
THÈSE DE DOCTORAT DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE FRANCHE-COMTÉ

École doctorale n°37

Sciences Physiques pour l’Ingénieur et Microtechniques (SPIM)

Doctorat d’informatique

Par

Paul BREUGNOT

Distribution et synchronisation des simulations de Systèmes Multi-Agents

Thèse présentée et soutenue à Besançon, le 16 mars 2023

Composition du Jury : 

Chevrier, Vincent Professeur, Université de Lorraine Président
Picard, Gauthier Directeur de recherche, ONERA Rapporteur
Drogoul, Alexis Directeur de recherche, Institut de Recherche et Développement Rapporteur
Hill, David Professeur, Université de Clermont-Auvergne Examinateur
Philippe, Laurent Professeur, Université de Franche-Comté Directeur de thèse
Herrmann, Bénédicte Maître de conférence, Université de Franche-Comté Encadrant de thèse
Lang, Christophe Maître de conférence HDR, Université de Franche-Comté Encadrant de thèse
Marilleau, Nicolas Ingénieur de recherche HDR, Institut de Recherche et Développement Invité



Remerciements

De nature assez peu confiante, j’ai eu tout le temps de ressasser l’utilité et la légitimité
de mes travaux au cours des trois années passées. De nombreuses personnes ont pourtant
permis l’aboutissement de ce projet, dont je suis aujourd’hui très fier.

J’ai en effet pu bénéficier d’un encadrement d’une qualité exceptionnelle, que je
souhaite à tout futur doctorant. Ainsi je remercie d’abord Bénédicte Herrmann, pour
tout le temps passé à faire des lectures éclairées de nos articles ou de ce manuscrit. Son
analyse pertinente des problèmes abordés en termes de Systèmes Multi-Agents comme en
parallélisme et sa ténacité face à mon pessimisme récurrent m’ont permis de comprendre
et de valoriser l’essentiel de nos résultats. Sa clairvoyance nous aura évité bien des
égarements, en réunion comme en rédaction.

Je remercie ensuite Christophe Lang, dont la passion pour les Systèmes Multi-
Agents s’avère communicative. C’est un plaisir et un privilège d’avoir pu bénéficier
de son expérience dans le domaine. Ses compétences dans la gestion des problèmes
administratifs ainsi que sa bonne humeur en toute circonstance n’ont par ailleurs cessé de
m’impressionner, tout comme la qualité et l’audace de ses jeux de mots, qui bien souvent
ne sont compris facilement que par son binôme de longue date en la matière, Laurent
Philippe.

Je remercie ce dernier pour son écoute et ses précieux conseils techniques en termes
de calcul haute performance et de randonnée pédestre. En trois ans, je n’ai pu cerner
qu’une infime portion des problèmes complexes du parallélisme qui aujourd’hui ne sont
pour lui que des formalités. Sa détermination à résoudre les problèmes me donne bon
espoir en l’avenir de la simulation distribuée de Systèmes Multi-Agents. Son travail pour
le Mésocentre fut également un atout indéniable.

Je remercie dans ce contexte Kamel Mazouzi, Sékou Diakité et toute l’équipe du
Mésocentre pour leur réactivité et leur gestion exemplaire du cluster, qui n’a jamais
failli pendant nos milliers d’heures de calcul.

Les cours de Systèmes Multi-Agents dispensés par Gauthier Picard ont certainement
participé à mon engagement dans ce domaine. Je le remercie, ainsi qu’Alexis Drogoul,
pour leur travail en tant que rapporteurs de cette thèse.

Je remercie aussi les étudiants qui m’ont fait changer d’air, tous les amis, collègues du
DISC et camarades de Besançon ou d’ailleurs mais jamais vraiment loin, ainsi que ma
famille du Morvan chez qui j’ai toujours trouvé refuge.

Merci enfin de tout mon cœur à Louna, sans qui la vie serait bien triste. Les moments
passés ensemble m’ont permis d’avancer et d’évoluer en toute circonstance, et je n’ose
imaginer comment j’aurais pu traverser cette période de ma vie sans elle.

2



Table des matières

I. Systèmes Multi-Agents et simulation distribuée 7

1. Contexte et problématique 9
1.1. Simulation de Systèmes Multi-Agents . . . . . . . . . . . . . . . . . . . 9
1.2. Simulation distribuée . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Objectifs de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4. Problématique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5. Plan du mémoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. État de l’art 13
2.1. Systèmes Multi-Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. La notion d’agent . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Systèmes complexes . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3. Environnement . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Simulation de Systèmes Multi-Agents . . . . . . . . . . . . . . . . . . . 17
2.3. Architecture de calcul distribuée . . . . . . . . . . . . . . . . . . . . . 19
2.4. Distribution d’une simulation de SMA . . . . . . . . . . . . . . . . . . 21

2.4.1. Exécution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2. Continuité des données . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. Synchronisation des données . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1. Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2. Écritures non concurrentes . . . . . . . . . . . . . . . . . . . . . 24
2.5.3. Écritures concurrentes . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.4. Nécessité des écritures . . . . . . . . . . . . . . . . . . . . . . . 25

2.6. Synchronisation temporelle . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7. Équilibrage de charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1. Méthodes par découpage de l’environnement . . . . . . . . . . . 29
2.7.2. Méthodes par partitionnement de graphe . . . . . . . . . . . . . 31
2.7.3. Méthodes par proximité spatiale . . . . . . . . . . . . . . . . . 32
2.7.4. Autres méthodes . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8. Plateformes de simulation distribuée . . . . . . . . . . . . . . . . . . . 33
2.8.1. Repast HPC et D-MASON . . . . . . . . . . . . . . . . . . . . 33
2.8.2. Pandora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.3. FLAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.4. Autres Travaux . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



2.9. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

II. Conception et analyse d’une architecture logicielle générique dé-
diée à la simulation distribuée de Systèmes Multi-Agents 42

3. Distribution des Systèmes Multi-Agents 45
3.1. Contexte d’exécution distribuée . . . . . . . . . . . . . . . . . . . . . . 47
3.2. Contexte Multi-Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1. Exécution par pas de temps . . . . . . . . . . . . . . . . . . . . 49
3.2.2. Environnement . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3. Algorithmes de distribution génériques . . . . . . . . . . . . . . . . . . 51
3.3.1. Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2. Création et nettoyage des agents délégués . . . . . . . . . . . . 54
3.3.3. Gestion de la localisation . . . . . . . . . . . . . . . . . . . . . 57
3.3.4. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4. Cas de la représentation à base de graphe . . . . . . . . . . . . . . . . 60
3.4.1. Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2. Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3. Spécialisation des algorithmes . . . . . . . . . . . . . . . . . . . 62
3.4.4. Exemple de distribution . . . . . . . . . . . . . . . . . . . . . . 62

3.5. Autres problèmes de distribution . . . . . . . . . . . . . . . . . . . . . 65
3.5.1. Sérialisation des données . . . . . . . . . . . . . . . . . . . . . . 66
3.5.2. Génération de nombres aléatoires . . . . . . . . . . . . . . . . . 68

3.6. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4. Équilibrage de charge 70
4.1. Approche théorique de l’équilibrage de charge . . . . . . . . . . . . . . 72

4.1.1. Problème de partitionnement . . . . . . . . . . . . . . . . . . . 72
4.1.2. Problème de repartitionnement . . . . . . . . . . . . . . . . . . 73

4.2. Interface générique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1. Spécification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2. Période d’application . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3. Modèles test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1. Modèles à base de graphes purs . . . . . . . . . . . . . . . . . . 76
4.3.2. Modèles spatiaux uniformes . . . . . . . . . . . . . . . . . . . . 79
4.3.3. Modèles spatiaux non uniformes . . . . . . . . . . . . . . . . . 81
4.3.4. Meta-Modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4. Algorithmes d’équilibrage . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1. Équilibrage de charge à base de graphe . . . . . . . . . . . . . . 85
4.4.2. Équilibrage de charge spatialisé statique . . . . . . . . . . . . . 89
4.4.3. Équilibrage de charge spatialisé dynamique . . . . . . . . . . . 90
4.4.4. Équilibrage de charge à base de grille . . . . . . . . . . . . . . . 91

4



4.5. Performances et comparaisons . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.1. Graphe pur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.2. Modèle spatial uniforme . . . . . . . . . . . . . . . . . . . . . . 95
4.5.3. Modèle spatial non uniforme . . . . . . . . . . . . . . . . . . . 98

4.6. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5. Synchronisation des données 106
5.1. Modes de synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1. Lectures et écritures . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.2. Interface de synchronisation . . . . . . . . . . . . . . . . . . . . 109
5.1.3. GhostMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.4. GlobalGhostMode . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.5. HardSyncMode . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.6. PushGhostMode et PushGlobalGhostMode . . . . . . . . . . . 121

5.2. Limites d’interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3. Reproductibilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.1. Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2. Niveau de reproductibilité maximal . . . . . . . . . . . . . . . . 125
5.3.3. Niveau de reproductibilité effectif . . . . . . . . . . . . . . . . . 126

5.4. Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1. Modèle test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2. Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.3. Écritures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5. Impact sur les résultats des modèles . . . . . . . . . . . . . . . . . . . 140
5.5.1. Modèle Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.2. Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.3. Reproductibilité . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5.4. Influence de la gestion des lectures et écritures . . . . . . . . . 147

5.6. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6. Conclusion 150

Liste des algorithmes 153

Liste des logiciels 154

Bibliographie 157

Annexes 171

A. Sérialisation ObjectPack 172

5



B. Discussion sur les coûts de communication du Méta-Modèle 175

C. Conversion d’un modèle SMA vers le modèle de graphe de Zoltan 177

6



Première partie

Systèmes Multi-Agents et
simulation distribuée

7



Cette thèse, réalisée au département DISC du laboratoire FEMTO-ST, fait état de mes
travaux dans le cadre de la simulation distribuée de Systèmes Multi-Agents (SMA). Elle
fait notamment suite à la thèse d’Alban Rousset [111] intitulée « Contribution à la dis-
tribution et à la synchronisation des Systèmes Multi-Agents sur les super-calculateurs »,
dont les avancées incluent une revue détaillée des plateformes de simulation distribuée de
SMA existantes, la proposition d’un schéma de distribution des simulations basé sur une
structure de graphe, et l’introduction de Modes de synchronisation permettant de définir
et d’analyser différentes méthodes d’interactions entre agents exécutés sur différents
processus. Ces travaux ont également donné lieu à l’implémentation d’un prototype de
plateforme de simulation distribuée basée sur ces concepts, FPMAS.

Nous cherchons à étendre ces résultats avec l’étude d’une architecture de simulation
distribuée de SMA générique, une analyse formelle des Modes de synchronisation déjà
établis, et l’amélioration du prototype vers un outil plus robuste.

L’objectif de cette première partie consiste à définir le cadre de notre étude ainsi que les
problématiques et questions de recherche associées dans le chapitre 1. Nous poursuivons
au chapitre 2 par un état de l’art des méthodes relatives à la simulation de SMA et à leur
exécution distribuée. L’analyse proposée des techniques et plateformes de simulations
existantes tant dans le domaine du Calcul Haute Performance que des SMA permet de
justifier l’intérêt de l’architecture logicielle générique proposée dans la seconde partie.

8



Chapitre 1.

Contexte et problématique

Nous introduisons dans ce chapitre les notions de simulation de SMA d’une part et
de simulation distribuée d’autre part. Nous précisons ensuite nos objectifs en termes
de simulation distribuée de SMA, issue de l’union de ces deux domaines. Enfin, nous
définissons les problématiques associées ainsi que le plan du mémoire.

1.1. Simulation de Systèmes Multi-Agents

Il est possible de définir simplement un SMA par un ensemble d’entités autonomes en
interaction avec leur environnement. Les SMA sont souvent utilisés pour décrire, simuler
et analyser des systèmes dits complexes, dont le comportement global est par définition
difficile à prédire en raison des interactions entre les nombreux composants du système.

Un SMA peut être biologique, physique ou informatique, réel ou virtuel. Dans ce
contexte, les usagers d’un centre commercial, les êtres vivants d’une forêt, les véhicules
et les piétons dans une ville, les cellules d’un être vivant ou les machines sur un
réseau peuvent faire l’objet d’une description Multi-Agents. Certains systèmes peuvent
également être définis de manière théorique, par exemple pour évaluer diverses stratégies
dans le cadre de la microéconomie et de la théorie des jeux.

La modélisation Multi-Agents consiste en la définition plus ou moins formelle des
agents, de l’environnement et des règles qui régissent les interactions entre les composants
d’un système. La complexité des modèles est très variable, néanmoins l’intérêt de la
modélisation Multi-Agents réside souvent dans le fait d’utiliser des règles simples afin
de générer des phénomènes émergents complexes. La description minimaliste de règles
d’alignement, de répulsion et d’attirance par rapport aux voisins dans une nuée d’oiseaux
ou un banc de poissons suffit par exemple à expliquer et reproduire des mouvements
globaux et complexes observés dans la nature.

Les travaux présentés ici traitent de la simulation numérique des modèles Multi-Agents,
afin notamment d’en prédire l’évolution dans le temps.

1.2. Simulation distribuée

Compte tenu des exemples déjà cités, il est clair que la définition d’un SMA peut
impliquer l’existence de millions d’agents ou plus, sur des échelles de temps très
extensibles, que ce soit pour simuler l’économie européenne sur un trimestre ou l’activité

9



Chapitre 1. Contexte et problématique

microbienne d’un champ pendant une heure. La simulation de tels systèmes devient
rapidement impossible sur des ressources de calcul classiques. En effet, l’exécution
séquentielle d’une simulation est limitée en termes de mémoire et peut produire des
temps d’exécution irréalistes. La parallélisation en mémoire partagée, qui consiste en
l’exécution d’une simulation avec plusieurs cœurs de processeurs ayant accès à une
mémoire commune permet de résoudre en partie le problème du temps d’exécution.
Le nombre de cœurs CPU (« Core Processing Unit ») pouvant accéder à une mémoire
commune est actuellement limité d’un point de vue matériel : si les architectures à 4, 8 ou
16 cœurs se sont aujourd’hui démocratisées, des nombres plus élevés sont réservés à des
machines spécialisées. Il est alors possible d’avoir recours au Calcul Haute Performance
(HPC, « High Performance Computing ») grâce à des architectures dites distribuées,
communément appelées super-calculateurs ou clusters de calcul. Cette technique consiste
à multiplier à la fois la mémoire et les processeurs disponibles en exécutant les simulations
sur des machines indépendantes connectées en réseau, ce qui accroit considérablement le
potentiel de ressources disponibles : de nombreux super-calculateurs affichent ainsi des
nombres de cœurs de processeurs de l’ordre de la dizaine de milliers. La simulation de
SMA semble particulièrement adaptée à l’utilisation d’un tel nombre de cœurs grâce à
la taille des modèles et au parallélisme intrinsèque des agents. La parallélisation d’une
simulation en mémoire partagée constitue cependant un défi de taille car elle nécessite
par exemple la gestion efficace des écritures concurrentes et des schémas d’exécution
qui diffèrent du cas séquentiel. L’exécution en mémoire distribuée ajoutent davantage de
problèmes pratiques et théoriques qui limitent l’application du Calcul Haute Performance
à la simulation de SMA.

La conception et la programmation d’algorithmes non distribués sont généralement
basées sur l’utilisation de variables accessibles de manière triviale dans la mémoire
partagée. En revanche l’accès potentiellement concurrent à une variable localisée sur
une machine distante, accessible seulement via un réseau, pose le problème de la
synchronisation des données entre les machines. De telles contraintes nécessitent une
conception radicalement différente des programmes et algorithmes, ainsi qu’un niveau
d’expertise peu répandu parmi les concepteurs de modèles Multi-Agents. En effet,
même si l’autonomie des agents rend leur exécution naturellement parallèle, les SMA
se caractérisent par un grand nombre d’interactions parfois complexes entre les agents
du système. Ainsi les interactions entre agents exécutés sur différentes machines peuvent
se trouver sévèrement limitées, erronées, et dans tous les cas difficiles à mettre en place
par les développeurs de simulations de SMA. D’où l’intérêt de concevoir des interfaces
logicielles accessibles pour que la communauté puisse facilement bénéficier de l’utilisation
de ressources de Calcul Haute Performance, en limitant au maximum les compétences
nécessaires par rapport aux outils utilisés sur les architectures classiques.

De plus, les gains en performance liés à la distribution d’une simulation ne sont pas
automatiques. En effet, le surcoût en termes de temps et de mémoire nécessaires pour
pallier la distribution peut s’avérer tel que l’exécution distribuée est moins efficace qu’en
mémoire partagée, même si le nombre de cœurs utilisés est plus important. Il est donc
nécessaire de mettre en place des stratégies de distribution adaptées, de s’assurer de
l’efficacité des outils mis à disposition, et d’identifier clairement leurs limites.

10



Chapitre 1. Contexte et problématique

L’exécution distribuée d’une simulation soulève enfin des problèmes liés aux résultats
des simulations. La reproductibilité des résultats n’est par exemple pas toujours garantie
en fonction du nombre de processeurs utilisés. En effet, l’ordre global d’exécution des
agents peut avoir un impact sur les résultats d’une simulation. Or, si cet ordre est
déterministe dans le cas séquentiel, il ne l’est pas dans le cas du parallélisme car l’ordre
d’exécution de deux agents exécutés sur des processeurs distincts dépend de la vitesse
d’avancement de chaque processeur, qui peut varier selon des facteurs externes, matériels
et stochastiques. Les méthodes de synchronisation entre les processus peuvent aussi
impacter la qualité voire la validité des résultats. Pour toutes ces raisons, un critère
de validité basé sur la correspondance avec une simulation séquentielle peut perdre son
sens dans un contexte distribué.

1.3. Objectifs de la thèse

L’objectif général de nos travaux consiste à identifier, analyser et résoudre les différents
problèmes génériques auxquels toute simulation distribuée de SMA doit faire face, à la fois
grâce à une étude de la littérature et des plateformes existantes et grâce à l’expérience de
développement d’une plateforme de simulation distribuée de SMA adaptée aux objectifs
suivants : l’ergonomie, l’efficacité et la validité des résultats.

Ergonomie

L’ergonomie est un critère essentiel de développement visant à faciliter l’utilisation
et l’extensibilité des plateformes logicielles. Cet aspect est particulièrement important
dans notre étude qui vise à faciliter la distribution de simulations de SMA pour des non-
experts en Calcul Haute Performance. Les solutions proposées doivent ainsi minimiser
la complexité d’implémentation des modèles par l’utilisateur final, notamment grâce à
un haut niveau d’abstraction des problèmes liés à la distribution. De plus, les solutions
proposées doivent permettre l’exécution distribuée de la plus large gamme de simulations
de SMA possible, sans qu’il ne soit nécessaire de modifier les règles d’un modèle
ou d’implémenter de nouvelles fonctionnalités complexes en dehors des spécificités du
système simulé.

Efficacité

L’objectif de toute distribution de simulation consiste à diminuer les temps de calcul ou
à augmenter la quantité de mémoire disponible par rapport à une exécution en mémoire
partagée, ou tout du moins par rapport à une exécution séquentielle. Il est donc nécessaire
de mettre en place des solutions qui bénéficient réellement des cœurs de processeurs et
des espaces mémoires mis à disposition par chaque machine du système distribué.

Validité des résultats

Les résultats fournis par une simulation doivent être conformes aux règles qui décrivent
le SMA. Mais d’autres critères, qui dépendent généralement du contexte du modèle et des

11



Chapitre 1. Contexte et problématique

besoins de l’utilisateur, comme la reproductibilité entre deux exécutions d’une simulation,
sont parfois souhaitables et vont impliquer différents niveaux de contraintes.

1.4. Problématique

Nos contributions consistent alors à apporter des éléments de réponse aux questions
de recherche suivantes :

1. Quelles sont les difficultés à surmonter pour permettre la simulation distribuée de
SMA ? Fait-on face aux mêmes difficultés pour tous les types de modèles ?

2. Quel est le niveau de satisfaction des objectifs d’ergonomie, d’efficacité et de validité
des résultats atteints par les solutions proposées dans les plateformes de simulation
distribuées existantes ? Quelles sont les limitations selon les types de modèles ?

3. Comment mettre en place des solutions adaptables à tout type de modèle pour
atteindre ces objectifs ?

Nous accordons dans nos contributions une importance particulière à l’étude pratique
et théorique du problème de la synchronisation des données, dont la résolution constitue
un point critique dans la simulation distribuée des SMA.

1.5. Plan du mémoire

Nous poursuivons cette partie introductive avec le chapitre 2, dans lequel nous
proposons notamment une revue des techniques de simulation distribuée de SMA,
au regard des objectifs précédemment définis. Ce chapitre est également l’occasion
d’identifier, au fil des sections, les problèmes génériques auxquels toute simulation
distribuée de SMA doit faire face. Dans la partie II, nous proposons une architecture
générique facilitant la résolution de ces problèmes pour mettre en place des simulations
distribuées de SMA dans un contexte matériel et logiciel arbitraire. Ces méthodes
génériques sont l’aboutissement de notre expérience de développement de la plateforme
FPMAS, dans laquelle les solutions proposées ont été implémentées. Le chapitre 3 se
focalise en particulier sur le schéma de distribution d’une simulation de SMA et les
problèmes génériques associés à la distribution comme le maintien de la continuité
des données. Dans le chapitre 4, nous nous intéressons à la conception d’une interface
générique d’équilibrage de simulation distribuée de SMA, ainsi qu’à l’implémentation
de cette interface avec plusieurs méthodes. Une étude expérimentale basée sur la
définition d’un Méta-Modèle permet d’évaluer leurs performances selon différents types de
modèles Multi-Agents. Nous proposons dans le chapitre 5 une analyse du problème de la
synchronisation des données, ainsi qu’une étude qualitative et quantitative des solutions
proposées grâce au Méta-Modèle et à un modèle épidémiologique, le modèle Virus. Nous
concluons enfin par un bilan permettant d’apporter des réponses à nos questions de
recherche.

12



Chapitre 2.

État de l’art

Ce chapitre vise à dresser un état de l’art de la simulation distribuée de SMA. La
définition des modèles considérés dans cette étude est présentée dans la section 2.1, avant
de poursuivre avec la section 2.2 sur des exemples jugés pertinents dans le contexte de la
simulation séquentielle. Nous abordons la simulation distribuée dans la section 2.3 avec
une description des différents types d’architectures de calcul distribuées.

Les sections 2.4 à 2.7 sont focalisées sur des solutions à des problèmes liés à la simulation
distribuée de manière générale, en prenant soin de faire le lien avec le cas des SMA.
L’identification de ces problèmes, auxquels toute simulation distribuée de SMA doit faire
face, est en soi une contribution, également issue de notre expérience de développement
de la plateforme FPMAS.

Nous présentons pour finir une revue non exhaustive de plateformes de simulation
distribuée de SMA dans la section 2.8, afin de les confronter aux objectifs définis au
chapitre 1 et d’analyser leurs solutions aux problèmes identifiés dans ce chapitre.

13



Table des matières

2.1. Systèmes Multi-Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1. La notion d’agent . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Systèmes complexes . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3. Environnement . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Simulation de Systèmes Multi-Agents . . . . . . . . . . . . . . . . . . . 17
2.3. Architecture de calcul distribuée . . . . . . . . . . . . . . . . . . . . . 19
2.4. Distribution d’une simulation de SMA . . . . . . . . . . . . . . . . . . 21

2.4.1. Exécution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2. Continuité des données . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. Synchronisation des données . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1. Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2. Écritures non concurrentes . . . . . . . . . . . . . . . . . . . . . 24
2.5.3. Écritures concurrentes . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.4. Nécessité des écritures . . . . . . . . . . . . . . . . . . . . . . . 25

2.6. Synchronisation temporelle . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7. Équilibrage de charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1. Méthodes par découpage de l’environnement . . . . . . . . . . . 29
2.7.2. Méthodes par partitionnement de graphe . . . . . . . . . . . . . 31
2.7.3. Méthodes par proximité spatiale . . . . . . . . . . . . . . . . . 32
2.7.4. Autres méthodes . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8. Plateformes de simulation distribuée . . . . . . . . . . . . . . . . . . . 33
2.8.1. Repast HPC et D-MASON . . . . . . . . . . . . . . . . . . . . 33
2.8.2. Pandora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.3. FLAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.4. Autres Travaux . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

14



Chapitre 2. État de l’art

2.1. Systèmes Multi-Agents

Afin d’établir le contexte de notre étude, nous commençons par introduire les éléments
clés permettant de définir les SMA réels ou virtuels et de les distinguer d’autres techniques
de modélisation.

2.1.1. La notion d’agent

La définition d’un agent est un problème de recherche en soi. La définition fournie
dans la célèbre référence Artificial Intelligence : A Modern Approach (AIMA) [115] peut
constituer un point de départ :

Un agent est tout ce qui peut être vu comme percevant son environnement
au travers de capteurs et agissant sur cet environnement au travers d’action-
neurs. 1

Cette définition évoque les perceptions et les actions effectuées par un agent,
mais n’aborde pas explicitement la notion d’intelligence de l’agent, ce concept quasi
philosophique pouvant faire l’objet de débats [57].

Cependant, la généricité de cette définition est appréciable : en effet, elle s’applique
aussi bien aux agents les plus triviaux, qui réagissent directement à l’environnement sans
délibération (agents réactifs, voire automates), qu’aux agents beaucoup plus complexes
capables de raisonner et d’apprendre (agents cognitifs).

Une définition plus précise est proposée par Macal [81] grâce à quatre concepts, par
ordre de complexité :

1. Individualité : les agents agissent indépendamment selon un comportement prédé-
fini.

2. Autonomie : les agents sont capables d’agir en fonction de leur environnement.
3. Interactivité : les agents sont capables d’échanger des informations avec les autres

agents.
4. Adaptabilité : les agents sont capables d’adapter leurs comportements au cours de

la simulation, par exemple grâce à des mécanismes d’apprentissage.
L’auteur insiste cependant sur la flexibilité et la non exhaustivité de cette définition.

Le niveau de complexité des agents est également variable : si l’individualité de l’agent
semble essentielle à sa définition, tous les agents ne sont pas adaptables.

Ces définitions sont applicables à la fois aux agents simulés, aux agents virtuels, ou
à toute autre entité du monde physique en interaction avec son environnement, dont la
nature varie selon le contexte.

Nous introduisons enfin la notion d’état des agents, constitué d’un ensemble de
propriétés pouvant influencer le comportement de l’agent ou celui des autres. Ce concept
peut se rapprocher des notions de connaissance ou de croyance des agents. Nous pouvons
alors distinguer l’état réel d’un agent et l’état perçu par les autres, considéré comme une
croyance. Cette subtilité n’est cependant pas nécessaire à la suite du raisonnement.

1. « An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators. »

15



Chapitre 2. État de l’art

2.1.2. Systèmes complexes

L’autonomie des agents et les nombreuses interactions entre eux permettent l’émer-
gence de propriétés et de comportements globaux qui ne peuvent être observés à l’échelle
locale, d’où la caractérisation des SMA en tant que systèmes complexes. La modélisation
Multi-Agents se caractérise ainsi par une approche « bottom-up », où on cherche à
observer les propriétés émergentes à l’échelle globale d’un système en commençant par
modéliser des comportements locaux et individuels [81]. La diversité des agents, leur
capacité de prise de décision et la complexité de leurs interactions, souvent caractérisées
par des comportements conditionnels à l’échelle des individus, rendent difficiles voire
impossibles la description et la prédiction de l’évolution de ces systèmes par des systèmes
d’équations, comme cela peut être le cas pour simuler certains phénomènes physiques
(propagation de chaleur, écoulement d’un fluide, mouvements de particules...). Ainsi les
domaines d’application de la modélisation Multi-Agents incluent la biologie [62, 86, 85,
87, 22, 66, 130], la sociologie [40, 117, 53, 19, 64], la gestion des réseaux d’énergie à
l’échelle locale [17, 104, 102, 71, 20, 16], l’épidémiologie [61, 36, 75, 21], la simulation
urbaine [82, 65] ou encore l’économie [52, 49, 39].

À noter qu’il existe des méthodes qui consistent à coupler des modèles microscopiques
avec des systèmes d’équations [62, 85, 21] afin de limiter la granularité de la simulation
tout en observant des phénomènes émergeant des comportements individuels. L’objectif
consiste donc toujours à décomposer le modèle jusqu’à atteindre un niveau assez fin pour
pouvoir décrire les entités et les interactions grâce à des règles individuelles simples à
implémenter [46].

2.1.3. Environnement

L’environnement est un concept courant dans la définition des SMA. Dans leur livre
Growing Artificial Societies[53] consacré à l’élaboration d’un SMA représentant une
« société artificielle », Epstein et Axtell définissent l’environnement comme suit :

[. . .] “l’environnement” est un milieu séparé des agents, sur lequel les agents
opèrent et avec lequel ils interagissent. 2

Leur exemple utilise en particulier une grille représentant un paysage dans lequel se
trouvent des ressources exploitables par les agents, mais ils précisent que l’environnement
pourrait être une entité plus abstraite, comme un réseau de communication dynamique.

L’environnement induit généralement des propriétés aux agents, telles que leur
position, leur orientation, des liens de communications ou les plus proches voisins.
L’utilisation d’une grille discrète pour représenter l’environnement est commune à une
très large catégorie de modèles Multi-Agents [130, 53, 64, 117, 129], notamment en
raison de sa simplicité d’implémentation et de l’utilisation de règles spécifiques à cette
représentation, comme la capacité maximale de chaque cellule (ou toute autre propriété)
ainsi que l’interaction avec les agents dans le voisinage de Moore ou de Von Neumann.

2. « [. . .] the “environment” is a medium separate from the agents, on which the agents operate and
with which they interact. »

16



Chapitre 2. État de l’art

Il existe d’autres modèles où la position des agents est décrite de manière continue,
comme le classique modèle des bancs de poissons [66]. Les modèles à base de GIS
(« Geographic Information System ») consistent à définir la position des agents par des
coordonnées géographiques.

Si les environnements à base de graphes peuvent être relativement abstraits (réseau de
communication [50], réseau social [23, 103], . . .), certains représentent un environnement
géographique réel, comme un réseau urbain. Le modèle ChiSIM [82] représente un
cas d’utilisation de graphe urbain, où les nœuds du graphe représentent les lieux de
Chicago sur lesquels les agents peuvent se situer. Dans ce modèle, les agents se déplacent
instantanément d’un nœud à l’autre. Il est également possible d’utiliser un graphe
pour représenter précisément les routes, comme c’est le cas avec la base de données
géographiques libre OpenStreetMap. Les agents peuvent alors se déplacer dans le graphe
en étant associés à une position continue le long d’un arc ou dans un nœud sur lequel
ils se trouvent. Combinée avec des modèles de suivi de véhicules [15], cette technique
permet notamment de simuler avec précision le trafic routier à l’échelle d’une ville pour
par exemple évaluer la congestion ou les émissions de pollution. Le simulateur SUMO [77]
utilise notamment cette approche. Le simulateur MATSim [65] utilise une approche
intermédiaire : les véhicules sont stockés dans une file au niveau de chaque nœud du
réseau routier, et passent directement au nœud suivant dans leur trajectoire avec un
certain délai en fonction de la longueur des arcs et de la congestion.

Les classes de modèles où les agents sont associés à une position explicite, qu’elle soit
discrète, continue ou sur un graphe, sont qualifiées de “modèles spatiaux”. La plateforme
GAMA [123] est notamment spécialisée dans la simulation de ce type de modèles, qui
implique des fonctionnalités communes telles que le déplacement des agents ou la notion
de champ de perception.

2.2. Simulation de Systèmes Multi-Agents

Les éléments précédents permettent de définir de manière empirique un SMA. Il
peut être nécessaire de modéliser le système de manière formelle, afin par exemple
d’en effectuer la simulation pour en extraire des données ou observer des propriétés
émergentes. La modélisation n’est pas directement et nécessairement liée à une technique
de simulation particulière. Il existe plusieurs moyens de modéliser un SMA donné, et
potentiellement plusieurs techniques pour simuler chaque modèle. Dans la pratique,
les méthodes de modélisation sont régulièrement développées en conjonction avec une
plateforme de simulation dédiée, chargée de l’animation des modèles. Nous présentons
dans la suite une revue non exhaustive de techniques de modélisation et de plateformes de
simulation non distribuées qui se sont révélées pertinentes dans le cadre de notre étude,
de par leur réputation ou l’adaptabilité de certains concepts à la simulation distribuée.
Nous nous focalisons notamment sur trois aspects : l’avancée temporelle de la simulation,
la gestion de l’environnement et la spécification du comportement des agents.

Il existe deux catégories de techniques pour gérer l’avancée temporelle d’une simula-
tion : la simulation par pas de temps, et la simulation à évènements discrets.

17



Chapitre 2. État de l’art

La première, popularisée par exemple par NetLogo, consiste à exécuter les comporte-
ments des agents uniquement à des dates prédéfinies. Il est possible, au cours d’un pas de
temps, de planifier l’exécution de comportements aux pas de temps suivants, par exemple
en ajoutant des agents à la simulation. La suppression des agents est possible, ce qui
engendre l’annulation de l’exécution des comportements associés. Ce schéma d’exécution
peut se généraliser en autorisant la planification dynamique de comportements à des
dates arbitraires, comme c’est le cas avec Repast ou MASON.

La seconde se base sur une liste d’évènements datés à traiter dans l’ordre afin de faire
évoluer l’état du système, sans qu’aucun changement n’ait lieu entre deux évènements
consécutifs. De nouveaux évènements peuvent éventuellement être planifiés dans le futur
lors du traitement d’un évènement. La notion de temps peut alors être perçue comme
une grandeur relative grâce à l’ordre des évènements [74], un évènement a étant considéré
comme précédent b si b peut dépendre de a. La simulation par pas de temps peut
ainsi être conçue comme un cas particulier de simulation à évènements discrets, tous les
évènements d’un pas de temps dépendant directement de ceux ayant eu lieu aux pas de
temps précédents. Le langage de programmation orienté agent SARL [110] est un exemple
de formalisme qui représente les interactions entre agents comme des évènements : les
agents réagissent à des évènements et en émettent d’autres, indépendamment de la notion
de pas de temps.

