obtained by estimating the integrals in (2.4.21) by numerical quadrature and by the
area-weighting method, respectively. For the numerical quadrature of the integrals in
the computation of (v∆,M∆), we divide each interval Ei into ⌊4/∆x⌋ subintervals and
we use the midpoint rule on each one of them. The initial condition m∗

0 being smooth,
we use the midpoint rule to approximate the integrals in (2.4.22).
Setting G∆x(O) := G∆x ∩ O, Tables 2.1 and 2.2 below show the uniform and L2 rel-
ative discrete errors

E∞(h∆) =

max
xi∈G∆x(Ω)

|h∆(xi)− h(xi)|

max
xi∈G∆x(Ω)

|h(xi)|
, E2(h

∆) =


∑

xi∈G∆x(Ω)

|h∆(xi)− h(xi)|2∑
xi∈G∆x(Ω)

|h(xi)|2


1
2

,

(2.6.8)
for (h, h∆) = (m∗(T, ·),M∆(T, ·)), (m∗(T, ·),M∆

(T, ·)), (v∗(0, ·), v∆(0, ·)), and (v∗(0, ·), v∆(0, ·)).
Table 2.1 shows smaller errors for the approximation of m∗ computed with numerical
quadrature, specially in the uniform norm. Table 2.2 shows that the higher precision
obtained by computing an approximation of m∗ by numerical quadrature does not sig-
nificantly affect the approximation of the value function v∗. In Table 2.3, we display the
CPU time and number of iterations for both implementations. In particular, it shows that
the improvement of precision of the numerical quadrature method is achieved at the
expense of a high computational cost compared with the area-weighted approximation.
Table 2.3 also shows that, in most of the cases and for both implementations, doubling
the space mesh refinement more than triples the calculation time, which indicates that
other methods should be used for high dimensional problems.
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∆x E∞(M∆(T, ·)) E∞(M
∆
(T, ·)) E2(M

∆(T, ·)) E2(M
∆
(T, ·))

4.80 ·10−2 8.41 ·10−3 3.69 ·10−2 6.30 ·10−3 1.09 ·10−2

2.40 ·10−2 6.91 ·10−3 3.25 ·10−2 4.39 ·10−3 1.05 ·10−2

1.20 ·10−2 3.94 ·10−3 2.62·10−2 2.77 ·10−3 6.77 ·10−3

6.00 ·10−3 1.83 ·10−3 2.44 ·10−2 6.89 ·10−4 2.67 ·10−3

Table 2.1: Errors for the approximation of m∗(T, ·).

∆x E∞(v∆(0, ·)) E∞(v∆(0, ·)) E2(v
∆(0, ·)) E2(v

∆(0, ·))
4.80 ·10−2 7.02 ·10−3 7.11 ·10−3 6.20 ·10−3 6.31 ·10−3

2.40 ·10−2 5.74 ·10−3 5.82 ·10−3 4.90 ·10−3 5.12 ·10−3

1.20 ·10−2 4.34 ·10−3 4.37 ·10−3 3.70 ·10−3 3.75 ·10−3

6.00 ·10−3 3.30 ·10−3 3.36 ·10−3 2.95 ·10−3 3.01 ·10−3

Table 2.2: Errors for the approximation of v∗(0, ·).

2.6.3 A two-dimensional example

In this test, we consider system (MFG) with d = 2, a quadratic Hamiltonian H(x, p) =

|p|2/2, and coupling terms having the form

F (x, ν) = γmin{|x− x̄|2, R}+ (rσ ∗ ν)(x) and G(x, ν) = 0, (2.6.9)

where γ > 0, x̄ ∈ R2, R > 0, and, for σ > 0, rσ(x) = e−|x|2/2σ2
/(2πσ2) for all x ∈ R2.

Given ℓ > 0, x∗0 ∈]0, ℓ[2, and σ0 > 0, we consider the initial density

m∗
0(x) =

χ(x)∫
[0,ℓ]2

χ(y)dy
with χ(x) = e−|x−x∗

0|2/2σ2
0I[0,ℓ]2(x) for all x ∈ Rd. (2.6.10)

Notice that the data above satisfy (H1), (H2), and (H3), with p =∞. In our tests below, we
choose T = 1, ℓ = 2, x∗0 = (0.75, 0.75), σ0 = 0.07 in the initial condition, x̄ = (1.75, 1.75),
R = 5, σ = 0.25, and two values γ = 0.5 and γ = 3 in the running cost F . Since in this
two-dimensional example the computational cost to solve (MFG∆) is important, in view of
the discussion in Section 2.6.2 we implement the area-weighting method of Section 2.6.1
to approximate the integrals in (2.4.21). The integrals in (2.4.22), to approximate the
initial condition m∗

0, are computed by using the midpoint rule. We set ∆x = 0.025,
∆t = ∆x2/3, and the mollifier in (2.3.17) is defined with R2 ∋ x 7→ ρ(x) = e−|x|2/2/2π ∈ R
and ε =

√
∆t/2. Figure 1 shows the approximation m∆ of the exact distribution m∗ in

the x1-x2 plane obtained after solving (MFG∆) for γ = 0.5 and γ = 3. On the left, we
display the evolution of the initial distribution, concentrated around x∗0, by overlaying
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∆x CPUquad CPUaw Itquad Itaw

4.80 ·10−2 15.21s 0.93s 5 5
2.40 ·10−2 55.35s 2.53s 5 5
1.20 ·10−2 200.98s 8.42s 6 5
6.00 ·10−3 710.321s 27.71s 6 5

Table 2.3: CPU times (in seconds) and number of iterations to compute (v∆,M∆) and (v∆,M
∆
).

The CPU time and the number of iterations are respectively denoted by CPUquad and Itquad, for
the numerical quadrature, and by CPUaw and Itaw, for the area-weighted approximation.

the distributions m∆(tk, ·) for k ∈ I∆t. On the right, we display only the final distribution
m∆(T, ·). The simulation shows the effect of the positive constant γ, which weights the
importance of reaching the target point x̄. If γ = 0.5, the aversion to crowed regions,
modeled by the second term in the definition of F , has a more relevant impact on the
distribution of the players than the term penalizing the distance to x̄, while, if γ = 3, the
latter term has a preponderant role in the evolution of the distribution of the agents.

A1. Appendix

Proof. [Proof of Proposition 3.3.1] Let us fix (t, x) ∈ [0, T [×Rd. The existence of αt,x ∈
L2
(
[t, T ];Rd

)
, such that v[µ](t, x) = J t,x[µ](αt,x), follows from (2.2.16), the continuity

assumption on F and G in (H2), and the direct method in the calculus of variations.
Setting α0(s) = 0 for all s ∈ [t, T ], the inequalities J t,x[µ](αt,x) ≤ J t,x[µ](α0(s)), (2.2.6),
(2.2.10), (2.2.11), and (2.2.16), imply that∫ T

t

|αt,x(s)|2ds ≤ C̃ :=
T (CL,2 + 2CF,1 + CL,7) + 2CG,1

CL,6

. (2.6.11)

In particular, setting At =
{
α ∈ L2

(
[t, T ];Rd

)
,
∫ T

t
|α(s)|2ds ≤ C̃

}
, we have

v[µ](t, x) = inf
{
J t,x[µ](α)

∣∣α ∈ At
}
. (2.6.12)

Thus, assertion (2.2.1) follows from (2.2.6), (2.2.16), (2.6.11), (2.2.10), and (2.2.11).
Moreover, it follows from conditions (2.2.7), (2.2.12), (2.2.13), and expression (2.6.12)
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(a) Time evolution (m∆(tk, ·))k∈I∆t
for γ = 0.5. (b) Final distribution m∆(T, ·) for γ = 0.5.

(c) Time evolution (m∆(tk, ·))k∈I∆t for γ = 3. (d) Final distribution m∆(T, ·) for γ = 3.

Figure 2.1: Approximation of m∗ in both cases γ = 0.5 and γ = 3.

that, for every y ∈ Rd, we have

|v[µ](t, x)− v[µ](t, y)| ≤ sup
α∈At

∣∣J t,x[µ](α)− J t,y[µ](α)
∣∣

≤ sup
α∈At

{∫ T

t

(
CL,3(1 + |α(s)|2) + CF,2

)
|X t,x,α(s)−X t,y,α(s)|ds

+ CG,2|X t,x,α(T )−X t,y,α(T )|

}
≤
(
T (CL,3 + CF,2) + CL,3C̃ + CG,2

)
|x− y|,
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which shows (ii). Let us set X = X t,x,αt,x and let s ∈ [t, T [. Since v[µ] satisfies the
dynamic programming inequality

v[µ](s,X(s)) ≤
∫ s+h

s

(
L(Xs,X(s),α(r), α(r)) + F (Xs,X(s),α(r), µ(r))

)
dr

+ v[µ]
(
s+ h,Xs,X(s),α(s+ h)

)
,

for all h ∈ [0, T − s[ and α ∈ L2([t, T ];Rd), by taking α = α0, the equality

v[µ](s,X(s)) = Js,X(s)[µ](αt,x|[s,T ]), (2.6.13)

the estimates (2.2.16), (2.2.6), (2.2.10), the equalityXs,X(s),α0(s+h) = X(s), and (2.2.26),
imply that

CL,6

∫ s+h

s

|αt,x(r)|2dr ≤ h(CF,1 + CL,2) + h(CL,7 + CF,1)

+ v[µ](s+ h,X(s))− v[µ](s+ h,X(s+ h))

≤ h(2CF,1 + CL,2 + CL,7) + CLip

∫ s+h

s

|αt,x(r)|dr.

By Young’s inequality, we get the existence of C > 0, independent of (µ, t, x), such that∫ s+h

s

|αt,x(r)|2dr ≤ Ch

and, hence, by the Lebesgue differentiation theorem (see e.g. [32]), we have αt,x ∈
L∞([0, T ];Rd) and ∥αt,x∥L∞([0,T ];Rd) ≤

√
C, which shows (i).

Finally, in order to show (2.2.1), notice that, for every y ∈ Rd, (2.2.9) implies that

L(x+ y, a)− 2L(x, a) + L(x− y, a) ≤ CL,5(1 + |a|2)|y|2 for all a ∈ Rd. (2.6.14)
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Estimates (2.6.14), (2.2.14), (2.2.15), and (2.6.11), imply

v(t, x+ y) + v(t, x− y) ≤
∫ T

t

(
L(X t,x+y,αt,x

(s), αt,x(s)) + L(X t,x−y,αt,x

(s), αt,x(s))

+ F (X t,x+y,αt,x

(s), µ(s)) + F (X t,x−y,αt,x

(s), µ(s))
)
ds

+G(X t,x+y,αt,x

(T ), µ(T )) +G(X t,x−y,αt,x

(T ), µ(T ))

≤ 2

∫ T

t

(
L(X t,x,αt,x

(s), αt,x(s)) + F (X t,x,αt,x

(s), µ(s))
)
ds

(2.6.15)

+ 2G(X t,x,αt,x

(T ), µ(T ))

+

∫ T

t

(
CL,5(1 + |αt,x(s)|2) + CF,3

)
|y|2ds+ CG,3|y|2

≤ 2v[µ](t, x) +
(
T (CL,5 + CF,3) + CL,5C̃ + CG,3

)
|y|2,

from which (2.2.27) follows. □
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3
Approximation of deterministic mean field

games under polynomial growth
conditions on the data

We consider a deterministic mean field games problem in which a typical agent solves
an optimal control problem where the dynamics is affine with respect to the control and
the cost functional has a growth which is polynomial with respect to the state variable.
In this framework, we construct a mean field game problem in discrete time and finite
state space that approximates equilibria of the original game. Two numerical examples,
solved with the fictitious play method, are presented.
This chapter is a joint work with Justina Gianatti and Francisco J. Silva [81].
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3.1 Introduction

The theory of Mean Field Game (MFG for short) problems has been introduced in [111]–
[113] and, independently, in [99] in order to describe the asymptotic behaviour of
Nash equilibria of non-cooperative symmetric differential games with a large number
of indistinguishable players, which, individually, have a minor influence on the game.
The reader is referred to [5], [60], [61], [86], [87], and the references therein, for an
overview on MFG theory including their numerical approximation and applications in
crowd motion, economics, and finance. Equilibria in MFGs are usually described in
terms of a system of two equations, called MFG system; a Hamilton-Jacobi-Bellman
equation, describing the optimal cost of a typical player, and a Fokker-Planck equation,
describing the evolution of the players.
This work deals with the numerical approximation of deterministic mean field game
problems, i.e. when the underlying differential game is deterministic. In this setting, a
relaxed, also called Lagrangian, formulation of equilibria involving a fixed point problem
on the space of probability measures over the trajectories of the players, has been
introduced in [28], [45], [52]. We assume that the controlled dynamics of a typical
player in the MFG has the form

γ̇(t) = A(t, γ(t)) +B(t, γ(t))α(t) for a.e. t ∈ (0, T ). (3.1.1)

