Quantification de la stabilité des réseaux de neurones
Auteur / Autrice : | Kavya Gupta |
Direction : | Jean-Christophe Pesquet, Fateh Kaakai |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique mathématique |
Date : | Soutenance le 13/01/2023 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de vision numérique (Gif-sur-Yvette, Essonne) |
Référent : CentraleSupélec (2015-....) | |
graduate school : Université Paris-Saclay. Graduate School Sciences de l’ingénierie et des systèmes (2020-….) | |
Jury : | Président / Présidente : Frédéric Jurie |
Examinateurs / Examinatrices : Mathieu Serrurier, Hamid Krim, Juliette Mattioli | |
Rapporteurs / Rapporteuses : Mathieu Serrurier, Hamid Krim |
Mots clés
Résumé
Les réseaux de neurones artificiels sont au cœur des avancées récentes en Intelligence Artificielle. L'un des principaux défis auxquels on est aujourd'hui confronté, notamment au sein d'entreprises comme Thales concevant des systèmes industriels avancés, est d'assurer la sécurité des nouvelles générations de produits utilisant cette technologie. En 2013, une observation clé a révélé que les réseaux de neurones sont sensibles à des perturbations adverses. Ceci soulève de sérieuses inquiétudes quant à leur applicabilité dans des environnements où la sécurité est critique. Au cours des dernières années, des publications ont étudiées les différents aspects de la robustesse des réseaux de neurones, et des questions telles que ``Pourquoi des attaques adverses se produisent?'', ``Comment pouvons-nous rendre les réseaux de neurones plus robustes à ces bruits ?'', ``Comment générer des attaques plus fortes'', etc., se sont posées avec une acuité croissante. Cette thèse vise à apporter des réponses à de telles questions. La communauté s'intéressant aux attaques adverses en apprentissage automatique travaille principalement sur des scénarios de classification, alors que les études portant sur des tâches de régression sont rares. Nos contributions comblent le fossé existant entre les méthodes adverses en apprentissage et les applications de régression.Notre première contribution, dans le chapitre 3, propose un algorithme de type ``boîte blanche'' pour attaquer les modèles de régression. L'attaquant adverse présenté est déduit des propriétés algébriques du Jacobien du réseau. Nous montrons que notre attaquant réussit à tromper le réseau de neurones et évaluons son efficacité à réduire les performances d'estimation. Nous présentons nos résultats sur divers ensembles de données tabulaires industriels en libre accès et réels. Notre analyse repose sur la quantification de l'erreur de tromperie ainsi que différentes métriques. Une autre caractéristique remarquable de notre algorithme est qu'il nous permet d'attaquer de manière optimale un sous-ensemble d'entrées, ce qui peut aider à identifier la sensibilité de certaines d'entre elles. La deuxième contribution de cette thèse (Chapitre 4) présente une analyse de la constante de Lipschitz multivariée des réseaux de neurones. La constante de Lipschitz est largement utilisée dans la littérature pour étudier les propriétés intrinsèques des réseaux de neurones. Mais la plupart des travaux font une analyse mono-paramétrique, qui ne permet pas de quantifier l'effet des entrées individuelles sur la sortie. Nous proposons une analyse multivariée de la stabilité des réseaux de neurones entièrement connectés, reposant sur leur propriétés Lipschitziennes. Cette analyse nous permet de saisir l'influence de chaque entrée ou groupe d'entrées sur la stabilité du réseau de neurones. Notre approche repose sur une re-normalisation appropriée de l'espace d'entrée, visant à effectuer une analyse plus précise que celle fournie par une constante de Lipschitz globale. Nous visualisons les résultats de cette analyse par une nouvelle représentation conçue pour les praticiens de l'apprentissage automatique et les ingénieurs en sécurité appelée étoile de Lipschitz. L'utilisation de la normalisation spectrale dans la conception d'une boucle de contrôle de stabilité est abordée au chapitre 5. Une caractéristique essentielle du modèle optimal consiste à satisfaire aux objectifs de performance et de stabilité spécifiés pour le fonctionnement. Cependant, contraindre la constante de Lipschitz lors de l'apprentissage des modèles conduit généralement à une réduction de leur précision. Par conséquent, nous concevons un algorithme permettant de produire des modèles de réseaux de neurones ``stable dès la conception'' en utilisant une nouvelle approche de normalisation spectrale, qui optimise le modèle, en tenant compte à la fois des objectifs de performance et de stabilité. Nous nous concentrons sur les petits drones aériens (UAV).