La majorité des plateformes recensées dans la littérature sont basées sur la simulation
par pas de temps, généralement plus intuitive en termes de modélisation et de simulation.
C’est notamment le cas pour NetLogo [10], Repast [96], MASON [79], MaDKit [63] et
GAMA [123].

Certaines plateformes se distinguent par leur gestion de l’environnement. NetLogo
permet de simuler des modèles à base de grille discrète, mais il est également possible de
relier les agents entre eux pour former un graphe. Repast et MASON permettent de définir
plusieurs types d’environnements (respectivement « projections » et « fields ») discrets,
continus ou à base de graphe. Un agent peut appartenir simultanément à plusieurs
environnements. La plateforme GAMA est quant à elle focalisée sur la simulation de
modèles spatiaux et à base de GIS. À noter que dans NetLogo, l’environnement fait
l’objet d’une représentation distincte des agents : les « patchs ». Dans MASON, Repast
et GAMA, l’environnement n’est qu’un moyen d’associer une position aux objets, et
les éléments qui s’y trouvent sont représentés par un type d’agent à part entière,
éventuellement passif.

Outre ces contraintes environnementales, la modélisation du comportement des
agents est relativement libre pour ces plateformes. Des techniques de modélisation
plus spécifiques existent néanmoins. La modélisation IODA [73] ainsi que l’outil de
simulation associé JEDI se focalisent par exemple sur la description des interactions
entre agents pour construire des modèles Multi-Agents. MaDKit se base quant à lui
sur la modélisation « Agent/Group/Role »(AGR) [55]. La méthode « Influence Reaction
Model »(IRM) [56] propose de limiter les actions des agents à l’émission d’influence sur
les autres agents et l’environnement, qui réagissent ensuite aux influences exercées sur
eux. La modélisation IRM a par la suite été étendue avec les modélisations « Inflence
Reaction Model for Simulation »(IRM4S) [90] et « Influence Reaction Model for Multi-

18



Chapitre 2. État de l’art

Level Simulation »(IRM4SMLS) [94], ce dernier étant accompagné de la plateforme de
simulation associée SIMILAR [93]. La méthode IRM permet notamment de résoudre
efficacement les problèmes liés aux actions simultanées, par exemple dans le cas où deux
agents cherchent à collecter le même objet au cours du même pas de temps.

Cette liste non exhaustive fait déjà état de diverses techniques de modélisation et
de simulation. Pour des raisons de simplicité de conception et d’implémentation, nous
restreignons nos travaux à la simulation par pas de temps. La grande majorité des modèles
étudiés étant spécifiés par pas de temps, ce choix est peu restrictif. Aucune contrainte
n’est imposée a priori à l’environnement ou à la spécification des comportements et
interactions. Ainsi l’objectif est d’établir des méthodes de simulation distribuée au niveau
le plus générique possible, sans chercher à définir de nouvelles méthodes de modélisation,
afin de permettre l’exécution distribuée de tout type de modèles Multi-Agents.

2.3. Architecture de calcul distribuée

Afin d’introduire et de justifier le contexte de notre étude en termes de calcul distribué,
nous présentons brièvement diverses architectures permettant l’exécution parallèle ou
distribuée de simulations.

En effet, les plateformes précédemment citées sont généralement conçues pour une
exécution séquentielle, ou tout du moins pour une exécution sur une seule machine. Il est
alors possible de mettre en place une exécution parallèle multi-tâche (« multi-threading »)
par exemple grâce à la librairie OpenMP [98]. L’exécution parallèle est alors dite en
mémoire partagée, car toutes les tâches ont physiquement accès à un espace mémoire
commun.

La simulation GPU offre également des opportunités de simulation large échelle et
de parallélisation en mémoire partagée grâce à l’utilisation de plusieurs centaines voire
milliers de cœurs, y compris dans le cadre de l’application à la simulation de SMA [76].
Ces architectures sont cependant difficilement généralisables en raison de la spécificité
des instructions exécutées par ce type de processeurs, dont l’utilisation reste limitée en
raison de l’irrégularité des comportements et interactions entre agents.

Les infrastructures de calcul distribuées donnent quant à elles accès à des ensembles
de machines connectées entre elles sur un réseau. Cette méthode permet d’accroitre
très largement le nombre de cœurs de processeur et la quantité de mémoire disponibles
pour exécuter une simulation, la taille du système n’étant limitée que par le nombre de
machines qu’il est possible de connecter sur le réseau, au prix d’une forte contrainte sur
la conception des programmes. En effet, chaque machine du système (nœud de calcul) n’a
pas d’accès direct et physique à la mémoire des autres. C’est-à-dire qu’une instance de
simulation exécutée sur un nœud ne peut pas accéder directement à une variable stockée
dans la mémoire d’une autre machine. Le seul moyen d’échanger des données est l’échange
de messages explicites, par exemple grâce à la librairie MPI [95], ce qui modifie de
manière drastique l’implémentation d’algorithmes initialement conçus pour une exécution
en mémoire partagée. Dans le domaine du Calcul Haute Performance, de nombreux
efforts sont menés pour mettre en place des structures de données distribuées [31], la

19



Chapitre 2. État de l’art

gestion distribuée d’adresses mémoires [132] ou même la définition de langages dédiés
à l’exécution distribuée [54] avec pour objectif récurrent l’abstraction des difficultés
spécifiques à la distribution. Bien qu’utile, l’exploitation de ces concepts ne suffit
cependant pas à mettre en place la simulation distribuée des SMA ou de s’adapter à
leurs spécificités.

Parmi les ressources de calcul distribuées, on distingue les clusters hétérogènes et
homogènes. Dans un cluster hétérogène, il n’est pas garanti que toutes les machines
possèdent les mêmes caractéristiques en mémoire et en puissance de calcul. C’est par
exemple le cas avec les clusters de postes de travail (« workstations ») constitués de
machines à usage générique connectées via un réseau classique, ou avec l’informatique
en nuage (« Cloud Computing »), qui permet une allocation de ressources de calcul à
la demande, en fonction des simulations à exécuter [47] (« Simulation as a Service »).
Il est alors nécessaire de prendre en compte les différences entre les machines pour
mettre en place une distribution efficace, ce qui peut mener à des solutions où chaque
machine est associée à un rôle spécifique dans l’exécution de la simulation [126]. Les
processus n’ont alors pas tous un rôle symétrique, ou peuvent faire preuve d’une forme
de centralisation dans l’exécution ou la gestion des données (relations clients / serveurs
ou maitres / esclaves). En comparaison, dans un cluster homogène, chaque machine
joue le même rôle et possède les mêmes caractéristiques physiques. Cette architecture se
retrouve notamment dans les clusters de calcul orientés Calcul Haute Performance, où
les nœuds utilisés au cours d’une simulation ont les mêmes caractéristiques matérielles
et sont reliés entre eux via un réseau à haut débit spécialisé. L’absence de spécificité de
chaque nœud permet ainsi d’abstraire leurs caractéristiques physiques d’un point de vue
algorithmique. Le fait que chaque machine joue le même rôle permet par ailleurs une
plus grande extensibilité, les algorithmes étant conçus indépendamment du nombre de
cœurs utilisés, sans considération sur les différences de performances ou les propriétés
spécifiques de chaque machine.

Dans le cadre des clusters hétérogènes, on considère parfois les problèmes liés à la
tolérance aux fautes, c’est-à-dire au maintien du service de simulation dans le cas de
la panne d’une machine du cluster. Cette problématique n’est cependant pas pertinente
dans le cas des clusters homogènes de Calcul Haute Performance, pour lesquels les durées
des simulations sont négligeables par rapport à leur temps de fonctionnement sans panne.

Parmi ces possibilités, nous ne considérons dans nos travaux que l’exécution distribuée
de simulation de SMA sur des clusters de calcul homogènes équipés de CPU : nous nous
focalisons donc sur l’aspect générique et extensible des simulations distribuées de SMA,
sans considération pour les problèmes de tolérance aux fautes. L’application de certaines
solutions dans d’autres contextes et inversement reste possible, mais ne sera pas abordée
explicitement. Nous étudions dans la suite l’exécution de simulation de SMA sur ce type
d’architecture.

20



Chapitre 2. État de l’art

2.4. Distribution d’une simulation de SMA

Un processus est défini comme l’exécution d’une instance d’un programme informa-
tique. Une simulation est dite séquentielle lorsqu’elle est assurée par un unique processus.
La simulation distribuée se caractérise par l’utilisation de plusieurs processus parallèles,
chaque processus n’ayant pas d’accès direct à la mémoire des autres. Ainsi il est d’abord
nécessaire de déterminer le rôle de chaque processus dans l’exécution de la simulation
globale. Le travail d’un processus dépend ensuite généralement de celui des autres,
impliquant un accès partiel à leurs données : d’où la notion de continuité des données.
Nous présentons ici une revue des techniques permettant de résoudre ces problèmes
fondamentaux dans le cadre de la simulation distribuée de SMA.

2.4.1. Exécution

Dans tous les exemples qui ont été recensés dans la littérature [42, 44, 114, 105, 125,
24, 23, 82, 121, 25, . . .] l’exécution distribuée d’une simulation Multi-Agents consiste à
associer à chaque processus disponible un ensemble d’agents à exécuter, dans l’objectif de
répartir la charge de calcul totale représentée par la simulation globale. Cette méthode
ne doit pas être confondue avec l’exécution par lots (« batch »), qui distribue un
ensemble de simulations, par exemple pour effectuer de l’exploration de paramètres. Dans
ce cas, chaque processus exécute une simulation indépendante, et aucune interaction
n’est nécessaire entre les processus pendant l’exécution de chaque simulation. L’objectif
consiste ici à exécuter une seule simulation sur un ensemble de processus.

Quelle que soit la distribution, nous définissons à l’échelle d’un processus les agents
locaux comme ceux exécutés par ce processus, et les agents distants comme ceux exécutés
par d’autres processus. Chaque agent est ainsi local du point de vue d’un unique
processus, et distant du point de vue de tous les autres. La distribution d’une simulation
consiste alors simplement à assigner l’exécution d’un ensemble d’agents locaux à chaque
processus. Il est ensuite nécessaire d’assurer la continuité des données pour permettre les
interactions entre agents exécutés sur différents processus.

2.4.2. Continuité des données

Les interactions entre agents sont essentielles à tout modèle Multi-Agents. De plus,
elles ont généralement lieu de manière stochastique et dynamique au cours de l’évolution
du système. Indépendamment de la technique de distribution et de simulation mise en
place, les agents locaux seront donc nécessairement amenés à interagir avec des agents
exécutés par d’autres processus. Ainsi, afin d’assurer la continuité des données de la
simulation, il est nécessaire d’ajouter aux agents locaux un ensemble de représentations
d’agents distants, ou agents délégués, pour permettre la mise en place d’interactions
entre les agents exécutés sur un processus et les autres. Un agent délégué permet au
minimum l’accès à l’identifiant de l’agent distant qu’il représente, ainsi qu’à une référence
au processus sur lequel il est actuellement exécuté.

La notion d’agent délégué se rapproche fortement des espaces mémoire globaux

21



Chapitre 2. État de l’art

partitionnés(« Partitionned Global Address Spaces », ou PGAS) [18, 132]. En effet, les
PGAS permettent d’implémenter un système de pointeurs vers des adresses mémoire
qui référencent implicitement des zones associées à des processus distants. En ce sens,
il est possible de voir les agents délégués comme des pointeurs distants vers des agents
distants, en assimilant les adresses des pointeurs aux identifiants des agents. Certaines
librairies, comme BCL [31] ou de nombreux langages distribués tels que UPC [43],
Coarray Fortran [97] ou X10 [37] se basent en partie sur les PGAS. Les PGAS en eux-
mêmes ne tirent cependant pas partie des spécificités des SMA, en supposant notamment
que n’importe quel processus peut être amené à accéder à n’importe quelle adresse, alors
que les besoins d’accès des agents entre eux sont généralement limités par la notion de
perception. De plus, les PGAS en eux-mêmes ne définissent pas les mécanismes d’accès
aux données distantes [18], mais seulement l’accès à leur localisation.

Même si tous ne font pas référence explicitement au concept d’agent délégué, la
totalité des simulations distribuées de SMA recensées dans la littérature utilise au moins
implicitement ce concept. Se pose alors la question de la construction de l’ensemble
d’agents délégués à représenter sur le processus.

Certaines approches permettent l’accès de chaque agent local à l’intégralité de
l’environnement. Rao et Chernyakhovsky [106] présentent un exemple de simulation
distribuée où une copie locale et complète de l’environnement est représentée sur tous les
processus. L’accès à l’environnement s’effectue alors localement, et une mise à jour globale
des copies est effectuée par des communications collectives. Or l’accès d’un agent local à
son environnement fait l’objet de contraintes similaires à l’accès aux agents distants. Ainsi
il est possible d’avoir, sur chaque processus, un ensemble d’agents délégués représentant
la totalité des agents distants. Cette méthode possède l’avantage de grandement simplifier
la création et la suppression d’agents délégués au cours de l’évolution de la simulation,
mais pose cependant rapidement des problèmes d’extensibilité pour des raisons de
consommation de mémoire. Dans la même idée, certains travaux [84, 83] proposent de
gérer l’accès aux cellules de l’environnement via un fichier partagé par tous les processus
de la simulation. Les opérations de lecture et d’écriture dans un fichier, plus coûteuses que
des accès directs dans la mémoire vive (RAM), peuvent cependant poser des problèmes de
passage à l’échelle compte tenu du grand nombre de lectures et d’écritures concurrentes
réalisées par les agents.

Il existe des solutions plus conventionnelles proposées par les plateformes de simulations
existantes, explicitées dans la section 2.8 et détaillées formellement dans la partie II, qui
tendent à réduire la quantité d’agents délégués.

Dans la suite, afin d’assurer la continuité des données et l’exécution cohérente de
la simulation, nous supposons que l’ensemble des agents délégués assignés à chaque
processus permet aux agents locaux d’interagir avec les agents exécutés sur d’autres
processus en accord avec les règles définies par le modèle simulé. Nous ne considérons
donc pas la possibilité de tronquer le champ de perception des agents à la frontière des
processus par exemple.

Toute exécution distribuée de simulation de SMA ainsi définie doit encore faire face
à plusieurs problèmes, dont les solutions recensées dans la littérature sont présentées
aux sections suivantes. On constate cependant une absence de formalisme permettant

22



Chapitre 2. État de l’art

de clairement identifier les problèmes liés à la distribution, ce qui limite la validation
et la comparaison des solutions proposées. Nous proposons dans la suite une description
introductive des problèmes de synchronisation des données, de synchronisation temporelle
et d’équilibrage de charge, afin notamment de permettre l’analyse des plateformes de
simulation distribuée de SMA existantes.

2.5. Synchronisation des données

La continuité des données telle qu’elle a été définie précédemment permet aux agents
locaux d’avoir un accès aux agents distants grâce aux agents délégués, nécessaires pour
mettre en place les interactions requises. La possibilité d’accès à un agent distant ne suffit
cependant pas à définir les modalités d’accès à cet agent, ou les types d’interactions
autorisés. De manière plus générale, le problème de la synchronisation des données
correspond aux modalités d’accès d’un processus aux données des autres de manière
cohérente. La nature de ces accès varie grandement selon les solutions proposées,
introduisant diverses contraintes de modélisation par rapport aux exécutions séquentielles
ou en mémoire partagée. On observe également des différences significatives dans les
besoins en interactions des modèles, les rendant plus ou moins compatibles avec les
contraintes de synchronisation imposées par les plateformes. Il est notamment possible
d’imaginer différents niveaux de contraintes liées à la synchronisation des données. Nous
nous limitons ici à une description des modalités d’interactions observées dans certains
modèles. Le chapitre 5 fait l’objet d’une étude formelle et détaillée, notamment grâce à
la définition de modes de synchronisation.

2.5.1. Lectures

Le niveau le plus simple consiste, lors de l’exécution du comportement d’un agent,
en un accès en lecture seule aux données des autres. C’est par exemple le cas avec le
modèle classique des nuées d’oiseaux (« flocking ») [11], où il suffit à chaque agent de
lire la position de ses voisins pour se déplacer. Une version en lecture seule d’un modèle
épidémiologique peut être implémentée en mettant à jour l’état d’infection des agents
en fonction de l’état de leurs voisins. Les lectures peuvent se faire selon deux méthodes,
qui varient selon la temporalité de l’accès aux données. La première consiste à accéder
aux données du pas de temps en cours : l’état de l’agent voisin dépend alors de l’ordre
d’exécution des agents. La seconde consiste à lire les données à partir d’une copie de
l’état des agents au pas de temps précédent (ou copie ghost) : les données lues sont alors
indépendantes de l’ordre d’exécution, ce qui permet d’atteindre un plus haut niveau de
reproductibilité. À noter que de telles règles ne s’appliquent pas seulement à l’accès des
données des agents distants, mais peuvent aussi s’appliquer aux interactions entre agents
locaux, d’où l’utilisation possible d’un ghost en simulation séquentielle [88].

23



Chapitre 2. État de l’art

2.5.2. Écritures non concurrentes

On observe, dans certains contextes, l’utilisation d’écritures non concurrentes, où de
multiples écritures n’engendrent ni conflits ni résultats incohérents même sans forcer
l’accès exclusif à l’état d’un agent pour effectuer les écritures.

C’est notamment le cas pour les écritures que nous qualifions d’idempotentes. Les
écritures de ce type sur l’état d’un agent par les autres sont possibles et doivent être
prises en compte, mais il est garanti que les écritures suivantes ne changeront pas l’état
de l’agent. C’est par exemple le cas pour un modèle épidémiologique où l’infection d’un
agent voisin représente une écriture, mais où l’état final de l’agent infecté ne dépend pas
du nombre d’agents l’ayant infecté.

De manière plus générale, une écriture peut être considérée comme non concurrente
quand sa réalisation par un agent ne peut altérer le comportement des autres au cours
du pas de temps, et ne génère donc pas de conflit. C’est par exemple le cas avec l’envoi
d’un message à un agent. En effet, supposons que l’état d’un agent est défini par un
conteneur auquel les autres agents peuvent ajouter des messages. L’ajout d’un message
va modifier l’état de l’agent, ce qui représente bien une écriture. Dans un contexte de
parallélisme en mémoire partagée, il peut certes être nécessaire de gérer la concurrence
d’accès au conteneur, par exemple grâce à des opérations d’ajout atomiques, afin d’assurer
la cohérence de la mémoire. Cependant, du point de vue du modèle Multi-Agents, en
supposant que l’ordre des messages n’importe pas, il est possible de considérer l’opération
comme non concurrente car les agents ne sont pas en conflit sur une ressource : l’ajout
d’un message par un agent ne peut empêcher les autres de le faire. Quels que soient
le nombre et l’ordre d’ajout des messages, à la fin du pas de temps, la même liste de
messages est stockée dans le conteneur.

Comme nous allons le voir en partie II, de telles écritures possèdent notamment
l’avantage de pouvoir être mises en attente pendant un pas de temps avant d’être
réellement effectuées en fin de pas temps, sans conflit, après l’exécution de tous les agents,
ce qui n’est pas possible avec les écritures concurrentes.

2.5.3. Écritures concurrentes

Dans le cas des écritures concurrentes, la réalisation d’une écriture par un agent
doit nécessairement être prise en compte immédiatement par les autres, influençant
leurs comportements, afin d’assurer le respect des règles du modèle et donc l’exécution
cohérente de la simulation.

Considérons par exemple un modèle où les agents peuvent se voler une ressource entre
eux, la ressource ne pouvant être partagée entre plusieurs agents. Soient trois agents,
A0, A1 et A2, où A0 possède la ressource à voler. Au cours du pas de temps, A0 ne
fait rien, et A1 et A2 vont tenter de voler la ressource à A0 : prendre la ressource à A0

représente un changement d’état de A0, et donc une écriture. Cependant, contrairement
au cas des écritures non concurrentes, la réalisation d’une écriture doit être prise en
compte par l’autre agent car un seul peut voler la ressource. Par exemple, si A1 vole la
ressource, A2 doit adapter son comportement pour ne pas la prendre par la suite. Il est

24



Chapitre 2. État de l’art

donc nécessaire d’assurer un accès exclusif à l’agent qui vole la ressource pour garantir
que personne n’a déjà pris la ressource, et que personne ne puisse la prendre suite au vol.
Le modèle classique du Proie-Prédateur [130, 14] est aussi un exemple de modèle ayant
besoin d’écritures concurrentes, deux prédateurs ne pouvant manger la même proie.

Le problème de gestion de la concurrence est implicitement et trivialement résolu dans
le cas d’une exécution séquentielle, mais doit être résolu explicitement dans le cas où
les agents sont exécutés en parallèle sur des nœuds de calcul distants. De plus, la mise
en place d’algorithmes de « Readers-Writers » par exemple est relativement simple et
classique en mémoire partagée, mais pose davantage de difficultés avec les processus
distribués, l’accès aux données et leur verrouillage ne pouvant s’effectuer que par envoi
de messages explicites.

Dans le cas où plusieurs processus ont besoin de l’accès en écriture simultané à plusieurs
ressources, des blocages (« deadlocks ») peuvent survenir. Ces problèmes d’allocations de
ressources sont difficiles à résoudre y compris en mémoire partagée.

Dans le cadre de la simulation de SMA, d’autres travaux se basent sur la gestion
centralisée des conflits [116, 103], mais ces méthodes posent des problèmes de généricité,
de passage à l’échelle, et rendent possible l’échec de la demande d’action d’un agent, ce qui
peut avoir un impact sur la modélisation du système étudié. Une méthode de négociation
et de résolution de conflits décentralisée [107] a été abordée dans le cadre de FLAME
GPU, mais la solution proposée nécessite de nombreuses barrières de synchronisation
entre les processus.

2.5.4. Nécessité des écritures

Il est légitime de se questionner sur la nécessité réelle des écritures dans la définition des
modèles. En effet, est-il possible de reformuler un modèle ayant des besoins en écritures
en un modèle effectuant seulement des lectures, afin d’en simplifier la distribution, sans
modifier les règles et donc les résultats du modèle ?

Le cas des écritures non concurrentes y semble propice. En effet, plutôt que réaliser une
écriture non concurrente, l’agent cible peut lire les données depuis les agents susceptibles
d’effectuer les écritures. Pour l’exemple de l’envoi de message, les agents peuvent stocker
localement les messages à envoyer, et le récepteur peut les lire et les ajouter à son
conteneur. Le résultat à la fin de chaque pas de temps est alors le même qu’avec les
écritures.

Plus généralement, tout modèle spécifié par « Influence-Reaction » [56] peut être
implémenté en lecture seule : il suffit de stocker localement l’influence et les agents
réagissent aux influences lues sur les agents voisins.

Le cas des écritures concurrentes peut parfois être résolu avec une modélisation de
type « Influence-Reaction » : les agents émettent une influence correspondant au souhait
d’acquérir une ressource et, en réaction, un mécanisme de résolution de conflit exécuté
au niveau de l’agent qui possède la ressource permet de l’attribuer de manière cohérente.
Cependant, reformuler un modèle de la sorte peut impliquer un changement significatif
des règles du modèle. Par exemple, considérons le cas du modèle Proie-Prédateur. Dans
la modélisation avec écritures concurrentes, un prédateur P mange une proie p si elle est

25



Chapitre 2. État de l’art

vivante. Dans le même pas de temps, un prédateur P ′ constate ensuite que la proie p
n’est plus vivante, et il peut donc essayer d’attaquer une autre proie vivante dans son
champ de perception. En revanche, dans une modélisation « Influence-Reaction », P et
P ′ vont émettre le souhait de manger p. Supposons alors que le mécanisme de résolution
de conflit attribue la capture de la proie à P . Le prédateur P ′ ne mange ensuite aucune
proie alors que les règles du modèle d’origine lui permettaient d’essayer d’en attaquer
une autre.

De telles discussions sur le meilleur choix de modélisation ne font pas l’objet de nos
travaux. Cependant, la littérature, et notamment les nombreux exemples de la librairie
NetLogo [12], contiennent des exemples de modèles dont la formalisation nécessite des
écritures concurrentes. Dès lors, notre objectif est de proposer des méthodes permettant
la simulation distribuée de ces modèles sans avoir à les altérer.

2.6. Synchronisation temporelle

La simulation distribuée de SMA peut faire l’objet de trois grands types de synchro-
nisations temporelles [47] : par pas de temps, conservative et optimiste.

La synchronisation par pas de temps consiste simplement à exécuter tous les
comportements des agents planifiés au pas de temps actuel, puis à passer au suivant.
La planification des comportements pouvant être dynamique, le prochain pas de temps
correspond à la date minimale à laquelle au moins un évènement est planifié. Le passage
d’un pas de temps à l’autre est assuré par une barrière de synchronisation temporelle
stricte 3. En conséquence, si un seul comportement est planifié au pas de temps t1 sur
un processus p0, tous les autres doivent attendre qu’il ait terminé avant de passer au
prochain pas de temps t2 > t1. Cette technique peut s’avérer extrêmement coûteuse si
peu d’évènements sont planifiés à chaque pas de temps.

Les synchronisations conservatives [92, 119] et optimistes [67, 48], qui supposent
l’utilisation du paradigme de simulation par évènements discrets parallèle (« Parallel
Discrete Event Simulation » ou « PDES ») [59], permettent de lever cette limitation. La
simulation par pas de temps pouvant être conçue comme un cas particulier de simulation
à évènements discrets, avec l’émission d’évènements d’un pas de temps à l’autre, il est
théoriquement possible d’appliquer ces synchronisations à ce schéma d’exécution.

De manière générale, l’exécution distribuée d’une simulation à évènements discrets
consiste à traiter les évènements en parallèle. Dans ce contexte, les synchronisations
conservatives et optimistes consistent à relaxer les barrières de synchronisation strictes
de la synchronisation par pas de temps pour seulement assurer la causalité à l’échelle
globale de la simulation : en effet, il suffit que suite au traitement d’un évènement de
date t aucun évènement de date t′ < t dont il dépend ne puisse être traité à posteriori
pour assurer la cohérence de l’exécution de la simulation.

La synchronisation conservative consiste à déterminer, à l’échelle de chaque
processus, la date minimale du prochain évènement à traiter afin d’avancer sans risque
à cette date. Ainsi, lorsqu’un processus termine de traiter une liste d’évènements de date

3. Ce qui correspond par exemple au comportement de la méthode MPI_Barrier [95]

26



Chapitre 2. État de l’art

ti, il ne peut commencer à traiter des évènements à une date tj > ti que lorsqu’il est
certain qu’aucun autre processus ne peut lui transmettre de nouveaux évènements à une
date tk telle que ti ≤ tk < tj . La valeur d’horloge de chaque processus est définie par
la date du dernier évènement traité. Ainsi, contrairement à la synchronisation par pas
de temps, il n’est pas garanti que tous les processus soient synchronisés sur la même
horloge. En effet, un processus peut avancer jusqu’à la date tj s’il est garanti qu’il ne
recevra plus aucun évènement d’aucun autre processus avec une date ti < tj , même si les
autres processus ne sont pas encore à la date tj . Le processus peut donc éviter d’attendre
que tous les autres aient terminé d’exécuter leurs évènements de dates inférieures à tj
si lui-même n’en a aucun à traiter. L’avancée globale de la simulation est assurée par
le progrès du temps global virtuel (« Global Virtual Time », GVT) défini comme la
valeur minimale de toutes les horloges locales. Dans le cas de la synchronisation par pas
de temps, le GVT correspond trivialement au pas de temps actuel. En appliquant une
synchronisation conservative à l’exemple par pas de temps précédent, s’il est garanti que
le traitement par p0 de l’évènement au pas de temps t1 n’émettra pas d’évènement aux
autres processus avec une date t < t2, les autres processus peuvent alors passer au pas
de temps t2 sans attendre p0.

La synchronisation par pas de temps est ainsi un cas particulier et non optimisé de
synchronisation conservative. On observe que dans les deux cas, l’avancée globale de la
simulation est limitée par le processus le plus lent.

La synchronisation optimiste tente de résoudre ce problème en autorisant chaque
processus à traiter les évènements locaux sans attendre les autres processus. Le traitement
de certains évènements peut cependant entrainer la violation du principe de causalité,
lorsqu’un évènement de date tk antérieur au dernier évènement traité est reçu (on parle
de « message retardataire » ou « straggler message »). Il est alors possible de revenir
en arrière (« rollback ») en annulant les effets des évènements traités avec une date
postérieure à tk pour revenir à un état cohérent. Le GVT correspond alors à la date à
partir de laquelle tous les évènements ont été traités et donc au delà de laquelle aucun
retour en arrière n’est possible. En appliquant une synchronisation optimiste à l’exemple
précédent, tous les processus sont autorisés à avancer jusqu’à t2 sans attendre p0 ni aucun
autre processus. Si le traitement de l’évènement à la date t1 par p0 produit par la suite des
évènements avec une date tk < t2, tous les processus impactés par ces évènements doivent
alors revenir en arrière jusqu’à la date tk, en annulant le traitement des évènements avec
une date t > tk.

Fujimoto [58] propose une revue des algorithmes fondamentaux de synchronisation
conservative et optimiste.

Les tentatives de mise en place de la synchronisation optimiste dans le cadre de la
simulation distribuée de Systèmes Multi-Agents sont complexes, rares et datées [124,
100, 122, 105]. En effet, la synchronisation optimiste, en plus de sa complexité
d’implémentation et des contraintes associées, comme la possibilité d’effectuer des retours
en arrière ou le maintien d’un historique de l’état des agents, est peu viable dans le
cadre de la simulation de SMA, où les dépendances de données entre les processus sont
extrêmement importantes en raison du nombre d’agents et du nombre d’interactions entre
eux, ce qui peut produire un grand nombre de retours en arrière à la chaine. De manière

27



Chapitre 2. État de l’art

plus générale, les synchronisations conservatives et optimistes ont été conçues pour les
systèmes où peu d’évènements sont planifiés à chaque date [59], alors que les simulations
de SMA impliquent généralement la planification d’un très grand nombre d’évènements
à des dates fixes. La plupart des simulateurs distribués de SMA font donc le choix de la
synchronisation par pas de temps.

D’autres travaux ont abordé la possibilité de s’affranchir de la causalité sur une fenêtre
temporelle de taille limitée, en autorisant des interactions a priori incohérentes d’un
point de vue temporel [109, 131]. En supposant que l’impact de ces interactions n’est
pas significatif dans le cadre d’une exécution large échelle, il est possible de relaxer
la synchronisation pour améliorer les performances. Une telle violation de la causalité
semble cependant difficilement généralisable à toute simulation de SMA. L’utilisation de
ces techniques doit donc au plus rester un choix pour le modélisateur.

2.7. Équilibrage de charge

L’exécution distribuée d’une simulation de SMA consiste à assigner à chaque processus
l’exécution d’un ensemble d’agents. Il est donc nécessaire de mettre en place une méthode
permettant de construire ces ensembles. Dans ce contexte, un algorithme d’équilibrage
de charge (« load balancing ») est défini comme la fonction qui associe à chaque agent
le processus sur lequel il sera exécuté au cours de la simulation. Nous appelons partition
l’ensemble de sous-ensembles d’agents (sous-partitions) associés à chaque processus.
Le partitionnement désigne le procédé de construction d’une partition. Dès lors, un
algorithme d’équilibrage de charge est obtenu par l’application ponctuelle (équilibrage
statique) ou itérative (équilibrage dynamique) du partitionnement.

Dans le cas statique, l’algorithme est appliqué en début de simulation et la même
partition est utilisée pour toute la durée de la simulation. Dans le cas dynamique,
l’algorithme peut être appliqué lorsqu’un seuil de déséquilibre est franchi ou à intervalles
réguliers au cours de la simulation pour compenser les déséquilibres dus par exemple au
déplacement des agents dans leur environnement, à la mort ou la naissance d’agents, ou
à la mise à jour de contacts.

L’avancée d’une simulation distribuée basée sur la synchronisation par pas de temps
est limitée par le processus le plus lent. Or le temps d’exécution d’un processus
dépend du temps d’exécution total des agents qui lui sont associés. De plus, l’exécution
distribuée implique l’existence d’un volume de communication entre chaque paire de
processus. En effet, nous supposons que toute interaction entre deux agents assignés à
différents processus va nécessiter un échange de messages. L’objectif de l’équilibrage de
charge consiste donc à équilibrer les temps d’exécution des processus et à limiter les
communications afin d’améliorer les performances de la simulation.

La mise en place de l’équilibrage de charge est cependant une question de compromis :
le gain en performance induit par une partition de meilleure qualité doit compenser le
temps de construction de cette partition. C’est pourquoi certains algorithmes se focalisent
davantage sur la construction rapide d’une partition, quitte à perdre en qualité. La
simplicité d’implémentation est parfois un autre critère à prendre en compte.

28



Chapitre 2. État de l’art

Pour résumer, les algorithmes d’équilibrage de charge peuvent chercher à atteindre
tout ou partie des ces objectifs :

1. Équilibrage de la charge de calcul : l’algorithme cherche, pour chaque pas de temps,
à minimiser les écarts de temps d’exécution entre les processus.

2. Minimisation des communications : toute communication étant coûteuse, on
cherche à réduire au maximum les échanges entre les processus.

3. Temps de calcul : l’algorithme cherche à minimiser le temps d’exécution de
l’algorithme d’équilibrage lui-même.

4. Facilité d’implémentation : les solutions les plus simples à mettre en place sont
parfois privilégiées.

Afin d’estimer les temps d’exécution à équilibrer, chaque agent est associé à un poids
représentant sa charge de calcul. Ce poids peut représenter un temps d’exécution réel, ou
toute autre grandeur qui permet d’exprimer la charge de calcul d’un agent relativement
à celle des autres. La charge totale associée à un processus est définie comme la somme
des poids des agents qui lui sont associés.