Here, T > 0 denotes the time horizon, γ and α, which take values in Rd and in Rr,
respectively, denote the state and the control of a typical player, and A : [0, T ]×Rd → Rd

and B : [0, T ] × Rd → Rd×r are given functions. When the typical player controls its
velocity, i.e. γ̇(t) = α(t) and MFG equilibria are characterized in terms of the MFG
system, the reference [42] proposes a semi-discrete scheme which is shown to converge
towards a solution to the MFG system. An implementable version of this approximation,
including also a discretization of the space variable, has been introduced in [57] and
it is shown to converge when the space dimension is equal to one. In the same
framework, in [56] the authors propose a Lagrange-Galerkin scheme for the continuity
equation appearing in the MFG system and they show the convergence of a fully-
discrete approximation in general state dimensions. By adopting the relaxed formulation,
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in [94] an approximation of the MFG problem written in terms of a discrete time and finite
state MFG [84], hereafter called finite MFG, is shown to converge in general dimensions.
Moreover, under a monotonicity assumption on the interaction cost terms (see [112,
Section 2.3]), an adaptation of the fictitious play method (see [39], [130]) is shown to
converge and hence allows to rigorously approximate a solution to the finite MFG. Finally,
in the work [80] the authors approximate MFGs by finite MFGs when the dynamics
of the typical player takes the general form (3.1.1). The convergence is established
in general dimensions, the key point being a careful discretization of the underlying
optimal control problem. In particular, the results in [80] cover the approximation of
MFGs where the typical player controls its acceleration (see [8], [47]).
In all the references above, the assumptions on the dependence of the cost functional
with respect to the state do not allow a polynomial growth. In particular, the cost cannot
depend quadratically on the state, which is a typical case considered in the applications.
Our aim in this work, which is complementary with [80], is to cover this case. The
main difficulty coming from a polynomial growth of the cost is that the value function
of a typical player is not globally Lipschitz with respect to the state. In particular, the
optimal feedback law is only locally bounded and hence a careful analysis is needed in
order to construct a scheme for the value function with good stability properties. Under
our assumptions, which include the independence of B(t, γ(t)) on γ(t), the optimal
feedback controls have a linear growth with respect to the state. This property still
allows us to construct an approximation of the MFG problem where the time marginals
of the distributions of the states of the agents are supported on a compact set which is
independent of the discretization steps. Next, the analysis in [80] applies and yields the
convergence of the scheme as the discretization parameters vanish. As in [80], [94],
we adopt in this work the relaxed formulation of the MFG equilibrium, the main point
being that, in the convergence study of our approximations, compactness properties
for the solutions to the scheme are easier to establish.
The remainder of this article is organized as follows. Section 3.2 fixes the notations and
the assumptions in this work. It also recalls the notion of Lagrangian MFG equilibrium
and provides an existence and uniqueness result. Section 3.3 is central in this work
as it builds the scheme used to approximate the value function of a typical player. We
explain the relation between this scheme and a standard semi-Lagrangian scheme
(see [76]) and we provide a convergence result. In Section 3.4, we describe the finite
MFG that approximates the continuous one and we present existence, uniqueness, and
convergence results. Finally, in Section 3.5 we consider two numerical examples where
the cost functional depends polynomially on the state variable and the interactions
terms are monotone, which allows us to approximate the solutions to the finite MFG
problems by using the fictitious play method.

Ahmad Zorkot| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

86



Chapitre 3 – Approximation of deterministic mean field games under polynomial growth
conditions on the data

3.2 Preliminaries

Let n ∈ N. In what follows, | · | will denote the infinity norm in Rn, and, given R > 0,
B∞(0, R) (respectively B∞(0, R)) will denote the corresponding open (respectively
closed) ball centered at 0 and of radiusR. We denote by P(Rn) the set of probability mea-
sures over Rn and, for µ ∈ P(Rn), we set supp(µ) for its support. We define P1(Rn) as
the subset of P(Rn) consisting on probability measures with finite first order moment, i.e.

P1(Rn) =

{
µ ∈ P(Rn)

∣∣∣ ∫
Rn

|x|dµ(x) <∞
}
, (3.2.1)

which is endowed with the Wasserstein distance

d1(µ1, µ2) = inf
µ∈Π(µ1,µ2)

∫
Rn×Rn

|x− y|dµ(x, y) for all µ1, µ2 ∈ P1(Rn), (3.2.2)

where Π(µ1, µ2) denotes the subset of P1(Rn × Rn) of probability measures with first
and second marginals given by µ1 and µ2, respectively. Given ν ∈ P(Rn) and a Borel
function Ψ: Rn → Rq (q ∈ N), the push-forward measure Ψ♯ν, defined on the σ-algebra
of Borel sets B(Rq), is defined by

Ψ♯ν(A) = ν(Ψ−1(A)) for all A ∈ B(Rq). (3.2.3)

Let T > 0 and d, r ∈ N. The mean field game problem that we will deal with in this
article is defined in terms of ℓ : [0, T ] × Rr × Rd × P1(Rd) → R, g : Rd × P1(Rd) → Rd,
A : [0, T ] × Rd → Rd, B : [0, T ] → Rd×r, and m∗

0 ∈ P1(Rd). We will consider the fol-
lowing assumptions:
(H1) The functions ℓ and g are continuous and, for every (t, x, µ) ∈ [0, T ]×Rd ×P1(Rd),

the function ℓ(t, ·, x, µ) is convex. Moreover, there exist p ∈ (1,∞), Cℓ,1, Cℓ,2,
Cℓ,3, Cℓ,4 ∈ (0,∞) and Cg,1, Cg,2, Cg,3 ∈ (0,∞) such that, for every (t, a, x, µ) ∈
[0, T ]× Rr × Rd × P1(Rd),

Cℓ,1|a|p − Cℓ,2 ≤ ℓ(t, a, x, µ) ≤ Cℓ,3(1 + |a|p + |x|p), (3.2.4)

−Cg,1 ≤ g(x, µ) ≤ Cg,2(1 + |x|p), (3.2.5)

|ℓ(t, a, x, µ)− ℓ(t, a, y, µ)| ≤ Cℓ,4

(
1 + |x|p−1 + |y|p−1 + |a|p−1)|x− y| for all y ∈ Rd,

(3.2.6)

|g(x, µ)− g(y, µ)| ≤ Cg,3(1 + |x|p−1 + |y|p−1)|x− y| for all y ∈ Rd.

(3.2.7)

(H2) The following hold:
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(i) The functions A and B are continuous.
(ii) There exists LA ∈ (0,∞) such that, for every (t, x) ∈ [0, T ]× Rd,

|A(t, x)− A(t, y)| ≤ LA|x− y| for all y ∈ Rd.

(iii) We have r ≤ d and there exists {i1, . . . , ir} ⊂ {1, . . . , d} such that, for all
t ∈ [0, T ], the rows i1, . . . , ir of B(t) are linearly independent.

(H3) There exists C∗ ∈ (0,∞) such that supp(m∗
0) ⊂ B∞(0, C∗).

(H4) The following hold:

(i) The function ℓ satisfies (H1) and can be written as

ℓ(t, a, x, µ) = ℓ0(t, a, x)+f(t, x, µ) for all t ∈ [0, T ], a ∈ Rr, x ∈ Rd, µ ∈ P1(Rd),

where ℓ0 : [0, T ]×Rr×Rd → R and f : [0, T ]×Rd×P1(Rd)→ R is a continuous
and bounded function. Moreover, there exists Lf > 0 such that, for all
(t, µ) ∈ [0, T ]× P1(Rd),

|f(t, x, µ)− f(t, y, µ)| ≤ Lf |x− y| for all x, y ∈ Rd.

(ii) The functions f(t, ·, ·), for all t ∈ [0, T ], and g are monotone, i.e. for Ψ =

f(t, ·, ·), g it holds that∫
Rd

(
Φ(x, µ1)− Φ(x, µ2)

)
d(µ1 − µ2)(x) ≥ 0 for all µ1, µ2 ∈ P1(Rd). (3.2.8)

Assumptions (H1), (H2), and (H3) ensure that both the MFG problem defined in Prob-
lem 2 below, and its approximation, introduced in Section 3.4, admit at least one solution.
Assumption (H4) plays an important role in the uniqueness of the equilibrium for both
the MFG and its approximation and also in the proof of the convergence of a numerical
method to solve the finite MFG problem (see [80]).
Note that (H2) implies that

|A(t, x)| ≤ CA(1 + |x|) for all (t, x) ∈ [0, T ]× Rd, (3.2.9)

where CA = max{maxt∈[0,T ] |A(t, 0)|, LA}. In what follows, setting |B(t)| for the ma-
trix norm of B(t) induced by the infinity-norm in Rr, we set CB = supt∈[0,T ] |B(t)|,
which is finite by (H2)(i).
Let us describe the MFG problem considered in this article. Given x ∈ Rd and
m ∈ C

(
[0, T ];P1(Rd)

)
, a typical player positioned at x at time t = 0 solves an optimal
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control problem of the form

inf

∫ T

0

ℓ (s, α(s), γ(s),m(s)) ds+ g(γ(T ),m(T ))

s.t. γ̇(s) = A(s, γ(s)) +B(s)α(s) for a.e. s ∈ (0, T ),

γ(0) = x,

γ ∈ W 1,p([0, T ];Rd), α ∈ Lp([0, T ];Rr).

(OCx,m)

Note that assumption (H1) states that the cost functional in (OCx,m) has a polynomial
growth with respect to the state and control variables. In particular, our conditions on
the cost functional are more general than those in [80]. On the other hand, regarding
the dynamics in (OCx,m), in [80] the matrix B can also depend on the state variable.
Let us endow Γ := C

(
[0, T ];Rd

)
with the supremum norm ∥ · ∥∞ and, for all t ∈ [0, T ],

define et : Γ → Rd by et(γ) = γ(t) for all γ ∈ Γ. Let us also set

Pm∗
0
(Γ) = {ξ ∈ P1 (Γ) | e0♯ξ = m∗

0}.

The notion of equilibria that we consider is the Lagrangian MFG equilibria, defined
as a solution to the following problem:

Problem 2 Find ξ∗ ∈ Pm∗
0
(Γ) such that [0, T ] ∋ t 7→ et♯ξ

∗ ∈ P1(Rd) belongs to
C
(
[0, T ];P1(Rd)

)
and for ξ∗-a.e. γ∗ ∈ Γ there exists α∗ ∈ Lp([0, T ];Rr) such that

(γ∗, α∗) solves (OCx,m) with x = γ∗(0) and m(t) = et♯ξ
∗ for all t ∈ [0, T ].

We have the following result.

Theorem 3.2.1 Assume that (H1), (H2), and (H3) hold. Then Problem 2 admits at least
one solution. Moreover, if (H4) holds and for every m ∈ C([0, T ];P1(Rd)) and m∗

0-a.e.
x ∈ Rd problem (OCx,m) admits a unique solution, then the MFG equilibrium is unique.

Proof. The existence of at least one solution follows from Theorem 3.4.2 below while
the uniqueness result can be shown by arguing exactly as in the proof of [80, Theorem
2.2]. □
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3.3 The value function of a typical player and its ap-

proximation

In this section we fix p ∈ (1,∞). For every (t, x) ∈ [0, T ] × Rd and α ∈ Lp([t, T ];Rr),
note that (H2) implies that

γ̇(s) = A(s, γ(s)) +B(s)α(s) for a.e. s ∈ (t, T ), γ(t) = x (3.3.1)

admits a unique solution γt,x,α ∈ W 1,p([0, T ];Rd). Given m ∈ C([0, T ];P1(Rd)), set

J t,x[m](α) =

∫ T

t

ℓ(s, α(s), γt,x,α(s),m(s))ds+ g(γ(T ),m(T )) for all α ∈ Lp([t, T ];Rr).

The value function v[m] : [0, T ] × Rd → R is defined as

v[m](t, x) = inf
{
J t,x[m](α) |α ∈ Lp([t, T ];Rr)

}
for all (t, x) ∈ [0, T ]× Rd. (3.3.2)

Proposition 3.3.1 Assume that (H1) and (H2) hold, let m ∈ C([0, T ];P1(Rd)), and let
(t, x) ∈ [0, T ]×Rd. Then there exists α∗ ∈ Lp

(
[t, T ];Rd

)
such that v[m](t, x) = J t,x[m](α∗).

Moreover, the following hold:
(i) There exists CLip > 0, independent of (t, x,m), such that∣∣v[m](t, x)− v[m](t, y)

∣∣ ≤ CLip(1 + |x|p−1 + |y|p−1)|x− y| for all y ∈ Rd. (3.3.3)

(ii) There exists Cb > 0, independent of (t, x,m), such that

|α∗(s)| ≤ Cb
(
1 + |γt,x,α∗

(s)|
)

for a.e. s ∈ [t, T ]. (3.3.4)

Proof. Let (αn)n∈N ⊂ Lp([t, T ];Rr) be a minimizing sequence for the right-hand side
of (3.3.2). Estimate (3.2.4) and (3.2.5) imply that (αn)n∈N is bounded in Lp([t, T ];Rr)

and hence, up to some subsequence, it converges weakly to some α∗ ∈ Lp([t, T ];Rr).
It follows from (3.3.1) and (H2)(i)-(ii) that γt,x,αn converges uniformly in [t, T ] to γt,x,α∗

and hence, by [72, Theorem 3.23], we deduce that v[m](t, x) = J t,x[m](α∗). Denoting
by α0 the null control and γ0 = γt,x,α0, estimate (3.2.9) and Grönwall’s lemma imply
that sups∈[t,T ] |γ0(s)| ≤ eCAT (|x| + CAT ). In turn, it follows from (3.2.4), (3.2.5), (3.2.9),
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and Grönwall’s inequality that

Cℓ,1

∫ T

t
|α∗(s)|pds ≤ TCℓ,2 + J t,x[m](α0) + Cg,1

≤
(
Cℓ,2 + Cℓ,3(1 + epCAT (|x|+ CAT )

p)
)
T + Cg,1

+Cg,2

(
1 + epCAT (|x|+ CAT )

p
)

≤ TCℓ,2 + Cg,1 + (TCℓ,3 + Cg,2)
(
1 + 2p−1epCATCp

AT
p
)

+|x|p2p−1epCAT (TCℓ,3 + Cg,2) .