Lui et Chan [78] se focalisent sur les objectifs de performance de la simulation en
définissant formellement le problème de l’équilibrage de charge comme un problème
d’optimisation cherchant à minimiser le coût d’une partition P définit de la façon
suivante :

CP = W1C
W
P +W2C

L
P avec W1 +W2 = 1 (2.1)

CW
P représente le coût impliqué par le déséquilibre de charge entre les processus et CL

P

représente le coût associé aux communications. Les réels W1 et W2 permettent d’ajuster
l’importance relative des deux critères à optimiser.

Par réduction au problème de la Somme des Sous-Ensembles [68], démontré comme
étant NP-Complet [60], on peut montrer que le problème de décision associé à
l’équilibrage de charge est lui-même NP-Complet. Dans l’hypothèse où P ̸= NP , il
n’existe donc pas d’algorithme avec une complexité temporelle polynomiale pouvant
résoudre de manière exacte le problème de l’équilibrage de charge. Afin de minimiser
le temps de calcul associé à l’algorithme d’équilibrage, les solutions proposées sont donc
généralement approximatives.

Il existe de nombreuses méthodes d’équilibrage de charge, basées sur des concepts variés
comme le découpage de l’environnement, le partitionnement de graphe ou la proximité
spatiale des agents.

2.7.1. Méthodes par découpage de l’environnement

Dans le cas d’un environnement spatial continu ou discret, un algorithme simple à
mettre en place consiste à associer une partie de l’environnement à chaque processus.
Dans le cadre d’un environnement 2D, la décomposition peut se faire en bande ou en
grille. La méthode est facilement extensible au cas 3D. Les agents sont systématiquement
exécutés sur le processus associé à la partie de l’environnement où ils sont localisés,
et peuvent être amenés à migrer entre les processus au cours de leurs déplacements

29



Chapitre 2. État de l’art

Figure 2.1. – Exemple d’environnement à base de grille.

Figure 2.2. – Exemple de partition en bandes.

dans l’environnement. Un exemple d’environnement à base de grille est présenté sur la
figure 2.1.

Un exemple de décomposition en bandes de ce modèle minimaliste sur 8 processus est
présenté sur la figure 2.2. La décomposition en grille du même environnement avec le
même nombre de processus est présenté sur la figure 2.3.

On constate qu’avec ce modèle simple, il existe dans les deux cas des processus auxquels
aucun agent n’est assigné, créant un déséquilibre de charge significatif. En effet, cette
méthode permet d’équilibrer la charge seulement lorsque le nombre d’agents est largement
supérieur au nombre de processus, et que les agents sont répartis uniformément sur
l’environnement.

Cette méthode est notamment utilisée par les plateformes Repast HPC [42], D-
MASON [44] et Pandora [114] décrites dans la suite. Le découpage de l’environnement est
alors statique. Les travaux autour de la plateforme D-MASON prévoient l’introduction
d’un découpage en bandes dynamique pour s’adapter aux distributions non uniformes

Figure 2.3. – Exemple de partition en grille.

30



Chapitre 2. État de l’art

d’agents dans l’environnement [44], comme étudié dans d’autres travaux [26]. La
plateforme Distributed MASON [127], une autre version distribuée et expérimentale de
MASON, propose quant à elle la mise en place d’un équilibrage de charge spatial à base de
grille dynamique, en proposant à la fois des modifications du partitionnement à l’échelle
locale et à l’échelle globale grâce à une méthode basée sur des arbres quaternaires.

Il est intéressant de noter que même si le partitionnement de l’environnement est
statique, le partitionnement du modèle, qui inclut les agents, est dynamique. En effet,
les agents migrent entre les processus en fonction de leur position et de l’avancée de
la simulation, même si le partitionnement de l’environnement ne change pas. Il est
cependant possible de mettre en place des techniques qui associent un processus à chaque
agent en fonction de leur position au début de la simulation, mais ne font pas migrer les
agents par la suite, indépendamment de leur position [106, 105, 125, 24].

2.7.2. Méthodes par partitionnement de graphe

Dans le domaine du Calcul Haute Performance, le problème de l’équilibrage de charge
est régulièrement abordé grâce au partitionnement de graphe. Nous considérons un
graphe G = (V,E) où V représente les nœuds et E les liens entre eux. Un poids est
associé aux nœuds et aux liens. Le problème consiste alors à décomposer l’ensemble V
en k sous-ensembles disjoints en minimisant le poids total des liens reliant deux nœuds
assignés à des sous-partitions différentes tout en maintenant un équilibre entre les sous-
partitions en termes de poids des nœuds. Buluç et al. [32] proposent une revue moderne
des algorithmes de partitionnement de graphe.

Parmi les nombreux exemples d’implémentations, nous pouvons citer PaToH [33],
MeTiS [69] et Scotch [101], qui permettent d’effectuer du partitionnement de graphe de
manière séquentielle. Néanmoins, dans le cadre d’une exécution distribuée large échelle,
il est important que l’algorithme de partitionnement lui-même soit distribué, surtout
dans le cas d’un équilibrage de charge dynamique. Ainsi les librairies Zoltan [35, 6],
ParMeTiS [118] et PTScotch [38] permettent l’exécution distribuée des algorithmes de
partitionnement de graphe.

Ces algorithmes peuvent permettre d’effectuer de l’équilibrage de charge dynamique
de manière naïve en les appliquant au cours de la simulation pour réassigner les nœuds
du graphe aux processus en fonction de l’évolution des charges et des communications.
Cependant, la migration des nœuds entre les processus a elle-même un coût, et des
modifications mineures d’une exécution à l’autre peuvent entrainer de nombreuses
migrations inutiles. D’autre part, le gain en performance induit par la migration d’un
ensemble de nœuds doit compenser le coût de la migration elle-même. Ainsi la librairie
Zoltan implémente un algorithme de repartitionnement permettant d’implémenter un
équilibrage de charge dynamique qui prend en compte le coût de migration des nœuds [34].

Blythe et Tregubov [23] et Macal et al. [82] présentent des cas d’application de la
librairie MeTiS à des simulations distribuées de SMA impliquant une structure de graphe.
Nos travaux se basent notamment sur une idée de Rousset et al. [113] qui consiste à
représenter tout SMA grâce à un graphe afin de pouvoir effectuer l’équilibrage de charge
de toute simulation grâce à Zoltan. Lui et Chan [78] proposent une solution permettant

31



Chapitre 2. État de l’art

de distribuer les avatars d’un Environnement Virtuel Distribué spatialisé grâce à un
algorithme de partitionnement à base de graphe, dont l’efficacité dans le cadre d’une
répartition non-uniforme des agents a été démontrée.

De manière générale, le passage du partitionnement de graphe à l’équilibrage de charge
dans le cadre de la simulation distribuée de SMA est évident en définissant un problème
de partitionnement de graphe tel que :

— k est fixé comme étant le nombre de processus ;
— les nœuds représentent les agents ;
— les poids des nœuds représentent la charge de calcul associée à chaque agent ;
— les liens représentent une interaction possible entre deux agents ;
— les poids des liens représentent le coût des communications entre deux agents.

La résolution de ce problème revient alors à minimiser la fonction de coût précédemment
évoquée dans le cadre de l’équilibrage de charge.

2.7.3. Méthodes par proximité spatiale

On peut montrer que le partitionnement à base de grille offre de très bons résultats
lorsque la distribution des agents sur l’environnement est uniforme.

La méthode n’est cependant pas adaptée au cas où les agents se concentrent sur
certaines zones de l’environnement. C’est par exemple le cas avec des modèles de colonies
de fourmis, où les fourmis sont principalement concentrées autour de la nourriture la plus
proche, ou avec le modèle Sugarscape [53] où la nourriture n’est pas répartie uniformément
sur la grille. Ces exemples se généralisent facilement à tout modèle qui pousse les agents
à se rapprocher de points d’intérêt répartis de manière non uniforme sur l’environnement.
L’application d’un partitionnement à base de grille sur ce type de modèle peut mener à
des déséquilibres en charge de calcul significatifs entre les processus, et donc réduire les
performances globales, l’avancée de la simulation étant toujours limitée par le processus le
plus lent. Le problème se pose également avec les modèles où les agents ne cherchent pas
un point particulier de l’environnement, mais cherchent à se rapprocher les uns des autres,
comme dans les modèles de bancs de poissons ou de nuées d’oiseaux. Ces phénomènes
se manifestent aussi avec les modèles de simulation de foule où les agents sont souvent
amenés à se déplacer en groupe dans l’environnement vers des points d’intérêt, ou depuis
des zones de danger.

Ainsi, plutôt que de partitionner la simulation en se basant sur l’environnement,
Solar, Suppi et Luque [120, 121] proposent une méthode consistant à regrouper les
agents en fonction de leur proximité dans le cas d’un modèle de bancs de poissons.
La méthode est néanmoins généralisable à des modèles avec des agrégations d’agents
similaires, par exemple dans le cas de simulations de foules.

Vigueras et al. [125] proposent et comparent trois méthodes de partitionnement
dynamique qui visent plus ou moins directement à regrouper les agents d’un système
spatialisé selon une relation de proximité.

Les travaux autour de la plateforme GAIA mettent en place une méthode d’équilibrage
de charge dynamique dans le cas des SMA spatialisés basée sur la migration d’agents afin
de réduire les communications distantes [24, 47].

32



Chapitre 2. État de l’art

2.7.4. Autres méthodes

Dans la pratique, certaines méthodes d’équilibrage de charge basiques peuvent faire
leurs preuves.

Ainsi il existe des exemples d’utilisation d’un algorithme de tourniquet (« round-
robin ») pour assigner les agents à chaque processus [41, 100]. Les agents de la simulation
sont alors simplement stockés dans une file, et assignés à chaque processus à tour de rôle.
Le temps de partitionnement de cette méthode triviale est négligeable, et permet un
très bon équilibrage de la charge de calcul. En revanche, elle ne permet pas de maitriser
le coût des communications. Ce problème n’est cependant pas toujours critique, par
exemple dans le cas de la plateforme FLAME, où l’équilibrage et l’optimisation des
communications se fait davantage au niveau des échanges de messages qu’au niveau des
agents [72]. De plus, le schéma d’exécution de FLAME a rapidement été adapté pour
une exécution sur GPU, pour laquelle il n’y a pas de problème de communications, la
mémoire étant partagée.

2.8. Plateformes de simulation distribuée

Plusieurs plateformes permettent l’exécution distribuée de simulations de SMA, et
proposent donc des solutions aux problèmes précédemment évoqués. Parmi elles, Repast
HPC [42] et D-MASON [45, 44] sont des adaptations des plateformes séquentielles
déjà citées. Les techniques de modélisation, par exemple pour la planification du
comportement des agents ou l’environnement, sont donc sensiblement les mêmes. Les
contraintes liées à la distribution introduisent cependant des limitations spécifiques.
D’autres plateformes, comme FLAME [41, 108] et Pandora [114], sont nativement conçues
pour le Calcul Haute Performance.

L’une des faiblesses de ces plateformes réside selon nous dans le manque de forma-
lisme utilisé pour définir et analyser les méthodes mises en place pour résoudre les
problèmes précédemment évoqués. C’est pourquoi nous proposons ici une description
des plateformes qui permet de facilement les comparer en termes de distribution, de
synchronisation des données et d’équilibrage de charge. Toutes utilisent la synchronisation
temporelle par pas de temps.

2.8.1. Repast HPC et D-MASON

Les plateformes Repast HPC et D-MASON proposent des solutions similaires aux
problèmes de synchronisation et de distribution pour les modèles spatiaux.

Équilibrage de charge

Pour les projections spatiales continues ou à base de grille, l’équilibrage est effectuée
en découpant l’environnement afin d’en assigner une partie à chaque processus. Chacun
est alors chargé d’exécuter tous les agents localisés dans la partie qui lui est associée.
Le découpage peut-être produit automatiquement par D-MASON, mais est laissé à la

33



Chapitre 2. État de l’art

charge de l’utilisateur avec Repast HPC. Même si la distribution des projections à base
de graphe est permise par ces plateformes, aucune méthode d’équilibrage de graphe n’est
nativement proposée.

Distribution

La continuité des données est assurée grâce à un concept nommé « OverLapping
Zones »(OLZ) ou « Areas of Interest » (AoI), que nous traduirons par zones de
recouvrement dans la suite. Il consiste à répliquer, sur chaque processus, une portion
de l’environnement associée aux processus voisins. La taille des zones peut notamment
dépendre de la taille du champ de perception des agents locaux. Plus précisément, des
copies des agents distants localisés dans les zones de recouvrement sont créées sur chaque
processus. Contrairement aux agents locaux, ces copies ne sont pas exécutées par le
processus local, elles permettent seulement l’accès aux données des agents distants par les
agents locaux. La figure 2.4 présente un exemple de distribution sur 4 processus. L’agent
local A9 perçoit par exemple l’agent local A8, ainsi qu’une copie de l’agent distant A7.

La méthode de distribution ne se limite pas aux environnements à base de grille
discrète. Pour les environnements continus, la taille des zones de recouvrement est
déterminée de la même manière, en fonction de la taille des champs de perception des
agents. Pour les environnements à base de graphe, la zone de recouvrement est construite
à partir des voisins des agents locaux dans le graphe.

Synchronisation des données

Les données des agents distants sont importées à la fin de chaque pas de temps depuis
les processus sur lesquels ils sont exécutés, la synchronisation temporelle s’effectuant par
pas de temps. Les possibilités d’interactions varient cependant légèrement entre les deux
plateformes.

Repast HPC autorise toute interaction entre agents locaux : ils peuvent modifier
mutuellement leurs données sans aucune limitation. En effet, aucun problème de
concurrence n’a lieu dans ce cas car les agents locaux sont exécutés de manière séquentielle
à l’échelle d’un processus. Cependant, les interactions possibles entre agents locaux et
distants sont limitées. En effet, les modifications effectuées par les agents locaux sur les
agents distants sont systématiquement écrasées par la mise à jour en fin de pas de temps.
Au sein d’un pas de temps, les données d’un agent distant correspondent à son état au pas
de temps précédent, auquel se sont éventuellement ajoutées des modifications effectuées
par les agents locaux pendant le pas de temps en cours, même si celles-ci seront par la
suite perdues.

D-MASON propose une politique beaucoup plus stricte en termes d’interactions : les
agents locaux ne peuvent accéder qu’à une copie ghost de leurs voisins, qu’ils soient locaux
ou distants. Ainsi, seules les lectures sont possibles sur les voisins, mais les modalités
d’accès aux agents ne dépendent pas du processus sur lequel ils sont exécutés. Chaque
agent peut modifier son propre état, dont les mises à jour seront perceptibles au pas de
temps suivant par ses voisins.

34



Chapitre 2. État de l’art

A0

A1

A′6

A2

A3

A4

A5

A6

A7

A′0

A′9

A8A9

A′7

A′4

Figure 2.4. – Exemple de distribution sur 4 processus, chacun associé à une portion
de l’environnement (cases blanches), avec représentation des zones de
recouvrement (cases grises). Les agents exécutés sur chaque processus
(agents noirs) peuvent interagir avec les copies des agents distants
(représentés en rouge). Des exemples de champs de perception sont
représentés en bleu.

35



Chapitre 2. État de l’art

Discussion

Contrairement à Repast HPC, la méthode de synchronisation proposée par D-MASON
permet la reproductibilité des simulations, quel que soit l’ordre d’exécution des agents
ou le nombre de processus utilisés.

En effet, considérons deux agents locaux A et B simulés avec Repast HPC, dans le
cadre d’un modèle où les agents accèdent à leurs voisins en lecture seule. Si A est exécuté
avant B, alors B accède à l’état de l’agent A au pas de temps courant, t. Mais si B est
exécuté avant A, B accède à l’état de A au pas de temps t−1. En outre, si A est distant,
B accède toujours à l’état de A au pas de temps t− 1, quel que soit l’ordre d’exécution
réel des agents. De plus, le fait que A soit distant ou non dépend du nombre de processus
utilisés pour exécuter la simulation : plus ce nombre est élevé, moins il y a d’agents
locaux par processus, plus il y a de voisins distants. Avec un raisonnement analogue,
on observe que des écritures potentielles entre A et B peuvent également influer sur la
reproductibilité de la simulation avec Repast HPC. Dans le cas de D-MASON, l’agent B
accède toujours à l’état de l’agent A au pas de temps t− 1, quelle que soit la situation.

Pour des raisons de gestion de l’aléatoire, l’accès aux voisins en lecture seule est
cependant une condition nécessaire mais pas suffisante pour garantir la reproductibilité
indépendamment du nombre de processus, comme discuté en détail dans la section 5.3.

2.8.2. Pandora

Contrairement aux exemples précédents, la plateforme Pandora [114] ne se base pas
sur une plateforme séquentielle existante.

Équilibrage de charge

Comme pour les plateformes précédentes, l’équilibrage de charge proposé est basé sur
le découpage de l’environnement en grille, Pandora n’étant utilisé que pour les modèles
spatiaux.

Distribution

La continuité des données est assurée par des zones de recouvrement.

Synchronisation des données

Le schéma d’exécution introduit un mécanisme de synchronisation original qui permet
les écritures entre les processus. En effet, chaque portion de l’environnement associée à
un processus est elle-même découpée en quatre parties, comme présenté sur la figure 2.5.
L’agent A7, dans une partie bleue, peut par exemple effectuer de manière sécurisée des
modifications sur la copie A′

9 de l’agent A9 car celui-ci, localisé dans une partie verte, n’est
pas exécuté en même temps que A9. En outre, seuls des agents localisés dans la même
partie que A7 peuvent interagir avec A7, il n’y a donc pas de problème de concurrence. La
synchronisation temporelle est toujours effectuée de manière conservative, mais chaque

36



Chapitre 2. État de l’art

pas de temps est subdivisé en quatre, avec une étape de synchronisation entre chaque
sous pas de temps.

Avec cette méthode, on constate que chaque sous-partie d’une couleur donnée n’est
adjacente à aucune sous-partie de la même couleur. Le découpage peut être facilement
adapté en fonction du nombre de processus pour conserver ces propriétés. Chaque
agent peut donc modifier les données des agents des sous-parties adjacentes, qu’elles
appartiennent ou non à un autre processus, car elles ne sont pas exécutées dans le sous
pas de temps en cours. De plus, chaque agent dans une sous-partie non exécutée ne peut
être modifié que par les agents d’un seul processus. En effet, même si chaque sous-partie
P est adjacente à deux sous-parties Q0 et Q1 de la même couleur (par exemple, sur la
figure 2.5, les parties bleues sont adjacentes à deux parties vertes), la taille des champs de
perception des agents fait que les agents des parties Q0 et Q1 ont chacun accès à des sous-
ensembles disjoints des agents de P 4 Ainsi les modifications des copies des agents dans
les zones de recouvrement peuvent être transmises de manière sécurisée aux processus
distants à la fin de chaque sous pas de temps. Les agents de chaque partie étant exécutés
de manière séquentielle, il n’y a pas de problème d’accès concurrents aux copies 5. Il n’y
a donc pas de problème de concurrence sur toute l’exécution du pas de temps, même en
autorisant la modification des agents distants.

Discussion

Cette méthode possède néanmoins des inconvénients notables :

1. Le nombre de barrières de synchronisation est multiplié par quatre, ce qui peut
avoir un impact significatif en termes de performances.

2. La décomposition en sous pas de temps peut introduire un biais dans l’ordre
d’exécution des agents.

3. La méthode ne peut s’appliquer qu’à des modèles à base de grille régulière, et limite
les interactions des agents à leur champ de perception géographique (pas de support
pour un graphe de contacts par exemple). Dans le cas d’un environnement à base
de graphe, il serait cependant intéressant de réfléchir à une méthode similaire basée
sur les problèmes de coloration de graphes.

2.8.3. FLAME

La plateforme FLAME [41] et son adaptation aux architectures GPU [108] introduisent
d’autres concepts permettant la distribution des simulations de SMA. Cette plateforme a
également été conçue spécifiquement pour l’exécution distribuée, grâce à une technique de
modélisation permettant la parallélisation native des simulations. Actuellement, le projet
FLAME GPU est activement en développement, contrairement à sa version originale

4. En considérant que la taille des sous-parties est suffisamment grande par rapport à la taille des
champs de perception, ce qui ne pose pas de problème dans le cadre d’exécutions large échelle.

5. Même dans le cas d’une exécution parallèle des agents des sous-parties, seuls des problèmes de
concurrence en mémoire partagée se posent.

37



Chapitre 2. État de l’art

A0

A1

A′6

A2

A3

A4

A5

A6

A7

A′0

A′9

A8A9

A′7

A′4

Figure 2.5. – La distribution d’un modèle selon Pandora. Les zones claires représentent
les zones de recouvrement. Les parties de l’environnement de même
couleur sont exécutées simultanément, avec à chaque étape la garantie
qu’aucune zone d’une autre couleur n’est exécutée sur d’autres processus.

38



Chapitre 2. État de l’art

Position A1.pt−1 A2.pt−1 A3.pt−1 A1.pt A2.pt

A1

A2

Position A1.pt−1 A2.pt−1 A3.pt−1 A3.pt

A3

SYNC

Figure 2.6. – Exemple d’utilisation d’un tableau de messages avec 3 agents et 2
processus.

sur CPU. Même si l’exécution GPU n’entre pas dans le cadre de notre étude, les deux
plateformes sont basées sur les mêmes concepts.

Les agents sont décrits comme des machines à état : à chaque instant, chaque agent
se trouve dans un état particulier parmi un nombre fini d’états possibles. Des fonctions
implémentées par l’utilisateur permettent de décrire les transitions entre états.

Distribution

D’après les auteurs de FLAME [41], l’accès direct d’un agent aux données des autres
rend difficile la conception de plateformes de simulation distribuées, surtout partant d’une
plateforme séquentielle existante qui n’a pas à considérer ce genre de problèmes. Dès lors,
une solution qui s’affranchit totalement des accès mutuels aux données des agents a été
proposée. Dans FLAME, les agents ne peuvent échanger des données que par le biais de
messages explicites transmis via un tableau de messages. Chaque agent peut publier ou
s’inscrire à un type de message sur un tableau afin de réagir aux actions de ses voisins au
cours de l’exécution de ses fonctions de transitions. L’exécution des agents est nativement
parallèle car il n’existe pas de dépendances directes entre les agents. La souscription à un
type de messages permet ici d’assurer la continuité des données. L’exemple de la figure 2.6
présente un exemple de partage de la position des agents. Les agents ne peuvent accéder
directement à la position des autres, mais ils publient à chaque pas de temps leur position
actuelle dans le tableau de messages (messages Ai.pt), et ils peuvent lire pendant le pas de
temps la position des autres agents publiée au pas de temps précédent (message Ai.pt−1).
Il est possible d’ajouter autant de propriétés que nécessaire au tableau de messages.

Synchronisation des données

La synchronisation des tableaux de messages consiste en l’échange des messages entre
les processus et a lieu à la fin de chaque pas de temps, grâce à des communications
collectives.

39



Chapitre 2. État de l’art

Équilibrage de charge

La distribution des agents sur les processus peut se faire selon la position des agents,
ou selon un algorithme de tourniquet.

Le processus de synchronisation optimise en outre les échanges d’informations en
ne transmettant pas les informations auxquelles aucun agent n’est inscrit, ou grâce à
des filtres spécifiés par l’utilisateur. Cela permet par exemple de recevoir seulement les
attributs des agents localisés dans le champ de perception d’au moins un agent local.
L’envoi de messages précis permet de minimiser davantage les transferts d’informations,
là où les méthodes par zones de recouvrement copient généralement l’intégralité des
données des agents à chaque pas de temps.

Les lectures et écritures dans les tableaux de messages et les fonctions de transitions
qui les effectuent étant spécifiées par l’utilisateur, la plateforme FLAME cherche enfin
à optimiser automatiquement l’ordre d’exécution des agents lors de la compilation du
modèle afin de maximiser le recouvrement calcul / communications.

Discussion

FLAME introduit un formalisme de description des modèles basé sur des fichiers
XML et l’implémentation de fonctions de transition en C. La génération de code et la
gestion de l’exécution distribuée sont ensuite automatiquement gérées par la plateforme :
l’utilisateur n’a donc pas besoin de compétences en parallélisme, et la modélisation des
systèmes simulés est indépendante de l’exécution distribuée.

Cette méthode peut cependant restreindre les modèles simulés : dans certains cas,
l’accès direct aux données des agents voisins ne peut être contourné grâce aux tableaux de
messages sans modifier les règles du modèle d’origine, comme présenté précédemment avec
le problème du vol de ressource. La famille de techniques de modélisation dites « Influence
/ Reaction » décrites précédemment à la section 2.2 semble cependant particulièrement
compatible avec l’utilisation des tableaux de messages.

2.8.4. Autres Travaux

La liste de plateformes proposée ici n’est pas exhaustive, et se focalise sur les
concepts pertinents dans le cadre de notre propre réflexion. Une revue plus complète
des plateformes de simulation distribuée a été proposée en 2016 par Rousset et al.
[112].

Il existe néanmoins d’autres projets dignes d’intérêt, même s’ils n’aboutissent pas
nécessairement à une plateforme de simulation générique accessible au grand public.

Ainsi le projet CareHPS [25] propose une plateforme de simulation distribuée de SMA
qui se focalise sur la modularité de ses composants. En effet, les exemples précédents
sont relativement rigides et peu extensibles en termes de distribution, d’équilibrage de
charge et de synchronisation des données. CareHPS définit une architecture basée sur des
interfaces génériques, ce qui permet de facilement implémenter de nouveaux algorithmes
d’équilibrage de charge ou de synchronisation afin de s’adapter au mieux au SMA simulé.
Les sources de ce projet ne sont cependant pas disponibles au moment de la rédaction.

40



Chapitre 2. État de l’art

Le projet FARM [23], dédié à la simulation distribuée de réseaux sociaux, propose une
méthode d’équilibrage de charge basée sur le partitionnement de graphe réalisé à l’aide
de METIS [70]. Les interactions entre agents sont permises grâce à la solution Apache
ZooKeeper. Cette solution, en partie centralisée, ne semble cependant pas adaptée à la
quantité d’interactions qui peut avoir lieu entre les agents au cours d’une simulation.

Les travaux de Rousset et al. [113] précédant ce projet proposent la mise en place
de divers modes de synchronisation dont certains permettent les écritures distantes et
concurrentes au cours du pas de temps, mettant en évidence l’impact des modes de
synchronisation sur les performances et les résultats des modèles.

2.9. Synthèse

Cette étude est focalisée sur la simulation distribuée de SMA génériques, sans
contrainte sur la structure de l’environnement et des agents, exécutée sur des architectures
de Calcul Haute Performance distribuées et homogènes. Nos travaux ainsi que l’étude de
la littérature nous ont permis d’identifier des problèmes génériques auxquels toute simula-
tion distribuée de SMA doit faire face : les mécanismes de distribution de l’exécution et de
continuité des données, la synchronisation des données, la synchronisation temporelle et
l’équilibrage de charge. L’étude de l’état de l’art et des plateformes existantes permettent
d’apporter des solutions à ces problèmes, issues de la simulation de SMA ou du calcul
distribué de manière générale. Même si les analyses théoriques et pratiques de ces
problèmes ne sont pas systématiquement mentionnées dans la conception des plateformes
existantes, notre revue nous a permis d’identifier clairement quelles solutions leur sont
apportées par chaque plateforme, ce qui permet de valider l’aspect générique de ces
problèmes et de mettre en valeur la diversité des techniques de simulation distribuée
ainsi que leurs avantages et inconvénients. Dans la seconde partie, nous proposons une
analyse approfondie des problèmes liés à la distribution ainsi qu’une architecture logicielle
générique permettant de les résoudre de manière flexible. La synchronisation temporelle
étant systématiquement réalisée par pas de temps, nous ne reviendrons pas sur ce point.
Les mécanismes de distribution, l’équilibrage de charge et la synchronisation des données
sont cependant respectivement abordés dans les chapitre 3, 4 et 5.

41



Deuxième partie

Conception et analyse d’une
architecture logicielle générique
dédiée à la simulation distribuée

de Systèmes Multi-Agents

42



Dans la première partie, nous avons montré que toutes les tentatives de distribution
de simulations de SMA se confrontent à de nombreux problèmes communs tels que la
continuité des données, l’équilibrage de la charge, la synchronisation temporelle ou la
synchronisation des données. La diversité des plateformes proposées prouve l’absence de
consensus quant aux techniques à utiliser pour les résoudre. Les différentes méthodes
rencontrées sont cependant rarement confrontées entre elles, de manière théorique ou
expérimentale, et les choix d’implémentation ne sont pas toujours justifiés.

Dans le domaine de la simulation Multi-Agents, on constate en outre que les besoins
varient indépendamment des techniques de modélisation ou des choix d’implémentation
des plateformes. Dans certains cas, il est par exemple souhaitable d’effectuer des simu-
lations parfaitement reproductibles, dans d’autres on privilégiera la liberté d’interaction
entres les agents, et dans d’autres encore on cherchera avant tout à minimiser le temps
d’exécution de la simulation. Les exemples étudiés montrent qu’il est difficile voire
impossible de mettre en place des solutions uniques pouvant satisfaire simultanément la
grande diversité de besoins utilisateurs. Pourtant, concevoir une plateforme capable de
simuler tout type de modèle semble réaliste et souhaitable. Atteindre cet objectif va donc
nécessiter de concevoir une plateforme modulable, permettant à l’utilisateur de choisir
les solutions les plus adaptées à ses besoins, voire d’en mettre en place de nouvelles.

On constate que la tendance générale consiste à laisser à l’utilisateur la charge
d’adapter ses modèles à la plateforme de simulation choisie. Or il est parfois impossible
d’adapter certains modèles sans modifier radicalement la définition du comportement
des agents, en raison de trop fortes contraintes imposées par les plateformes de
simulation. Une contrainte évidente est notamment l’impossibilité de réaliser des écritures
concurrentes entre des agents exécutés sur différents processus, alors que la définition des
modèles repose régulièrement sur ce type d’interaction, trivial à mettre en place dans le
cadre d’une exécution séquentielle. Les algorithmes d’équilibrage de charge proposés ne
s’adaptent également pas toujours à tous les modèles, par incompatibilité avec le modèle
simulé ou pour des raisons de performances.

Enfin, les interfaces proposées requièrent régulièrement de la part de l’utilisateur une
connaissance des enjeux et méthodes du calcul distribué, ce qui peut sévèrement limiter
l’utilisation des ressources de Calcul Haute Performance par la communauté Multi-
Agents. Ces interfaces ne sont de fait pas toujours adaptées aux habitudes des utilisateurs
avec les plateformes non distribuées.

La faible extensibilité des plateformes de simulation distribuée existantes ne permet
donc pas de fournir à l’utilisateur final un niveau d’abstraction et de flexibilité suffisant, ni
de mettre en place nos expérimentations pour analyser les problèmes liés à la distribution
des simulations de SMA.

D’où notre motivation à concevoir notre propre plateforme de simulation distribuée
de SMA, FPMAS [1], dans la continuité des travaux d’Alban Rousset [111]. Notre
contribution ne se limite cependant pas seulement à une plateforme de plus, qui
prétendrait résoudre de manière pérenne les limitations de ses homologues. En effet,
en plus des fonctionnalités inédites et des comparaisons entre algorithmes d’équilibrage
de charge ou de synchronisation de données permises par la plateforme, nous prétendons,
au travers du retour d’expérience du développement de FPMAS, décrire formellement

43



ModelModel

LoadBalancingLoadBalancing

DistributionDistribution

AgentAgentSynchronizationModeSynchronizationMode

agents partition

agents

read

acquire

synchronize

Figure 2.7. – Diagramme de composants de l’architecture logicielle générique proposée.

les problèmes et solutions liés à toute conception d’outils pour l’exécution distribuée de
simulation de SMA, ainsi que des algorithmes génériques adaptables à d’autres travaux.
Nos contributions peuvent finalement se résumer ainsi :

1. Définitions formelles des problèmes rencontrés au cours de l’expérience de dévelop-
pement de FPMAS, et généralisation à la simulation distribuée de SMA dans un
environnement matériel et logiciel arbitraire.

2. Conception d’une architecture logicielle générique grâce à une décomposition en
interfaces à implémenter, qui constituent un cahier des charges des fonctionnalités
à mettre en place pour distribuer une simulation Multi-Agents, ou pour concevoir
une plateforme de simulation distribuée de SMA.

3. Propositions d’implémentation des interfaces proposées, à la fois dans notre
plateforme FPMAS, et sous forme d’algorithmes génériques afin de permettre une
utilisation dans d’autres contextes.

4. Lorsque cela est pertinent pour l’utilisateur, comparaisons théoriques et expérimen-
tales des différentes solutions proposées, afin de permettre aux utilisateurs et aux
développeurs de choisir et de mettre en place les solutions adaptées à leurs besoins
grâce à l’aspect modulable intrinsèque de l’architecture proposée.

L’architecture logicielle proposée est représentée sur la figure 2.7, et détaillée dans les
chapitres suivants.

44



Chapitre 3.

Distribution des Systèmes Multi-Agents

Nous commençons la description de notre architecture logicielle de distribution des
simulations de SMA par des problèmes génériques et fondamentaux liés à la distribution.
Nous définissons d’abord le contexte général de l’étude, d’une part en termes de
parallélisme dans la section 3.1, et d’autre part en termes de SMA dans la section 3.2.
Dans la section 3.3, nous introduisons des algorithmes permettant de mettre en place une
distribution cohérente et arbitraire de tout SMA sur une architecture de calcul distribuée,
notamment pour mettre en place l’exécution des agents locaux sur chaque processus et
assurer la continuité des données grâce aux agents délégués. Dans la section 3.4, nous
présentons le cas particulier de la représentation à base de graphe des SMA utilisée par
FPMAS, qui permet quelques simplifications des algorithmes précédents. Pour finir, nous
abordons brièvement dans la section 3.5 d’autres problèmes marginaux liés à la simulation
distribuée de manière générale, comme la sérialisation des données ou la génération de
nombres aléatoires.