Defining

C̃ =
1

C
1
p

ℓ,1

max
{(

TCℓ,2 + Cg,1 + (TCℓ,3 + Cg,2)
(
1 + 2p−1epCaTCp

AT
p
)) 1

p ,

2
p−1
p eCAT (TCℓ,3 + Cg,2)

1
p

}
,

which is independent of (t, x,m), we obtain

∥α∗∥Lp ≤ C̃(1 + |x|). (3.3.5)

In particular, it holds that

v[m](t, x) = inf
{
J t,x[m](α) |α ∈ Lp([t, T ];Rr), ∥α∥Lp ≤ C̃(1+|x|)

}
for all (t, x) ∈ [0, T ]×Rd.

Let us now show assertions (i)-(ii).
(i): Let y ∈ Rd and set γ∗ = γt,x,α

∗ and γ̃ = γt,y,α
∗. By standard arguments, it follows

from (H2)(i), (3.2.9), Grönwall’s lemma, Hölder’s inequality, and (3.3.5) that

sups∈[t,T ] |γ∗(s)| ≤ (|x|+ CB∥α∗∥L1 + CAT ) e
CAT

≤
(
|x|+ CBT

p−1
p ∥α∗∥Lp + CAT

)
eCAT

≤ Ĉ1 (1 + |x|) ,

(3.3.6)

where
Ĉ1 = eCAT max

{
CBT

p−1
p C̃ + CAT, 1 + CBT

p−1
p C̃

}
. (3.3.7)

Analogously we obtain

sup
s∈[t,T ]

|γ̃(s)| ≤ Ĉ1 (1 + |x|+ |y|) . (3.3.8)
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From (H2)(ii) and Grönwall’s lemma we have,

sup
s∈[t,T ]

|γ̃∗(s)− γ∗(s)| ≤ eLAT |x− y|. (3.3.9)

In turn, by (3.2.5) and (3.2.6) we have

v[m](t, y)− v[m](t, x) ≤
∫ T

t

(
ℓ(s, α∗(s), γ̃(s),m(s))− ℓ(s, α∗(s), γ∗(s),m(s))

)
ds

+g(γ̃(T ),m(T ))− g(γ∗(T ),m(T ))

≤ Cℓ,4

∫ T

t
(1 + |γ̃(s)|p−1 + |γ∗(s)|p−1 + |α∗(s)|p−1) |γ̃(s)− γ∗(s)|ds

+Cg,3 (1 + |γ̃(T )|p−1 + |γ∗(T )|p−1) |γ̃(T )− γ∗(T )|

≤
(
Cℓ,4T + Cg,3 + Cℓ,4

∫ T

t
|α∗(s)|p−1ds

+2Ĉp−1
1 3p−1(1 + |x|p−1 + |y|p−1)(Cℓ,4T + Cg,3)

)
eLAT |x− y|.

(3.3.10)
By Hölder’s inequality and (3.3.5), we have

∫ T

t

|α∗(s)|p−1ds ≤ T
1
p

(∫ T

t

|α∗(s)|pds
) p−1

p

≤ T
1
p (2C̃)p−1

(
1 + |x|p−1

)
. (3.3.11)

Combining (3.3.6)-(3.3.11) we deduce the existence of CLip > 0 independent of (t, x, y,m),
such that

v[m](t, y)− v[m](t, x) ≤ CLip(1 + |x|p−1 + |y|p−1)|x− y|,

where

CLip = eLAT
(
Cℓ,4T + Cg,3 + Cℓ,4T

1
p (2C̃)p−1 + 2Ĉp−1

1 3p−1(Cℓ,4T + Cg,3)
)
.

The inequality for v[m](t, x) − v[m](t, y) follows by exchanging the roles of x and y

in the previous computation.

(ii): Let s ∈ [t, T ), h ∈ [0, T − s), and set y∗ = γ∗(s). Since v[m] satisfies the dynamic
programming inequality (see e.g. [23])

v[m](s, γ∗(s)) ≤
∫ s+h

s

ℓ(r, γs,y
∗,α(r), α(r),m(r))dr + v[m]

(
s+ h, γs,y

∗,α(s+ h)
)
, (3.3.12)

for all α ∈ Lp([t, T ];Rd), with equality for α = α∗, by taking α = α0 (the null control) and
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α = α∗, the equality v[m](s, y∗) = Js,y∗ [m](α∗|[s,T ]), and estimate (3.2.4) yield

Cℓ,1

∫ s+h

s

|α∗(r)|pdr ≤ Cℓ,2h+ Cℓ,3

∫ s+h

s

(
1 + |γs,y∗,α0(r)|p

)
dr

+ v[m](s+ h, γs,y
∗,α0(s+ h))− v[m](s+ h, γ∗(s+ h)). (3.3.13)

By (3.2.9) and Grönwall’s lemma we have

sup
r∈[s,T ]

|γs,y∗,α0(r)| ≤ eCAT (|γ∗(s)|+ CAT ).

On the other hand, supposing that h < 1, it follows from (H2)(ii) and Grönwall’s
Lemma that

|γ∗(s+ h)− γs,y∗,α0(s+ h)| ≤ eLACB

∫ s+h

s

|α∗(r)|dr.

Combining the above two inequalities with (3.3.13) and using (i), we get that

Cℓ,1

∫ s+h

s

|α∗(r)|pdr ≤ Cℓ,2h+Cℓ,3h
(
1+(eCAT (|γ∗(s)|+CAT ))

p
)
+CLipe

LACB

∫ s+h

s

|α∗(r)|dr.

By Young’s inequality, for ϵ > 0,∫ s+h

s

|α∗(r)|dr ≤ ϵ

p

∫ s+h

s

|α∗(r)|pdr + h(p− 1)

ϵ
1

p−1p
.

Taking ϵ =
pCℓ,1

2CLipe
LACB

and defining

Ĉ2 =
2

Cℓ,1

max

{
Cℓ,2 + Cℓ,3(1 + eCAT2p−1(CAT )

p)+
2

1
p−1 (p− 1)(CLipe

LACB)
p

p−1

p
p

p−1C
1

p−1

ℓ,1

,

Cℓ,3e
pCAT2p−1

}

we obtain ∫ s+h

s

|α∗(r)|pdr ≤ Ĉ2h(1 + |y∗|p). (3.3.14)

Therefore, setting Cb = Ĉ
1
p

2 , estimate (3.3.4) follows from the Lebesgue differentiation
theorem (see e.g. [32]). □
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Remark 3.3.1 Proposition 3.3.1(ii) implies that, for any (t, x) ∈ [0, T ] × Rd, v[m](t, x)

can be rewritten as

v[m](t, x) = inf
{
J t,x[m](α) |α ∈ L∞([t, T ];Rr), |α(s)| ≤ Cb(1+|γt,x,α(s)|) for a.e. s ∈ [t, T ]

}
.

(3.3.15)

We consider now the approximation of the value function v[m] given by (3.3.2). Let
Nt ∈ N, Ns ∈ N, with Ns ≥ Nt, and set ∆t = T/Nt, ∆x = 1/Ns, I = {0, . . . , Nt},
I∗ = I \ {Nt}, and G = {i∆x | i ∈ Zd}. Given a regular mesh T with vertices in G,
let (ψx)x∈G be a Q1 basis, i.e. for every x ∈ G, y = (y1, . . . , yd), and i = 1, . . . , d, the
function R ∋ zi 7→ ψx(y1, . . . , zi, . . . , yd) ∈ R is nonnegative and affine on each element
of T , ψx(x) = 1, ψx(y) = 0 for all y ∈ G with y ̸= x, and

∑
x∈G ψx(z) = 1 for all z ∈ Rd.

Given φ : G → R, define its interpolant I[φ] : Rd → R by

I[φ](x) =
∑
y∈G

ψy(x)φ(y) for all x ∈ Rd.

In view of Remark 3.3.1, a standard semi-Lagrangian scheme (see e.g. [76]) to ap-
proximate v[m] is given by

Vk(x) = min
a∈B∞(0,Cb(1+|x|))

{
∆tℓ(tk, a, x,m(tk)) + I[Vk+1](Φ(k, x, a))

}
for all k ∈ I∗, x ∈ G,

VNt(x) = g(x,m(T )) for all x ∈ G,
(3.3.16)

where

Φ(k, x, a) = x+∆t(A(tk, x) +B(tk)a) for all k ∈ I∗, x ∈ G, a ∈ Rr. (3.3.17)

We now introduce a variation of the previous scheme which exploits the particular
structure of the dynamics in (3.3.1). First, notice that, by (H2)(iii), without loss of
generality we can write

A(t, x) =

(
A1(t, x)

A2(t, x)

)
and B(t) =

(
B1(t)

B2(t)

)
for all (t, x) ∈ [0, T ]× Rd, (3.3.18)

where A1 : [0, T ]×Rd → Rr, A2 : [0, T ]×Rd → Rd−r, B1 : [0, T ]→ Rr×r is such that B1(t)

is invertible for all t ∈ [0, T ], and B2 : [0, T ]→ R(d−r)×r. We partition the coordinates of
x ∈ Rd accordingly by writing x = (x1, x2), where x1 ∈ Rr and x2 ∈ Rd−r denote the first
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r and the last d− r components of x, respectively. We also write G = Gr × Gd−r, where

Gr = {i∆x | i ∈ Zr} and Gd−r =
{
i∆x | i ∈ Zd−r

}
,

and we suppose that the basis (ψx)x∈G can be decomposed as the tensorial product of
two Q1 basis (ηx1)x1∈Gr and (βx2)x2∈Gd−r

defined on regular meshes with vertices in Gr and
Gd−r, respectively. More precisely, we suppose that for every x = (x1, x2) ∈ G we have

ψx(y) = ηx1(y1)βx2(y2) for all y = (y1, y2) ∈ Rd. (3.3.19)

In what follows, we assume the existence of CI > 0, independent of ∆x, such that

supp(βx2) ⊆ {y2 ∈ Rd−r | |y2 − x2| ≤ CI∆x} for all x2 ∈ Gd−r. (3.3.20)

Let k ∈ I∗ and x ∈ Rd. In the modified version of (3.3.16), we will only consider controls
a ∈ B∞(0, Cb(1 + |x|)) such that, writing Φ(k, x, a) = (Φ1(k, x, a),Φ2(k, x, a)), we have
Φ1(k, x, a) ∈ Gr. Notice that, for every y1 ∈ Gr, it holds that

y1 = Φ1(k, x, a) ⇔ a = B1(tk)
−1

[
y1 − x1
∆t

− A1(tk, x)

]
. (3.3.21)

Thus, setting

α(k, x, y1) := B1(tk)
−1
[
y1−x1
∆t
− A1(tk, x)

]
∈ Rr,

y2(k, x, y1) := x2 +∆t [A2(tk, x) +B2(tk)α(k, x, y1)] ∈ Rd−r,
(3.3.22)

it is natural to define the sets

S1
k+1(x) =

{
y1 ∈ Gr

∣∣ |α(k, x, y1)| ≤ Cb(1 + |x|)
}
,

S2
k+1(x, y1) =

{
y2 ∈ Gd−r

∣∣ y2(k, x, y1) ∈ supp βy2
}

for y1 ∈ S1
k+1(x),

Sk+1(x) =
{
(y1, y2) ∈ G

∣∣ y1 ∈ S1
k+1(x), y2 ∈ S2

k+1(x, y1)
}
.

(3.3.23)

Arguing as in [80, Lemma 3.2], one checks that, if ∆x/∆t is small enough, then
Sk+1(x) ̸= ∅. Starting from an initial grid S0 = G ∩ B∞(0, C∗), we can then construct
the family of time-depending grids

Sk+1 =
⋃
x∈Sk

Sk+1(x) for all k ∈ I∗ (3.3.24)

with the property that (y1, y2) ∈ Sk+1 if and only if there exists x ∈ Sk and a ∈ Rr such
that |a| ≤ Cb(1 + |x|), y1 = Φ1(k, x, a), and Φ2(k, x, a) ∈ supp βy2.
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On the other hand, notice that, for every φ : G → R, y1 ∈ Gr, and y2 ∈ Rd−r, we have

I[φ](y1, y2) =
∑

z1∈Gr,z2∈Gd−r

ψz(y1, y2)φ(z1, z2)

=
∑
z1∈Gr

ηz1(y1)
∑

z2∈Gd−r

βz2(y2)φ(z1, z2) =
∑

z2∈Gd−r

βz2(y2)φ(y1, z2). (3.3.25)

Altogether, (3.3.16)-(3.3.25) suggest to consider the following variation of (3.3.16):

Vk(x) = min
y1∈S1

k+1(x)

{
∆tℓ(tk, α(k, x, y1), x,m(tk))

+ IS2
k+1(x,y1)

[Vk+1(y1, ·)](y2(k, x, y1))

}
for all k ∈ I∗, x ∈ Sk,

VNt(x) = g(x,m(T )) for all x ∈ SNt ,

(3.3.26)

where, for F ⊆ Gd−r and φ : F → R, we have set

IF [φ](y2) =
∑
x2∈F

βx2(y2)φ(x2) for all y2 ∈ Rd−r.

Notice that (3.3.26) can be rewritten as

Vk(x) = min
p∈P(S1

k+1(x))

{ ∑
y1∈S1

k+1(x)

p(y1)
[
∆tℓ(tk, α(k, x, y1), x,m(tk))

+IS2
k+1(x,y1)

[Vk+1(y1, ·)]
(
y2(k, x, y1)

)]}
for all k ∈ I∗, x ∈ Sk,

VNt(x) = g(x,m(T )) for all x ∈ SNt .

(3.3.27)

Remark 3.3.2 (i) Note that when r = d we have S1
k(x) = Sk(x) for all x ∈ Rd and

k ∈ I \{0}. In particular, no interpolation is needed in (3.3.27), and the scheme reduces
to

Vk(x) = min
p∈P(Sk+1(x))

∑
y∈Sk+1(x)

p(y)
[
∆tℓ(tk, α(k, x, y), x,m(tk)) + Vk+1(y)

]
for all k ∈ I∗, x ∈ Sk,

VNt(x) = g(x,m(T )) for all x ∈ SNt .

(3.3.28)

The scheme (3.3.28) is a slight extension of the one proposed in [94], which deals with
the case where (3.1.1) has the simple form γ̇(t) = α(t) for a.e. t ∈ [0, T ].

(ii) Notice that, for every k ∈ I∗ and x ∈ Sk, the set
{
α(k, x, y1) | y1 ∈ S1

k+1(x)
}

is
a specific discretization of the set B∞(0, Cb(1 + |x|)) appearing in (3.3.16). Other
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discretizations of this set are also possible and the analysis of the corresponding
schemes for the value function, and also the schemes to solve Problem 2 presented
in Section 3.4 below, are analogous to the one considered in this work. An important
feature of our scheme is that it takes advantage of the specific form of the dynamics to
construct a discretization of the control set B∞(0, Cb(1 + |x|)) depending on the same
grid as the one used to discretize the state space.
Other discretizations of the control space can be useful to deal with control problems
and mean field games with dynamics which are nonlinear with respect to the control
variable. We intend to consider this extension of our analysis in a future work.
The following result, which shows that the family of time dependent grids (Sk)k∈I
remains uniformly bounded with respect to the discretization parameters, will play
a key role in what follows.

Lemma 3.3.1 There exists a nonempty compact set K ⊂ Rd, independent of ∆t and
∆x as long as ∆x/∆t ≤ 1, such that

Sk ⊂ K for all k ∈ I∗.

Proof. Consider the following family of compact sets: set K0 = B∞(0, C∗) and

Kk+1 := Kk +

(
∆t

[(
CA + CBCb

)(
1 + sup

x∈Kk

|x|
)]

+ CI∆x

)
B∞(0, 1)

for all k ∈ I∗,
(3.3.29)

where we recall that CA is given in (3.2.9), CB = supt∈[0,T ] |B(t)|, and CI satisfies (3.3.20).
It follows from (3.3.23) and (3.3.24) that Sk ⊂ Kk for all k ∈ I and hence it suffices to
show that the family (Kk)k∈I is uniformly bounded. Let k ∈ I and set ck = supx∈Kk

|x|.
Equation (3.3.29) yields

ck+1 ≤ ck +
(
∆t
[(
CA + CBCb

)(
1 + ck

)
+ CI

∆x
∆t

])
≤

(
1 + ∆t(CA + CBCb)

)
ck +∆t(CA + CBCb + CI),

which, by the discrete Grönwall’s lemma, implies that the set {ck | k ∈ I} is uniformly
bounded. The result follows. □

Proposition 3.3.2 Assume that (H1) and (H2) hold. Consider three sequences
(Nn

t , N
n
s ) ⊂ N2 and (mn)n∈N ⊂ C([0, T ];P1(Rd)) such that, as n→∞, Nn

t →∞, Nn
s →

∞, Nn
t /N

n
s → 0, and mn → m∗ for some m∗ ∈ C([0, T ];P1(Rd)). Set In = {0, . . . , Nn

t }
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and, associated with the parameters (Nn
t , N

n
s ) and mn, define Sn

k as in (3.3.23) and
denote by Vn the solution to (3.3.26). Then it holds that

sup
{
|Vn

k (x)− v[m∗](tnk , x)|
∣∣ k ∈ In, x ∈ Sn

k

}
−→
n→∞

0, (3.3.30)

where v[m∗] is defined in (3.3.2).
Proof. [Sketch of the proof] Let m ∈ C([0, T ];P1(Rd)) and consider, as an intermediate
step, the following semi-discrete scheme to approximate v[m]:

vd[m](k, x) = min
α∈Rr

{∆tℓ(tk, α, x,m(tk)) + vd[m] (k + 1, x+∆t[A(tk, x) +B(tk)α])}

for all k ∈ I∗, x ∈ Rd,

vd(Nt, x) = g(x,m(T )) for all x ∈ Rd.

(3.3.31)
Setting vnd for the solution to the previous scheme associated with mn, using the frame-
work developed in [25], and arguing as in [80, Proposition 3.1] one shows that for
every compact set K ⊂ Rd it holds that

sup
(k,x)∈In×K

|vnd (k, x)− v[m∗](tnk , x)| −→
n→∞

0. (3.3.32)

On the other hand, by adapting to the discrete case the proof of Proposition 3.3.1,
one checks that the minimization on the right-hand-side of (3.3.31) can be restricted
the set {a ∈ Rd | |a| ≤ Cb(1 + |x|)}. Using this fact, Lemma 3.3.1, and arguing as in
the proof of [80, Lemma 5.3 (ii)] we obtain that

max {|vnd (k, x)− Vn
k (x)| | k ∈ In, x ∈ Sn

k } → 0 as n→∞, (3.3.33)

and hence (3.3.30) follows from (3.3.32) and (3.3.33). □

3.4 The finite mean field game approximation

In this section, given Nt ∈ N, Ns ∈ N, with Ns ≥ Nt, we approximate Problem 2 by a
fixed point problem of a map br, called best response mapping defined on the space
M =

∏
k∈I P(Sk) of discrete time marginals. The resulting approximation will take the

form of a discrete time and finite state MFG (see [84]). In order to construct the map
br, let us first introduce some useful definitions. For every k ∈ I, we identify p ∈ P(Sk)
with the probability measure

∑
x∈Sk

p({x})δx ∈ P1(Rd) and, given a finite set F , the
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(nonpositive) entropy function EF : P(F ) → R is defined by

EF (p) =
∑
x∈F

p(x) log(p(x)) for all p ∈ P(F ),

with the convention that p(x) = p({x}) and 0 log(0) = 0. Given M ∈ M and ε > 0,
let us consider the following variation of (3.3.27):

V M
k (x) = min

p∈P(S1
k+1(x))

{ ∑
y1∈S1

k+1(x)

p(y1)

[
∆tℓ(tk, α(k, x, y1), x,Mk)

+ IS2
k+1(x,y1)

[V M
k+1(y1, ·)](y2(k, x, y1))

]
+ εES1

k+1(x)
(p)

}
for all k ∈ I∗, x ∈ Sk,

V M
Nt

(x) = g(x,MNt) for all x ∈ SNt .

(3.4.1)

Notice that the incorporation of the entropy term in the scheme above implies that, for ev-
ery k ∈ I∗ and x ∈ Sk, the optimization problem defining V M

k (x) admits a unique solution
pMk (x, ·) which satisfies pMk (x, y1) > 0 for all y1 ∈ S1

k+1(x). Given y ∈ Sk+1, we also set

PM
k (x, y) :=

p
M
k (x, y1)βy2(y2(k, x, y1)) if y ∈ Sk+1(x),

0 if y ∈ Sk+1 \ Sk+1(x).
(3.4.2)

Letting E(x) =
{
y ∈ Rd | |x− y| ≤ ∆x/2

}
for all x ∈ G, we define br(M) as the

solution to

M̂k+1(y) =
∑
x∈Sk

PM
k (x, y)M̂k(x) for all k ∈ I∗, y ∈ Sk+1,

M̂0(x) = m∗
0(E(x)) for all x ∈ S0.

(3.4.3)

The discretization of Problem 2 that we consider in this work reads as follows.

Problem 3 Find M ∈M such that M = br(M).

We have the following result.
Theorem 3.4.1 Assume that (H1), (H2), and (H3) hold. Then Problem 3 admits at least
one solution. In addition, if (H4) holds then the solution is unique.

Proof. Since, for every M ∈ M, k ∈ I∗, and x ∈ Sk we have that pMk (x, ·) is unique,
it is easy to check that br is continuous. In turn, the existence of a fixed point of br
follows from Brouwer’s fixed point theorem. The uniqueness result follows from the
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arguments in the proof of [80, Proposition 4.2], the key point being that, if M̂ = br(M),
then M̂k(x) > 0 for all k ∈ I and x ∈ Sk. □

Now, let us discuss the convergence of solutions to Problem 3 towards a solution to
Problem 2 as the discretization parameters ∆t, ∆x, and ε tend to zero. Let (Nn

t )n∈N ⊂ N,
(Nn

s )n∈N ⊂ N, (εn)n∈N ⊂ (0,∞), and, for every n ∈ N, set ∆tn = T/Nn
t , ∆xn = 1/Nn

s ,
In = {0, . . . , Nn

t }, In,∗ := In \ {Nn
t }, tnk = k∆tn (k ∈ In), and Gn = {i∆xn | i ∈ Zd}.

We assume that Nn
s ≥ Nn

t . For k ∈ In,∗ and x ∈ Gn, we denote by S1,n
k+1(x), S

2,n
k+1(x, y1)

(y1 ∈ S1,n
k+1(x)), and Sn

k+1(x) the sets defined in (3.3.23) associated with ∆tn and ∆xn.
For k ∈ In, the set Sn

k is defined as in (3.3.24). Denote by Γn the set of continuous
functions γ : [0, T ] → Rd such that for each k ∈ In, γ(tnk) ∈ Sn

k and, for every k ∈
In,∗, the restriction of γ to the interval [tnk , t

n
k+1] is affine. Finally, let Mn ∈ M be a

solution to Problem ?? associated with the previous parameters and, recalling (3.4.2),
let us define ξn ∈ P(Γ) as

ξn =
∑
γ∈Γn

Mn
0 (γ(0))P

n(γ)δγ ∈ P(Γ), where P n(γ) :=

Nn
t −1∏
k=0

PMn

k (γ(tnk), γ(t
n
k+1)).

(3.4.4)
We extend Mn to the element in C([0, T ];P1(Rd)) defined by

[0, T ] ∋ t 7→Mn(t) := et♯ξ
n ∈ P1(Rd). (3.4.5)

Lemma 3.4.1 Assume that (H1), (H2), and (H3) are in force. Then the following hold:
(i) The family ξn has at least one accumulation point in P(Γ).
(ii) The family Mn has at least one accumulation point in C([0, T ];P1(Rd)).

Proof. (i): Since supp(ξn) ⊂ Γn, it follows from Lemma 3.3.1 that there exists
C∞ > 0 such that

∥γ∥∞ ≤ C∞ for all γ ∈ supp(ξn). (3.4.6)

Moreover, if γ ∈ supp(ξn), then γ is absolutely continuous with

γ̇(t) =
γ(tnk+1)− γ(tnk)

∆tn
for all k ∈ In,∗, t ∈]tnk , tnk+1[. (3.4.7)

Writing γ(tnk) = (γ1(t
n
k), γ2(t

n
k)) ∈ Rr ×Rd−r, the definition of S1,n

k+1(γ(t
n
k)) and (3.4.6) yield

γ1(t
n
k+1) = γ1(t

n
k) + ∆tn

[
A1(t

n
k , γ(t

n
k)) +B1(t

n
k)α(k, γ(t

n
k), γ1(t

n
k+1))

]
,
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with
∣∣α(k, γ(tnk), γ1(tnk+1))

∣∣ ≤ Cb(1 + C∞). Thus, using (3.2.9) we deduce that∣∣∣∣γ1(tnk+1)− γ1(tnk)
∆tn

∣∣∣∣ ≤ (CA + CBCb) (1 + C∞) ,

and, by (3.3.22) and (3.3.23), we obtain∣∣∣∣γ2(tnk+1)− γ2(tnk)
∆tn

∣∣∣∣ ≤ CI
∆xn
∆tn

+ (CA + CBCb) (1 + C∞) . (3.4.8)

Since ∆xn ≤ ∆tn, we deduce from (3.4.7) that there exists D∞ > 0 such that

∥γ̇∥∞ ≤ D∞ for all γ ∈ supp(ξn)

and hence supp(ξn) ⊂ {γ ∈ W 1,∞([0, T ];Rd) | ∥γ∥∞ ≤ C∞, ∥γ̇∥∞ ≤ D∞}, which is
a compact subset of (Γ, ∥ · ∥∞). Thus, the result follows from Prokhorov’s theorem
(see e.g. [18, Theorem 5.1.3]).
(ii): By (3.4.6), for every t ∈ [0, T ] and n ∈ N, we have

supp (Mn(t)) ⊂ B∞(0, C∞),

and, by (3.2.2) and (3.4.8),

d1 (M
n(s),Mn(t)) ≤ D∞|s− t| for all s, t ∈ [0, T ], n ∈ N.