45



Table des matières

3.1. Contexte d’exécution distribuée . . . . . . . . . . . . . . . . . . . . . . 47
3.2. Contexte Multi-Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1. Exécution par pas de temps . . . . . . . . . . . . . . . . . . . . 49
3.2.2. Environnement . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3. Algorithmes de distribution génériques . . . . . . . . . . . . . . . . . . 51
3.3.1. Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2. Création et nettoyage des agents délégués . . . . . . . . . . . . 54
3.3.3. Gestion de la localisation . . . . . . . . . . . . . . . . . . . . . 57
3.3.4. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4. Cas de la représentation à base de graphe . . . . . . . . . . . . . . . . 60
3.4.1. Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2. Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3. Spécialisation des algorithmes . . . . . . . . . . . . . . . . . . . 62
3.4.4. Exemple de distribution . . . . . . . . . . . . . . . . . . . . . . 62

3.5. Autres problèmes de distribution . . . . . . . . . . . . . . . . . . . . . 65
3.5.1. Sérialisation des données . . . . . . . . . . . . . . . . . . . . . . 66
3.5.2. Génération de nombres aléatoires . . . . . . . . . . . . . . . . . 68

3.6. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

46



Chapitre 3. Distribution des Systèmes Multi-Agents

3.1. Contexte d’exécution distribuée

De manière générale, la parallélisation d’un programme consiste à le décomposer en un
ensemble de processus à exécuter en parallèle. Chaque processus est exécuté sous forme
d’une ou plusieurs tâches (« threads ») par un ensemble de processeurs. Pour simplifier,
nous considérons qu’un processeur correspond à une seule unité d’exécution, c’est-à-
dire à un coeur de processeur dans le sens commun. Nous qualifions alors un système
physique de multiprocesseur lorsqu’il dispose de plusieurs processeurs, comme c’est le cas
pour la plupart des architectures modernes. Nous définissons un système d’exploitation
multitâche comme un système capable d’exécuter plusieurs tâches sur le même processeur.
Ainsi l’exécution d’un processus n’est pas nécessairement liée à un unique processeur et
inversement : un processus peut être exécuté sur plusieurs processeurs, et un processeur
peut exécuter plusieurs processus.

Dans un système en mémoire partagée, tous les processeurs ont un accès direct à
une mémoire commune. Un système distribué est constitué d’un ensemble de machines
en mémoire partagée connectées en réseau, appelées nœuds de calcul. Chaque nœud
possède un ensemble de processeurs. Les processeurs d’un nœud ne partagent donc
pas de mémoire avec les autres nœuds. L’exécution distribuée d’un programme consiste
ainsi à le décomposer en un ensemble de processus à exécuter sur un système distribué.
Chaque nœud de calcul peut héberger plusieurs processus, mais un processus ne peut
être assigné qu’à un seul nœud. Nous travaillons sous l’hypothèse du principe d’isolation,
généralement mis en place au niveau du système d’exploitation, selon lequel les différents
processus ne peuvent accéder directement aux espaces mémoire alloués aux autres,
contrairement aux tâches associées à un même processus qui peuvent partager leur espace
mémoire.

La figure 3.1 présente un exemple de décomposition de simulation en huit processus
exécutés sur deux nœuds de calcul. Chaque cœur de processeur est chargé de l’exécution
d’un seul processus, associé à une seule tâche. Chaque tâche ne peut accéder à la mémoire
de travail des autres, y compris sur le nœud local, car elles sont assignées à d’autres
processus.

La figure 3.2 présente quant à elle la décomposition de la même simulation en
deux processus, sur la même architecture. Cette fois, plusieurs tâches sont assignées
à l’exécution d’un processus. Dans le cas d’une simulation Multi-Agents, cela signifie
que les agents exécutés par une tâche auront un accès direct aux agents exécutés par les
autres tâches associées au même nœud de calcul afin de mettre en place une exécution
parallèle en mémoire partagée, ce qui n’est pas possible avec le schéma d’exécution de la
figure 3.1

Pour des raisons de simplicité, nous ne nous intéressons pas dans le cadre de cette
étude à la décomposition des processus en tâches, c’est-à-dire au schéma d’exécution des
processus. Nous nous focalisons seulement sur la décomposition d’une simulation de SMA
en un ensemble de processus distribués, indépendamment de l’architecture du système
chargé d’exécuter la simulation. A ce niveau d’abstraction, la seule différence entre les
figures 3.1 et 3.2 est le nombre de processus utilisés pour décomposer la simulation. Dès
lors, les solutions proposées, qui consisteront à distribuer la simulation sur un nombre

47



Chapitre 3. Distribution des Systèmes Multi-Agents

Simulation SMA

P3P2P1P0 P4 P5 P6 P7

Tâche 0

Cœur 0

Tâche 1

Cœur 1

Tâche 2

Cœur 2

Tâche 3

Cœur 3

Tâche 0

Cœur 0

Tâche 1

Cœur 1

Tâche 2

Cœur 2

Tâche 3

Cœur 3

Mémoire
Isolée

read write

Noeud de Calcul 0 Noeud de Calcul 1

Figure 3.1. – Exemple de décomposition d’une simulation SMA en 8 processus, exécu-
tés en tâche simple sur 2 nœuds de calcul avec chacun 4 processeurs.

Simulation SMA

P3P2P1P0 Processus 0 P4 P5 P6 P7Processus 1

Tâche 0

Cœur 0

Tâche 1

Cœur 1

Tâche 2

Cœur 2

Tâche 3

Cœur 3

Tâche 0

Cœur 0

Tâche 1

Cœur 1

Tâche 2

Cœur 2

Tâche 3

Cœur 3

Mémoire
Partagée

read write

Noeud de Calcul 0 Noeud de Calcul 1

Figure 3.2. – Exemple de décomposition d’une simulation SMA en 2 processus, exécu-
tés en multitâche sur 2 nœuds de calcul avec chacun 4 processeurs.

48



Chapitre 3. Distribution des Systèmes Multi-Agents

arbitraire de processus, pourront s’appliquer indépendamment du schéma d’exécution ou
de l’architecture matérielle.

3.2. Contexte Multi-Agents

Notre objectif est de concevoir des méthodes qui permettent la distribution de la plus
large catégorie de SMA possible. Nous imposons cependant quelques contraintes aux SMA
tels que définis dans la section 2.1 afin de définir le contexte de l’étude. Les solutions
proposées peuvent éventuellement s’appliquer dans d’autres contextes, même s’ils n’ont
pas été abordés.

3.2.1. Exécution par pas de temps

Nous restreignons notre étude aux modèles dont le schéma d’exécution est décrit
par pas de temps, en accord avec la spécification de nombreux modèles existants. Les
comportements des agents s’exécutent alors à des dates définies, à intervalles réguliers ou
non, en opposition à la modélisation par évènements où l’exécution des comportements
est déclenchée en réponse à des évènements émis par l’environnement ou par d’autres
agents lors de l’exécution de leurs propres comportements.

Le schéma d’exécution par pas de temps n’implique ni l’exécution de tous les agents
à chaque pas de temps, ni la régularité de l’exécution de chaque comportement. Le
schéma d’exécution peut être dynamique : il est alors possible de planifier, depuis un
comportement exécuté à une date t, l’exécution d’un comportement à toute date t+∆t,
avec ∆t > 0. Du point de vue de la modélisation, des comportements planifiés à la même
date sont supposés s’exécuter simultanément. La plateforme d’exécution peut cependant
les exécuter au moins en partie de manière séquentielle, mais l’ordre d’exécution n’est
alors pas spécifié, et de préférence aléatoire. Dans tous les cas, le principe de causalité
s’applique : un comportement ne peut être exécuté qu’à partir du moment où tous les
comportements planifiés à une date strictement antérieure ont déjà été exécutés.

Ainsi, dans le cadre de la simulation distribuée, nous imposons l’utilisation d’une
synchronisation temporelle par pas de temps, mise en place par des barrières de
synchronisation strictes.

3.2.2. Environnement

La représentation de l’environnement dans les SMA est un problème complexe, comme
l’atteste la diversité des approches recensées dans la littérature. Certains modèles,
basés uniquement sur les interactions entre agents, n’ont pas besoin d’un quelconque
environnement. Dans la plupart des cas, l’environnement est décrit comme un espace
dans lequel les agents peuvent se déplacer pour percevoir et interagir avec des objets
inertes ou d’autres agents.

Le rôle de l’environnement se limite ainsi parfois à assigner aux agents une position
dans l’espace. D’où les concepts de « projection » ou de « champ » utilisés respectivement
par les plateforme Repast et MASON. Des exemples de projections sont présentés

49



Chapitre 3. Distribution des Systèmes Multi-Agents

Projection Position

Espace 2D discret Coordonnées 2D discrètes
Espace 3D discret Coordonnées 3D discrètes
Espace 2D continu Coordonnées 2D continues
Espace 3D continu Coordonnées 3D continues
GIS (Geographical Information System) Coordonnées Géographiques
Graphe Nœud d’un graphe

Table 3.1. – Exemple de projections et types de position associés.

dans le tableau 3.1. Dans ce cas, l’environnement ne contient pas directement des
objets avec lesquels les agents peuvent interagir. La position des agents est parfois
suffisante pour permettre les interactions, par exemple pour transmettre un virus ou une
rumeur. L’environnement est cependant souvent constitué d’entités matérielles passives
ou actives : un obstacle, de la nourriture, de l’herbe qui croît. . . Par exemple, pour couvrir
l’environnement d’herbe, on peut définir un type d’agent herbe, associée à une projection
2D discrète, puis positionner une instance d’agent herbe sur chaque coordonnée. La
projection permet alors, pour un herbivore localisé en (x, y) sur la même projection,
de retrouver l’agent herbe aux coordonnées (x, y). De manière générale, il est possible
d’assimiler les données d’une « projection » à une donnée de localisation associée à
chaque agent. Nous assimilons ainsi la distribution d’un environnement abstrait de type
« projection » à la distribution des données des agents.

Les « projections » peuvent par ailleurs définir des algorithmes de requêtes spatiales,
par exemple pour retrouver les plus proches voisins d’un agent. Dans la plupart des
cas, l’adaptation de ces algorithmes depuis un environnement en mémoire partagée vers
un environnement distribué peut s’effectuer de manière triviale grâce au maintien de la
continuité des données entre les processus. Par exemple, la projection 2D discrète peut
permettre de retrouver tous les voisins d’un agent dans son voisinage de Moore. Or, en
distribué, le maintien de la continuité des données doit assurer l’accessibilité de ces agents
depuis le processus local. L’algorithme de requête des voisins en mémoire partagée peut
donc trivialement s’appliquer au contexte distribué. La mise en place d’algorithmes ou de
structures de données plus complexes pour optimiser les requêtes dans un environnement
distribué pourrait être envisagée, mais n’est pas abordée dans ces travaux.

Dans le cas de l’utilisation d’une projection, comme dans Repast ou Mason, les objets
de l’environnement sont assimilés à des agents. Dans d’autres cas, l’environnement est
représenté par une structure distincte des agents. Ainsi, dans NetLogo, les cellules de
l’environnement 2D discret sont représentées par des « patchs », auxquels il est possible
d’associer un comportement. Dans GAMA, une « espèce » spéciale d’agent, « grid », est
utilisée de façon similaire. Dans notre contexte de simulation distribué, il est nécessaire
de mettre en place une méthode de distribution de l’environnement. Or les interactions
entre un agent et une partie de l’environnement, intrinsèquement associée à des données,
sont similaires aux interactions entre agents.

Dans la suite de notre étude, nous faisons donc le choix d’assimiler tous les objets

50



Chapitre 3. Distribution des Systèmes Multi-Agents

de l’environnement à un type d’agent dans la simulation, auquel aucun comportement
n’est éventuellement associé dans le cas d’un environnement passif. Afin de reproduire le
mécanisme des projections, il suffit d’inclure une position explicite à l’état des agents.

Cette représentation permet de grandement simplifier la résolution des problèmes
de distribution. En effet, les algorithmes mis en place pour distribuer des agents sont
nativement applicables à l’environnement. Ce choix n’est pas pour autant limitant.
La plupart des algorithmes spécifiés en termes d’agents seraient également applicables
aux parties de l’environnement dans un contexte de simulation où un environnement
serait représenté indépendamment du concept d’agent. Nous supposons cependant
que l’environnement est décomposable en sous-parties, sans quoi la distribution de
l’environnement n’aurait que peu de sens.

3.3. Algorithmes de distribution génériques

L’étude des plateformes et simulations distribuées existantes nous a montré que
toutes proposent des solutions au problème de la distribution des modèles, avec diverses
techniques de maintien de la continuité des données. Nous proposons ici une formalisation
de ce problème ainsi que des algorithmes génériques permettant de le résoudre.

Pour rappel, la décomposition d’une simulation de SMA en processus parallèles consiste
à assigner l’exécution d’une sous-partie des agents à chaque processus disponible selon
une partition. Afin d’assurer la continuité des données, on peut ajouter aux agents locaux
des agents délégués, qui représentent et permettent l’accès aux agents distants, sans
spécifier les modalités d’interactions avec eux pour le moment. La localisation d’un agent
correspond au processus qui l’exécute. Pour les agents locaux, il s’agit du processus en
cours. La localisation d’un agent délégué correspond au processus qui exécute l’agent
distant qu’il représente.

Dans un contexte distribué, il est nécessaire d’associer à chaque agent un identifiant
unique à l’échelle globale de la simulation, et pas seulement à l’échelle d’un processus.
Des méthodes contextuelles peuvent être mises en place, par exemple grâce à un système
d’identifiants externes, tels que les identifiants des nœuds d’un graphe OpenStreetMap.
Néanmoins, pour supporter le cas générique, FPMAS, tout comme Repast HPC, utilise
une paire constituée de l’identifiant du processus sur lequel a été créé l’agent et d’un entier
incrémenté au fur et à mesure de la création d’agents sur ce processus. L’identifiant d’un
agent contient ainsi une référence vers son processus d’origine, et reste constant tout au
long de la simulation, y compris en cas de migrations de l’agent vers d’autres processus.

Même s’il ne sont pas systématiquement formalisés, ces concepts d’agents locaux,
distants ou délégués, de partitionnement, de localisation et d’identifiant constituent
plus ou moins directement une base commune à tous les exemples de distributions de
simulation de SMA recensés dans la littérature. Les problématiques associées, comme
la gestion des agents délégués ou la mise à jour de la localisation des agents, sont
alors communes à toute tentative de distribution d’un SMA. Nous définissons donc un
composant logiciel Distribution comme sur la figure 3.3, chargé de distribuer les agents
d’un modèle tout en maintenant sa continuité et sa cohérence.

51



Chapitre 3. Distribution des Systèmes Multi-Agents

DistributionDistribution ModelModelagents

Figure 3.3. – Diagramme de composants UML pour l’interface de distribution.

≪interface≫
Distribution

+ distribute(partition: Map<Agent, Process>, agents: List<Agent>)

DistributionImplementation

− migration(partition: Map<Agent, Process>, agents: List<Agent>)
− createDelegates(exportés: List<Agent>, importés: List<Agent>)
− clearDelegates(délégués: List<Agent>)

LocationManager

− agents gérés: List<ID>

+ manage(agent: Agent)
+ remove(agent: Agent)
+ updateLocations(délégués: List<Agent>, importés: List<Agent>)

Figure 3.4. – Diagramme de classe de l’interface de distribution et de l’implémentation
proposée.

Il est possible de formaliser des algorithmes génériques basés uniquement sur les seuls
concepts précédemment introduits, avec un haut niveau d’abstraction. Les solutions
proposées pourront donc toujours être implémentées, pour tout modèle Multi-Agents,
quel que soit l’environnement matériel ou logiciel, même s’il est possible d’imaginer
d’autres solutions spécifiques et optimisées prenant en compte la spécificité de certains
modèles. Un exemple de mise en place de distribution de simulation de SMA basée sur
ces algorithmes dans le cadre de l’utilisation d’une structure de données à base de graphe
pour représenter les SMA est notamment détaillée dans la section 3.4.

Afin de mettre en place une solution générique au problème de la distribution,
nous proposons l’implémentation de l’interface de Distribution présentée dans la
figure 3.4. L’interface utilisateur prend en paramètre une partition arbitraire, qui associe
chaque agent à un processus, et la liste d’agents à distribuer selon la partition. Notre
implémentation met en place la distribution en quatre étapes :

1. migration() : migration des agents locaux vers les processus qui leur ont été
assignés ;

2. createDelegates() : création des agents délégués nécessaires pour maintenir la
continuité des données ;

3. clearDelegates() : suppression des agents délégués inutiles ;

4. updateLocations() : mise à jour de la localisation des agents délégués.

Nous détaillons dans la suite l’implémentation des ces méthodes sous forme d’algo-
rithmes génériques.

52



Chapitre 3. Distribution des Systèmes Multi-Agents

3.3.1. Migration

La migration d’un agent consiste à assigner son exécution à un autre processus pour
mettre en place un nouveau partitionnement. Cette opération va entre autre nécessiter
d’exporter les données d’agents locaux vers d’autres processus. Les processus étant
distribués, l’exportation ne peut se faire que par l’envoi de messages explicites : l’envoi
et la réception d’un agent va donc nécessiter un processus de sérialisation, abordé dans
la section 3.5.1.

Algorithme 1 Migration des agents locaux.
Entrée:
1: Agents locaux à distribuer
2: Nouvelle Partition

Sortie:
3: Agents locaux distribués selon la nouvelle partition

4: algorithme Migration
5: pour chaque (agent local, processus) de la nouvelle partition faire
6: si processus ̸= processus actuel alors
7: envoyer à processus : agent local
8: Transformer l’agent local en agent délégué
9: fin si

10: fin pour
11: recevoir depuis tous les processus : agents importés
12: pour chaque agent des agents importés faire
13: si un agent délégué représente l’agent alors
14: Transformer l’agent délégué en agent local
15: sinon
16: Ajouter l’agent en tant que nouvel agent local
17: fin si
18: Mettre à jour la localisation de l’agent local avec le processus en cours
19: fin pour
20: fin algorithme

L’algorithme 1 présente un algorithme de migration générique. L’objectif consiste,
à partir du partitionnement actuel, à migrer les agents locaux pour obtenir en sortie
d’algorithme une distribution des agents locaux correspondant à la nouvelle partition.

L’algorithme s’exécute simultanément sur tous les processus. La boucle ligne 5 garantit
que chaque processus ne travaille que sur ses agents locaux. Il n’est donc nécessaire de
fournir en entrée de l’algorithme que la sous-partie de la partition contenant des entrées
relatives aux agents locaux, d’où l’aspect distribué de l’algorithme. Les localisations des
agents non spécifiés dans la partition sont supposées inchangées. Chaque agent local
est envoyé, si nécessaire, au nouveau processus auquel il est assigné (ligne 7). Dans un
premier temps, l’agent exporté est remplacé par un agent délégué (ligne 8) car son accès

53



Chapitre 3. Distribution des Systèmes Multi-Agents

peut être requis par des agents locaux à l’issu de la migration. Le nettoyage des agents
délégués inutiles est abordé dans la suite. Les agents reçus (ligne 11) sont ensuite intégrés
au processus local. Si un agent délégué représente déjà l’agent importé sur le processus,
il est remplacé par le nouvel agent local (ligne 14). Sinon, il suffit d’ajouter un nouvel
agent local au processus (ligne 16). Pour finir, la localisation du nouvel agent local est
mise à jour avec le processus en cours (ligne 18).

Une fois les agents locaux en place, la création d’agents délégués est nécessaire pour
assurer la continuité des données.

3.3.2. Création et nettoyage des agents délégués

Le maintien de la continuité des données grâce aux agents délégués permet d’abstraire
l’aspect distribué de la simulation du point de vue des agents. En effet, les agents locaux
ou délégués perçus par un agent local seront les mêmes que dans un environnement en
mémoire partagée.

Nous définissons le voisinage d’un agent comme l’ensemble des agents avec qui il peut
être amené à interagir au cours du prochain pas de temps. Ces voisins contiennent par
exemple les perceptions d’un agent, définies selon les règles du modèle. Dans le cadre de
la représentation de l’environnement par des agents, les voisins peuvent représenter des
parties de l’environnement vers lesquelles un agent peut se déplacer ou avec lesquelles il
peut interagir. D’autres notions de voisinage sont envisageables. Dans tous les cas, les
voisins peuvent être représentés par des agents locaux ou délégués. En termes d’exécution
distribuée, l’accès à un agent local se fait par des accès mémoires directs, et l’accès à
un agent distant se fait par des communications au travers des agents délégués. Nous
verrons dans le chapitre 5, qui traite de la synchronisation des données, qu’il est possible
d’abstraire complètement ces nuances du point de vue de l’utilisateur, afin d’assurer la
transparence de la distribution.

Par définition, à chaque pas de temps, les agents locaux ne peuvent interagir qu’avec
les autres agents locaux et les agents délégués sur le processus en cours. Afin d’assurer la
continuité des données, il est donc nécessaire de construire l’ensemble des agents délégués
de sorte qu’il contienne le voisinage de tous les agents locaux.

Dès lors, en supposant les ensembles d’agents délégués correctement initialisés, la
création d’agents délégués pour maintenir la continuité des données peut avoir lieu dans
un nombre limité de contextes :

1. Suite à la migration d’agents locaux pour mettre en place une nouvelle partition
du modèle ;

2. Suite à un changement d’état des agents ou de l’environnement lors de l’exécution
d’un comportement 1 ;

3. Suite à la création ou à la suppression d’agents.

1. Le déplacement d’un agent (au sens géographique) peut par exemple nécessiter de compléter le
voisinage d’un agent avec de nouveaux agents délégués localisés dans son champs de perception pour
respecter les règles du modèle.

54



Chapitre 3. Distribution des Systèmes Multi-Agents

Pour des raisons de simplicité, seul le premier cas est abordé dans ce document. Les
deux autres dépendent des types de modèle et du comportement des agents, là où le
premier, plus fondamental, s’applique à toute simulation de SMA à chaque distribution
du modèle.

L’algorithme 2 présente ainsi un algorithme générique permettant d’exporter et
de reconstruire le voisinage des agents importés dans le cadre d’un changement de
distribution.

Algorithme 2 Création des agents délégués.
Entrée:
1: Agents exportés avec leur voisinage à jour
2: Agents importés sans voisinage

Sortie:
3: Agents importés avec leur voisinage à jour

4: algorithme CreateDelegates
5: pour chaque agent des agents exportés faire
6: envoyer à nouveau processus de l’agent:
7: • voisinage de l’agent
8: • localisation des agents du voisinage
9: fin

10: fin pour
11: recevoir depuis tous les processus : voisinages des agents importés
12: pour chaque voisinage faire
13: pour chaque agent du voisinage faire
14: si aucun agent local ou délégué ne représente l’agent alors
15: Créer un nouvel agent délégué
16: Initialiser la localisation de l’agent délégué
17: fin si
18: Mettre à jour le voisinage de l’agent importé
19: fin pour
20: fin pour
21: fin algorithme

Dans les entrées de l’algorithme, les agents exportés représentent les agents ayant migré
vers un autre processus grâce à l’algorithme 1. A ce stade de la distribution, ces agents
et leurs voisinages sont encore complets au niveau du processus courant, contrairement
à ceux des agents importés correspondant. L’objectif de cet algorithme consiste donc à
compléter ces voisinages pour assurer la continuité des données.

Le voisinage d’un agent est toujours envoyé depuis le processus sur lequel cet agent
est local (ligne 7), car c’est le seul processus sur lequel il est garanti que le voisinage
de l’agent soit complètement représenté : en effet, il n’est pas nécessaire de maintenir
le voisinage des agents délégués, qui ne sont pas exécutés. La requête du voisinage des
agents exportés peut dépendre de la définition des agents, du modèle, de la représentation

55



Chapitre 3. Distribution des Systèmes Multi-Agents

de l’environnement ou encore des projections utilisées. Dans tous les cas, le voisinage
exporté depuis le processus en cours n’est pas seulement constitué d’agents locaux. En
effet, le voisinage d’un agent peut contenir des agents délégués, exécutés par un processus
différent de celui sur lequel est exporté l’agent. C’est pourquoi il est également nécessaire
d’exporter la localisation des agents délégués exportés (ligne 8), afin que le processus
récepteur connaisse le processus sur lequel sont exécutés les agents délégués nouvellement
créés (lignes 15 et 16). Afin d’éviter les duplications d’agents, un agent délégué n’est
effectivement créé que s’il n’est pas déjà représenté par un agent local ou délégué au
niveau du processus courant (ligne 14). Dans tous les cas, la représentation disponible
est utilisée pour mettre à jour le voisinage de l’agent importé correspondant au voisinage
reçu (ligne 18). Cette mise à jour prend des formes aussi diverses que la requête des
voisinages, selon le contexte d’implémentation : créer le lien correspondant dans le graphe
d’interactions, mettre à jour des attributs référençant l’agent, ou encore ne rien faire, par
exemple si le voisinage n’est obtenu qu’à l’exécution par une requête spatiale sur tous les
agents actuellement représentés sur le processus.

Nous introduisons enfin l’algorithme 3, qui permet de supprimer les agents délégués
qui n’appartiennent plus à aucun voisinage d’agent local. Cette proposition n’est qu’un
exemple basique : il est possible de concevoir des procédés plus complexes de mise en
cache, afin d’éviter de recréer des agents délégués qui seraient à nouveau importés lors
des prochaines migrations, ou d’appliquer l’algorithme seulement en cas de besoin et pas
à chaque migration, à la manière des algorithmes de récupération de mémoire (« Garbage
Collector »). Dans tous les cas, il est nécessaire d’implémenter une procédure de gestion
de ces agents, sans quoi la quantité d’agents délégués créés au fil des migrations peut
croitre jusqu’à représenter la totalité des agents de la simulation, au risque de saturer la
mémoire.

Algorithme 3 Nettoyage des agents délégués.
Entrée:
1: Liste des agents délégués
2: Voisinages des agents locaux

Sortie:
3: Liste d’agents délégués réduite de ses éléments “inutiles”

4: algorithme ClearDelegates
5: pour chaque agent des agents délégués faire
6: si l’agent n’appartient à aucun des voisinages alors
7: Supprimer l’agent délégué
8: fin si
9: fin pour

10: fin algorithme

56



Chapitre 3. Distribution des Systèmes Multi-Agents

p0 p1 p2

P0 a0
p0

a′1
p1

a1
p1

P1 a0
p0

a′1
p1

a1
p2

a′1

Figure 3.5. – Exemple de partitionnement sur 3 processus, et migration de l’agent a1
vers le processus p2.

3.3.3. Gestion de la localisation

Afin d’assurer la synchronisation des données, il est nécessaire de connaitre le processus
sur lequel sont exécutés chacun des agents distants représentés par les agents délégués.

La connaissance de la localisation des agents distants peut se baser sur des informations
contextuelles spécifiques à certains modèles. Par exemple, dans le cadre d’un modèle
spatial et d’une décomposition à base de grille, où une zone géographique fixe est
associée à chaque processus, on peut déduire la localisation d’un agent délégué à partir
de ses coordonnées géographiques, sans qu’aucune communication additionnelle ne soit
nécessaire. Bien qu’efficaces, ces solutions ne sont pas généralisables à tout modèle
Multi-Agents, et dépendent du partitionnement du modèle (dans l’exemple précédent,
un partitionnement spatial est nécessaire).

La localisation des agents délégués est initialisée lors de leur création, comme vu
précédemment avec l’algorithme 2. Cependant, ce mécanisme ne suffit pas à mettre à
jour la localisation de l’agent au niveau de tous les processus qui en détiennent une
représentation. La figure 3.5 présente un exemple permettant d’illustrer ce problème,
à partir d’un SMA sans structure particulière, partitionné sur trois processus, avec
seulement deux agents. Nous considérons une partition P1 dans laquelle l’agent a0 a
accès à l’agent délégué a′1, qui représente a1. Nous supposons que la localisation de l’agent
délégué a′1 est bien initialisée au processus p1. La migration de l’agent a1 vers le processus
p2 est alors effectuée pour mettre en place la partition P2 : selon le processus de migration
spécifié, qui initialise seulement la localisation des agents importés, la localisation de la
représentation a′1 n’est pas mise à jour et représente alors une information erronée.

57



Chapitre 3. Distribution des Systèmes Multi-Agents

L’algorithme 4, qui représente une implémentation du LocationManager de la fi-
gure 3.4, permet de mettre à jour la localisation des agents délégués pour tout type
de modèle Multi-Agents, indépendamment du partitionnement. La solution proposée
consiste tout d’abord à associer à chaque agent, lors de sa création, un processus
gestionnaire fixe au cours de la simulation, dont le rôle consiste à maintenir à jour,
à chaque distribution du système, la localisation des agents qu’il gère, même si ces agents
ne sont pas nécessairement locaux au processus gestionnaire. Il est possible d’ajouter au
cours de la simulation de nouveaux agents au gestionnaire, ou de les supprimer lorsqu’ils
sont retirés de la simulation.

Dans nos expérimentations, le processus sur lequel est créé l’agent est utilisé comme
gestionnaire. Cette méthode possède l’avantage de distribuer naturellement la gestion
de la localisation des agents, contrairement au cas où un unique processus est utilisé
en tant que gestionnaire par exemple. Des solutions plus complexes et potentiellement
dynamiques pourraient être mises en place afin d’assurer un meilleur équilibrage de la
gestion de la localisation des agents délégués, mais les expérimentations menées avec
différents types de modèles n’ont pas montré un coût en performance excessif associé à
cette méthode.

Suite à l’importation des agents, la mise à jour de la localisation des agents délégués
consiste en trois étapes.

1. Envoyer aux processus gestionnaires la nouvelle localisation des agents importés
(ligne 6). Le processus gestionnaire met alors à jour la localisation actuel des agents
qu’il gère (ligne 10).

2. Demander aux processus gestionnaires la localisation de tous les agents délégués
(ligne 14). Cette étape suppose que le processus gestionnaire de chaque agent est
connu par tous les processus pour tout agent à tout moment de la simulation. C’est
pourquoi nous utilisons en tant que gestionnaire le processus d’origine de l’agent,
contenu dans son identifiant. D’autres solutions sont facilement envisageables.

3. Les processus gestionnaires peuvent ensuite répondre aux requêtes (ligne 18), et le
processus en cours peut enfin mettre à jour la localisation de ses agents délégués
(ligne 22).

L’inconvénient de cet algorithme est la réalisation systématique d’une requête pour
chaque agent délégué, même si leur localisation n’a pas changé. Le recours à un nombre
constant de communications collectives 2 entre les processus constitue cependant un
avantage qui permet généralement de bonnes performances et favorise le passage à
l’échelle quand le nombre de processus augmente. Le coût observé de l’algorithme dans
nos expérimentations s’est systématiquement avéré négligeable. Dans tous les cas, cette
solution n’est qu’une proposition. Il est possible d’en imaginer d’autres, par exemple
basées sur la recherche à la volée de la localisation des agents.

2. L’envoi et la réception des requêtes peut par exemple être réalisé en une seule communication de
type MPI_AllToAll

58



Chapitre 3. Distribution des Systèmes Multi-Agents

Algorithme 4 Gestion de la localisation des agents délégués.
Entrée:
1: Liste d’agents délégués
2: Liste d’agents locaux importés

Sortie:
3: Localisation à jour des agents délégués

4: algorithme UpdateLocations
5: pour chaque agent importé faire
6: envoyer à gestionnaire de l’agent : (id agent, processus courant)
7: fin pour
8: recevoir depuis tous les processus : localisations à jour
9: pour chaque (id agent géré, processus) des localisations à jour faire

10: Mettre à jour la localisation associée à l’agent géré
11: fin pour
12:
13: pour chaque agent délégué faire
14: envoyer à gestionnaire de l’agent : (id agent, processus courant)
15: fin pour
16: recevoir depuis tous les processus : requêtes
17: pour chaque (id agent, processus) des requêtes faire
18: envoyer à processus : (id agent, localisation à jour de l’agent)
19: fin pour
20: recevoir depuis tous les processus : localisations à jour
21: pour chaque (id agent, processus) des localisations à jour faire
22: Mettre à jour la localisation de l’agent délégué
23: fin pour
24: fin algorithme

59



Chapitre 3. Distribution des Systèmes Multi-Agents

3.3.4. Distribution

Nous définissons enfin l’algorithme 5 de distribution d’un SMA, grâce à des appels aux
algorithmes 1, 2, 3 et 4 précédemment définis. Quelles que soient les partitions initiales et
finales du modèle, la continuité des données est préservée grâce au mécanisme de création
des agents délégués. Le procédé de distribution est donc un atout dans l’abstraction de
l’architecture distribuée pour l’utilisateur final, qui pourra spécifier les comportements
des agents indépendamment de la distribution, gérée en interne par la plateforme de
simulation. D’autre part, les algorithmes décrits ne sont que des propositions qui peuvent
facilement faire l’objet d’alternatives et d’optimisations. Néanmoins, les différentes étapes
de la distribution semblent nécessaires à toute distribution de SMA devant supporter la
continuité des données quel que soit le partitionnement.

Algorithme 5 Distribution d’un modèle Multi-Agents.
Entrée:
1: Modèle distribué
2: Nouvelle Partition

Sortie:
3: Modèle distribué selon la nouvelle partition

4: algorithme Distribution
5: Migration(modèle, nouvelle partition)
6: CreateDelegates(agents exportés, agents importés)
7: ClearDelegates(agents délégués)
8: UpdateLocations(agents délégués, agents importés)
9: fin algorithme

Le procédé de création de nouvelles partitions pourra éventuellement être spécifié par
l’utilisateur, selon des critères qui lui sont propres. Cependant, dans notre démarche
d’abstraction de la distribution, l’objectif est plutôt d’automatiser en interne la création
des nouvelles partitions grâce à des algorithmes d’équilibrage de charge, décrits dans le
chapitre 4.

3.4. Cas de la représentation à base de graphe

Tous les modèles Multi-Agents ont comme caractéristique commune de représenter
des agents interagissant entre eux. Dans le cadre de notre hypothèse où l’environnement
est lui-même représenté par un ensemble d’agents, les interactions avec l’environnement
sont assimilées à des interactions entre agents. La structure de graphe ne nécessitant
pas d’information contextuelle supplémentaire (comme le type des agents, la taille de
l’environnement, la position des agents, etc), elle est capable de représenter tous les
SMA.