Since {µ ∈ P1(Rd) | supp(µ) ⊂ B∞(0, C∞)} is compact in P1(Rd) (see e.g. [18, Proposi-
tion 7.1.5]), the result follows from the Arzelà-Ascoli theorem. □

Using the previous compactness result and arguing as in the proof of [80, Theorem 5.1],
one obtains the following convergence result.
Theorem 3.4.2 Assume that (H1), (H2), and (H3) hold and that, as n→∞, Nn

t →∞,
Nn

s → ∞, Nn
t /N

n
s → 0, and εn = o (1/(Nn

t log(Nn
s ))). Then there exists a solution

ξ∗ to Problem 2 such that, up to some subsequence, ξn → ξ∗ narrowly in P(Γ) and
Mn → m∗ := e(·)♯ξ

∗ in C([0, T ];P1(Rd)).
In addition, if (H4) holds and for every m ∈ C([0, T ];P1(Rd)) and m∗

0-a.e. x ∈ Rd

problem (OCx,m) admits a unique solution, then the whole sequence (ξn)n∈N converges
narrowly towards the unique solution to Problem 2.
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3.5 Numerical results

In this section we implement our numerical method in two examples. For computational
simplicity, we consider here one-dimensional problems, i.e. d = 1, and dynamics (3.3.1)
having the form γ̇ = α. We refer the reader to [80, Example 2] for the implementa-
tion of the scheme in a two-dimensional example, where a typical agent controls its
acceleration and the cost functional satisfies (H1). We focus our attention on cost
functionals satisfying (H1) and (H4), with ℓ0(t, a, x) having polynomial growth on (a, x),
and f and g being given by

f(t, x, µ) = θ1(ρσ ⋆ µ)(x) for all (t, x, µ) ∈ [0, T ]× R× P1(R),

g(x, µ) = g0(x) + θ2(ρσ ⋆ µ)(x) for all (x, µ) ∈ R× P1(R),
(3.5.1)

where θ1, θ2 ∈ [0,∞), σ ∈ (0,∞), g0 : R → R satisfies (H1), and

ρσ(x) :=
1√
2πσ

e−x2/2σ2

for all x ∈ R. (3.5.2)

Notice that the convolution terms in f and g, which model the aversion of a typical player
to crowded areas, satisfy the monotonicity condition in (H4)(ii).
Let (∆t,∆x) ∈ (0,∞)2 and ε > 0. Under the assumptions above, the finite MFG
Problem ?? associated with these parameters admits a unique solution M∗ ∈ M. In
order to approximate M∗, we consider the fictitious play sequence

M
0 ∈M arbitrary, (∀n ≥ 1) Mn+1 = br(M

n
), M

n+1
=

n

n+ 1
M

n
+

1

n+ 1
Mn+1,

which, by [94, Theorem 3.2], satisfies (Mn,M
n
) −→
n→∞

(M∗,M∗). Notice that to apply that
result, the addition of an entropy term in (3.4.1) (or more generally, a strictly convex
term) plays an important role to ensure that the optimization problem defining V M

k (x)

in (3.4.1) admits a unique solution.
In the tests below, setting

|br(Mn
)−M

n|L1 :=
1

Nt + 1

Nt∑
k=0

∑
x∈Sk

|br(Mn
)k(x)−M

n

k(x)|

and given a tolerance parameter δ > 0, we implement the following fictitious play
algorithm:
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Algorithm 3 Fictitious play for deterministic MFG

1: Data: M
0 ∈M, δ > 0

2: e← δ + 1

3: n← 1

4: M
1 ← M0

5: while e > δ do
6: Mn+1 ← br(M

n
)

7: e← ∥Mn+1 −Mn∥L1

8: M
n+1 ← n

n+1
M

n
+ 1

n+1
Mn+1

9: end while
10: return M

n+1

In both examples below, we consider a time horizon T = 1, σ = 0.07, and

∆t = 1/30, ∆x = 1/150, and ε = 0.002.

Given an initial distribution m∗
0 ∈ P1(R), we initialize the fictitious play algorithm by

defining M0 ∈ M with constant time marginals given by M0
k = M0, for k = 1, . . . , 30,

where M0 is obtained by discretizing the initial distribution m∗
0 according to (3.4.3).

As it was mentioned above, the algorithm converges for an arbitrary initial condition
M0 ∈ M. However, since the term M0/n is involved in the computation of (M

n
,Mn+1)

the convergence of the algorithm could be slow. In our simulations we have observed
an important acceleration of the method by updating the initial condition after some
tolerance is achieved. More precisely, given a tolerance parameter δ > 0, we use
the resulting approximated equilibrium M

n−1
as the initial distribution for a subsequent

application of the algorithm with a smaller tolerance parameter. In our tests, we update
the initial condition twice, taking the tolerance parameters δ1 = 0.1 and δ2 = 0.01. We
stop the algorithm when the tolerance δ3 = 0.001 is reached.

3.5.1 Example 1

We consider an absolutely continuous initial distribution m∗
0 ∈ P1(R) given by

dm∗
0(x) = I[−1,1](x)

e−x2/0.04∫ 1

−1
e−y2/0.04dy

dx for all x ∈ R,
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where I[−1,1](x) = 1 if x ∈ [−1, 1] and I[−1,1](x) = 0, otherwise. Given ζ1, ζ2 ∈ R, we define

ℓ(t, a, x, µ) =
|a|4

4
+ζ1|x−0.4|2|x+0.7|2+θ1f(x, µ) and g(x, µ) = ζ2|x−0.4|2|x+0.7|2+θ2f(x, µ).

Notice that the functions ℓ and g satisfy (H1) for p = 4. We run our algorithm for different
values of (ζ1, ζ2, θ1, θ2). In Figure 3.1 we show the returned distributions for the smallest
tolerance parameter δ3. In Table 3.1, we provide the number of iterations needed for
attaining the tolerances δ1, δ2, and δ3.

(ζ1, ζ2, θ1, θ2) δ1 = 0.1 δ2 = 0.01 δ3 = 0.001

(1, 1, 1, 1) 14 10 9
(1, 1, 1, 5) 15 10 17
(5, 1, 1, 1) 18 11 9
(1, 0, 1, 0) 8 7 6

Table 3.1: Number of iterations to obtain the desired accuracies.

In this example, the initial distribution is concentrated around x = 0. The cost functional
penalizes the distance to the points −0.7 and 0.4, as well as large values of the speed,
and incites a typical player to avoid crowded regions. Since 0.4 is closer to the origin,
we notice that most of the agents tend to concentrate around that point. This effect is
most pronounced in Figure 3.2 (C), where the impact of this term is most significant.
Furthermore, as the congestion term becomes more important, we see how the agents
tend to separate from each other. We can observe the role played by this term in
the final cost by comparing Figure 3.2 (A) and (B). To see the effect of the final cost,
compare figures (A) and (D), where the latter corresponds to g ≡ 0.

3.5.2 Example 2

The initial distribution m∗
0 ∈ P1(R) is given by

dm∗
0(x) = I[−1,1](x)

e−(x−0.2)2/0.01 + e−(x+0.2)2/0.01∫ 1

−1
(e−(y−0.2)2/0.01 + e−(y+0.2)2/0.01)dy

dx for all x ∈ R.

Given ζ1, ζ2 ∈ R, we define

ℓ(t, a, x, µ) =
|a|4

4
+ζ1|x−0.6|2|x+0.2|2+θ1f(x, µ) and g(x, µ) = ζ2|x−0.6|2|x+0.2|2+θ2f(x, µ).

We consider the same parameters as those in Example 1 and we display in Figure 3.2
the distributions obtained for the smallest tolerance δ3 = 0.001. In Table 3.2, we show
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(a) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 1). (b) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5).

(c) (ζ1, ζ2, θ1, θ2) = (5, 1, 1, 1). (d) (ζ1, ζ2, θ1, θ2) = (1, 0, 1, 0).

Figure 3.1: Approximate equilibria for the tests in Example 1

the number of iterations required to reach the tolerances δ1, δ2, and δ3.

(ζ1, ζ2, θ1, θ2) δ1 = 0.1 δ2 = 0.01 δ3 = 0.001

(1, 1, 1, 1) 7 6 6
(1, 1, 1, 5) 10 12 9
(5, 1, 1, 1) 12 10 9
(1, 0, 1, 0) 4 6 6

Table 3.2: Number of iterations to obtain the desired accuracies.

In this example, we start with a distribution symmetrically concentrated around the
points −0.2 and 0.2. As in Example 1, the cost functional penalizes large values of the
speed and encourages avoiding crowded areas. In addition, it penalizes the distance to
the points −0.2 and 0.6. Although these two points are symmetric with respect to 0.2, we
see that, in order to avoid crowded regions, most of the agents that are concentrated
around 0.2 at t = 0 tend to go towards 0.6 instead of −0.2, see for instance Figure 3.2
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(a) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 1). (b) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5).

(c) (ζ1, ζ2, θ1, θ2) = (5, 1, 1, 1). (d) (ζ1, ζ2, θ1, θ2) = (1, 0, 1, 0).

Figure 3.2: Approximate equilibria for the tests in Example 2

(C). Once again, considering the same cases as in Example 1, we can appreciate the
impact of the congestion terms in the final distributions of the agents.
For a better understanding of the fictitious play method, we end this section by displaying
in Figure 3.3 the first iterations of the algorithm when (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5). The
final distribution in this case is shown in the top right corner of Figure 3.2.
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(a) M
1
= M0. (b) br(M

1
).

(c) M
2
. (d) br(M

2
).

(e) M
3
. (f) br(M

3
).

(g) M
4
. (h) br(M

4
).

Figure 3.3: First iterations of the algorithm for (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5).
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4
Newton iterations for second order mean

field game systems

In the preceding chapters, we have explored two numerical methodologies designed to
solve first order mean field game problems. This chapter focuses on solving second
order MFG systems. We present two numerical methods to solve a system derived
after applying Newton iterations to the continuous MFG system: a semi-Lagrangian
scheme and a finite difference scheme. We conduct a comparative analysis between
these two approaches and other schemes found in the literature through some nu-
merical examples.
This chapter is a work in progress with Elisabetta Carlini and Francisco J. Silva.
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4.1 Introduction

We consider the following second order MFG system with local coupling
−∂tu− ν∆u+H(x,Du) = F (m(t, x)) in [0, T ]× Td

∂tm− ν∆m− div(mHp(x,Du)) = 0 in [0, T ]× Td

m(0, x) = m0(x), u(T, x) = G(x) in Td .

(4.1.1)

Here, T > 0 is the finite time horizon, ν > 0 describes the intensity of the noise each
agent is submitted to, F : R+ → R is the coupling depending locally on the density, H is
a Hamiltonian, convex with respect to its second component, m0 : Td → R is a probability
density, G : Td → R is a given function, and Td = Rd/Zd denotes the d-dimensional
torus, simplifying considerations about boundary conditions.
As discussed in Chapter 1, several numerical methods have emerged to discretize
(4.1.1), and various strategies to solve the resulting non linear discrete system have
been discussed in the literature. For instance, the authors in [4] have introduced a
finite difference method to approximate system (4.1.1). This method retains several
favorable properties of the MFG system, and a convergence result has been established
in [1] and [9] . However, the resulting scheme yields a high dimensional nonlinear
discrete system to be solved. To tackle this difficulty, the authors in [1], [13] employed
the Newton method for its numerical solution.
In this chapter, we consider Newton’s method in infinite dimension applied to the
continuous MFG system (4.1.1), obtaining, at each iteration, a forward-backward linear
parabolic system that we solve with suitable numerical methods.
Infinite dimensional Newton iterates for (4.1.1) (see also [31] for the case of a stationary
MFG system) have been introduced in [44], where the authors consider a more general
case including a non-separable Hamiltonians H(x,m, p). Their key achievement is the
proof of a quadratic convergence rate for the continuous Newton iterations towards
solutions to (4.1.1). By slightly adjusting the assumptions in the Hamiltonian, their
results also cover the case we will consider consisting on a separable Hamiltonian
and local coupling.
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To apply Newton iterations to system (4.1.1), we define first the map

F : (u,m)→


−∂tu−∆u+H(Du)− F (m)

∂tm−∆m− div(mHp(Du))

u(T, ·)−G(·)
m(0, ·)−m0(·)

 ,

and note that (4.1.1) is equivalent to

F(u,m) = 0.

Thus, assuming that the data is sufficiently smooth, the corresponding Newton’s it-
erations read

JF(un−1,mn−1)(un − un−1,mn −mn−1) = −F(un−1,mn−1), (4.1.2)

where JF is the Jacobian of F is given by

JF(u,m)(v, ρ) =


−∂tv −∆v +Hp(Du)Dv −F ′(m)ρ

−div(mHpp(Du)Dv) ∂tρ−∆ρ− div(Hp(Du)ρ)

v(T, ·) 0

0 ρ(0, ·)

 (4.1.3)

for all Hölder continuous functions (v, ρ) in Q.

Hence, setting qn = Hp(·, Dun−1) and using (4.1.3), after simplification, identity (4.1.2)
reads

−∂tun − ν∆un + qnDun = qnDun−1 −H(x,Dun−1) + F (mn−1)

+F ′(mn−1)(mn −mn−1) in [0, T ]× Td,

∂tm
n − ν∆mn − div(mnqn) = div(mn−1Hpp(x,Du

n−1)(Dun −Dun−1)) in [0, T ]× Td,

mn(x, 0) = m0(x), un(x, T ) = G(x) in Td.

(4.1.4)

The contribution of this chapter is to introduce and compare numerical methods to solve
the linearized system (4.1.4). For this purpose, two methodologies are considered.The
first approach entails a semi-Lagrangian scheme, readily derivable for linear parabolic
equations. A comparative analysis is conducted against the non-linear semi-Lagrangian
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scheme for system (4.1.1) proposed in [58] and solved via (damped) fix point iterations.
The second method involves an upwind finite difference scheme, which, as observed
in several numerical tests, has a simpler structure and analogous performance to the
Newton scheme proposed of [4].

This chapter is structured as follows. In Section 4.2 we introduce some notations,
assumptions, and recall some preliminary results from [44]. In Section 4.3, we discretize
system (4.1.4) using a semi-Lagrangian scheme and establish the well-posedness of
the resulting discrete system. In Section 4.4, we demonstrate a similar well-posedness
result for the upwind finite difference scheme. Finally, in Section 4.5, we provide some
numerical simulations for both schemes and compare the results with those obtained
by using the schemes in [58] and [4].

4.2 Preliminaries and assumptions

In this section, we briefly recall the framework of [44]. First we set Q = [0, T ] × Td.
We denote by P(Td) the set of Borel probability measures on Td. For α ∈ [0, 1], the
space C0,1(Q) is the set of continuous functions in Q with continuous derivative in the
space variable, endowed with the norm

∥u∥C0,1(Q) = ∥u∥C0(Q) + ∥Du∥C0(Q).

Let us recall the definition of parabolic Hölder spaces on the torus (see [109] for a more
comprehensive discussion). For α ∈]0, 1[, we denote

[u]
C

α
2 ,α(Q)

= sup
(x1,t1),(x2,t2)∈Q

|u(t1, x1)− u(t2, x2)|
(|t1 − t2|+ d(x1, x2)2)

α
2

,

where d(x, y) stands for the geodesic distance from x to y in Td. The parabolic Hölder
space C

α
2
,α(Q) is the space of functions u : Q → R such that [u]

C
α
2 ,α(Q)

< ∞, and it
is endowed with the norm

∥u∥
C

α
2 ,α(Q)

= ∥u∥C0(Q) + [u]
C

α
2 ,α(Q)

.

Finally, the spaces C
1+α
2

,1+α(Q) and C1+α
2
,2+α(Q) denote the spaces of Hölder contin-
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uous functions in Q endowed with the norms:

∥u∥
C

1+α
2 ,1+α(Q)

= ∥u∥C0(Q) +
d∑

i=1

∥∂xi
u∥

C
α
2 ,α(Q)

+ sup
(t1,x1),(t2,x2)∈Q

|u(t1, x1)− u(t2, x2)|
|t1 − t2|

1+α
2

,

∥u∥
C1+α

2 ,2+α(Q)
= ∥u∥C0(Q) +

d∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
C

1+α
2 ,1+α(Q)

+

∥∥∥∥∂u∂t
∥∥∥∥
Cα/2,α(Q)

.

The following assumptions hold throughout this chapter:

(H1) H : Td × Rd → R is continuous, twice differentiable in p and there exist positive
constants c0, c0, C0 and C0 such that for every (x, p) ∈ Td × Rd,

c0Id ≤ Hpp(x, p) ≤ C0Id, |Hpx(x, p)| ≤ c0(|p|+ 1), |Hxx(x, p)| ≤ C0(|p|2 + 1).

(H2) F : R+ → R is bounded and of class C2. Moreover, there exist positive constants
c1, C1 and C1 such that

c1m ≤ F ′(m) ≤ C1m, |F ′′(m)| ≤ C1 for all m > 0.

(H3) There exists α ∈]0, 1[ and η > 0, such that

m0 ∈ C2+α(Td) ∩ P(Td) and m0 ≥ η > 0 for all x ∈ Td

G ∈ C2+α(Td).

We will consider classical solutions to the MFG system (4.1.1). Recall that a classical
solution to (4.1.1) is a couple (u,m) such that u and m belong to C1,2(Q) and (4.1.1)
is satisfied for all (t, x) ∈ Q.

Proposition 4.2.1 Under assumptions (H1)-(H3), the MFG system (4.1.1) has a unique
classical solution.

We refer to [44][Proposition 2.4] for the proof of the above proposition. Regarding
the Newton iterations system (4.1.4).

Proposition 4.2.2 Assume that (H1)-(H3) hold, then there exists a unique solution
(un,mn) ∈ C2+α,1+α

2 (Q) × C2+α,1+α
2 (Q) to (4.1.4). Moreover, let (u,m) be the unique

solution to (4.1.1), there exists a constant η > 0 such that if ∥u0−u∥C0,1+∥m0−m∥C0 ≤ η,
then ∥un − u∥C0,1 + ∥mn −m∥C0 → 0 with a quadratic rate of convergence.
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The existence result follows from [44][Proposition 3.1] and the convergence result
follows from [44][Theorem 4.6].

In what follows, to simplify the discussion, we consider the following reference case

H(x, p) =
|p|2

2
− V (x) for (x, p) ∈ Td × Rd, (4.2.1)

where V is a given bounded potential. Additionally, for the sake of simplicity, we consider
the case when d = 2. Let us note that the two proposed schemes work also for more
general Hamiltonians satisfying (H1).

4.3 A semi-Lagrangian scheme

In this section, we discretize the iterative system (4.1.4) by means of a semi-Lagrangian
scheme in the 2 dimensional state-space and we prove the well-posedness of the
discrete system.
We refer to [58] for the early work on approximating the second-order MFG systems us-
ing a semi-Lagrangian scheme, and to [34] for a semi-Lagrangian scheme applied
to parabolic equations.

4.3.1 Notations and definitions

Given two positive integers Nt and Nh, we define ∆t = T
Nt

as the time step, h = 1
Nh

as the
space step, and the sets I∆t := {0, . . . , Nt}, I∗∆t := I∆t \ {Nt}, and Ih := {0, . . . , Nh− 1}.
We define the discrete time grid G∆t := {tk = k∆t | k ∈ I∆t} and discrete space grid
Gh := {xi,j = (ih, jh) | i, j ∈ Ih}. We denote by B(Gh) and B(G∆t × Gh) the two sets
of functions defined in Gh and G∆t × Gh respectively.

The objective is to approximate un(tk, xi,j) and mn(tk, xi,j), solution to (4.1.4), respec-
tively by un,k[i,j] and mn,k

[i,j] for all k ∈ I∆t and i, j ∈ Ih, by solving the discrete version
of (4.1.4) resulting from a semi-Lagrangian approximation, where the index operator
[·, ·] = {(· + Nh, · + Nh)mod Nh} accounts for the periodic boundary condition.
For notational simplicity, we denote (un,ki,j ,m

n,k
i,j ) = (un,k[i,j],m

n,k
[i,j]).
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Given a grid function v : Gh → R, we introduce the first order central differences operators

(D1v)i,j =
vi+1,j − vi−1,j

2h
for i, j ∈ Ih,

(D2v)i,j =
vi,j+1 − vi,j−1

2h
for i, j ∈ Ih,

(4.3.1)

and define the operator Dh as

(Dhv)i,j = ((D1v)i,j, (D2v)i,j) for i, j ∈ Ih. (4.3.2)

Let β(1)
i : T → R be the P1 piecewise linear basis function associated with the ith

nodal point given by:

β
(1)
i (x) =


x−xi−1

h
if x ∈ [xi−1, xi],

xi+1−x
h

if x ∈ [xi, xi+1],

0 otherwise.

(4.3.3)

Notice that

β1
i ≥ 0 for all i ∈ Ih,

∑
i∈Ih

β1
i (x) = 1 for all x ∈ T. (4.3.4)

Next, for every i, j ∈ Ih, we define βi,j : T2 → R

βi,j(x) = β
(1)
i (x1)β

(1)
j (x2) for all x = (x1, x2) ∈ T2.

Given ϕ : Gh → R, we define its picewise linear interpolant as

I[ϕ](x) =
∑
i,j∈Ih

βi,j(x)ϕi,j for all x ∈ T2,

where ϕi,j = ϕ(xi,j). For every φ : T2 → R denote by φ|Gh
its restriction to Gh. If φ

is of class C2 and has bounded second order derivatives, it follows from [129, Re-
mark 3.4.2] that

∥φ(·)− I[φ|Gh
](·)∥∞ ≤ Cφh

2, (4.3.5)

where Cφ > 0 depends only on φ.
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4.3.2 Semi-Lagrangian scheme for the backward equation

With the notations of the previous subsection, we are ready to apply a semi-Lagrangian
scheme to approximate the iterative system (4.1.4). We start with the backward equation
with Hamiltonian given by (4.2.1), which can be written as follows:−∂tun − σ2

2
∆un + qnDun − Ln(t, x) = 0 in [0, T ]× T2,

un(x, T ) = G(x) in T2,
(4.3.6)

where σ =
√
2ν, qn(t, x) = Dun−1(t, x) and

Ln(t, x) =
|qn(t, x)|2

2
+ F (mn−1(t, x)) + F ′(mn−1(t, x))(mn(t, x)−mn−1(t, x))− V (x).

By the Feynman-Kac formula (see e.g [134]), under assumptions (H1)-(H2), the solution
un to (4.3.6), admits the following representation: for (t, x) ∈ [0, T ] × T2

un(t, x) = E
[ ∫ T

t

Ln(s,X t,x(s))ds+G(X t,x(T ))
]
, (4.3.7)

where X t,x denotes characteristics solvingdX(s) = qn(s,X(s)) + σdW (s) for s ∈ (t, T ),

X(t) = x.
(4.3.8)

We explain now how to construct a SL approximation using the technique shown in [76].
Notice that (4.3.7) imply that for every k ∈ I∗∆t, we have

un(tk, x) = E
[ ∫ tk+1

tk

Ln(s,X tk,x(s))ds+ un(tk+1, X
tk,x(∆t))

]
(4.3.9)

Denote by Qn,k the approximation of the drift term qn at time tk, defined as

Qn,k
i,j := (Qn,k

1 , Qn,k
2 )i,j = (Dhu

n−1,k)i,j for all k ∈ I∆t, i, j ∈ Ih. (4.3.10)

Then, we approximate the expectation in (4.3.9) (see e.g [104]) as

E
[
un(tk, X

tk,xi,j(∆t))
]
=

1

4

4∑
ℓ=1

un(tk, y
ℓ
i,j(Q

n,k)) +O((∆t)2), (4.3.11)

where
yℓi,j(Q

n,k) = (xi,j +∆tQn,k
i,j +

√
2∆tσeℓ)p for ℓ = 1, . . . , 4, (4.3.12)
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with eℓ representing four vectors of R2 with one component equal to ±1 and the
other null, and

(z)p = (z1 − ⌊z1⌋, z2 − ⌊z2⌋) for all z = (z1, z2) ∈ R2

denotes the periodic projection on T2 of z ∈ R2.

Finally, combining (4.3.7), (4.3.9), (4.3.11), and the rectangular formula to approximate∫ tk+1

tk
Ln(s,X tk,s(s))ds, we define define the semi-Lagrangian scheme for (4.3.6) in

the following way:
Given Qn ∈ B(G∆t × Gh)2 and mn,mn−1 ∈ B(G∆t × Gh), find un ∈ B(G∆t × Gh) such that un,ki,j = Sn

k,(i,j)(u
n,k+1) for all k ∈ I∗∆t, i, j ∈ Ih,

un,Nt = G(xi,j),
(4.3.13)

where, for every f ∈ B(Gh), k ∈ I∗∆t, and i, j ∈ Ih,

Sn
k,(i,j)(f) :=

1

4

4∑
ℓ=1

I[f ](yℓi,j(Q
n,k)) + ∆tLn(tk, xi,j).

Proposition 4.3.1 Assume (H1)-(H3) and let un be a smooth solution, with bounded
derivatives, to (4.3.6). Then, for every k ∈ I∗∆t and i, j ∈ Ih, the consistency error of
scheme (4.3.13), defined as

T∆t,h(tk, xi,j) =
1

∆t

(
un(tk+1, xi,j)− Sn

k,(i,j)(u
n(tk+1)

)
,

satisfies

T∆t,h(t, x) = O
(
(∆t)2 +

h2

∆t

)
(t, x) ∈ (0, T )× T2. (4.3.14)

Proof. Let ϕ ∈ C2
0 (T2), and let us denote by C a positive real number which can depend

only on ϕ. From (4.3.12) and Taylor expansion (see e.g [34]) we have

∣∣∣1
4

4∑
ℓ=1

ϕ(yℓi,j(Q
n,k))−

(
ϕ(xi,j) + ∆t

σ2

2
∆ϕ(xi,j) + ∆tQn,k

i,j Dϕ(xi,j)

) ∣∣∣ ≤ C(∆t)2 for all i, j ∈ Ih.