60



Chapitre 3. Distribution des Systèmes Multi-Agents

3.4.1. Principe

Pour construire une représentation à base de graphe d’un SMA arbitraire, il suffit
d’associer un nœud à chaque agent, et de construire les liens nécessaires en considérant
qu’un agent ne peut interagir qu’avec ceux auxquels il est connecté.

La construction du graphe est triviale dans le cas d’un modèle à base de graphe, mais
peut aussi s’étendre aux modèles spatiaux. Dans le cadre d’un modèle à base de grille,
l’environnement peut par exemple être représenté par des cellules connectées à leurs
voisines, et la localisation des agents peut être représentée par un lien vers la cellule
dans laquelle il se trouve. Des liens supplémentaires sont alors créés entre l’agent et ceux
localisés dans les cellules voisines, en fonction de son champs de perception, pour lui
permettre d’interagir avec eux. Cette méthode est extensible au cas où les agents ne se
déplacent pas sur une grille mais sur un graphe arbitraire.

3.4.2. Motivations

La représentation à base de graphe peut garantir la distribution et la continuité de tous
les SMA, y compris les modèles spatiaux, et ce indépendamment du partitionnement.
En effet, n’importe quel nœud peut être associé à n’importe quel processus sans
compromettre l’intégrité de son voisinage, ce qui constitue un gain en flexibilité notable
par rapport aux distributions déjà évoquées des modèles à base de grille qui imposent
d’associer à chaque processus une portion fixée et continue de l’environnement. Avec la
structure de graphe, il est par exemple possible d’envisager des distributions où les agents
localisés dans une même cellule ne sont pas exécutés sur le même processus, ce qui n’est
pas possible avec une distribution à base de grille.

Comme l’ont montré nos expérimentations, la structure de graphe n’est clairement pas
optimale pour représenter tous les modèles, notamment les modèles spatiaux à base
de grille, qui nécessitent la construction de nombreux liens de manière dynamique.
Cependant, la capacité de cette structure à représenter tous les SMA nous permet
d’assurer la distribution de tous les modèles grâce à l’implémentation des algorithmes
de distribution pour la seule structure de graphe.

Ainsi le choix a été fait, dans le cadre du développement de la plateforme FPMAS,
d’utiliser une structure interne de graphe distribué pour représenter les SMA [29]. Afin
de faciliter la représentation des interactions potentielles, le graphe est orienté. Chaque
agent a alors accès à tous les liens sortants et entrants du nœud qui le représente et aux
agents correspondants, mais l’accès à tout autre lien ou agent n’est pas garanti. Il est
possible d’associer à chaque lien un poids et un type d’interaction, par exemple avec un
entier ou une énumération. Il peut donc exister plusieurs liens avec des types différents
d’un agent vers un autre. Ce choix n’a pas vocation à motiver une quelconque technique
de modélisation : il est par exemple possible de spécifier un environnement de type grille
et les champs de perception des agents indépendamment du concept de graphe, c’est
alors à la plateforme de traduire ces fonctionnalités en termes de construction et de mise
à jour du graphe interne.

61



Chapitre 3. Distribution des Systèmes Multi-Agents

3.4.3. Spécialisation des algorithmes

Les algorithmes précédents sont volontairement spécifiés de la manière la plus abstraite
possible, mais leur implémentation nécessite une adaptation au contexte de simulation.
Nous présentons ici un exemple de spécialisation des algorithmes de distribution dans le
cas d’une représentation à base de graphe des SMA.

Migration

Le processus de migration décrit dans l’algorithme 1 est applicable en l’état à la
représentation à base de graphe, en considérant la migration des agents locaux comme la
migration des nœuds qui les représentent.

Création et nettoyage des agents délégués

Pour implémenter l’algorithme de création des agents délégués dans le cas d’un SMA
représenté par un graphe, il suffit de considérer le voisinage de l’agent comme l’ensemble
des agents qui lui sont connectés par des liens entrants ou sortants. Afin d’ajouter
les agents importés aux voisinages, il est donc nécessaire de migrer les liens associés.
L’algorithme 6 représente ainsi un exemple de spécialisation de l’algorithme 2 de création
des agents délégués dans le cas d’une représentation à base de graphe.

Dans le cas d’un graphe, l’algorithme de nettoyage des agents délégués inutiles
(algorithme 3) consiste simplement à supprimer tous les nœuds délégués dont aucun
voisin dans le graphe n’est local, ainsi que les liens associés.

Gestion de la localisation

L’algorithme 4 de gestion de la localisation est nativement applicable au graphe
distribué, en assimilant les agents aux nœuds qui les représentent.

3.4.4. Exemple de distribution

La figure 3.6 présente un exemple de graphe représentant un SMA. La figure 3.7
présente un exemple de distribution initiale de ce graphe sur trois processus, en mettant
en œuvre le concept de continuité des données. Il n’est pas nécessaire d’ajouter les liens
entre nœuds délégués aux graphes, car seuls les agents représentés par des nœuds locaux
sont exécutés et peuvent être amenés à interagir avec leurs voisins, locaux ou délégués. Le
partitionnement est arbitraire, et ne fait l’objet d’aucune contrainte. Il est par exemple
possible d’assigner librement le nœuds a4 au processus 0, même s’il n’est pas connecté à
un autre nœud local.

Une attention particulière est ici apportée à la transparence de la distribution. On
constate par exemple que le voisinage de a0 est constitué de a5, a1 et a2, et ce quel que
soit la distribution du système. Dans ce cas, on observe que a1 et a2 sont délégués, alors
que a5 est local, mais la constitution du voisinage de a0 est parfaitement préservée : du
point de vue de l’utilisateur, a0 peut donc être amené à interagir avec chacun d’eux,

62



Chapitre 3. Distribution des Systèmes Multi-Agents

Algorithme 6 Création des agents délégués pour une représentation à base de graphe.
Entrée:
1: Agents exportés avec leur voisinage à jour
2: Agents importés sans voisinage

Sortie:
3: Agents importés avec leur voisinage à jour

4: algorithme ImportAgent(graphe, agent, localisation de l’agent)
5: si agent /∈ graphe alors
6: Ajouter l’agent au graphe dans un nœud délégué
7: Initialiser la localisation de l’agent
8: fin si
9: fin algorithme

10:
11: algorithme CreateDelegates
12: pour chaque agent des agents exportés faire
13: p ← nouvelle localisation de l’agent
14: pour chaque lien entrant de l’agent faire
15: si localisation agent cible ̸= p alors
16: envoyer à p : (lien, agent cible, localisation cible)
17: fin si
18: fin pour
19: pour chaque lien sortant de l’agent faire
20: si localisation agent source ̸= p alors
21: envoyer à p : (lien, agent source, localisation source)
22: fin si
23: fin pour
24: fin pour
25: recevoir depuis tous les processus : voisinages des agents importés
26: pour chaque lien sortant reçu faire
27: ImportAgent(graphe, agent cible, localisation agent cible)
28: Insérer le lien dans le graphe
29: fin pour
30: pour chaque lien entrant reçu faire
31: ImportAgent(graphe, agent source, localisation agent source)
32: Insérer le lien dans le graphe
33: fin pour
34: fin algorithme

63



Chapitre 3. Distribution des Systèmes Multi-Agents

a0

a5 a1

a2

a4

a3

e0 e1

e2

e3

e4

e5

Figure 3.6. – Graphe d’exemple représentant un SMA. Un lien de ax vers ay indique
que ax peut interagir avec ay.

a0

a5 a1

a2

a4

e0 e1

e2

e3

(a) Processus 0

a0

a1

a2

a4

a3
e2

e5

e4

e3

(b) Processus 1

a0

a1

a2

e1

e5

(c) Processus 2

Figure 3.7. – Exemple de distribution du graphe d’exemple sur 3 processus. Les nœuds
pleins sont locaux, ceux en pointillés sont délégués.

sans se soucier de l’état local ou délégué de chaque voisin. Les spécificités liées aux
nœuds délégués, comme la nécessité de mettre en place des communications avec les
autres processus, doivent être gérées en interne par la plateforme. Ce problème est traité
indépendamment de la structure de graphe dans le chapitre 5.

Nous illustrons ensuite le déroulement de l’algorithme de distribution 5 dans le cas
d’une représentation à base de graphe du modèle présenté à la figure 3.6.

L’objectif consiste à mettre en place une nouvelle partition du modèle distribué initial
de la figure 3.7, ayant pour effet la migration de l’agent a0 vers le processus 2. Pour
rappel, il suffit d’avoir accès à l’échelle de chaque processus à la portion de la partition
qui concerne ses nœuds locaux. La localisation des nœuds non spécifiés est supposée
inchangée. Les nouvelles partitions suivantes peuvent donc être utilisées en entrées de
l’algorithme de distribution sur chaque processus :

— Processus 0 : {a0 : 2}
— Processus 1 : {}
— Processus 2 : {}
La figure 3.8 illustre la migration du nœud a0 grâce à l’algorithme de migration 1. Le

nœud local a0 est remplacé par un nœud délégué au niveau du processus 0, et le nœud
délégué a0 est remplacé par un nœud local sur le processus 2.

Il est ensuite nécessaire d’appliquer l’algorithme de création des agents délégués 6 pour
migrer les liens et construire le voisinage de a0 sur le processus 2, comme présenté sur
la figure 3.9. Seuls les liens e0 et e2 sont exportés : l’agent délégué a1 permet de vérifier
que a1 est localisé sur le processus 2, le lien e1 n’a donc pas besoin d’être exporté car
il est nécessairement déjà représenté sur le processus 2. L’importation du lien e2 se fait
par insertion d’un lien entre a0 et l’agent délégué existant a2. Pour le lien e1, un agent

64



Chapitre 3. Distribution des Systèmes Multi-Agents

Processus 0 Messages Processus 2

a0

a5 a1

a2

a4

e0 e1

e2

e3

a0

a1

a2

e1

e5

a0

Figure 3.8. – Migration du nœud a0 du processus 0 vers le processus 2

Processus 0 Messages Processus 2

a0

a5 a1

a2

a4

e0 e1

e2

e3

a0

a5 a1

a2

e1

e5

e0

e2

a0 a5
e0

a0 a2
e2

Figure 3.9. – Envoi des liens nécessaires et création de noeuds délégués suite à la
migration de a0.

délégué a5 est d’abord créé avant d’insérer le lien, assurant la continuité des données et
l’intégrité du voisinage de a0, nouvellement importé.

Pour finir, la figure 3.10 montre l’application de l’algorithme de nettoyage 3 au
processus 0. L’agent délégué a1, inaccessible par tous les nœuds locaux, est supprimé.
Le processus 2 n’est pas représenté car aucun nœud ne peut y être supprimé.

Le processus 1 n’a pas été représenté sur les figures, car aucun changement du
graphe n’est nécessaire. Cependant, la figure 3.6 montre que le processus 1 possède
une représentation de l’agent a0 : il est donc nécessaire de mettre à jour la localisation
de a0, comme évoqué à la section 3.3.3. L’algorithme de gestion de la localisation 4
étant complètement indépendant de la structure de graphe, son application n’est pas
représentée ici.

3.5. Autres problèmes de distribution

Nous abordons ici brièvement d’autres problématiques liées à la simulation distribuée
de manière générale, sans pour autant impacter la mise en place de la distribution d’une
simulation de SMA.

65



Chapitre 3. Distribution des Systèmes Multi-Agents

a0

a5 a1

a2

a4

e0 e1

e2

e3

a0

a5

a2

a4

e0

e2

e3

Figure 3.10. – Nettoyage des agents délégués sur le processus 0.

3.5.1. Sérialisation des données

À de nombreuses reprises, les algorithmes précédents requièrent l’envoi et la réception
d’agents ou d’autres données entre les processus. Nous pouvons légitimement abstraire
ce procédé dans la spécification des algorithmes, en supposant qu’il est toujours possible
de transmettre les données requises. Compte tenu du contexte distribué, il est cependant
toujours nécessaire de mettre en place une solution concrète pour résoudre ce problème.
Ainsi nous introduisons ici quelques éléments de réflexion issus de notre expérience
personnelle ou des outils existants.

La sérialisation d’un objet ou d’un agent consiste à en construire une représentation
transmissible via un réseau (par exemple une suite d’octets ou de caractères), à
partir de laquelle il est possible de reconstruire l’objet d’origine grâce au processus de
désérialisation.

Dans un contexte de simulation distribuée, la sérialisation représente plus qu’une
contrainte technique. En effet, les processus ne pouvant communiquer entre eux que par
messages via un réseau, il est par définition nécessaire de mettre en place une méthode de
sérialisation des agents pour permettre les migrations et interactions entre les processus.

De nombreuses techniques de sérialisation existent. Les formats JSON ou XML
sont des exemples de méthodes génériques largement utilisées. La plateforme Repast
HPC utilise quant à elle la librairie de sérialisation d’objet C++ Boost Serialization
Library [9]. Le protocole MPI lui-même propose également une interface de sérialisation
bas niveau. D’autres méthodes sont développées dans des contextes plus spécifiques. Nous
ne cherchons pas ici à appuyer le choix d’une méthode ou d’une autre, mais d’attirer
l’attention du développeur de simulation distribuée de SMA sur le fait qu’une technique
de sérialisation des agents doit nécessairement être mise en place.

Dans le contexte du développement de FPMAS, nous avons d’abord basé le processus
de sérialisation sur le format JSON et la librairie Json for Modern C++ [7]. De
manière générale, l’intérêt du format JSON réside dans sa lisibilité par l’humain et
son interopérabilité. Il est par exemple possible d’utiliser les données sérialisées de
manière interne à la plateforme d’une part pour la transmission de messages entre les
processus, et de manière externe d’autre part, en entrée d’outils qui supportent le format
JSON, par exemple pour effectuer de l’affichage web. La librairie utilisée propose en

66



Chapitre 3. Distribution des Systèmes Multi-Agents

outre une interface de sérialisation haut niveau, ce qui est particulièrement compatible
avec nos objectifs d’accessibilité et de transparence de la distribution. Cependant, nos
expérimentations ont montré un coût très important de l’utilisation de cette librairie,
à la fois en mémoire et en temps de calcul. En effet il a été observé que le processus
de sérialisation requiert l’allocation en mémoire d’un objet json pour chaque champs
de données, ce qui s’avère extrêmement coûteux dans un contexte de simulation large
échelle, où la sérialisation de dizaines de milliers d’agents est nécessaire à chaque pas de
temps.

Pour pallier ce problème, nous avons conçu une technique de sérialisation nommée
ObjectPack [4], dont l’architecture est très largement inspirée de la librairie précédente,
afin d’effectuer la sérialisation des données dans un format binaire optimisé pour l’envoi
de message grâce au protocole MPI, tout en proposant une interface haut niveau.
L’optimisation et la maitrise exacte des coûts en mémoire et en temps de calcul du
processus de sérialisation, qui s’avère critique, ont constitué une motivation essentielle
pour développer notre propre méthode de sérialisation. Ainsi la librairie ObjectPack est
actuellement interne à FPMAS, mais pourrait être rendue indépendante à l’avenir. Le
principe de base consiste à faire une copie mémoire directe, octet par octet, des types
fondamentaux (entiers, réels, caractères. . .) dans un espace mémoire à transmettre grâce
au protocole MPI. Pour chaque type de données, nous définissons trois méthodes pour :

1. Requérir l’espace mémoire nécessaire pour écrire les données ;

2. Écrire les données dans un espace mémoire dédié ;

3. Lire les données depuis un espace mémoire donné.

Nous supposons que chaque type de données peut lui-même être constitué d’autres
types. La première passe de l’algorithme de sérialisation consiste à récursivement requérir
la taille nécessaire pour écrire chaque type jusqu’à atteindre les types fondamentaux. Un
espace mémoire pouvant contenir l’intégralité des données est alors réservé en une seule
allocation, ce qui permet une meilleure efficacité en mémoire et en temps de calcul.
La seconde passe de l’algorithme consiste à écrire chaque pièce de données selon le
schéma spécifié par l’utilisateur dans l’espace mémoire qui lui a été alloué. Le procédé
de désérialisation est similaire, les copies mémoires directes étant réalisées de l’espace
mémoire vers des instances de types fondamentaux. Le procédé de sérialisation détaillé
et des exemples sont disponibles à l’annexe A.

Les méthodes de sérialisation sont déclarées de manière statique et réalisent directe-
ment les lectures et écritures dans l’espace mémoire alloué. Le processus de sérialisation
nécessite donc l’allocation d’un nombre constant et limité d’objets, indépendamment des
structures à sérialiser, contrairement à la librairie Json for Modern C++.

Quelle que soit la méthode de sérialisation utilisée, la spécification des règles de
sérialisation des agents reste indépendante de la distribution du point de vue de
l’utilisateur. En effet, ces règles ne dépendent pas du contexte distribué, mais peuvent
être utilisées en interne et de manière transparente par la plateforme de simulation.

67



Chapitre 3. Distribution des Systèmes Multi-Agents

3.5.2. Génération de nombres aléatoires

La génération de nombres aléatoires est un enjeu important de la simulation numé-
rique, en séquentiel comme en distribué, particulièrement dans le cas des SMA où le
comportement des agents se base souvent sur des phénomènes aléatoires.

Il existe deux types de générateurs de nombres aléatoires. Les générateurs physiques se
basent sur des mesures de bruits divers pour fournir des séquences de nombres aléatoires
non reproductibles. En comparaison, les générateurs pseudo-aléatoires produisent grâce à
des algorithmes des séquences en apparence aléatoires, mais parfaitement reproductibles
et prévisibles connaissant l’état actuel du générateur. Des exemples classiques d’algo-
rithmes de génération de nombre pseudo-aléatoires incluent le générateur congruentiel
linéaire [99] et le Mersenne Twister [89]. Nous considérons ici des générateurs de nombres
pseudo-aléatoires pouvant être configurés grâce à une graine qui permet de modifier la
séquence de nombres générés. Le choix du type de générateur dépend des contraintes de
l’utilisateur ou de l’environnement de simulation. Dans le cadre de la conception d’une
plateforme distribuée générique, il est pertinent de se questionner sur la mise en place
d’une génération de nombres aléatoires distribuée.

La distribution des générateurs physiques est triviale et ne laisse pas le choix : des
séquences aléatoires différentes sur chaque processus sont toujours générées à chaque
exécution. Les générateurs pseudo-aléatoires peuvent faire l’objet de deux schémas de
distribution. Dans le premier cas, les mêmes séquences sont générées sur chaque processus.
Il suffit pour cela d’utiliser une instance de générateur déterministe sur chaque processus,
tous initialisés avec la même graine. Ce mécanisme peut s’avérer intéressant pour
construire des ensembles aléatoires identiques sur tous les processus, indépendamment
du nombre de processus, comme discuté au chapitre 5. Ce schéma peut cependant
induire un biais significatif lorsque les processus doivent utiliser des séquences de nombres
indépendantes, par exemple pour le déplacement aléatoire des agents qu’ils exécutent.
C’est pourquoi dans le second schéma des séquences de nombres aléatoires différentes
mais déterministes sont générées sur chaque processus. Une solution consiste à utiliser
un générateur pseudo-aléatoire sur chaque processus, comme présenté dans l’algorithme 7.
Chaque générateur est initialisé à partir d’une graine elle-même générée aléatoirement
et de manière déterministe à partir d’une graine spécifiée par l’utilisateur, ce qui permet
d’obtenir des séquences de nombres indépendantes sur chaque processus mais déterminées
par la graine initiale. Pour des raisons de simplicité, l’algorithme présenté ici initialise
tout le tableau de graines sur tous les processus. Dans la pratique, il suffit de générer
seulement les p premières graines en ne conservant que celle nécessaire au processus
courant.

Du point de vue de l’utilisateur, la distribution est transparente : il lui suffit d’initialiser
un générateur distribué à partir d’une seule graine pour obtenir une génération de
nombres aléatoires cohérente sur tous les processus, reproductible tant que le nombre
de processus est fixé. L’algorithme est applicable à tout générateur pseudo-aléatoire
séquentiel.

68



Chapitre 3. Distribution des Systèmes Multi-Agents

Algorithme 7 Génération de nombres aléatoires déterministes et distribuées
Entrée:
1: générateur de nombre pseudo-aléatoires
2: |P |, nombre de processus
3: p, indice du processus courant

4: algorithme Initialiser(graine aléatoire)
5: générateur de graines ← générateur initialisé avec la graine aléatoire
6: graines ← tableau de |P | graines aléatoires
7: pour i de 0 à n− 1 faire
8: graines[i] ← graine générée par le générateur de graines
9: fin pour

10: générateur local ← générateur initialisé avec graines[p]
11: fin algorithme

12: algorithme Générer
13: retourner valeur générée par le générateur local
14: fin algorithme

3.6. Synthèse

Toute mise en place de simulation distribuée de SMA générique fait face à certaines
difficultés. Les problèmes de migration, de création d’agents délégués, de maintien à jour
des localisations et de nettoyage des agents délégués ont notamment été identifiés pour
permettre la mise en place de la distribution des SMA. Les questions de la sérialisation des
données et de la génération de nombres aléatoires mettent en avant d’autres problèmes
de simulation distribuée génériques. Des solutions dont le niveau d’abstraction permet
leur applicabilité à tout SMA ont été proposées, même si la prise en compte de certains
contextes spécifiques, comme les modèles spatiaux, peuvent donner lieu à des variantes
optimisées. Un exemple de mise en place des algorithmes de distribution dans le cadre
d’une structure de données à base de graphe a notamment été présentée. L’utilisation d’un
graphe permet de faciliter l’implémentation de la distribution des modèles, notamment
grâce à l’accès trivial du voisinage des agents dans une structure de graphe. La mise
en place de la distribution d’un modèle ne suffit cependant pas à réaliser l’exécution
distribuée d’une simulation de SMA. La résolution d’autres problèmes est abordée dans
la suite, en commençant par l’équilibrage de charge.

69



Chapitre 4.

Équilibrage de charge

Dans la partie précédente, nous avons présenté une revue non exhaustive de travaux
théoriques et pratiques autour du problème de l’équilibrage de charge, applicables plus
ou moins directement à la simulation distribuée de SMA. Afin de les unifier, nous
définissons d’abord dans la section 4.1 le problème théorique de l’équilibrage de charge
adapté à la simulation distribuée de SMA. Nous proposons ensuite dans la section 4.2
une architecture logicielle générique et extensible sous forme d’interface permettant
l’implémentation de divers algorithmes d’équilibrage de charge. Les différents types
de modèles et d’environnements considérés ainsi qu’un Méta-Modèle permettant une
configuration expérimentale générique et flexible sont introduits dans la section 4.3. La
définition de plusieurs algorithmes d’équilibrage de charge et leur analyse qualitative sont
présentées dans la section 4.4. Les expérimentations de la section 4.5 présentent enfin des
estimations de performances des algorithmes d’équilibrage implémentés dans FPMAS
pour différents types de modèles.

L’objectif de nos travaux ne consiste pas à concevoir l’algorithme d’équilibrage
de charge optimal pour chaque modèle, mais plutôt de démontrer l’utilité pour une
plateforme de simulation de SMA générique de proposer divers algorithmes d’équilibrage
pour s’adapter aux modèles des utilisateurs. Nous montrons également comment l’archi-
tecture logicielle proposée permet d’implémenter de manière générique et flexible divers
algorithmes d’équilibrage de charge, notamment au travers d’exemples d’application de
la librairie de partitionnement de graphe Zoltan à l’équilibrage de simulations distribuées
de SMA.

70



Table des matières

4.1. Approche théorique de l’équilibrage de charge . . . . . . . . . . . . . . 72
4.1.1. Problème de partitionnement . . . . . . . . . . . . . . . . . . . 72
4.1.2. Problème de repartitionnement . . . . . . . . . . . . . . . . . . 73

4.2. Interface générique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1. Spécification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2. Période d’application . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3. Modèles test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1. Modèles à base de graphes purs . . . . . . . . . . . . . . . . . . 76
4.3.2. Modèles spatiaux uniformes . . . . . . . . . . . . . . . . . . . . 79
4.3.3. Modèles spatiaux non uniformes . . . . . . . . . . . . . . . . . 81
4.3.4. Meta-Modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4. Algorithmes d’équilibrage . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1. Équilibrage de charge à base de graphe . . . . . . . . . . . . . . 85
4.4.2. Équilibrage de charge spatialisé statique . . . . . . . . . . . . . 89
4.4.3. Équilibrage de charge spatialisé dynamique . . . . . . . . . . . 90
4.4.4. Équilibrage de charge à base de grille . . . . . . . . . . . . . . . 91

4.5. Performances et comparaisons . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.1. Graphe pur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.2. Modèle spatial uniforme . . . . . . . . . . . . . . . . . . . . . . 95
4.5.3. Modèle spatial non uniforme . . . . . . . . . . . . . . . . . . . 98

4.6. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

71



Chapitre 4. Équilibrage de charge

4.1. Approche théorique de l’équilibrage de charge

L’équilibrage de charge a déjà été défini au chapitre 2 comme un algorithme qui consiste
à assigner chaque agent à un processus au cours de la simulation en faisant appel de
manière ponctuelle (équilibrage statique) ou itérative (équilibrage dynamique) à une
méthode de partitionnement, chargée de construire des partitions.

Nous nuançons ici la définition de ce partitionnement selon deux cas d’application.
Dans le cas du partitionnement, l’algorithme cherche à optimiser l’équilibrage de la
simulation indépendamment de la distribution actuelle du modèle. Dans le cas du
repartitionnement, l’algorithme prend en compte la distribution actuelle du modèle afin
notamment de limiter la migration des données entre les processus, qui a elle-même un
coût.

Ainsi l’algorithme d’équilibrage de charge peut, au cours de la simulation, faire appel
à la méthode de création de partitions selon deux modes, partitionnement ou repar-
titionnement, que l’équilibrage soit statique ou dynamique. Par exemple, l’application
d’une méthode de partitionnement par un équilibrage dynamique consiste à équilibrer la
simulation de manière récurrente sans prendre en compte le partitionnement actuel de la
simulation. Cette méthode peut s’avérer pertinente lorsque le déséquilibre devient trop
marqué pour être résolu par les modifications locales des méthodes de repartitionnement.
L’application d’une méthode de repartitionnement par un équilibrage statique consiste
quant à elle à équilibrer la simulation en prenant en compte la partition initiale du
modèle. Le comportement par défaut des algorithmes d’équilibrage de charge de la
plateforme FPMAS consiste à appliquer une méthode de partitionnement à la première
itération, puis à appliquer une méthode de repartitionnement aux itérations suivantes
si une application récurrente est demandée par l’utilisateur, pour obtenir un équilibrage
dynamique. Certains algorithmes, comme le partitionnement aléatoire, ne font pas de
réelles distinctions entre les deux modes. Les travaux de Wang et al. [127] décrivent un
équilibrage dynamique des simulations distribuées de SMA avec une distinction claire
entre les méthodes de partitionnement et de repartitionnement. Notre approche reste
compatible avec ces deux exemples.

4.1.1. Problème de partitionnement

Pour définir le problème du partitionnement, chaque agent ai est associé à un poids wi,
censé représenter le temps d’exécution relatif de chaque agent par rapport aux autres.
Nous définissons alors les éléments suivants, largement inspirés des travaux de Lui et
Chan [78] dans le domaine des environnements virtuels distribués et adaptés à notre
contexte :

— P : ensemble de processus ;
— NP : nombre de processus ;
— S : A→ P : partition de l’ensemble des agents ;
— uS,p = {ai,S(ai) = p} l’ensemble des agents associés au processus p ∈ P selon la

partition S ;

72



Chapitre 4. Équilibrage de charge

— WS,p =
∑

ai∈uS,p

wi : charge de calcul totale associée au processus p ∈ P ;

— W ∗
S =

∑
p∈P WS,p

NP
=

∑
ai∈A wi

NP
: charge de calcul moyenne associée à chaque

processus.
Dès lors, nous définissons deux types de coûts associés à une partition : le coût en

charge de calcul et le coût en communications.
Le coût en charge de calcul de la partition S est défini par l’équation 4.1.

CW
S =

∑
p∈P
|WS,p −W ∗

S | (4.1)

Cette définition n’est pas unique. Il est par exemple possible de définir un autre coût
par le maximum des écarts à la charge de calcul moyenne. Dans les deux cas, minimiser
le coût revient à minimiser l’écart entre la charge associée à chaque processus et la charge
moyenne, de sorte à égaliser la charge de calcul associée à tous les processus.

Nous définissons ensuite :
— γS : A×A→ R+ telle que γS(ai, aj) désigne le coût en temps des communications

depuis l’agent ai vers aj dans une simulation distribuée selon la partition S. Les
communications n’étant pas symétriques, γS(ai, aj) ̸= γS(aj , ai).

Plusieurs cas sont notables.
— Si ai et aj sont associés au même processus, alors γS(ai, aj) = 0.
— Sinon si aj n’appartient pas au voisinage de ai, c’est-à-dire que ai n’est pas amené

à interagir avec aj d’après les règles du modèle, alors γS(ai, aj) = 0.
— Sinon, ai va pouvoir communiquer avec aj par l’intermédiaire d’un agent délégué

représentant aj , conformément au principe de distribution décrit au chapitre
précédent. Dès lors, γS(ai, aj) ≥ 0.

Le coût en communications de la partition S peut se définir ainsi :

CL
S =

∑
ai∈A

∑
aj∈A

γS(ai, aj) (4.2)

Minimiser ce coût revient à limiter les communications entre les processus. Nous
pouvons alors nous baser sur la formule générale de Lui et Chan [78] déjà évoquée
au chapitre 4, de sorte que le problème du partitionnement consiste à trouver le
partitionnement S minimisant la quantité suivante :

CS = CW
S + CL

S (4.3)

Les paramètres W1 et W2 utilisés par Lui et Chan pour ajuster l’importance relative
du coût en charge et en communication ne sont pas utilisés ici, car considérer seulement
la minimisation de la somme globale suffit à notre propos.

4.1.2. Problème de repartitionnement

Le problème du partitionnement ne prend pas en compte la partition actuelle du
modèle. D’où l’introduction de la notion de repartitionnement, étudiée notamment par

73



Chapitre 4. Équilibrage de charge

les concepteurs de Zoltan, une librairie de repartitionnement et d’équilibrage de charge
dynamique d’hypergraphes déjà évoquée [34, 35, 6].

L’objectif du repartitionnement consiste à rétablir l’équilibre de la partition actuelle
grâce à des modifications locales de sorte à limiter les migrations d’agents. Le repar-
titionnement prend donc en compte le coût de migration des agents, contrairement au
partitionnement, qui risque d’entrainer des migrations inutiles et conséquentes même si
l’équilibre de la charge est préservé. Par exemple, effectuer seulement une permutation
des processus à partir d’une partition déjà équilibrée engendrerait la migration inutile de
la totalité des agents, tout en préservant l’équilibre. Le repartitionnement permet d’une
part de résoudre ce problème, et d’autre part d’éviter la migration de certains agents si
leur coût de migration est supérieur au gain en performance estimé suite à leur migration.

Nous enrichissons les définitions précédentes avec des notions de repartitionnement
introduites par Catalyurek et al. [35] pour les adapter à la simulation distribuée de
SMA.

Soit une partition initiale S ′, et une partition objectif S. Nous définissons :
— λS′,S(ai) : coût de migration de l’agent ai dans le cadre de la distribution du modèle

selon S en partant de la partition S ′ ;
— CM

S′,S =
∑
ai∈A

λS′,S(ai) : coût total de migration de S ′ à S : ;

— α : facteur multiplicateur permettant d’ajuster l’importance de l’équilibrage de la
partition par rapport aux coûts de migration. Ce paramètre permet notamment
d’ajuster la comparaison entre le coût de migration d’un agent et le gain en
performance induit par sa migration.

Le problème du repartitionnement, considérant une partition S ′ initiale, consiste alors
à construire une partition S minimisant le coût suivant :

CS′,S = α(CW
S + CL

S ) + CM
S′,S

= αCS + CM
S′,S (4.4)

4.2. Interface générique

Comme vu au chapitre 2, il existe une grande diversité d’algorithmes d’équilibrage de
charge applicables au cas de la simulation distribuée de SMA. Compte tenu des définitions
formelles précédentes des problèmes de partitionnement et repartitionnement, qui
correspondent à des problèmes d’optimisation, les algorithmes d’optimisation génériques
(algorithmes génétiques, Tabu search, optimisation par colonies de fourmis. . .) sont
également applicables au problème de l’équilibrage de charge de SMA [125].

Tous les algorithmes ne sont pas applicables à tous les modèles, et tous n’exposent
pas les mêmes performances selon le modèle simulé. Dans le cadre d’une plateforme de
simulation distribuée de SMA qui se veut générique et efficace, le support pour différents
algorithmes d’équilibrage de charge, voire la possibilité d’implémenter des algorithmes
spécifiques à un modèle, semble donc nécessaire.

De plus, le meilleur algorithme d’équilibrage de charge n’est pas nécessairement celui
produisant la partition de meilleur qualité, c’est-à-dire celui minimisant la fonction de

74



Chapitre 4. Équilibrage de charge

ModelModel LoadBalancingLoadBalancing DistributionDistributionagents partition

Figure 4.1. – Diagramme de composants UML pour l’interface d’équilibrage de charge

coût définie par l’équation 4.4. En effet, il est parfois nécessaire de prendre en compte
d’autres critères comme le temps d’exécution de l’algorithme d’équilibrage de charge
lui-même ou la difficulté d’implémentation et de paramétrage des algorithmes.

4.2.1. Spécification

Au chapitre précédent nous avons défini des méthodes permettant de distribuer une
simulation tout en assurant la continuité et la cohérence des modèles distribués quelles
que soient les partitions construites par les algorithmes d’équilibrage de charge. Il est donc
possible de construire une interface d’équilibrage de charge indépendante du processus de
distribution, comme représenté sur la figure 4.1. L’équilibrage de charge prend en entrée
une liste d’agents, et produit une partition. L’algorithme de distribution permet ensuite
de distribuer le modèle, quelle que soit la partition construite.