(4.3.15)
Thus, using (4.3.5), (4.3.15) in (4.3.13), and assumptions (H1)-(H3) yields (4.3.14). □
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For k ∈ I∆t, we denote Un,k and UNt the vectors of R(Nh)
2 such that

Un,k
i+jNh

= un,ki,j , UNt
i+jNh

= G(xi,j) for all i, j ∈ Ih, (4.3.16)

and, in the same way Mn,k and M0 are the vectors of R(Nh)
2 such that

Mn,k
i+jNh

= mn,k
i,j , M0

i+jNh
= m0(xi,j) for all i, j ∈ Ih. (4.3.17)

With the above notation, scheme (4.3.13) can be written in the following way Un,k = A(Qn,k)Un,k+1 +∆tWkMn,k +∆tBk for all k ∈ I∗∆t,

Un,Nt = UNt ,
(4.3.18)

where

(A(Qn,k))iNh+j,p+Nhq =
1

2d

4∑
ℓ=1

βp,q(y
ℓ
i,j(Q

n,k)), for all i, j, p, q ∈ Ih (4.3.19)

(WkMn,k)i+Nhj = F ′((Mn−1,k)i+Nhj)(M
n,k)i+Nhj for all i, j ∈ Ih, (4.3.20)

(Bk)i+Nhj =
|(Qn,k)i,j|2

2
− V (xi,j)

+ F ((Mn−1,k)i+Nhj)− F ′((Mn−1,k)i+Nhj)(M
n−1,k)i+Nhj for all i, j ∈ Ih.

(4.3.21)

4.3.3 A semi-Lagrangian scheme for the forward equation

Let us now consider the second equation in system (4.1.4), expressed for the Hamil-
tonian (4.2.1) as∂tmn − σ2

2
∆mn − div(mnqn) = div(mn−1(t, x)(Dun(t, x)−Dun−1(t, x))) in [0, T ]× T2,

mn(0, x) = m0(x) in T2.

(4.3.22)
Given U ∈ B(Gh) andQ = (Q1, Q2) ∈ B(Gh)2, we define the discrete divergence operator

(divh(UQ))i,j =
1

2h

(
Ui+1,j(Q1)i+1,j − Ui−1,j(Q1)i−1,j + Ui,j+1(Q2)i,j+1 − Ui,j−1(Q2)i,j−1

)
.

Let us introduce a semi-Lagrangian scheme to approximate (4.3.22).
Given Qn, Dhu

n−1, Dhu
n ∈ B(G∆t × Gh)2, and mn−1 ∈ B(G∆t × Gh), find
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mn ∈ B(G∆t × Gh) such thatm
n,k+1
i,j = (Sn

k,(i,j))
∗(mn,k) for all k ∈ I∗∆t, i, j ∈ Ih,

mn,0
i,j = m0(xi,j),

(4.3.23)

where, for a given function f ∈ B(Gh), k ∈ I∗∆t and i, j ∈ Ih

(Sn
k,(i,j))

∗(f) =
1

4

4∑
ℓ=1

I∗[f ](yℓi,j(Q
n,k)) + ∆t(divh(m

n−1,k+1(Dhu
n−1,k+1 −Dhu

n,k+1)))i,j,

where, for every i, j ∈ Ih, I∗[f ](yℓi,j(Qn,k)) is the adjoint operator of f → I[f ](yℓi,j(Q
n,k)).

As in (4.3.18), scheme (4.3.23) can be written in matrix form as Mn,k+1 := A(Qn,k)∗Mn,k +∆tZk+1Un,k+1 +∆tCk+1 k ∈ I∗∆t,

Mn,0 =M0,
(4.3.24)

where A(Q)∗ denotes the transpose of A(Q) given by (4.3.19), for every k ∈ I∗∆t, Zk

is (Nh)
2 × (Nh)

2 matrix such that

(ZkUk)i+Nhj = (DhM
n−1,k)i+Nhj · (DhU

k)i+Nhj

+ (Mn−1,k)i+Nhj divh(DhU
k)i+Nhj for i, j ∈ Ih, (4.3.25)

and Ck is the vector in R(Nh)
2 such that

(Ck)i+Nhj =− (Dh(M
n−1,k)i+Nhj(DhU

n−1,k)i+Nhj

− (Mn−1,k)i+Nhjdivh
(
DhU

n−1,k)i+Nhj for i, j ∈ Ih. (4.3.26)

4.3.4 The fully discrete Newton system

The final discrete Newton iteration system is given now as the follow. Given (Un−1,k,Mn−1,k),
set Qn,k = DhU

n−1,k, and find (Un,k,Mn,k) satisfying

Un,k = −A(Qn,k)Un,k+1 +∆tWkMn,k +∆tBk k ∈ I∗∆t,

Mn,k+1 = −A(Qn,k)∗Mn,k +∆tZk+1Un,k+1 +∆tCk+1 k ∈ I∗∆t,

Un,Nt = UNt ,

Mn,0 =M0,

(4.3.27)
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where A(Qn,k), WkMn,k, Bk, Zk+1, and Ck+1 are given by (4.3.19), (4.3.20), (4.3.21),
(4.3.25), and (4.3.26) respectively.
To establish the well-posedness of the system (4.3.27), let us represent it in matrix form.
For this purpose, we denote by Ū and M̄ the vectors of R(Nt+1)N2

h such that

(Ūn)kN2
h+iNh+j = (Un,k)i+Nhj, (M̄n)kN2

h+iNh+j = (Mn,k)i+Nhj for k ∈ I∆t, i, j ∈ Ih.
(4.3.28)

Next, we define the matrices A and W follows

A =



I(Nh)2 −A0 0 · · · 0

0 I(Nh)2 −A1 · · · ...

0
. . . . . . . . . ...

... · · · · · · 0 . . . −ANt−1

0 · · · · · · · · · 0 I(Nh)2


, W = ∆t



W0 0 0 · · · 0

0
. . . 0 · · · ...

...
... . . . . . . ...

0 0 · · · WNt−1 0

0 0 · · · 0 0


,

where Id is the identity matrix of size d × d. Under Assumption (H2), F ′ > 0 if m > 0,
the diagonal entries of W are positive if Mn is positive for any n ∈ N. We also de-
fine the matrix Z

Z = ∆t



0 0 · · · · · · 0

0 Z1 0 · · · 0

0 0 Z2 . . . ...
...

... . . . . . . 0

0 0 · · · 0 ZNt


,

where for every k ∈ I∗∆t, Zk is defined by (4.3.25).
Let B̄ = ∆t

[
B0, . . . ,BNt−1, 1

∆t
UNt

]∗
and C̄ = ∆t

[
1
∆t
M0, C0, . . . , CNt−1

]∗
with Bk and Ck

given in (4.3.21) and (4.3.26), respectively.

Finally, system (4.3.27) can be written as A −W

−Z −A∗

 Ūn

M̄n

 =

B̄
C̄

 . (4.3.29)

Remark 4.3.1 Note that the blocks of W would be dense matrices if F (m(t, x)) is
replaced by a nonlocal operator f [m(t, ·)](x) : Td × P(Td) → Rd. In this case, we use
the notation δf

δm
: Td × P(Td) × Td → R for the flat derivative of f (see e.g [50]), and

assumption (H2) can be replaced by
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(H2’) The measure derivatives δf
δm

is Lipschitz continuous and∫
Td

(f [m](x)− f [m′](x)) d(m−m′)(x) ≥ 0 for all m,m′ ∈ P(Td).

A typical example is a nonlocal coupling with smoothing effect

f(x,m) =

∫
Td

Φ(z, (ρ ∗m)(z))ρ(x− z)dz,

where ∗ denotes the usual convolution product in Td, and Φ : T2 → R is a smooth map
which is nondecreasing with respect to the second variable, and ρ is a smooth, even
function with compact support. In this case, writing Φ = Φ(x, θ), we have

δf

δm
(x,m, y) =

∫
Td

∂Φ

∂θ
(z, (ρ ∗m)(z))ρ(x− z)ρ(z − y)dz.

Proposition 4.3.2 Assume that M̄n > 0 for any n ∈ N. Then, there exists a unique
solution (Ūn, M̄n) to the system (4.3.29).

Proof. Suppose that B̄ = 0 and C̄ = 0, then (4.3.29) reads as{
A Ūn −WM̄n = 0,

−Z Ūn −A∗M̄n = 0
(4.3.30)

Multiplying the first equation by M̄∗ and the second one by Ū∗ one gets{
(M̄n)∗A Ūn − (M̄n)∗WM̄n = 0

−(Ūn)∗Z Ūn − (Ūn)∗A∗M̄ = 0.

Adding both equations, we obtain

(M̄n)∗WM̄n + (Ūn)∗Z Ūn = 0. (4.3.31)

Recall that, by assumption (H2), the block Wk is positive definite for all k ∈ I∆t.
Moreover, Zk is positive definite for all k ∈ I∆t, since it is the sum of a positive definite
matrix and a skew matrix and then, by [101, Remark 1], it is positive definite.
Hence, it follows from (4.3.31) that

(Ūn)kN2
h+iNh+j = 0 for all k ∈ I∗∆t, i, j ∈ Ih, (4.3.32)
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and
(M̄n)kN2

h+iNh+j = 0 for all k ∈ I∆t \ {0}, i, j ∈ Ih. (4.3.33)

Finally, replacing (4.3.32) and (4.3.33) in (4.3.30), we get Ūn = 0 and M̄n = 0. □

4.4 A finite differences scheme

In this sections, we consider a variation of the finite difference scheme in [4] which does
not need a numerical Hamiltonian. We use an upwind scheme to discretize the first
equation in (4.1.4), and then, taking the adjoint of the resulting scheme, we construct
an approximation of the second equation in (4.1.4).
For this purpose, let us define the discrete time derivative of v ∈ B(G∆t × Gh)

Dtv
k
i,j =

vk+1
i,j − vki,j

∆t
for all k ∈ I∗∆t, i, j ∈ Ih, (4.4.1)

and the five point discrete Laplace operator

(∆hv
k)i,j =

1

h2
(−4vki,j + vki+1,j + vki−1,j + vki,j+1 + vki,j−1) for all i, j ∈ Ih. (4.4.2)

Given un−1 ∈ B(G∆t × Gh) and mn−1 ∈ B(G∆t × Gh), we define Qn ∈ B(G∆t × Gh)2

as in (4.3.10) and we discretize the first equation in (4.1.4) using an implicit upwind
scheme, which reads

−Dtu
n,k
i,j − µk

i,j(∆hu
n,k)i,j +Qn,k

i,j (Dhu
n,k)i,j =

1
2
|(Qn,k)i,j|2 + V (xi,j)

+Fi,j(m
n,k+1,mn−1,k+1),

un,Ti,j = G(xi,j),

(4.4.3)

for all k ∈ I∗∆t and i, j ∈ Ih, where µk
i,j = ν + h

2
(|(Qn,k

1 )i,j| + |(Qn,k
2 )i,j|) and, for ev-

ery µ, µ̃ ∈ B(Gh)

Fi,j(µ, µ̃) = F ′(µ̃i,j)(µi,j − µ̃i,j) + F (µ̃i,j).
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Then, we consider the following approximation of the forward equation in (4.1.4)
Dtm

n,k
i,j −∆h(µ

kmn,k+1)i,j − (divh(Q
n,kmn,k+1))i,j

= divh(m
n−1,k+1(Dhu

n,k −Dhu
n−1,k))i,j,

mn,0
i,j = m0(xi,j).

(4.4.4)

Remark 4.4.1 Notice that the operator B(Gh) ∋ m→ (−∆h(µm)i,j−(divh(Qm))i,j)i,j∈Ih ∈
B(Gh) is the adjoint of the operator B(Gh) ∋ u → (−µi,j(∆hu)i,j + Qi,j(Dhu)i,j)i,j∈Ih ∈
B(Gh).

Combining (4.4.3) and (4.4.4), we consider the following fully discrete upwind scheme
for the Newton iterations system (4.1.4)

DkUn,k = Un,k+1 +∆tWk+1Mn,k+1 +∆tB̃k+1 for k ∈ I∗∆t,

(Dk)∗Mn,k+1 =Mn,k +∆tZkUn,k +∆tC̃k+1 for k ∈ I∗∆t,

Un,Nt = UT ,

Mn,0 =M0,

(4.4.5)

where Dk corresponds to the operator

(Xi,j) 7→
(
Xi,j −∆tµk

i,j(∆hX)i,j +∆t(DhX)i,j(Q
n,k)i,j

)
,

and B̃k+1, C̃k+1 ∈ R(Nh)
2 are given by

(C̃k+1)i+Nhj = −Dh(M
n−1,k+1)i+Nhj(DhU

n−1,k)i+Nhj

− (Mn−1,k+1)i+Nhjdivh
(
DhU

n−1,k)i+Nhj for i, j ∈ Ih,

(B̃k+1)i+Nhj =
|(Qn,k)i,j|2

2
− V (xi,j)

+ F ((Mn−1,k+1)i+Nhj)− F ′((Mn−1,k+1)i+Nhj)(M
n−1,k+1)i+Nhj for i, j ∈ Ih.

Finally, define Ũ and M̃ ∈ R(Nt)N2
h by

(Ũn)kN2
h+iNh+j = (Un,k)i+Nhj for k ∈ I∗∆t, i, j ∈ Ih,

(M̃n)kN2
h+iNh+j = (Mn,k)i+Nhj for k ∈ I∆t \ {0}, i, j ∈ Ih.
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In order to write system (4.4.5) in a matrix way, as in (4.3.29), we define first the matrices

F =



D0 −I(Nh)2 0 · · · 0

0 D1 −I(Nh)2 · · · ...

0
. . . . . . . . . ...