L’interface présentée sur la figure 4.2 définit une méthode d’équilibrage générique,
balance(), qui prend en entrée deux paramètres.

Une liste d’agents locaux est d’abord spécifiée sur chaque processus. Il est possible
d’appliquer l’algorithme seulement à un sous-ensemble d’agents, en laissant inchangé la
localisation des autres. L’utilisation d’un type d’agent générique permet de définir à la
fois des algorithmes applicables à tout modèle et d’autres tirant parti des spécificités des
agents, comme leur position dans l’espace.

Le paramètre mode, identique sur tous les processus, permet de distinguer les méthodes
de construction de partitions, partitionnement ou repartitionnement.

De manière générale, l’utilisation d’une interface permet de choisir librement l’im-
plémentation de l’algorithme d’équilibrage de charge à utiliser pour chaque modèle
sans altérer le reste du système. La définition de cette interface et de ses paramètres
n’est qu’un choix permettant de formaliser les algorithmes présentés dans ce document.
Il est cependant possible d’adapter les mêmes concepts aux choix du développeur
et à l’environnement de développement, par exemple en définissant deux méthodes
d’équilibrage distinctes plutôt qu’un paramètre mode. De telles considérations n’altèrent
cependant pas la structure logique de l’architecture de simulation et des algorithmes
d’équilibrage proposés.

4.2.2. Période d’application

Les appels à l’algorithme d’équilibrage de charge sur tous les agents du modèle
sont gérés en interne par la plateforme. Certains algorithmes peuvent nécessiter une
application récurrente à chaque pas de temps. C’est par exemple le cas avec RepastHPC

75



Chapitre 4. Équilibrage de charge

≪enum≫
Mode

PARTITION, REPARTITION

≪interface≫
LoadBalancing

+ balance(agents: List<Agent>, mode: Mode): Map<Agent, Process>

Figure 4.2. – Diagramme de classe de l’interface d’équilibrage de charge.

ou D-MASON, où il est nécessaire de migrer immédiatement les agents ayant franchis la
frontière de la partie de l’environnement associée au processus courant.

En revanche, les algorithmes de continuité des données décrits au chapitre 3 nous
permettent de lever ces contraintes. La cohérence du modèle étant garantie quelle que
soit la distribution, il est possible d’exécuter des agents locaux n’étant plus assignés au
même processus que la partie de l’environnement dans laquelle ils se trouvent, même si
l’essentiel de leurs voisinages deviendront probablement distants.

Les algorithmes d’équilibrage peuvent donc s’appliquer à une période arbitraire
et variable dans le temps, définie par l’utilisateur ou déterminée automatiquement
selon l’évolution du modèle. De manière générale, en supposant que l’application de
l’algorithme d’équilibrage aboutit à un meilleur équilibre, il est clair que la qualité des
partitions d’un modèle croit lorsque la période d’application de l’équilibrage diminue.
Cependant, il peut être préférable d’appliquer l’algorithme d’équilibrage à une fréquence
plus faible, afin de trouver le meilleur compromis entre le temps d’exécution des
algorithmes d’équilibrage de charge, qui implique un temps de migration des agents,
et le gain induit par un meilleur équilibre de la simulation. Ce compromis dépend du
modèle simulé et de l’environnement de simulation.

4.3. Modèles test

Plutôt que de tester les algorithmes d’équilibrages de charge implémentés à partir
de l’interface générique sur des modèles spécifiques, nous introduisons différents types
de modèles Multi-Agents, qui représentent eux-mêmes une approximation de certaines
classes de modèles.

Dès lors l’implémentation des ces types de modèles dans un Meta-Modèle nous permet
d’estimer les performances des algorithmes sur de larges classes de modèles.

4.3.1. Modèles à base de graphes purs

Les modèles à base de graphes purs représentent les modèles dans lesquels les
agents interagissent entre eux selon un graphe, sans notion d’environnement ou de
spatialité. C’est par exemple le cas dans la simulation de réseaux sociaux [23]. Le graphe
d’interactions peut être statique ou dynamique.

Nous pouvons définir divers types de graphes statiques paramétrables, dont la
structure présente des caractéristiques intéressantes ou assimilables à des modèles Multi-
Agents existants. Les abréviations utilisées dans la suite pour désigner chaque type
d’environnement sont données entre parenthèses.

76



Chapitre 4. Équilibrage de charge

Types de graphe

Grille (G). Une grille discrète régulière de taille X × Y . Nous considérons que chaque
cellule est connectée à ses 8 voisins, ce qui correspond au voisinage de Moore, même si
d’autres schémas sont possibles. Bien que rarement utilisé en tant que graphe pur, ce
type de graphe régulier permet de modéliser les interactions pouvant avoir lieu entre les
cellules d’un environnement.

Graphe aléatoire (R, « Random »). Un graphe dans lequel chaque nœud est connecté
à des voisins choisis aléatoirement. N nœuds sont d’abord initialisés. Le nombre de
voisins sortants de chaque nœud est déterminé aléatoirement selon une loi de Poisson
de paramètre K, de sorte que chaque nœud possède en moyenne K voisins sortants. Les
voisins de chaque nœud sont ensuite choisis aléatoirement et uniformément parmi tous les
autres nœuds. Ce graphe n’est pas le plus évident à associer à un modèle réel. Cependant,
il pose un haut niveau de contrainte en termes de distribution. En effet, quelle que soit
l’assignation des nœuds aux processus, chaque nœud a une forte probabilité de posséder
des voisins sur d’autres processus, impliquant de nombreuses communications.

Graphe agrégé (C, « Clustered »). Ce graphe permet de représenter des modèles où les
interactions ont lieu selon une notion de proximité spatiale. Pour le construire, N nœuds
sont d’abord initialisés en leur assignant une position réelle (x, y) ∈ [0, 1]×[0, 1] selon une
loi aléatoire uniforme. Comme précédemment, le nombre de voisins sortants est choisi
selon une loi de Poisson de paramètre K. Les voisins de chaque nœud correspondent
ensuite aux plus proches voisins, selon les coordonnées aléatoires précédentes. Il est
important de noter que les coordonnées utilisées sont internes à l’algorithme, et oubliées
par la suite.

Graphe Small World (SW). Ce type de graphe, entre le graphe aléatoire et le graphe
agrégé, a été introduit par Watts et Strogatz [128] afin de mieux représenter les
relations entre individus du monde réel [91]. La structure se retrouve également dans
d’autres contextes, par exemple dans les réseaux de distribution d’énergie. La méthode
de construction proposée par Watts et Strogatz étant conçue pour générer des graphes
non orientés, nous adaptons la procédure de la manière suivante.

Nous supposons que le nombre moyen de voisins sortants, K, est pair. Un graphe
cyclique avec N nœuds est d’abord initialisé, de sorte que chaque nœud soit connecté
aux K/2 voisins le précédant dans le cycle, et au K/2 voisins le suivant. Un exemple est
donné figure 4.3.

Chaque lien du graphe est ensuite sélectionné pour le relier avec une probabilité p. Pour
chaque lien à relier, le côté à relier est choisi avec une probabilité 1/2. Pour tous les liens
choisis dont le nœud cible doit être relié, un nœud parmi tous ceux du graphe est choisi
aléatoirement, et la cible du lien est changée pour ce nœud si et seulement si le nœud
choisi n’est pas le nœud source, et s’il n’existe pas déjà un lien entre le nœud source et le
nœud choisi. Les liens dont le nœud source doit être relié sont traités de manière analogue.

77



Chapitre 4. Équilibrage de charge

Figure 4.3. – Exemple de graphe cyclique à l’initialisation de la procédure de construc-
tion d’un graphe Small World avec N = 20 et K = 4.

Le graphe généré est parfaitement régulier pour p = 0, et complètement aléatoire pour
p = 1.

Analyse

Le tableau 4.1 présente des exemples de caractéristiques obtenues pour différents
types de graphes de taille comparable 1. Dans le contexte de la génération aléatoire de
graphes orientés de grande dimension, il est facilement possible d’obtenir des graphes non
connectés, ou tout du moins faiblement connectés, avec des nœuds qui ne sont atteignables
que dans un sens de parcours. C’est pourquoi, afin de valider la pertinence des graphes
générés, nous ajoutons à C et L une valeur de Connectivité, définie comme le rapport
entre la taille de la plus grande composante connectée et le nombre de nœuds dans le
graphe.

On constate que la grille et le graphe agrégé ont des caractéristiques similaires. En effet,
la grille peut-être vue comme un cas particulier de graphe agrégé, avec une très grande
régularité. Ces deux types de graphes exposent un coefficient d’agrégation et une longueur
de chemin caractéristique élevés par rapport au graphe aléatoire. En effet, la construction
des voisinages par relation de proximité permet de fortement connecter les voisins entre
eux à l’échelle locale, ce qui augmente en contrepartie le nombre de sauts nécessaires

1. Les valeurs ont été calculées grâce à l’outil Python Graph-Tool [8], à partir de graphes générés par
FPMAS.

78



Chapitre 4. Équilibrage de charge

Environnement C L Connectivité

Grille 1000× 1000 0,429 467 100%
Agrégé 0,557 364 99,6%
Aléatoire 7,50× 10−6 6,88 99,3%
Small World (p = 0,1) 0,474 10,7 100%

Table 4.1. – Valeurs des coefficients d’agrégation (C), de longueur de chemin caracté-
ristique (L) et de Connectivité pour différents types d’environnements avec
N = 1000 000 et K = 8.

pour atteindre un nœud éloigné. En comparaison, le coefficient d’agrégation du graphe
aléatoire est très faible car les voisins sont choisis parmi tout le graphe, indépendamment
d’une quelconque notion de proximité, ce qui permet de se déplacer en un faible nombre
de saut d’un bout à l’autre du graphe. Enfin, conformément à la définition de Watts
et Strogatz, le graphe Small World présente à la fois un coefficient d’agrégation élevé
et une faible longueur de chemin caractéristique. En effet, par construction, le graphe
est initialement agrégé, puis la procédure de reconnection d’un nombre limité de liens
permet de créer des raccourcis dans le graphe, réduisant la longueur des chemins, tout
en limitant la décomposition des voisinages à l’échelle locale.

La figure 4.4 représente des exemples de graphes générés automatiquement grâce à
FPMAS. Les méthodes de construction décrites ci-dessus étant séquentielles, elles ont
été implémentées de manière distribuée dans FPMAS afin de bénéficier de l’exécution
parallèle pour générer des graphes de grande taille et répartir leur utilisation de mémoire
sur les nœuds de calcul.

4.3.2. Modèles spatiaux uniformes

Un moyen d’ajouter du dynamisme aux modèles consiste à utiliser les graphes
précédents comme des environnements sur lesquels des agents se déplacent pour définir
des modèles spatiaux. Dans ce type de modèle, les agents sont localisés dans une cellule de
l’environnement. Ils peuvent alors se déplacer dans les cellules voisines de leur localisation,
et y percevoir d’autres agents, selon leurs champs de déplacement et de perception.
D’autres modèles pourraient considérer d’autres types d’interactions avec des agents
éloignés spatialement. Ces interactions ne sont pas considérées dans notre étude, mais se
rapprochent du cas du modèle spatial basé sur un environnement de type Small-World,
où les agents au bout des raccourcis sont considérés comme spatialement proches même
s’ils se situent éloignés dans le graphe initial. À noter qu’il n’est pas nécessaire d’associer
des coordonnées explicites à chaque cellule pour définir un modèle spatial.

Nous considérons des exemples où la structure de l’environnement est statique. Le
déplacement des agents induit cependant un dynamisme à l’échelle du modèle, avec
notamment la mise à jour des perceptions des agents.

Le taux d’occupation de l’environnement, défini comme le rapport entre le nombre
d’agents et le nombre de cellules, est un paramètre important des modèles spatiaux. Un

79



Chapitre 4. Équilibrage de charge

(a) Grille 10× 10. (b) Aléatoire (N = 100,K = 6).

(c) Agrégé (N = 100,K = 6). (d) Small World
(N = 100,K = 6, p = 0, 1).

Figure 4.4. – Exemple de graphes générés avec FPMAS.

80



Chapitre 4. Équilibrage de charge

modèle à base de graphe pur peut être conçu comme un modèle spatial avec un taux
d’occupation nul.

Nous qualifions un modèle spatial d’uniforme lorsque la distribution des agents sur les
cellules reste uniforme au cours du temps. C’est notamment le cas dans un modèle où
les agents sont initialisés aléatoirement et uniformément sur le réseau de cellules, puis se
déplacent aléatoirement à chaque pas de temps vers une des cellules voisines, en supposant
négligeable la partie faiblement connectées du graphe orienté représentant les cellules,
dans laquelle les agents pourraient se retrouver piégés. Dans la pratique, l’existence
possible de nœuds qui n’appartiennent pas à la composante fortement connectée des
graphes aléatoires ou agrégés présentés dans le tableau 4.1 n’est pas un problème. En
effet, par construction, ces nœuds ne possèdent que des liens sortant vers la plus grande
composante fortement connectée du graphe. Il est donc garanti que les agents sortent
rapidement de ces quelques nœuds, sans pouvoir y entrer à nouveau.

Les version NetLogo des modèles Proie-Prédateur [14] et Virus [13] sont des exemples
de modèles spatiaux uniformes à base de grille.

4.3.3. Modèles spatiaux non uniformes

Dans d’autres modèles, la répartition des agents sur l’environnement ne reste pas
uniforme au cours du temps. C’est par exemple le cas avec les modèles de nuées
d’oiseaux [11], le modèle Sugarscape [53], ou les modèles de colonies de fourmis où les
agents se concentrent sur les zones riches en nourriture.

Afin de générer des modèles spatiaux non uniformes génériques, il est possible
d’assigner une valeur d’utilité aux cellules de l’environnement. Les agents sont initialisés
uniformément sur l’environnement. Leur comportement consiste ensuite à se déplacer
aléatoirement dans une cellule voisine de sorte que la probabilité de choisir une cellule
soit proportionnelle à son utilité. Pour générer un modèle spatial uniforme à partir de ce
comportement, il suffit d’attribuer la même utilité à toutes les cellules.

Pour des raisons de simplicité, nous limitons la conception de fonctions d’utilité non
uniformes aux modèles à base de grille. La méthode consiste d’abord à définir un ou
plusieurs centres d’attraction, puis à associer une utilité aux cellules en fonction de leur
distance au centre d’attraction. Si plusieurs centres d’attraction sont utilisés, l’utilité est
définie comme la somme des utilités générées par chaque centre. Des fonctions d’utilité
basiques sont présentées sur la figure 4.5

Diverses expérimentations nous ont cependant conduit à définir l’utilité Marche-
Inverse, de sorte que l’utilité soit une marche de hauteur 1 000 pour les distances
inférieures au rayon, et égale à l’utilité inverse de la figure 4.5 au delà. Cette utilité
permet aux agents de se déplacer progressivement jusqu’au disque de haute utilité au
centre, puis de s’y déplacer uniformément sans en sortir.

4.3.4. Meta-Modèle

Plutôt que de présenter des expériences difficilement généralisables basées sur des
exemples particuliers, nous essayons d’identifier des classes de modèles et de fournir

81



Chapitre 4. Équilibrage de charge

Figure 4.5. – Exemples de fonctions d’utilité basiques.

Modèle Multi-Agents Type de modèle Type de graphe

Véhicules sur un graphe urbain Spatial uniforme Graphe agrégé

Virus Spatial uniforme GrilleProie-Prédateur

Colonies de fourmis Spatial non-uniforme Grille

Communications sur un réseau social Graphe pur Small-World

Table 4.2. – Assimilation de quelques modèles Multi-Agents à des configurations du
Méta-Modèle.

des résultats expérimentaux pertinents pour de nombreux modèles.
Nos expérimentations se basent donc sur la définition d’un Meta-Modèle paramétrable

dont le but n’est pas d’illustrer un comportement particulier mais d’imiter des dyna-
miques rencontrées dans de nombreux modèles et pertinentes dans le contexte de la
distribution de simulation de SMA. Le Meta-Modèle permet notamment de simuler les
classes de modèles précédemment définies.

Le principe consiste ainsi, pour prévoir les performances de chaque algorithme
d’équilibrage sur un modèle donné, à assimiler ce modèle à un cas du Méta-Modèle
pour lequel les résultats sont disponibles. Ce travail d’assimilation est laissé au lecteur.
Quelques exemples sont cités dans le tableau 4.2 pour illustrer le principe.

L’assimilation ne se fait pour le moment que sur la structure de l’environnement et
le schéma de déplacement des agents. En effet, le temps d’exécution réel des agents
n’a aucun impact sur les algorithmes d’équilibrage considérés. Même les algorithmes de
partitionnement de graphe se basent sur le poids des agents, dont la valeur peut être

82



Chapitre 4. Équilibrage de charge

définie indépendamment du comportement réel des agents. Les agents et les cellules du
Méta-Modèle ne sont donc pour le moment pas associés à un comportement réel. Dans
le chapitre 5, une méthode d’assimilation des comportements est proposée afin d’évaluer
les performances des différents schémas de communications.

Le seul comportement des agents consiste ici à se déplacer aléatoirement sur les cellules
selon un champ de perception de taille 1. Dans le cas de l’environnement de type grille,
les agents se déplacent dans le voisinage de Moore. Pour les autres graphes, les agents
choisissent une destination parmi les voisins de la cellule dans laquelle ils sont localisés.
Nous supposons la présence d’une barrière de synchronisation entre l’exécution des agents
et des cellules. Plus précisément, l’exécution d’un pas de temps peut être décrite comme
suit, en supposant une barrière de synchronisation stricte à chaque étape :

— étape 1 : exécution des agents ;
— étape 2 : exécution des cellules ;
— étape 3 : exécution de l’algorithme d’équilibrage de charge, selon sa fréquence

d’exécution, et distribution du modèle selon la nouvelle partition.
Aucune interaction n’a réellement lieu dans le modèle, autre que la mise à jour

des champs de perception et de déplacement. Ainsi, plutôt que de mesurer le temps
d’exécution de ces agents et cellules fictifs, nous mesurons, à chaque pas de temps et sur
chaque processus, les grandeurs suivantes :

1. Tlb : temps d’exécution de l’algorithme d’équilibrage de charge ;

2. Tdist : temps passé à distribuer le modèle (mise en place de la nouvelle partition) ;

3. Wa : poids total des agents sur le processus ;

4. Wc : poids total des cellules sur le processus ;

5. La→a : poids total des liens depuis des agents locaux vers des agents délégués ;

6. Lc→c : poids total des liens depuis des cellules locales vers des cellules déléguées ;

7. La→c : poids total des liens depuis des agents locaux vers des cellules déléguées.

Seuls Tlb et Tdist représentent des temps d’exécution réels. Dans l’hypothèse où tous
les poids sont unitaires, les autres grandeurs correspondent respectivement au nombre
d’agents ou de liens associés. Nous ne considérons pas les liens entre deux entités locales
pour deux raisons :

1. Le coût associé aux interactions est négligeable par rapport à celui des interactions
distantes.

2. Leur coût peut être inclus dans les temps d’exécution du comportement des agents
et des cellules.

Lors d’un pas de temps où l’application de l’algorithme d’équilibrage n’a pas lieu, nous
obtenons naturellement Tlb = Tdist = 0.

On constate que toutes ces grandeurs permettent d’évaluer empiriquement le coût de
l’équilibrage de charge dynamique défini à l’équation 4.4, en mettant en place l’égalité

83



Chapitre 4. Équilibrage de charge

suivante :

CS′,S = α(CW
S + CL

S ) + CM
S′,S

= α(
∑
p∈P
|Wa −W ∗

a |+
∑
p∈P
|Wc −W ∗

c |) (4.5)

+ α
∑
p∈P

(La→a + La→c + Lc→c)

+ max
p∈P

(Tdist)

Les coûts en charge de calcul pour les agents et les cellules sont calculés indépen-
damment, en raison de la barrière de synchronisation entre l’exécution des agents et
des cellules. Le coût en communication est définit comme le total des poids des liens
entre tous les types d’agents, qui représentent les interactions. Le coût de migration, qui
représente le temps de distribution réel, est défini comme le maximum observé sur tous
les processus, afin d’obtenir une borne supérieure du coût de migration.

Nous pourrions donc utiliser la fonction de coût 4.5 pour évaluer empiriquement les
performances de chaque algorithme d’équilibrage à partir des résultats du Meta-Modèle.
Cependant, afin d’assimiler plus facilement les résultats du Méta-Modèle à des modèles
réels, nous proposons une méthode d’estimation des temps d’exécution du Méta-Modèle.

Les paramètres suivants permettent de représenter le comportement réel des agents
dans le Méta-Modèle :

— ta : estimation du temps d’exécution d’un agent ;
— tc : estimation du temps d’exécution d’une cellule ;
— ta→a : estimation du temps de communication selon un lien entre un agent local et

un agent distant ;
— ta→c : estimation du temps de communication selon un lien entre un agent local et

une cellule distante ;
— tc→c : estimation du temps de communication selon un lien entre une cellule locale

et une cellule distante.
Nous pouvons alors estimer le temps d’exécution des agents et des cellules sur le

processus P grâce aux formules suivantes :

Ta,P = taWa + ta→aLa→a + ta→cLa→c (4.6)
Tc,P = tcWc + tc→cLc→c (4.7)

Pour rappel, les temps d’équilibrage de charge et de distribution sont des temps réels
mesurés sur chaque processus. De plus, nous supposons une barrière de synchronisation
stricte entre les étapes d’exécution d’un pas de temps précédemment définies. Dès lors,
nous pouvons estimer le temps d’exécution d’un pas de temps du modèle grâce à la
formule suivante :

T = max
p∈P

(Ta,P ) + max
p∈P

(Tc,P ) + max
p∈P

(Tlb + Tdist) (4.8)

84



Chapitre 4. Équilibrage de charge

≪enum≫
Mode

PARTITION, REPARTITION

≪interface≫
LoadBalancing

+ balance(agents: List<Agent>, mode: Mode): Map<Agent, Process>

StaticSpatialLoadBalancing

− load balancing: LoadBalancing

+ balance(agents: List<Agent>, mode: Mode)

ZoltanLoadBalancing

− period: int
− imbalance tol: float

+ balance(agents: List<Agent>, mode: Mode)

DynamicSpatialLoadBalancing

− load balancing: LoadBalancing

+ balance(agents: List<Agent>, mode: Mode)

GridLoadBalancing

− grid width: int
− grid height: int

+ balance(agents: List<Agent>, mode: Mode)

Figure 4.6. – Diagramme de classes présentant quelques algorithmes d’équilibrage de
charge.

Le maximum associé à la troisième étape est calculé sur la somme de Tlb et Tdist, car
nous ne supposons pas de barrière de synchronisation stricte entre l’équilibrage et la
distribution du modèle.

Une discussion sur la méthode d’estimation des coûts de communication du Méta-
Modèle est disponible en annexe B.

Le temps d’exécution total estimé du modèle est facilement obtenu par la somme des
temps estimés pour chaque pas de temps.

4.4. Algorithmes d’équilibrage

Il est possible, à partir de l’interface d’équilibrage, de définir plusieurs algorithmes
d’équilibrage de charge. Dans les sections suivantes, nous décrivons l’implémentation
possible des algorithmes présentés sur la figure 4.6.

4.4.1. Équilibrage de charge à base de graphe

Une méthode d’équilibrage de charge de simulation de SMA consiste à partitionner
l’ensemble des agents grâce à un algorithme de partitionnement de graphe. Des librairies
de partitionnement de graphe et leur applicabilité à la simulation de SMA ont déjà été
évoquées à la section 2.7.2.La méthode est évidente pour le cas d’un modèle à base
de graphe. De manière générale, il suffit de construire un graphe avec les agents pour
nœuds et des liens pour chaque interaction potentielle pour appliquer un algorithme de
partitionnement de graphe à tout modèle Multi-Agents, indépendamment de la structure
de données utilisée par le simulateur. Le choix d’un graphe comme structure de données

85



Chapitre 4. Équilibrage de charge

permet cependant d’appliquer nativement les algorithmes de partitionnement de graphe
à nos modèles.

Notre implémentation de l’équilibrage de charge à base de graphe dans FPMAS se base
sur la librairie Zoltan, pour des raisons de performance, de qualité d’implémentation et
de support du repartitionnement, et pour l’implémentation distribuée de la librairie.

Conversion du modèle Multi-Agents vers Zoltan

L’algorithme 8 présente les fonctions qu’il est nécessaire de fournir à Zoltan pour :
— lister les nœuds ;
— obtenir le poids de chaque nœud ;
— lister les liens ;
— obtenir le poids de chaque lien ;
— définir le coût de migration de chaque nœud.
La construction des nœuds (lignes 1 et 4) ne pose pas de problème spécifique. Le poids

des nœuds n’a pas a être spécifié dans la même unité que le poids des liens. En revanche,
le coût de migration doit être spécifié dans la même unité que les coûts de communication.
Le coût de migration d’un nœud (ligne 23) est obtenu par la somme du coût de migration
de l’agent et des coûts de migration de ses voisins. En effet, conformément aux algorithmes
de migration définis au chapitre 3, la migration d’un agent implique la migration d’une
copie de son voisinage afin de maintenir la continuité des données. Dans le cas de la
représentation à base de graphe, le coût de migration d’un voisin représente le coût de
migration de tous les liens entre l’agent et ses voisins. La conversion détaillée d’un modèle
Multi-Agents vers la structure d’hypergraphe de Zoltan est discutée dans l’annexe C.

Implémentation de l’interface d’équilibrage

La librairie Zoltan et son algorithme de partitionnement de graphe dynamique peuvent
être utilisés pour implémenter une méthode d’équilibrage de SMA comme présenté dans
l’algorithme 9.

La méthode d’initialisation doit être appelée une fois, avant le début de la simu-
lation. Dans un contexte de programmation orientée objet, ces instructions peuvent
typiquement être appelées au niveau d’un constructeur. Parmi les nombreux paramètres
proposés par Zoltan, nous discutons ici seulement des paramètres IMBALANCE_TOL et
PHG_REPART_MULTIPLIER, dont la définition à des valeurs autres que celles fournies par
défaut s’est avérée pertinente dans notre application de Zoltan à la simulation distribuée
de SMA.

Le paramètre IMBALANCE_TOL désigne le taux de déséquilibre maximal de la partition
construite. Ce paramètre est défini par les concepteurs de Zoltan comme le rapport
entre la charge maximale pouvant être associée à un processus et la charge moyenne.
Zoltan ne construit que des partitions respectant ce critère, et cherche à minimiser
les communications parmi les solutions possibles. Un plus haut taux de déséquilibre
maximal permet plus de flexibilité, mais peut produire des résultats inattendus. Par
exemple, supposons le partitionnement d’un million de nœuds de poids unitaire sur

86



Chapitre 4. Équilibrage de charge

Algorithme 8 Fonction de requêtes à fournir à Zoltan.
1: algorithme ListeNoeuds(Agents)
2: retourner liste des agents locaux.
3: fin algorithme

4: algorithme Poids(Noeud)
5: retourner coût en calcul relatif de l’agent (1.0 par défaut)
6: fin algorithme

7: algorithme ListeLiens(Agents)
8: Initialiser une liste de liens
9: pour chaque agent local faire

10: pour chaque voisin des voisinages de l’agent faire
11: si voisin ∈ liste d’agents à équilibrer alors
12: si aucun lien n’existe entre l’agent et le voisin alors
13: Ajouter à la liste un lien entre l’agent et le voisin
14: fin si
15: fin si
16: fin pour
17: fin pour
18: retourner liste de liens
19: fin algorithme

20: algorithme Poids(Lien)
21: retourner somme des coûts en communication relatifs pour chaque voisinage

entre les deux agents (1.0 par voisinage par défaut)
22: fin algorithme

23: algorithme CoutMigration(Noeud)
24: Initialiser le coût au coût de migration de l’agent (1.0 par défaut)
25: pour chaque voisin du noeud faire
26: Ajouter le coût de migration de l’agent voisin
27: fin pour
28: retourner coût total
29: fin algorithme

87



Chapitre 4. Équilibrage de charge

Algorithme 9 Équilibrage de charge basé sur Zoltan.
Entrée:
1: période d’application de l’algorithme (period)
2: taux de déséquilibre maximal (imbalance_tol)

3: algorithme initialiser
4: Configurer Zoltan avec les fonctions de requêtes de l’algorithme 8
5: SetZoltanParam(IMBALANCE_TOL, imbalance_tol)
6: SetZoltanParam(PHG_REPART_MULTIPLIER, 10× period)
7: fin algorithme
8: algorithme balance(agents, mode)
9: SetZoltanParam(LB_APPROACH, mode)

10: retourner Résultat de Zoltan appliqué aux agents
11: fin algorithme

64 processus. La charge moyenne vaut 1 000 000/64 = 15 625. Supposons ensuite un
partitionnement qui n’associe aucun nœud à 4 processus, et 1 000 000/60 ≃ 16 667 nœuds
aux 60 processus restants. Le taux de déséquilibre vaut alors 16 667/15 625 ≃ 1,06. Dès
lors ce partitionnement est acceptable pour un taux de déséquilibre de 1,1 (10%), même
s’il n’utilise pas 4 des 64 processus disponibles, mais pas pour un taux de déséquilibre
de 1,01 (1%). Or n’associer aucun nœud à plusieurs processus permet généralement de
réduire les communications, Zoltan a donc tendance à favoriser ces solutions, dans la
limite du possible. La définition du paramètre IMBALANCE_TOL est donc importante pour
respecter des contraintes strictes en termes d’utilisation des processus. Comme nous le
verrons dans les expérimentations Zoltan fournit cependant de bons résultats avec le taux
de déséquilibre par défaut de 1,1.

Zoltan ne considérant que les solutions dont la charge est équilibrée conformément au
paramètre IMBALANCE_TOL, ses concepteurs considèrent négligeable le coût αCW

S de la
fonction de coût 4.4. Zoltan cherche donc à minimiser la quantité αCL

S + CM
S′,S , où α

correspond au paramètre PHG_REPART_MULTIPLIER de la librairie Zoltan [35]. Selon les
auteurs, le paramètre α doit indiquer combien d’itérations de la simulation sont effectuées
entre chaque équilibrage de charge. Cependant, nous avons observé que dans le cas α = 1,
le coût de migration défini dans l’algorithme 8 est tel que le coût de migration d’un agent,
d’une valeur par défaut de 1,0 + Nvoisins, compense systématiquement le gain en coût
de communication sur une itération, d’une valeur par défaut inférieure à Nvoisins, ce qui
correspond à la réduction maximale du nombre de relations avec des voisins distants. Donc
même en appliquant Zoltan à chaque itération, Zoltan ne peut migrer aucun agent même
en mode REPARTITION. Ce paradoxe a été résolu en appliquant un facteur multiplicateur
défini empiriquement à une valeur de 10 à la période d’application de Zoltan dans la
définition du paramètre PHG_REPART_MULTIPLIER.

La méthode d’équilibrage permet de configurer le mode d’application de Zoltan,
PARTITION ou REPARTITION, en accord avec nos propres définitions.

88



Chapitre 4. Équilibrage de charge

4.4.2. Équilibrage de charge spatialisé statique

Dans le cas d’un modèle spatial, l’algorithme d’équilibrage de charge à base de graphe
précédent s’applique naïvement à la totalité du graphe, sans distinction pour les agents et
les cellules. L’objectif de l’équilibrage de charge spatialisé consiste à utiliser un algorithme
d’équilibrage de charge existant, tout en tirant partie du fait que les agents sont localisés
dans des cellules, et qu’ils ont tendance à interagir avec les agents des cellules voisines.

L’algorithme 10 montre comment implémenter l’équilibrage de charge spatialisé à partir
de n’importe quel algorithme d’équilibrage fournissant l’interface présentée à la figure 4.2.
L’algorithme d’équilibrage existant n’est appliqué qu’en mode PARTITION et seulement
aux cellules. Le coeur de l’algorithme se situe à la ligne 8, où la localisation de chaque
agent est systématiquement définie comme celle de la cellule dans laquelle il est localisé, en
mode PARTITION comme en REPARTITION. Cet algorithme constitue une généralisation de
l’équilibrage réalisé à chaque pas de temps avec les zones de recouvrement de RepastHPC
ou D-MASON.

Son utilisation peut s’avérer efficace lorsque le graphe de cellules est statique et que la
répartition des agents dans l’environnement reste uniforme. En effet, dans ce cas, quel que
soit le partitionnement initial de l’environnement, chaque sous-partie de l’environnement
contient en moyenne le même nombre d’agents et est donc associée à une charge constante.
Il suffit donc d’équilibrer la distribution de l’environnement en début de simulation, sans
même prendre en compte la répartition initiale des agents. L’algorithme maintient alors
un équilibre de qualité au cours de la simulation, tout en évitant l’application récurrente
d’un algorithme d’équilibrage potentiellement coûteux en temps de calcul à la totalité
du modèle.

Algorithme 10 Équilibrage de charge spatialisé statique.
Entrée:
1: Équilibrage de charge existant (LB)

2: algorithme balance(agents, mode)
3: dans le cas du mode PARTITION
4: cellules ← ensemble des cellules parmi les agents
5: partition ← LB.balance(cellules, PARTITION)
6: fin cas
7: pour chaque agent spatial des agents faire
8: partition[agent] ← partition[cellule de l’agent]
9: fin pour

10: retourner partition
11: fin algorithme

89



Chapitre 4. Équilibrage de charge

4.4.3. Équilibrage de charge spatialisé dynamique

Le principe de l’équilibrage de charge spatialisé dynamique est similaire au cas statique
dans le sens où les agents sont toujours systématiquement associés au même processus
que leur localisation, mais l’équilibrage de charge existant est cette fois appliqué au
graphe de cellules à chaque itération, y compris en mode REPARTITION. Contrairement
au cas statique, le poids des agents est localement pris en compte à chaque itération,
en ajoutant temporairement au poids de chaque cellule le poids des agents qui y sont
localisés. L’algorithme d’équilibrage existant n’est ainsi appliqué qu’aux cellules, mais
prend en compte la localisation et le coût en calcul des agents, et le fait que la migration
d’une cellule entraine la migration de tous les agents qui y sont localisés. L’équilibrage
de charge spatialisé dynamique représente ainsi un gain en performances par rapport à
l’application naïve de l’équilibrage de charge existant sur tout le graphe.

L’algorithme permet de maintenir un équilibre dans le cas d’un réseau de cellules
dynamique, mais aussi de s’adapter à une répartition non uniforme et dynamique
des agents sur l’environnement, contrairement au cas statique. Le fait d’appliquer
systématiquement l’algorithme d’équilibrage aux cellules peut cependant impliquer un
coût en temps de calcul significatif. Le choix de la version statique ou dynamique
de l’algorithme d’équilibrage de charge spatialisé doit donc se faire en fonction des
contraintes de chaque modèle.

Algorithme 11 Équilibrage de charge spatialisé dynamique.
Entrée:
1: Équilibrage de charge existant (LB)

2: algorithme balance(agents, mode)
3: cellules ← ensemble des cellules parmi les agents
4: Sauvegarder le poids des cellules
5: pour chaque cellule faire
6: pour chaque agent localisé dans la cellule faire
7: Ajouter le poids de l’agent au poids de la cellule
8: fin pour
9: fin pour

10: partition ← LB.balance(cellules, mode)
11: pour chaque agent spatial des agents faire
12: partition[agent] ← partition[cellule de l’agent]
13: fin pour
14: Restituer le poids des cellules
15: retourner partition
16: fin algorithme

90



Chapitre 4. Équilibrage de charge

4.4.4. Équilibrage de charge à base de grille

L’équilibrage de charge à base de grille consiste à décomposer l’espace selon une grille
de sorte à associer une zone continue de l’espace à chaque processus. Les agents ou
cellules sont ensuite associés à un processus en fonction de la zone dans laquelle ils
se trouvent. Cette méthode est classiquement appliquée aux environnements spatiaux
discrets ou continus par les plateformes existantes, comme présenté au chapitre 2. Elle
est cependant facilement généralisable aux graphes spatiaux si chaque nœud est associé
à des coordonnées spatiales explicites.

Étant donné un ensemble de processus P sur lequel distribuer une simulation, le
problème consiste à décomposer un environnement de taille X × Y selon une grille de
taille n× p contenant |P | cellules. Nous supposons que la taille de l’environnement et le
nombre de processus sont arbitraires : nous ne nous limitons donc pas aux cas où X ≃ Y
et |P | est une puissance de 2, comme souvent observé dans les exemples classiques.

Ainsi une méthode efficace de construction de la grille consiste à choisir n et p parmi
les couples de diviseurs de |P | de sorte que le rapport n

p soit le plus proche possible de
X
Y . Lorsque X = Y , il suffit de choisir le couple de diviseurs le plus proche de

√
|P |.

Un exemple complet d’implémentation est présenté dans l’algorithme 12. Le fonction-
nement de l’algorithme est similaire à celui de l’équilibrage de charge spatialisé statique
précédent. Les cellules sont ainsi partitionnées seulement en mode PARTITION (ligne 14)
et chaque agent est implicitement assigné au même processus que la cellule dans laquelle
il est localisé, dans les modes PARTITION et REPARTITION (ligne 20). La structure de grille
discrète permet d’inclure des optimisations notables, le partitionnement des cellules et
des agents se limitant à l’accès d’un élément dans un tableau.

Comme pour l’équilibrage de charge spatialisé statique, la qualité de l’équilibrage de
cet algorithme est conditionnée à la répartition uniforme des agents dans l’espace. En
effet, contrairement à l’équilibrage de charge spatialisé dynamique ou à l’équilibrage de
charge à base de graphe, l’algorithme ne prend pas en compte le poids des agents et ne
peut s’adapter à la surcharge d’un processus due à la concentration des agents sur une
partie de l’environnement.

91



Chapitre 4. Équilibrage de charge

Algorithme 12 Algorithme d’équilibrage de charge à base de grille.
Entrée:
1: Taille de la grille (X × Y )
2: Ensemble de processus (P )

3: algorithme initialiser
4: Déterminer n et p, couple de diviseur de |P | qui minimise la quantité |np − X

Y |.
5: (Nx, Ny)← (X/n, Y/p) ▷ nombre de cellules par processus
6: grille ← tableau de processus de taille n× p
7: Associer un processus à chaque indice du tableau
8: fin algorithme

9: algorithme balance(agents, modes)
10: dans le cas du mode PARTITION
11: pour chaque cellule des agents faire
12: (x, y)← coordonnées de la cellule
13: (i, j)← (x/Nx, y/Ny) ▷ division entière
14: partition[cellule] ← grille[i][j]
15: fin pour
16: fin cas
17: pour chaque agent spatial des agents faire
18: (x, y)← coordonnées de l’agent
19: (i, j)← (x/Nx, y/Ny) ▷ division entière
20: partition[cellule] ← grille[i][j]
21: fin pourretourner partition
22: fin algorithme

92



Chapitre 4. Équilibrage de charge

4.5. Performances et comparaisons

Dans cette section nous présentons des résultats expérimentaux permettant de compa-
rer les performances des algorithmes d’équilibrage de charge introduits précédemment sur
différents types de modèles, pour confirmer certaines suppositions et apporter d’autres
éléments de comparaison. Les différentes configurations expérimentales et les temps
d’exécution estimés des modèles sont obtenus avec FPMAS 1.6 [2] et la version 1.1
de l’implémentation du Meta-Modèle [3]. Ces expérimentations et les suivantes ont
été menées sur le calculateur du Mésocentre de Calcul de Franche-Comté, dont la
configuration est donnée dans le tableau 4.3. Les données brutes correspondant aux
résultats du Meta-modèle sont accessibles librement et de manière pérenne grâce à la
plateforme dat@UBFC [27].

4.5.1. Graphe pur

Afin d’évaluer la capacité de Zoltan à équilibrer différents types de graphes assimilables
à divers modèles Multi-Agents sur un nombre arbitraire de processus, nous mesurons les
performances de l’algorithme d’équilibrage à base de graphe sur un modèle sans agent
autre que les cellules de l’environnement.

A part les barrières de synchronisation et l’exécution de l’algorithme d’équilibrage de
charge, rien ne se passe dans la simulation du Meta-Modèle avec cette configuration :
aucun déplacement d’agent n’ayant lieu, le graphe reste le même tout au long de la
simulation. Il n’est donc pas pertinent d’envisager une application dynamique de Zoltan.
En revanche, il est possible d’évaluer la qualité des partitions construites par Zoltan sur
les différents types d’environnements.

La figure 4.7 présente le temps d’exécution estimé d’un modèle pour différents types
d’environnements. Les valeurs sont obtenues par la somme sur l’ensemble des pas de
temps des facteurs correspondants dans l’équation 4.8 2, de sorte que la hauteur totale de
chaque barre corresponde au temps d’exécution estimé de la simulation calculé grâce à
l’équation 4.8 appliquée aux valeurs réellement mesurées. De manière plus pragmatique,
il suffit de considérer que chaque bloc correspond au temps total estimé passé à réaliser
l’action correspondante au cours de la simulation 3. Les paramètres d’expérimentation
sont donnés dans le tableau 4.4. L’environnement de type grille est de taille 1000× 1000,

2. Par exemple, Communication Cellule → Cellule correspond à la somme des facteurs tc→cLc→c

maximisant à chaque pas de temps la somme correspondante dans l’équation 4.8.
3. Par exemple, le bloc Comportement Cellules correspond au temps total passé à exécuter le

comportement des cellules.

Processeur Intel(R) Xeon(R) CPU E5-2640 v3
Réseau Infiniband Qlogic QDR 40G/s
OS CentOS 6.10
MPI OpenMPI 4

Table 4.3. – Configuration utilisée sur le Mésocentre de Calcul de Franche-Comté.

93



Chapitre 4. Équilibrage de charge

Figure 4.7. – Temps d’exécution estimés sur 10 pas de temps pour un modèle à base
de graphe pur en appliquant Zoltan à différents types d’environnements.

de sorte que pour tous les environnements N = 1000 000 et K = 8. Nous estimons
le temps d’exécution de 10 pas de temps seulement, afin d’obtenir un résultat visuel.
L’équilibrage de charge n’ayant lieu qu’une fois en début de simulation, les temps relatifs
d’équilibrage de charge et de distribution deviennent négligeables au delà. Les résultats
présentés sont obtenus par la moyenne de 10 expériences avec des graines différentes. Le
coefficient de variation pour chaque temps total estimé est de l’ordre de 1%.

On observe tout d’abord que pour les environnements C, G et SW, le temps d’exécution
de Zoltan est plutôt stable en fonction du nombre de processus. En effet, la complexité
de l’algorithme croit en fonction du nombre de sous-partitions à construire, mais
l’implémentation distribuée de Zoltan permet de compenser efficacement cette hausse
de complexité. Quel que soit le nombre de processus, le temps d’exécution de Zoltan
est plus élevé pour le graphe aléatoire R que pour les autres types de graphes. En effet,
les autres font preuve d’un haut coefficient d’agrégation, ce qui simplifie la construction
des partitions. Même sur ce cas le plus contraint, Zoltan permet d’obtenir de bonnes
performances quand le nombre de processus augmente.

La nature du graphe aléatoire implique également des temps de communication plus
élevés, les cellules voisines ayant plus de chance d’être localisées sur d’autres processus,
caractéristique qui se retrouve dans une moindre mesure avec le graphe Small-World. Pour
les graphes C et G, Zoltan permet de réduire les communications entres les processus au
point de les rendre négligeables.

Il n’y a pas d’amélioration significative des performances globales de 32 à 64 processus,
en raison d’un trop faible nombre moyen de nœuds par processus (31 250 pour 32

94



Chapitre 4. Équilibrage de charge

Paramètre Valeur

N 1 000 000
K 8
X × Y (G) 1000× 1000
p (SW ) 0,1
tcellule 15 µs
tcellule→cellule 20 µs
IMBALANCE_TOL 1,1
Nombre de pas de temps 10
Nombre d’expériences 10

Table 4.4. – Paramètres d’expérimentation pour le modèle à base de graphe pur.

processus et 15 625 pour 64 processus), rendant caduque la distribution.
On observe enfin que pour chaque nombre de processus, le temps d’exécution des

cellules est le même quel que soit le type d’environnement, ce qui prouve la fiabilité de
Zoltan dans l’équilibrage de la charge de calcul.

Ces expérimentations valident la capacité de Zoltan à équilibrer les différents types
de modèles à base de graphes purs définis dans le Méta-Modèle. Dès lors, nous pouvons
étudier le comportement de Zoltan sur un modèle dynamique.

4.5.2. Modèle spatial uniforme

Afin d’évaluer le comportement des algorithmes d’équilibrage de charge sur des
modèles dynamiques, nous considérons maintenant le cas des modèles spatiaux avec une
répartition uniforme des agents dans l’environnement. Nous utilisons Zoltan pour réaliser
le partitionnement de l’environnement dans les algorithmes d’équilibrage spatialisés
précédemment définis. Nos expérimentations se focalisent donc essentiellement sur
l’utilisation de Zoltan et des variantes proposées sur des modèles Multi-Agents distribués.
Seul l’environnement à base de grille permet d’utiliser le partitionnement à base de grille,
qui ne dépend pas de Zoltan.

L’aspect dynamique des modèles simulés pose la question de la période d’application
des algorithmes d’équilibrage. En effet, FPMAS permet l’application de tous les algo-
rithmes d’équilibrage avec une période arbitraire. On constate que l’équilibrage spatialisé
statique et l’équilibrage de charge à base de grille font preuve d’une faible complexité
temporelle en mode REPARTITION, qui ne nécessite qu’un parcours de l’ensemble des
agents spatiaux à partitionner. Il est donc raisonnable de considérer une application à
chaque pas de temps de ces algorithmes. En revanche, les algorithmes impliquant une
application dynamique de Zoltan possèdent une complexité non négligeable en mode
REPARTITION. Nous utilisons donc une période de 10 pas de temps pour l’application de
ces algorithmes.

La conception et l’analyse qualitative des algorithmes réalisées à la section 4.4
nous permettent de prédire en partie leurs performances relatives sur certains types

95



Chapitre 4. Équilibrage de charge

Figure 4.8. – Temps d’exécution estimé d’un modèle spatial uniforme pour différents
types d’environnements sur 64 processus.

de modèles. Ainsi l’algorithme d’équilibrage spatialisé statique (SZC, « Static Zoltan
Cell ») est théoriquement plus performant que l’équilibrage spatialisé dynamique (ZC,
« Zoltan Cell ») et que l’équilibrage de charge à base de graphe (Z, « Zoltan ») dans
le cas d’un modèle spatial uniforme. Pour vérifier cette hypothèse, nous effectuons la
simulation d’un modèle spatial uniforme pendant 1000 pas de temps avec différents types
d’environnements, à l’aide de 64 processus. Le détail des résultats est présenté sur la
figure 4.8. La période d’application des algorithmes est rappelée par le nombre accolé à
leurs abréviations. Les paramètres expérimentaux sont donnés dans le tableau 4.5. Les
paramètres de temps individuels d’exécution et de communications sont relativement
arbitraires : nous considérons dans cet exemple que le temps d’exécution des agents est
deux fois supérieur à celui des cellules, que le temps de communication des agents est
inférieur au temps d’exécution de leur comportement, et que le temps de communication
entre les cellules est le même que celui des agents avec les cellules. Le Méta-Modèle permet
par nature d’étudier facilement de nombreuses autres configurations, mais le détail des
valeurs relatives n’a que peu d’impact sur les résultats observés, les ordres de grandeur
des valeurs choisies étant justifiés au chapitre 5.

L’hypothèse sur les meilleures performances de l’algorithme SZC est largement
confirmée dans ce cas. En effet, pour chaque environnement, la somme des temps
d’exécution et de communication sont similaires : les trois algorithmes fournissent donc
des partitions de qualité similaires. On observe en particulier que l’application tous les
10 pas de temps des algorithmes Z et ZC n’est pas limitante en termes de qualité des
partitions, mais divise par 10 le nombre d’applications de Zoltan. Les performances de

96



Chapitre 4. Équilibrage de charge

Paramètre Valeur

N 1 000 000
K 8
X × Y (G) 1000× 1000
p (SW ) 0,1
Taux d’occupation 0,5
tcellule 15 µs
tcellule→cellule 20 µs
tagent 30 µs
tagent→cellule 20 µs
tagent→agent 10 µs
IMBALANCE_TOL 1,1
Nombre de pas de temps 1000
Nombre d’expérience 10

Table 4.5. – Paramètres d’expérimentation pour le modèle à base de graphe pur.

ces algorithmes sont cependant largement dépassées par l’algorithme SZC, dont le temps
d’équilibrage est négligeable par rapport aux deux autres.

Ainsi, pour des raisons de cohérence et de temps de calcul, chaque expérimentation
pouvant durer plusieurs jours, nous ne présentons pas d’étude extensive des performances
des algorithmes Z et ZC dans le cas des modèles spatiaux uniformes. Leur passage à
l’échelle est tout de même garanti par les résultats de Zoltan dans le cas d’un graphe
pur déjà présentés. En effet, si Zoltan est capable de construire des partitions de qualité
sur un graphe statique, il est également capable d’en fournir un de qualité de manière
itérative, les performances du repartitionnement de Zoltan étant déjà garanties par ses
concepteurs.

Il est cependant nécessaire d’étudier le passage à l’échelle de la méthode SZC, pour
s’assurer que le déplacement des agents sans application itérative de Zoltan n’induit pas
de déséquilibre, quel que soit le nombre de processus. D’où les résultats présentés sur la
figure 4.9. Ces expériences, réalisées avec les mêmes paramètres que les précédentes en
faisant varier le nombre de processus, confirment les performances de la méthode SZC.

97



Chapitre 4. Équilibrage de charge

Figure 4.9. – Temps d’exécution estimé d’un modèle spatial avec l’algorithme d’équili-
brage de charge spatialisé statique appliqué à chaque pas de temps (SZC1)
pour différents types d’environnements.

4.5.3. Modèle spatial non uniforme

L’application dynamique de Zoltan trouve notamment son intérêt dans l’équilibrage
de modèles avec une répartition d’agent non uniforme. La configuration du Meta-Modèle
permet de générer ce type de modèles grâce à l’utilité des cellules et au comportement
de déplacement des agents.

Nous définissons un modèle non uniforme grâce à une grille de taille 512×512, de sorte
qu’une sous-partie de l’environnement de taille 64× 64 soit associée à chaque processus
lors d’une simulation avec 64 processus équilibrée grâce à l’équilibrage de charge à base
de grille. Le partitionnement des cellules ainsi obtenu est présenté sur la figure 4.10.

Afin d’induire une répartition non uniforme et dynamique des agents, nous définissons
l’utilité des cellules grâce à la fonction Marche-Inverse définie dans la section 4.3, le
centre d’attraction étant situé au centre de la grille, avec un rayon de 150. Le modèle est
simulé sur une durée de 10 000 pas de temps. L’évolution de la distribution des agents à
plusieurs dates est présentée dans la figure 4.11.

Les agents, initialement répartis uniformément, se déplacent aléatoirement avec
une légère attraction vers le disque central. Les agents dans le disque s’y déplacent
uniformément, avec une probabilité négligeable d’en sortir. Dès lors le disque se remplit
progressivement, au détriment du reste de l’environnement. Il est alors clair qu’avec le
partitionnement à base de grille présenté dans la figure 4.10, les processus au centre font
face à une surcharge de plus en plus importante.

98



Chapitre 4. Équilibrage de charge

Figure 4.10. – Partitionnement sur 64 processus d’une grille discrète.

L’expérimentation consiste alors à observer la capacité de l’équilibrage de charge
spatialisé dynamique basé sur Zoltan à adapter le partitionnement pour maintenir une
charge équilibrée entre les processus. Des résultats sont présentés sur la figure 4.12. À
t = 0, lorsque la répartition des agents est encore uniforme, Zoltan agrège les cellules en
sous-partitions de tailles similaires. On constate ensuite que Zoltan a tendance à réduire
la taille des sous-partitions au centre pour augmenter la taille des sous-partitions en
périphérie, où la densité des agents est moindre, afin de conserver un nombre équilibré
d’agents sur chaque processus.

Nos expérimentations ont cependant montré que même dans ce cas, le gain induit
par un meilleur équilibrage ne compense pas systématiquement le temps d’exécution
de Zoltan. En effet l’impact du déséquilibre est plus ou moins significatif selon les
temps d’exécution et de communication des agents. Grâce au Meta-Modèle, il est
possible d’évaluer précisément les points de bascule à partir desquels Zoltan améliore
les performances globales du modèle.

La figure 4.13a présente une comparaison des temps d’exécution estimés du modèle
non uniforme précédent en fonction du temps d’exécution des agents, après avoir fixé le
temps de communication entre agent distants à 100 µs. On constate que pour des temps
d’exécution par agent faibles, l’équilibrage à base de grille est plus performant que Zoltan.
En effet, l’importance du déséquilibre décroit quand le temps d’exécution de chaque
agent diminue, ce qui tend à favoriser l’équilibrage de charge à base de grille dans le
compromis entre un meilleur équilibre et le temps d’exécution de l’équilibrage de charge.
Ce compromis bascule en faveur de Zoltan au delà d’environ 350 µs de temps d’exécution
par agent. Or, comme nous l’avons observé dans certaines de nos expérimentations, des
temps d’exécutions inférieurs à 350 µs restent réalistes. Il existe donc des situations où
l’équilibrage à base de grille statique est plus performant que Zoltan, y compris dans le

99



Chapitre 4. Équilibrage de charge

Figure 4.11. – Évolution temporelle de la densité des agents dans un modèle spatial
non uniforme.

100



Chapitre 4. Équilibrage de charge

Figure 4.12. – Évolution du partitionnement dynamique des cellules réalisé par Zoltan.

101



Chapitre 4. Équilibrage de charge

(a) En fonction du temps d’exécution des
agents.

(b) En fonction du temps de communica-
tion des agents.

Figure 4.13. – Comparaison des temps d’exécution estimés avec l’équilibrage spatialisé
dynamique basé sur Zoltan et l’équilibrage à base de grille statique sur
un modèle non uniforme.

cas du déséquilibre observé dans la figure 4.11.
La figure 4.13b présente également une comparaison des temps d’exécution estimés

du modèle non uniforme, mais cette fois en fonction du temps de communication entre
agents distants, après avoir fixé le temps d’exécution des agents à 300 µs. On observe que
Zoltan est plus performant pour des temps de communication inférieurs à 90 µs. En effet,
Zoltan maintient l’équilibrage de charge entre les processus en toute circonstance, quitte
à créer des communications entre les processus qu’il cherche par la suite à minimiser. Or,
avec l’algorithme d’équilibrage à base de grille, les agents se concentrent sur quelques
processus, minimisant les communications. En cas de communications très coûteuses, les
performances globales peuvent s’en trouver améliorées. Nous n’avons pas eu l’occasion
d’observer des modèles avec de tels coûts en communication, les temps de communications
individuels étant plutôt de l’ordre de la dizaine de microsecondes pour les modèles
épidémiologiques par exemple, comme observé au chapitre 5. La question peut cependant
se poser dans le cas de modèles nécessitant des échanges de données massifs entre agents.

Pour finir, nous nous intéressons à l’évolution temporelle du partitionnement du
modèle non uniforme pour analyser le comportement de Zoltan. Ainsi la figure 4.14
présente les temps d’exécution estimés par pas de temps du modèle non uniforme,
dans une configuration de temps d’exécution et de communication choisie pour être
favorable à Zoltan, d’après les considérations précédentes. Une première observation à
l’échelle globale (figure 4.14a) montre qu’en début de modèle, quand la répartition des
agents est encore relativement uniforme, l’utilisation de Zoltan est plus coûteuse que
l’équilibrage à base de grille. Cependant, quand la migration des agents vers le centre de

102



Chapitre 4. Équilibrage de charge

l’environnement entraine un déséquilibre et donc une augmentation des temps d’exécution
avec l’équilibrage à base de grille, Zoltan est capable de maintenir un temps d’exécution
constant, assurant globalement de meilleures performances. Il est possible d’observer à
l’échelle locale (figure 4.14b) l’influence de la période d’application de Zoltan, ici de 10.
Chaque pic de temps d’exécution correspond à une exécution de Zoltan. Il est intéressant
de noter qu’une application de Zoltan tous les pas de temps aboutirait à un coût global
bien supérieur à celui de l’équilibrage à base de grille. Entre les exécutions de Zoltan,
les agents se déplacent, augmentant le déséquilibre et donc le temps d’exécution. Avant
d’atteindre un déséquilibre critique, l’application de Zoltan permet de systématiquement
retomber à un équilibre stable. Il est intéressant de noter que le déséquilibre croît plus
rapidement entre les exécutions de Zoltan que sur les mêmes périodes avec l’équilibrage
à base de grille. En effet, le déséquilibre avec l’équilibrage à base de grille est purement
dû à la migration non uniforme des agents, car les agents sont systématiquement associés
au même processus que la cellule dans laquelle ils sont localisés, ce qui permet de
garder les agents proches géographiquement sur le même processus et donc de limiter les
communications. En revanche, entre deux exécutions de l’équilibrage de charge spatialisé
dynamique, aucune migration des agents n’est effectuée. Le déplacement aléatoire des
agents entraine alors des coûts de communication supplémentaires. Afin de pallier ce
surcoût, il est possible d’imaginer un algorithme d’équilibrage qui applique Zoltan à
une période donnée, et qui migre les agents en fonction de leur localisation entre les
applications de Zoltan. L’application de Zoltan seulement lorsqu’un seuil de déséquilibre
est franchi est également une pratique envisageable. Nous laissons au lecteur la liberté
d’imaginer l’implémentation de tels algorithmes grâce à l’interface de synchronisation
générique présentée dans ce chapitre.

4.6. Synthèse

L’implémentation de divers algorithmes d’équilibrage de charge dans la plateforme
FPMAS prouve la viabilité de l’interface proposée. Celle-ci, grâce à son indépendance par
rapport au mécanisme de distribution introduit au chapitre 3, se combine facilement avec
lui pour construire une plateforme de simulation distribuée de SMA générique. En effet,
par sa simplicité, l’interface permet à la fois de définir des algorithmes applicables à tout
SMA et d’autres applicables à des modèles beaucoup plus spécifiques. L’exploration de
l’applicabilité de Zoltan à la simulation distribuée de SMA permet bien de rendre compte
de cet aspect. Ainsi l’application brute de Zoltan permet de partitionner dynamiquement
des modèles à base de graphe pur. En revanche, la prise en compte de l’aspect spatial
de certains modèles permet des optimisations significatives de l’utilisation de Zoltan.
L’algorithme de partitionnement à base de grille, conçu spécifiquement pour les modèles
à base de grille discrète uniformes, est largement plus efficace que Zoltan. L’utilisation
de Zoltan peut cependant s’avérer pertinente pour ces modèles lorsque la répartition
des agents n’est pas uniforme. D’autres algorithmes, prenant davantage en compte la
spatialité des agents dans des modèles non uniformes, ont été évoqués au chapitre 2. Il
est difficile de prévoir leurs performances par rapport à Zoltan, mais nos expérimentations

103



Chapitre 4. Équilibrage de charge

(a) Modèle complet.

(b) Vue locale.

Figure 4.14. – Temps d’exécution estimé par pas de temps du modèle non uniforme.

104



Chapitre 4. Équilibrage de charge

prouvent cependant qu’il est possible d’implémenter ces algorithmes grâce à l’interface
d’équilibrage de charge pour les comparer aux autres et s’adapter au mieux à chaque
modèle simulé.

Les interactions entre agents ne sont considérées dans ce chapitre qu’en termes de coût
de communication. Dans le chapitre suivant, nous nous intéressons à la mise en place des
interactions entre agents dans un contexte d’exécution distribuée.

105



Chapitre 5.

Synchronisation des données

Les travaux présentés aux chapitres 3 et 4 permettent de partitionner efficacement
une simulation de SMA, puis de la distribuer tout en assurant la continuité des données.
Chaque agent local a ainsi la possibilité d’interagir avec des agents exécutés par d’autres
processus grâce à un ensemble d’agents délégués. Le problème de la synchronisation des
données consiste alors à définir et mettre en place les modalités d’interactions avec les
agents délégués, dans un contexte d’exécution par pas de temps. Dans la section 5.1,
nous définissons dans un premier temps les interactions entre agents comme des accès
en lecture et en écriture à leurs données. Nous identifions ensuite plusieurs règles
possibles pour la réalisation de ces interactions, d’où l’introduction de plusieurs modes
de synchronisation. Nous proposons enfin une interface de synchronisation générique
permettant d’implémenter ces modes dans le cadre d’une simulation distribuée, tout
en permettant l’implémentation des interactions entre agents sous forme de lectures et
d’écritures génériques. L’analyse théorique de ces modes commence avec la section 5.2
par une étude des contraintes imposées aux modèles pour permettre l’utilisation de
chaque mode, notamment en termes d’interactions entre agents. Cette analyse se poursuit
dans la section 5.3 par une étude des garanties théoriques de reproductibilité associées
à chaque mode. Le chapitre se termine par une étude expérimentale des modes de
synchronisation implémentés dans FPMAS. Nous étudions d’abord les performances des
modes de manière générique grâce au Méta-Modèle dans la section 5.4, afin de mesurer
les coûts en temps des lectures et des écritures selon chaque mode. Nous étudions
ensuite dans la section 5.5 l’impact des modes sur les résultats et la reproductibilité
des simulations d’un modèle réel : le modèle Virus. Le bilan de ces analyses montre la
nécessité pour les plateformes distribuées de simulation de SMA de fournir divers modes
de synchronisation afin de s’adapter au mieux aux contraintes des utilisateurs et aux
spécificités des modèles.

106



Table des matières

5.1. Modes de synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.1. Lectures et écritures . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.2. Interface de synchronisation . . . . . . . . . . . . . . . . . . . . 109
5.1.3. GhostMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.4. GlobalGhostMode . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.5. HardSyncMode . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.6. PushGhostMode et PushGlobalGhostMode . . . . . . . . . . . 121

5.2. Limites d’interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3. Reproductibilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.1. Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2. Niveau de reproductibilité maximal . . . . . . . . . . . . . . . . 125
5.3.3. Niveau de reproductibilité effectif . . . . . . . . . . . . . . . . . 126

5.4. Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1. Modèle test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2. Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.3. Écritures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5. Impact sur les résultats des modèles . . . . . . . . . . . . . . . . . . . 140
5.5.1. Modèle Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.2. Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.3. Reproductibilité . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5.4. Influence de la gestion des lectures et écritures . . . . . . . . . 147

5.6. Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

107



Chapitre 5. Synchronisation des données

5.1. Modes de synchronisation

L’étude des plateformes de simulation existantes réalisée au chapitre 2 présente
différentes techniques de gestion des interactions entre agents. Les motivations qui
influencent les choix des concepteurs de chaque plateforme ne sont cependant pas
toujours évidentes, de même que les conséquences sur les performances, la modélisation
et les résultats des simulations. C’est pourquoi nous proposons ici la définition d’une
interface de synchronisation générique permettant d’implémenter différents modes afin de
comparer rigoureusement leurs propriétés théoriques, leurs performances et leurs impacts
sur les résultats des simulations.

5.1.1. Lectures et écritures

La description des interactions entre agents par des lectures et des écritures a déjà été
abordée au chapitre 2, avec quelques exemples pour des modèles spécifiques.

Nous cherchons ici à formaliser ce concept et à le mettre en lien avec la construction
d’une interface de synchronisation de données générique dans le contexte de la simulation
distribuée de SMA.

En effet, décrire les interactions par des lectures et des écritures permet de fournir à
l’utilisateur final une interface haut niveau pour définir le comportement des agents
indépendamment de la distribution, tout en permettant une gestion bas niveau des
modalités d’accès aux données.

Dans le cas des SMA, la temporalité des interactions est essentielle. Certains types
d’interactions peuvent par ailleurs être interdits, pour des raisons techniques ou pour
satisfaire des contraintes de modélisation. Par exemple, Repast HPC permet seulement
la lecture sur les agents délégués à partir de données importées depuis le pas de temps
précédent, et autorise la lecture et l’écriture sur les données du pas de temps actuel pour
les agents locaux. D-MASON n’autorise que des lectures sur les données ghost pour tous
les agents, mais autorise l’agent à modifier son propre état. D’autres projets proposent
la prise en compte des modifications en fin de pas de temps grâce à des mécanismes de
gestion de conflits [116, 103, 107] ou par la modélisation « Influence-Reaction » [56].

Du point de vue de la modélisation d’un SMA, les modalités d’interactions entre agents
peuvent être contraintes ou indéfinies [88]. Par exemple, on peut imposer au niveau d’un
modèle de nuées d’oiseaux que chaque agent doive lire la position des autres depuis
le pas de temps précédent ou depuis le pas de temps en cours ou ne pas spécifier de
contrainte. Le passage à la simulation distribuée pourra alors impliquer l’usage de modes
de synchronisation spécifiques pour que ces contraintes soient correctement appliquées
aux interactions avec les agents délégués.

De manière générale, pour respecter le principe de causalité, un agent exécuté au pas
de temps T peut lire des données depuis les pas de temps T ou T−1, et écrire des données
aux pas de temps T ou T + 1. Une lecture au pas de temps T − 1 correspond à un accès
à une copie ghost. Une lecture au pas de temps T signifie que les écritures déjà effectuées
au temps T par d’autres agents sont perçues. Une écriture au temps T implique que les
agents effectuant des lectures au temps T pourront percevoir les modifications pendant le

108



Chapitre 5. Synchronisation des données

soi-même local distant
Mode de synchronisation écriture lecture écriture lecture écriture

GhostMode T T T T − 1 ×
GlobalGhostMode T + 1 T − 1 × T − 1 ×
HardSyncMode T T T T T

PushGhostMode T T T T − 1 T + 1

PushGlobalGhostMode T + 1 T − 1 T + 1 T − 1 T + 1

Table 5.1. – Aspect temporel des interactions pour différents modes de synchronisation.

pas de temps en cours, alors que les écritures au temps T +1 seront seulement accessibles
au pas de temps suivant. Les écritures peuvent également être interdites dans certains
contextes. Pour chaque opération, il est nécessaire de spécifier le type d’agent cible avec
lequel un agent interagit :

— soi-même : l’agent cible est l’agent lui-même ;
— local : l’agent cible est exécuté sur le même processus que l’agent effectuant

l’interaction ;
— distant : l’agent cible est exécuté sur un autre processus. L’interaction a lieu par

l’intermédiaire d’un agent délégué.
Grâce à ces concepts, nous définissons formellement plusieurs modes de synchronisa-

tion, présentés au tableau 5.1 et déjà publiés à l’issue de la conférence PAAMS 2022 [30].
Le GhostMode est équivalent à la synchronisation des données réalisée par Repast

HPC. Il consiste à réaliser les lectures distantes depuis une copie ghost du système.
Les lectures et écritures sur les agents locaux sont réalisées sur place au temps T . Le
GlobalGhostMode, équivalent à D-MASON, impose en plus l’accès en lecture aux agents
locaux depuis une copie ghost. L’accès en écriture n’est autorisé que sur l’agent lui-même,
mais l’accès ghost fait que ces modifications ne peuvent être visibles qu’au pas de temps
suivant. Le HardSyncMode, développé spécialement dans le cadre de ce projet, permet de
réaliser de manière transparente des lectures et des écritures concurrentes au pas de temps
T sur tous les agents, y compris sur les agents distants. Les variantes PushGhostMode
et PushGlobalGhostMode permettent d’ajouter aux modes correspondants la possibilité
de réaliser des écritures en fin de pas temps, par exemple grâce à des mécanismes de
gestion de conflits. Ces deux derniers modes n’ont, à ce jour, pas été implémentés mais
permettent d’illustrer la flexibilité de l’interface de synchronisation générique.