... · · · · · · 0 . . . −I(Nh)2

0 · · · · · · · · · 0 DNt−1


, W̃ = ∆t



W1 0 0 · · · 0

0 W2 0 · · · 0

0
. . . . . . · · · ...

...
... . . . . . . ...

0 0 · · · · · · WNt


,

and

Z̃ = ∆t



Z0 0 0 · · · 0

0 Z1 0 · · · 0

0
. . . . . . · · · ...

...
... . . . . . . ...

0 0 · · · · · · ZNt−1


.

Hence, (4.4.5) is equivalent to F −W̃

−Z̃ −F∗

 Ũn

M̃n

 =

B̃
C̃

 , (4.4.6)

where B̃ = ∆t
[
B1, . . . ,BNt + 1

∆t
UNt

]∗
and C̃ = ∆t

[
1
∆t
M0 + C1, . . . , CNt

]∗
.

Arguing as in the proof of Proposition 4.3.1, one can show the following well-posedness
result.

Proposition 4.4.1 Suppose that M̃n > 0 for any n ∈ N. Then, there exists a unique
solution (Ũn, M̃n) to the system (4.4.6).

Remark 4.4.2 The finite difference scheme given by (4.4.5) exhibit a different method-
ology the one in [4]. Indeed, the approach of [4] involves discretizing the MFG system
(4.1.1) through finite differences, employing a monotone numerical Hamiltonian. Subse-
quently, Newton iterations are employed to solve the resulting discretized system.
In contrast, our methodology takes an alternative strategy. We begin the process by
considering Newton iterates for the continuous system (4.1.1) directly. Then we use a
simple finite differences scheme to discretize the linear system to be solved at each
iteration of Newton’s method.
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4.5 Numerical tests

In this section, we assess the performance of our two schemes by conducting tests
in both one and two dimensions. The Newton iteration process is stopped once
the quantities

∥mn+1 −mn∥∞ and ∥un+1 − un∥∞ (4.5.1)

are below a given threshold τ . Systems (4.3.29) and (4.4.6) are solved by Gauss-
Seidel iterations and stopped when the uniform norms of the difference between two
consecutive solutions are below a threshold δ which is set to 10−4.
Additionally, we conduct a comparative analysis between our semi-Lagrangian scheme
(4.3.27) denoted Newton-SL, and the semi-Lagrangian scheme proposed in [58] solved
by a (damped) fix point method and denoted SL-FP. Furthermore, we compare the
upwind finite differences scheme (4.4.5) denoted Newton-FD, with the finite difference
schemes introduced in [4] solved via Newton iterations, denoted FD-Newton.
Algorithm 4 is designed to solve the Newton iteration system (4.1.4) either by Newton-
SL or Newton-FD.

Algorithm 4 Newton iterations for mean field games

1: Input: Initial guesses u0, m0, Q0 and tolerance τ
2: Output: Solution to the Newton iterations system (4.1.4)
3: n← 0

4: repeat
5: Compute mn+1 and un+1 by Newton-SL or Newton-FD
6: err(m)← ∥mn+1 −mn∥∞
7: err(u)← ∥un+1 − un∥∞
8: Update Qn using (4.3.10)
9: n← n+ 1

10: until err(m) < τ and err(u) < τ

11: return mn+1, un+1

Remark 4.5.1 We remind that the semi-Lagrangian schemes that we consider are
explicit and do not require a CFL parabolic condition. On the other hand, the finite
difference schemes considered here are implicit, and no restriction on the time steps
are needed. For the semi-Lagrangian schemes, however, time restriction of the form
∆t = O(h3/2) is needed because of accuracy reasons (see [77], [78] for a deeper
analysis).
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4.5.1 Dimension 1

Test 1: MFG system with reference solution.

In this test (see [33]), we consider a MFG system in the time-space domain [0, 0.05]×]0, 1[
with periodic boundary conditions, ν = 0.1 and H(x, p) = |p|2

2
. The initial condition

is given by

m0(x) =


4 sin2(2π(x− 1/4)) if x ∈ [1/4, 3/4],

0 otherwise,

and
F (m(x)) = 3m0(x)− 4min(4,m), G(x) = 0, for all x ∈]0, 1[.

In order to compute the errors, we compare the approximated solution with a reference
one, computed with SL-FP scheme with h = 6.67 · 10−4 and ∆t = h3/2/3. We measure
the accuracy of the scheme by computing the errors in the discrete uniform norm. The
threshold τ for the Newton stopping iteration criteria is set to 10−4. We set ∆t = h3/2/2

for the two SL schemes, while we set ∆t = h/4 for the finite differences schemes.
Table 4.1 highlights the distinction between Newton-SL and the SL-FP iterations al-
gorithm presented in [58], with the same stopping criteria than Algorithm 3 and 4
(4.5.1), showing CPU time, and the number of Newton iterations. Notably, Newton-SL
demonstrates superior performance in terms of CPU time and number of iterations.
Additionally, the approximation errors for both the distribution and the value function
appear comparable between the two methods.
Table 4.2 shows the results for the same test computed with Newton-FD and FD-
Newton. Very similar performance in terms of uniform error, CPU time and iteration
count can be observed.
Comparing Tables 4.1 and 4.2, it can be seen that Newton-SL requires the minimum
computing time and shows comparable accuracy with respect to the other methods.
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Newton-SL with ∆t = h3/2/2

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 5.51 ·10−2 1.64 ·10−1 0.61s 6

1.25 ·10−2 2.40 ·10−2 1.16 ·10−1 2.77s 7

6.25 ·10−3 1.83 ·10−2 6.61 ·10−2 13.92s 7

3.125 ·10−3 4.50 ·10−3 1.41 ·10−2 80.60s 7

SL-FP with ∆t = h3/2/2

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 5.75 ·10−2 1.62 ·10−1 8.09s 10

1.25 ·10−2 2.84 ·10−2 1.11 ·10−1 40.79s 10

6.25 ·10−3 2.15 ·10−2 5.84 ·10−2 259.72s 12

3.125 ·10−3 9.50 ·10−3 6.51 ·10−3 2793.71s 12

Table 4.1: Errors for the approximation of solution (u,m) using Newton-SL and SL-FP.

FD-Newton with ∆t = h/4

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 1.23 ·10−1 3.11 ·10−2 2.23s 7

1.25 ·10−2 6.21 ·10−2 1.63 ·10−2 18.32s 8

6.25 ·10−3 3.14 ·10−2 8.75 ·10−3 92.91s 8

3.125 ·10−3 1.77 ·10−2 9.54 ·10−3 597.21s 8

Newton-FD with ∆t = h/4

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 1.532 ·10−1 3.42 ·10−2 1.48s 7

1.25 ·10−2 6.71 ·10−2 1.83 ·10−2 12.27s 7

6.25 ·10−3 3.37 ·10−2 9.51 ·10−3 68.10s 7

3.125 ·10−3 1.91 ·10−2 7.38 ·10−3 436.01s 7

Table 4.2: Errors for the approximation of solution (u,m) using FD-Newton and Newton-FD.
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Test 2

In this test, we consider a MFG system, numerically solved in [119], in the time-space
domain [0, 0.01]×]0, 1[ with periodic boundary conditions and diffusion coefficient ν = 0.4

and ν = 0.02. We consider the following data, showed in Figure 4.1

m0(x) = 1 + 1
2
cos(2πx),

G(x) = sin(4πx) + 0.1 cos(10πx),

H(x, p) = |p|2 + V (x), V (x) = 200 cos(2πx)− 10 cos(4πx),

F (m) = m2.

The threshold τ for the Newton stopping iteration criteria is set to 10−4. We also
set Nh = 160.

(a) Initial distribution m0 (b) Terminal cost G (c) Potential V

Figure 4.1: The initial data.

Diffusion coefficient ν = 0.4

We first consider ν = 0.4 and we solve the MFG system using Newton-SL, Newton-
FD and FD-Newton. We set ∆t = h/4 for the two finite differences schemes, and
∆t = h3/2/2 for Newton-SL.
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(a) ∥mn+1 −mn∥∞ (b) ∥un+1 − un∥∞

Figure 4.2: Newton errors for the three schemes.

(a) Newton-SL (b) Newton-FD (c) FD-Newton

Figure 4.3: The distribution approximated with the three Newton schemes.

(a) Newton-SL (b) Newton-FD (c) FD-Newton

Figure 4.4: The value function approximated with the three Newton schemes.

Figure 4.2 shows on the y-axis the Newton iterations errors for the schemes Newton-SL,
Newton-FD and FD-Newton in a logarithmic scale with respect to number of Newton
iterations. Figure 4.3 shows the plots in the space-time grid of the approximated
distribution, computed by the three schemes. We can observe that the distribution
concentrates, at final time, near the points where the terminal cost G, showed in Figure
4.1b, reaches its minima.
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Finally, Figure 4.4 shows the plots in the space-time grid, of the approximated value
function, computed by the three schemes.

Diffusion coefficient ν = 0.02

Let us consider now a smaller diffusion term, specifically ν = 0.02. Newton-SL iterations,
with ∆t = h2, demonstrate convergence after 5 iterations showed in Figure 4.5, reaching
the associated threshold. In contrast, both Newton-FD and FD-Newton iterations
encounter breakdowns after only a few iterations. This indicates a higher robustness
offered by the Newton-SL scheme, in scenarios characterised by small diffusion terms.
Figure 4.6 shows the approximated distribution and the approximated value function
in the time-space domain.

Remark 4.5.2 In [6], the authors solve a finite difference discretization of the MFG
system by employing Newton’s method combined with a continuation method with
respect to the diffusion parameter ν (see also [10], [12]). The latter is particularly useful
to deal with the case small diffusion parameters. The problem is solved first for a high
value of ν and, subsequently, the authors use this solution as an initial guess to solve,
still by using Newton’s method, the discrete MFG system with a smaller viscosity. The
method proceeds in this manner until reaching the desired (small) viscosity.
As a completion on this work, a comparison between the method of continuation applied
to our scheme and other methods will be made.

(a) ∥mn+1 −mn∥∞ (b) ∥un+1 − un∥∞

Figure 4.5: Newton-SL iterations error for ν = 0.02.
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(a) Evaluation of m (b) Evaluation of u

Figure 4.6: Approximated m and u.

4.5.2 Dimension 2

We consider now a MFG system in dimension 2, previously numerically studied in [119].
We set Q = [0, 1]×]0, 1[2, ν = 1, and the following data

m0(x1, x2) = 1 + 12 cos(2πx1) + 12 cos(2πx2),

G(x1, x2) = cos(2πx1) + cos(2πx2),

H(x1, x2, p) = |p|2 + V (x1, x2), V (x1, x2) = sin(2πx1) + sin(2πx2) + cos(4πx1),

F (m) = m2.

We set τ = 10−4, Nh = 66, and ∆t = h2/2. Figure 4.7 shows the errors (4.5.1) in a
logarithmic scale on the y-axis with respect to number of Newton iterations on the x-axis,
Figure 4.9 shows the contour level of the approximations to u(T/2, ·) and m(T/2, ·),
respectively, where we can notice easily the effect of periodic boundary conditions.
The solution m is shown in Figure 4.9 at different times. Figures 4.9b-4.9c show the
stationary state reached by the density, at intermediate time, which can be interpreted
as a turnpike effect. Turnpike phenomena for mean field games with local coupling
has been discussed in [67].
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Chapitre 4 – Newton iterations for second order mean field game systems

(a) ∥mn+1 −mn∥∞ (b) ∥un+1 − un∥∞

Figure 4.7: Newton-SL iterations error.

(a) m(Nt/2, x) (b) u(T/2, x)

Figure 4.8: Contours level of m(Nt/2, x) and u(T/2, x).
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Chapitre 4 – Newton iterations for second order mean field game systems

(a) k = 0 (b) k = Nt/2

(c) k = 3Nt/4 (d) k = Nt

Figure 4.9: The approximated distribution m at times t = 0, Nt∆t
2 , 3Nt∆t

4 , T.
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Approximation de jeux à champ moyen

Résumé : L’objectif de la théorie des jeux à champ moyen est d’étudier une classe de jeux
différentiels (déterministes ou stochastiques) comportant un grand nombre de joueurs. Étant
donné que très peu de jeux à champ moyen admettent des solutions explicites, les méthodes
numériques jouent un rôle essentiel dans la description quantitative, mais aussi qualitative,
des équilibres de Nash associés. Cette thèse se concentrera sur des techniques numériques
utilisées pour résoudre diverses classes de jeux à champ moyen.

Mots clés : Jeux à champ moyen, contrôle optimal, équations de Hamilton-Jacobi-Bellman
et de Fokker-Planck, analyse numérique des équations aux dérivées partielles.

Approxiamtion to mean field games

Abstract : The purpose of the theory of mean field games is to study a class of differential
games (deterministic or stochastic) with a large number of agents. Since very few mean
field games admit explicit solutions, numerical methods play an essential role in describing
quantitatively, and also qualitatively, the associated Nash equilibria. This thesis is focused
on numerical techniques to solve several types of mean field game problems.

Keywords: Mean field games, optimal control, optimal control theory, Hamilton-Jacobi-
Bellman and Fokker-Planck equations, numerical analysis of partial differential equations.
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