5.1.2. Interface de synchronisation

La définition d’une interface de synchronisation générique consiste à fournir à
l’utilisateur des méthodes abstraites permettant de réaliser des lectures et des écritures
sur d’autres agents. Ainsi l’utilisateur final peut implémenter un modèle sans se soucier
de l’implémentation réelle des méthodes. Proposer une interface à implémenter permet
en outre de simplifier le travail du développeur en décomposant le problème parfois

109



Chapitre 5. Synchronisation des données

ModelModel SynchronizationModeSynchronizationMode AgentAgentsynchronize

read

acquire

Figure 5.1. – Diagramme de composants UML pour l’interface de synchronisation des
données.

complexe de la synchronisation des données en sous-problèmes plus simples. Enfin,
l’implémentation des modèles étant basée sur des appels aux méthodes de l’interface,
il est possible de changer de mode de synchronisation sans altérer le code source des
modèles.

La figure 5.1 présente les interactions entre le mode de synchronisation, le modèle
et les agents. Le composant SynchronizationMode définit un mode de synchronisation
qui fournit plusieurs fonctionnalités au modèle et aux agents. La méthode synchronize
s’applique au modèle à la fin de chaque pas de temps. Plus précisément, chaque
processus entre dans la phase de synchronisation après avoir terminé d’exécuter tous
les comportements des agents planifiés au pas de temps en cours. Les méthodes read
et acquire permettent aux agents de lire et d’acquérir les données des autres lors de
l’exécution de leurs comportements. Contrairement à la lecture, l’acquisition suppose
une possible modification des données, ce qui peut impliquer un accès exclusif, selon
le mode de synchronisation implémenté. Ces deux opérations ne sont pas considérées
comme ponctuelles, mais représentent davantage un travail sur une durée délimitée dans
le temps. Le comportement de l’acquisition correspond au paradigme « Read-Modify-
Write » [80] : les données acquises sont d’abord lues, toutes les modifications nécessaires
sont appliquées, et le résultat est enfin écrit dans les données. La notion d’acquisition
fait également référence au fait d’obtenir exclusivement et temporairement les données
elles-mêmes pour y appliquer des modifications avant de les rendre. Afin de mettre en
place ces mécanismes, il est possible d’implémenter l’interface présentée sur la figure 5.2.

L’interface se base sur des méthodes inspirées des mécanismes de verrouillage issus de
la programmation parallèle. Plutôt que de définir des opérations atomiques de lecture
et d’écriture sur chaque donnée qu’un agent peut posséder, l’interface permet d’appeler
n’importe quelle méthode de l’agent dans des blocs de code protégés par des balises.
La seule adaptation des comportements des agents requises pour permettre l’exécution
distribuée consiste alors à délimiter les instructions accédant aux données d’autres agents
avec les balises suivantes :

110



Chapitre 5. Synchronisation des données

≪interface≫
SynchronisationMode

+ read(agent: Agent)
+ releaseRead(agent: Agent)
+ acquire(agent: Agent)
+ releaseAcquire(agent: Agent)
+ synchronize(model: Model)

GhostMode HardSyncModeGlobalGhostMode

Figure 5.2. – Diagramme de classe de l’interface de synchronisation des données et
exemples d’implémentation.

read(Agent), releaseRead(Agent)

Les données de l’agent spécifié peuvent être lues mais pas modifiées entre
les appels aux méthodes read() et releaseRead(). Ainsi une lecture
correspond à l’ensemble des opérations exécutées entre les appels à read()
puis releaseRead(). Si l’agent spécifié est délégué, la mise à jour interne
(ou non) des données qu’il contient dépend du mode de synchronisation
implémenté.

acquire(Agent), releaseAcquire(Agent)

L’opération acquire() donne au processus courant un accès exclusif à
l’agent spécifié, de telle sorte que toute modification peut être effectuée sur
l’agent jusqu’à l’appel de releaseAcquire(). Ainsi une écriture correspond
à l’ensemble des instructions exécutées entre les appels à acquire() puis
releaseAcquire(). Le comportement réel de ces méthodes dépend de
l’implémentation du mode de synchronisation, et ne requiert pas la prise
en compte des modifications.

synchronize(Model)

Méthode dont le comportement dépend exclusivement du mode de synchro-
nisation implémenté, et dont l’appel est garanti depuis chaque processus
suite à l’exécution des agents locaux pour le pas de temps en cours. Il
est donc possible de mettre en place dans cette méthode des barrières de

111



Chapitre 5. Synchronisation des données

synchronisation ou des communications collectives entre les processus pour,
par exemple, mettre à jour les données des agents délégués.

Afin d’implémenter ces méthodes pour mettre en place les différents modes de
synchronisation proposés, nous supposons disponibles, conformément au chapitre 3, les
fonctionnalités suivantes :

— des méthodes permettant d’obtenir le voisinage de tout agent local, quel que soit le
type d’environnement. Ce voisinage peut-être constitué d’agents locaux et délégués,
de sorte qu’il soit possible d’interagir de manière transparente avec des agents
exécutés sur d’autres processus.

— des méthodes permettant d’obtenir la localisation de chaque agent délégué, c’est-à-
dire le processus sur lequel il est exécuté.

— des méthodes permettant d’obtenir la liste complète d’agents locaux et délégués
assignés au processus courant.

Nous présentons dans la suite des algorithmes permettant de mettre en place le
GhostMode, le GlobalGhostMode et le HardSyncMode à partir de l’interface de synchroni-
sation des données.

5.1.3. GhostMode

L’algorithme 13 présente un exemple d’implémentation du GhostMode. Les méthodes
read() et acquire() retournent simplement l’état de l’agent sur le processus courant,
qu’il soit local ou délégué. Nous supposons que l’exécution de chaque processus est
séquentielle, c’est-à-dire que les agents sont exécutés un par un à l’échelle d’un processus.
Il n’est donc pas nécessaire de gérer des problèmes de concurrence avec les méthodes
releaseRead() et releaseAcquire(). Ces méthodes pourraient cependant être utilisées
pour mettre en place une exécution parallèle des agents à l’échelle de chaque processus.
Dans le cas général, la méthode releaseAcquire() doit engager les modifications dans
l’état actuel de l’agent. Cependant, dans le cas où l’état actuel de l’agent est retourné
sous forme de référence ou de pointeur, cette étape est implicite car les modifications
sont directement effectuées sur l’état interne de l’agent.

L’essentiel du travail réalisé par le GhostMode réside dans la méthode synchronize()
qui va importer les données à jour des agents délégués en fin de pas de temps.
L’implémentation proposée ici montre l’usage possible de communications collectives
pour réaliser efficacement les échanges de données en initialisant un minimum de
communications. Dans le contexte de l’utilisation du protocole MPI, ces échanges sont
typiquement réalisés avec la méthode MPI_AllToAll ou ses variantes. On remarque que
les modifications des données éventuellement acquises ne sont pas prises en compte et
effacées par la synchronisation avec les données importées.

5.1.4. GlobalGhostMode

L’algorithme 14 présente un exemple d’implémentation du GlobalGhostMode. L’im-
plémentation des méthodes read() et acquire() est similaire au GhostMode, avec le
même contexte de gestion de concurrence. La méthode read() retourne cependant

112



Chapitre 5. Synchronisation des données

Algorithme 13 Implémentation du GhostMode.
1: algorithme read(agent)
2: retourner l’état actuel de l’agent
3: fin algorithme
4: algorithme releaseRead(agent)
5: -
6: fin algorithme

7: algorithme acquire(agent)
8: retourner l’état actuel de l’agent
9: fin algorithme

10: algorithme releaseAcquire(agent)
11: mettre à jour l’état actuel avec les modifications effectuées
12: fin algorithme

13: algorithme synchronize(modèle)
14: requêtes : associe à chaque processus une liste d’ID
15: pour chaque agent délégué du modèle faire
16: ajouter l’ID de l’agent aux requêtes de la localisation de l’agent
17: fin pour
18: échanger avec tous les processus : requêtes
19: réponses : associe à chaque processus une liste d’états d’agents
20: pour chaque processus faire
21: pour chaque requête du processus faire
22: ajouter l’état de l’agent aux réponses pour le processus
23: fin pour
24: fin pour
25: échanger avec tous les processus : réponses
26: pour chaque agent délégué du modèle faire
27: mettre à jour l’état actuel de l’agent avec les données importées
28: fin pour
29: fin algorithme

113



Chapitre 5. Synchronisation des données

une copie ghost de l’agent, et non son état actuel. La modification des données n’est
pas autorisée dans ce mode, sauf si l’agent réalisant la modification est l’agent lui-
même. C’est pourquoi, dans cet exemple d’implémentation, les méthodes acquire() et
releaseAcquire() permettent tout de même les modifications. La responsabilité de ne
pas appeler la méthode sur des agents autres que lui-même est donc laissée à l’utilisateur.
D’autres implémentations pourraient conduire à une vérification stricte de ces conditions.

La méthode synchronize() met d’abord à jour les données des agents délégués à la
manière du GhostMode. Il est ensuite nécessaire d’initialiser, pour tous les agents, locaux
ou délégués, une copie ghost de l’agent qui sera retournée par la méthode read() jusqu’à
la prochaine synchronisation. On remarque que même si l’agent met à jour ses propres
données, la copie ghost n’est pas altérée et les autres agents lisent toujours son état au
pas de temps précédent.

Algorithme 14 Implémentation du GlobalGhostMode.
1: algorithme read(agent)
2: retourner une copie ghost de l’agent
3: fin algorithme
4: algorithme releaseRead(agent)
5: -
6: fin algorithme

7: algorithme acquire(agent)
8: retourner l’état actuel de l’agent
9: fin algorithme

10: algorithme releaseAcquire(agent)
11: mettre à jour l’état actuel avec les modifications effectuées
12: fin algorithme

13: algorithme synchronize(modèle)
14: GhostMode.synchronize(modèle)
15: pour chaque agent du modèle faire
16: initialiser la copie ghost de l’agent avec son état actuel
17: fin pour
18: fin algorithme

5.1.5. HardSyncMode

L’implémentation du HardSyncMode nécessite la mise en place d’une architecture
nettement plus lourde que les modes précédents. Les principaux enjeux sont les suivants :

— Les modifications d’un agent délégué doivent être reportées à l’agent distant
correspondant.

— La modification d’un agent local ou délégué doit se faire lors d’un accès exclusif, de
sorte qu’aucun processus ne puisse lire ou modifier les données de l’agent jusqu’à

114



Chapitre 5. Synchronisation des données

HardSyncMode

≪interface≫
MutexServer

+ handleRequests()
+ handleRead(Agent, Processus)
+ handleAcquire(Agent, Processus)

≪interface≫
Mutex

+ lock()
+ unlock()
+ isLocked(): booléen
+ lockShared()
+ unlockShared()
+ isLockShared(): booléen

≪interface≫
MutexClient

+ sendRequest(RequestType, Agent, Processus)

≪enum≫
RequestType

READ, ACQUIRE,
RELEASE READ, RELEASE ACQUIRE

Figure 5.3. – Diagramme de classe des composants associés au HardSyncMode.

ce que les modifications soient engagées.
— La lecture d’un agent doit retourner des données incluant toutes les modifications

effectuées jusqu’à présent sur l’agent, y compris par d’autres processus.
Il est possible de concevoir de nombreuses implémentations du HardSyncMode compa-

tibles avec l’interface de synchronisation. Notre proposition se base sur trois composants,
introduits dans la figure 5.3 et détaillés dans la suite. Le Mutex permet de gérer la
concurrence d’accès à chaque agent local. Le MutexClient permet de réaliser des requêtes
pour obtenir l’accès aux agents délégués, et le MutexServer permet de répondre à ces
requêtes avec les données des agents locaux.

Mutex

Le Mutex inclut des fonctionnalités de verrouillage permettant d’assurer l’accès exclusif
à une donnée grâce à la méthode lock(). La méthode lockShared() permet un accès
partagé. Lorsqu’un lock() est acquis, il n’est pas possible d’obtenir un autre lock() ou
un lockShared(). Lorsqu’un lockShared() est acquis, il est possible d’acquérir d’autres
lockShared() mais pas de lock() exclusif. La fonction de déverrouillage unlock()
permet de lever un verrouillage exclusif. La fonction unlockShared() lève seulement un
des verrouillages partagés actuellement actifs. Ainsi la méthode isLockShared() renvoie
vrai si et seulement si au moins un verrouillage partagé est actif. Si une demande de
verrouillage est effectuée sur un Mutex indisponible, le processus courant attend jusqu’à
sa disponibilité. Ainsi les méthodes considérées ici sont dites bloquantes. Afin de protéger
l’accès des données des agents, une instance de Mutex est associée à chaque agent. Les
algorithmes présentés dans la suite supposent une exécution des agents en tâche simple.
Il est cependant clair que le Mutex peut facilement permettre de gérer l’accès cohérent

115



Chapitre 5. Synchronisation des données

aux agents dans le cadre d’une exécution multi-tâches des agents.

MutexClient

Le rôle principal du MutexClient consiste à transmettre les demandes de lecture,
d’acquisition et de fin des ces opérations au MutexServer concerné, comme présenté
dans l’algorithme 15. L’envoi de la requête (ligne 2) peut se décliner en deux variantes.
Si l’agent est délégué, la requête doit être transmise à un autre processus. Dans un
contexte MPI, cet envoi est typiquement réalisé sous forme de communication point à
point grâce à la méthode MPI_Send ou à ses variantes. Si l’agent est local, la requête
peut être transmise directement au MutexServer local. Dans tous les cas, les requêtes
doivent être mises en attente jusqu’à la disponibilité des données. D’un point de vue
algorithmique, le processus courant n’a pas de priorité d’accès à ses propres données par
rapport aux autres processus.

Afin de permettre aux autres processus de répondre aux requêtes, une solution
directe consiste à recourir à une exécution multi-tâches pour exécuter une instance de
MutexServer en parallèle de la tâche principale. La tâche associée au MutexServer peut
répondre aux requêtes grâce à la méthode handleRequests(). La tâche principale est
quant à elle chargée d’exécuter les agents et peut attendre passivement l’aboutissement
des requêtes dans la méthode sendRequest(). Cependant, afin de favoriser la traçabilité
et le déterminisme de l’exécution de la simulation, nous avons choisi une implémentation
basée sur une seule tâche. Le MutexServer s’exécute alors ponctuellement au sein
de la tâche principale grâce aux appels à la méthode handleRequests() (ligne 4),
pendant l’attente des réponses aux requêtes du processus courant (ligne 3). L’avancement
des processus est ainsi garantie, sans possibilité de blocage. Dans une configuration
expérimentale où chaque processus est assigné à un unique cœur de processeur, le fait que
chaque cœur n’ait à exécuter qu’une unique tâche permet de s’affranchir des coûts liés à
une tâche secondaire passive lorsqu’aucune requête n’est en attente, d’où un potentiel gain
en performances. Le fait que chaque processus ne puisse répondre aux requêtes que lorsque
lui-même en initie une peut cependant s’avérer limitante si certains processus effectuent
moins de requêtes que les autres. Nous n’avons pas été confrontés à ce problème dans la
pratique, grâce à l’uniformité des systèmes Multi-Agents simulés et à un équilibrage de
qualité.

Algorithme 15 Implémentation du MutexClient.
1: algorithme sendRequest(type, agent, processus)
2: envoyer à MutexServer du processus : requête (type, agent)
3: tant que la requête n’a pas abouti faire
4: MutexServer.handleRequests( )
5: fin tant que
6: fin algorithme

116



Chapitre 5. Synchronisation des données

MutexServer

Le rôle du MutexServer consiste à répondre aux requêtes pour les agents locaux. Il
reçoit à la fois des demandes depuis d’autres processus et depuis le processus local. Il est
chargé de l’envoi des données des agents locaux aux autres processus et de l’application
des verrouillages nécessaires, comme présenté dans les algorithmes 16 et 17. Une instance
de MutexServer peut gérer tous les agents d’un processus mais les verrouillages sont
appliqués individuellement et indépendamment à l’échelle de chaque agent. Il est, par
exemple, possible de fournir l’accès exclusif à plusieurs agents locaux, sans blocage au
niveau du processus. Dans le cas d’une demande de lecture (ligne 4), il suffit de vérifier
si un verrouillage exclusif est appliqué. Ainsi l’opération de lecture n’est pas bloquée par
d’autres opérations de lecture en cours. Si l’opération est possible (ligne 6), un verrouillage
partagé est appliqué et une réponse est envoyée au processus demandeur (ligne 35).
Comme dans le cas de l’envoi de la requête, la réponse se décline en deux variantes. Si
le processus demandeur est le processus local, il suffit de le notifier de la disponibilité
des données pour faire aboutir la requête et déclencher la sortie de la boucle d’attente
(ligne 3 de l’algorithme 15). Sinon, il est nécessaire d’envoyer les données de l’agent grâce
à une communication point à point, ce qui déclenche également l’aboutissement de la
requête au niveau du MutexClient correspondant. Dans les deux cas, si l’agent n’est pas
disponible, la requête doit être ajoutée à une liste d’attente afin d’être traitée quand le
verrouillage sera levé. Le traitement de l’acquisition est similaire (ligne 17), à la seule
différence que l’acquisition n’est pas possible tant qu’un verrouillage partagé ou exclusif
est appliqué, et qu’un verrouillage exclusif est appliqué quand l’opération est effectuée.
L’opération de fin de lecture (ligne 11) consiste d’abord à lever un verrouillage partagé.
Si le dernier a été levé, il est garanti que plus aucun accès à l’agent n’est en cours : il
est donc possible de traiter la prochaine requête éventuellement en attente 1. Pour la fin
de l’acquisition (ligne 25), un déverrouillage exclusif est d’abord appliqué. Par définition,
plus aucun verrouillage n’est alors appliqué : il est donc possible de traiter les requêtes
en attente. Il est également nécessaire, en plus des données de la requête, de recevoir les
données modifiées de l’agent afin de les inclure à l’agent local. Les données à jour sont
alors envoyées lors du traitement des prochaines requêtes, conformément à la définition
du HardSyncMode.

Le processus de traitement des requêtes décrit ici donne la priorité aux lecteurs. En
effet, supposons qu’une lecture soit en cours. La prochaine demande d’acquisition est
mise en attente. En revanche, la prochaine demande de lecture est exécutée, même si
elle arrive après la demande d’acquisition. Il est possible d’imaginer l’implémentation
d’autres politiques en modifiant la gestion des requêtes entrantes et l’ordonnancement
des requêtes en attente, même si ces pistes n’ont pas été explorées.

Implémentation de l’interface de synchronisation

Les propositions d’implémentation du MutexClient et du MutexServer permettent
de mettre en place le HardSyncMode présenté dans l’algorithme 18, pour finalement

1. par construction, il ne peut s’agir que d’une demande d’acquisition dans ce cas

117



Chapitre 5. Synchronisation des données

Algorithme 16 Implémentation du MutexServer (partie 1).
1: algorithme handleRequests
2: recevoir depuis tous les processus : requêtes (type, agent, processus)
3: pour chaque requête faire
4: si type == READ alors
5: si ¬ Mutex(agent).IsLocked( ) alors
6: handleRead(requête)
7: sinon
8: Mettre la requête en attente
9: fin si

10: fin si
11: si type == RELEASE_READ alors
12: Mutex(agent).UnlockShared( )
13: si ¬ Mutex(Agent).isLockShared( ) alors
14: Traiter les requêtes de l’agent en attente
15: fin si
16: fin si
17: si type == ACQUIRE alors
18: si ¬ Mutex(agent).IsLocked( ) et
19: ¬ Mutex(agent).IsLockShared( ) alors
20: handleAcquire(requête)
21: sinon
22: Mettre la requête en attente
23: fin si
24: fin si
25: si type == RELEASE_ACQUIRE alors
26: Mutex(agent).Unlock( )
27: si la requête ne provient pas du processus local alors
28: recevoir depuis processus source : nouvel état de l’agent
29: Mettre à jour l’état de l’agent local
30: fin si
31: Traiter les requêtes de l’agent en attente
32: fin si
33: fin pour
34: fin algorithme

118



Chapitre 5. Synchronisation des données

Algorithme 17 Implémentation du MutexServer (partie 2).
35: algorithme handleRead(requête)
36: Mutex(agent).LockShared( )
37: envoyer à MutexClient du processus source : agent
38: fin algorithme
39: algorithme handleAcquire(requête)
40: Mutex(agent).Lock( )
41: envoyer à MutexClient du processus source : agent
42: fin algorithme

implémenter l’interface de synchronisation générique. Toutes les opérations passent par
une requête effectuée grâce au MutexClient. Que la demande d’accès s’applique à un
agent local ou délégué, le processus courant est mis en attente jusqu’à ce que l’agent ait
été verrouillé par le MutexServer depuis lequel l’agent est local. Dans le cas d’un agent
délégué, les méthodes read() et acquire() reçoivent les données depuis la localisation
de l’agent, une fois sa disponibilité assurée. Dans un contexte MPI, cette opération
correspond typiquement à l’utilisation de la méthode MPI_Recv. Dans le cas de la méthode
releaseAcquire(), si l’agent n’est pas local, il est nécessaire d’envoyer les modifications
de l’agent effectuées par le processus courant au processus d’origine.

D’après le principe de la synchronisation temporelle par pas de temps, lorsqu’un
processus a terminé d’exécuter ses agents, il doit attendre que tous les autres aient terminé
avant de passer au pas de temps suivant. Or, pour assurer la terminaison des autres
processus, il est nécessaire de continuer à répondre à leurs requêtes. D’où la méthode
synchronize(), qui continue de traiter les requêtes grâce au MutexServer. Dans le cas
où le MutexServer s’exécute dans une tâche parallèle, il suffit d’attendre depuis la tâche
principale que les autres processus aient terminé.

La détection de la terminaison est relativement simple dans notre contexte. En
effet, le traitement d’une requête ne peut pas réactiver le processus courant, c’est-à-
dire réactiver le comportement d’agents déjà exécutés et l’émission d’autres requêtes.
L’usage d’algorithmes comme celui de Dijkstra, Feijen et van Gasteren [51] est
donc disproportionné, le problème correspondant davantage à un simple problème de
consensus. Afin de détecter la terminaison, nous organisons les processus selon un
anneau orienté. Lorsque le processus 0 entre dans la phase de terminaison (méthode
synchronize()), il envoie un jeton au processus suivant, qui lui-même le transmet au
suivant quand il entre en phase de terminaison, ou instantanément s’il l’est déjà. Lorsque
le jeton revient au processus 0, un message indiquant la terminaison est envoyé à tous
les processus, qui peuvent alors sortir de la méthode synchronize() et passer au pas
de temps suivant. Une amélioration proposée par Rousset [111] consiste à envoyer le
premier jeton au processus en face du processus 0 dans l’anneau, pour ensuite propager un
jeton de chaque côté de l’anneau, afin de paralléliser les envois de message de terminaison.

119



Chapitre 5. Synchronisation des données

Algorithme 18 Implémentation du HardSyncMode.
1: algorithme read(agent)
2: MutexClient.request(READ, agent)
3: si l’agent n’est pas local alors
4: recevoir depuis processus : données de l’agent
5: mettre à jour l’état actuel de l’agent avec les données reçues
6: fin si
7: retourner l’état actuel de l’agent
8: fin algorithme
9: algorithme releaseRead(agent)

10: MutexClient.request(RELEASE_READ, agent)
11: fin algorithme

12: algorithme acquire(agent)
13: MutexClient.request(ACQUIRE, agent)
14: si l’agent n’est pas local alors
15: recevoir depuis processus : données de l’agent
16: mettre à jour l’état actuel de l’agent avec les données reçues
17: fin si
18: retourner l’état actuel de l’agent
19: fin algorithme
20: algorithme releaseAcquire(agent)
21: mettre à jour l’état actuel avec les modifications effectuée
22: si l’agent n’est pas local alors
23: envoyer à localisation de l’agent : nouvel état de l’agent
24: fin si
25: MutexClient.request(RELEASE_ACQUIRE, agent)
26: fin algorithme

27: algorithme synchronize(modèle)
28: tant que tous les processus n’ont pas terminé faire
29: MutexServer.handleRequests( )
30: fin tant que
31: fin algorithme

120



Chapitre 5. Synchronisation des données

Synthèse

L’implémentation du HardSyncMode montre la possibilité de construire une architecture
beaucoup plus complexe que le GhostMode ou le GlobalGhostMode à partir de l’interface
proposée, tout en gardant un haut niveau d’abstraction pour l’utilisateur final grâce
aux méthodes read() et acquire(). Ainsi, l’utilisateur peut librement implémenter le
comportement des agents sans se soucier des mécanismes complexes qui peuvent avoir
lieu en interne de la plateforme pour par exemple permettre les interactions avec les
agents délégués. De plus, le fait que l’interface soit commune à tous les modes de
synchronisation permet à l’utilisateur de développer des modèles indépendamment du
problème de synchronisation des données : le choix du mode de synchronisation peut être
réalisé librement par la suite à partir d’un simple paramètre. L’aspect interchangeable des
implémentations de l’interface de synchronisation permet ainsi de comparer facilement
l’application de différents modes sur un même modèle.

5.1.6. PushGhostMode et PushGlobalGhostMode

Contrairement aux modes précédents, qui eux seuls ont été implémentés dans la
plateforme FPMAS, les modes PushGhostMode et PushGlobalGhostMode ne sont pas
détaillés ici. Nous fournissons cependant quelques pistes, afin notamment d’illustrer les
possibilités d’implémentation de nouveaux modes offertes par l’interface de synchronisa-
tion de données.

En termes de lectures, l’implémentation de ces modes est similaire au GhostMode et
au GlobalGhostMode. Il en est de même pour les écritures sur les agents eux-mêmes. Les
écritures sur des agents locaux en PushGhostMode peuvent se faire directement sur les
données locales, comme c’est le cas en GhostMode.

La difficulté consiste en la gestion des écritures au pas de temps suivant sur les agents
distants en GhostMode et sur les agents locaux et distants en PushGhostMode, comme
défini précédemment dans le tableau 5.1. Tous ces cas peuvent être gérés de manière
similaire grâce à un mécanisme d’agrégation ou de gestion de conflits appelé au moment
de la synchronisation. Le problème est le suivant : pour chaque agent, il existe un nombre
d’états potentiellement divergents issus des modifications effectuées par différents agents,
depuis plusieurs processus. Ces modifications sont stockées dans une liste au cours du pas
de temps par les appels à la méthode releaseAcquire(). Tous ces états sont d’abord
envoyé au processus depuis lequel l’agent est local. Il est ensuite nécessaire d’agréger ces
résultats depuis ce processus sous forme d’un unique état, qui deviendra l’état de l’agent
lu au pas de temps suivant. La politique d’agrégation dépend évidemment du modèle et
du type des données des agents, et doit être spécifiée par l’utilisateur. Des exemples de
fonctions d’agrégation pour différents types de données sont présentés dans le tableau 5.2.

Le processus d’agrégation peut aussi dépendre :
— de l’état de l’agent à modifier. Par exemple : si l’énergie de l’agent est supérieure à

10, alors choisir l’état 1 ;
— de l’état de l’agent effectuant la demande d’écriture. Par exemple : choisir la

modification demandée par l’agent le plus proche géographiquement.

121



Chapitre 5. Synchronisation des données

Type de données Fonctions d’agrégation

Pour tout type Sélection aléatoire

Numérique

Somme
Minimum
Maximum
. . .

Tableau Agrégation récursive des éléments

Chaîne de caractères

Concaténation
Liste
Conteneur associatif
Ensemble
. . .

Objet Agrégation des élémentsAgent

Table 5.2. – Exemples de fonctions d’agrégation pour plusieurs types de données.

Dans tous les cas, les écritures autorisées par ces modes semblent très spécifiques et
liées au modèle à distribuer. De manière générale, les modalités d’interactions permises
par les modes de synchronisation proposés sont très diverses. D’où la nécessité de faire
une analyse plus poussée des propriétés théoriques des modes de synchronisation.

5.2. Limites d’interactions

Nous débutons l’analyse théorique des modes de synchronisation par les contraintes
imposées par chacun d’entre eux aux interactions entre agents, qui vont limiter les
modèles possibles à simuler avec chaque mode.

Le GlobalGhostMode propose le niveau d’interactions le plus contraint. En effet,
l’écriture n’est pas autorisée sur un agent autre que lui-même, et les lectures ne peuvent
se faire qu’à partir des données du pas de temps précédent. Le GlobalGhostMode est
cependant le plus adapté lorsque l’utilisation d’un ghost est imposée au niveau du modèle
lui-même.

Le GhostMode est légèrement moins contraint. En effet, comme souligné par les
concepteurs de Repast HPC, les écritures sont autorisées sur tous les agents locaux
mais perdues sur les agents délégués. L’utilisation de cette fonctionnalité ne semble
cependant pas pertinente dans un contexte où il est souhaitable de développer des modèles
indépendamment de leur distribution. En effet, selon la distribution du modèle, des
écritures seront perdues de manière inévitable et imprévisible, au risque de violer les règles
du modèle, à moins de prendre en compte l’aspect local ou distant des agents directement
dans les règles du modèle, rendant la modélisation et la simulation dépendantes de la
distribution. C’est pourquoi l’utilisation d’écritures sur des agents autres que l’agent lui-

122



Chapitre 5. Synchronisation des données

même nous semble à proscrire dans le cadre de l’utilisation du GhostMode. Les lectures
en GhostMode sont moins contraintes qu’avec le GlobalGhostMode. En effet, les lectures
sont réalisées sur les données du pas de temps actuel, sauf pour les agents délégués,
lus depuis le pas de temps précédent. Contrairement aux écritures, ce fonctionnement
ne peut provoquer de violation des règles du modèle, sauf si bien sûr celui-ci impose
explicitement la lecture des données ghost. La lecture rend ici visibles les modifications
des agents locaux ayant déjà exécutés leurs comportements pendant le pas de temps,
contrairement au GlobalGhostMode. La lecture des agents délégués se passe comme si
les agents délégués étaient tous exécutés après les agents locaux. Il est clair que ces
lectures peuvent impacter significativement les résultats des modèles par rapport au
GlobalGhostMode, comme nous le verrons dans la section 5.1 dans le cas d’un modèle
épidémiologique. La possibilité de percevoir les modifications des voisins déjà exécutés
dans le pas de temps en cours peut cependant mener à des simulations plus réalistes. De
tels choix sont laissés à l’appréciation de l’utilisateur, qui peut facilement tester différents
modes sans altérer ses modèles grâce à l’interface de synchronisation.

Les modes PushGhostMode et PushGlobalGhostMode, qui héritent respectivement des
propriétés du GhostMode et du GlobalGhostMode en termes de lecture, permettent un
niveau d’interactions un peu plus élevé, en permettant la modification des agents au pas
de temps suivant. Leur utilisation est cependant fortement liée au modèle à simuler, le
choix des fonctions d’agrégation dépendant des règles du modèle. En d’autres termes, la
simulation d’un modèle avec ces modes nécessite une structure de modèle très précise.
Cependant, ces contraintes ne semblent pas aller à l’encontre des bonnes pratiques de
modélisation indépendantes de la distribution. En effet, la définition de règles incluant
uniquement la modification au pas de temps suivant et les fonctions d’agrégation ne
fait pas directement intervenir la notion de distribution du modèle et d’agents locaux
ou distant. En outre, le formalisme en question peut exister indépendamment de la
simulation distribuée, comme dans le cas de la modélisation « Influence-Reaction ».

Pour finir, le HardSyncMode permet le plus haut niveau possible d’interactions, au
plus proche de la simulation séquentielle. En effet, il s’agit du seul mode permettant,
au cours du pas temps, de lire l’état actuel d’un agent délégué, incluant toutes les
modifications effectuées pendant le pas de temps par tous les processus. Ce mode
permet en outre la réalisation d’écritures distantes et concurrentes par tous les processus
sur tous les agents, au cours du pas de temps. Ce mode de synchronisation introduit
cependant des possibilités de blocage, où plusieurs processus s’attendent mutuellement
sans pouvoir avancer. C’est notamment le cas lorsque des interactions nécessitent
l’acquisition simultanée de plusieurs agents. Supposons par exemple un cas avec deux
processus et un agent sur chaque processus, où chaque agent cherche à réaliser une
acquisition simultanée de lui-même et de l’autre agent. Si l’avancée des processus mène au
cas où chaque agent n’a acquis que lui-même, les deux agents restent bloqués indéfiniment
dans l’attente d’un verrouillage exclusif de l’autre agent. C’est pourquoi, compte tenu de
l’implémentation actuelle du HardSyncMode dans FPMAS, le comportement des agents
ne doit pas réaliser plus d’une acquisition à la fois. Le respect de cette condition est laissé
à la charge de l’utilisateur, introduisant une contrainte indésirable liée à la distribution
dans le processus de modélisation. L’inclusion d’algorithmes de prévention des blocages

123



Chapitre 5. Synchronisation des données

GhostMode GlobalGhostMode HardSyncMode PushGhostMode PushGlobalGhostMode

Nuée d’oiseaux × × × - -
Épidémiologique × × ×
Proie-prédateur ×

Table 5.3. – Possibilité de simulation de divers modèles avec les modes de synchronisa-
tion proposés.

et d’allocation de ressources pourra faire l’objet des perspectives de développement du
HardSyncMode, afin de lever les dernières contraintes d’interactions entre agents distants.

La discussion autour des besoins en lectures et écritures pour différents modèles déjà
fournie dans la section 2.5 permet de facilement définir les modes utilisables pour simuler
chaque modèle, comme présenté dans le tableau 5.3.

Le modèle de nuée d’oiseaux, qui ne nécessite que des lectures, peut-être simulé avec
tous les modes permettant des lectures à T ou T−1, même si les modes Push n’apportent
rien au modèle dans ce cas. Un modèle épidémiologique avec infection par écriture sur les
agents voisins peut-être simulé avec les modes permettant les écritures à T ou T +1, car
aucune gestion de la concurrence n’est nécessaire. Le modèle proie-prédateur ne peut-
être simulé qu’avec le HardSyncMode, si sa spécification nécessite la gestion des écritures
concurrentes à T . De manière générale, le HardSyncMode, qui reste le plus proche de la
simulation séquentielle, permet la simulation de la plus large catégorie de modèles.

Le HardSyncMode est cependant sujet à d’autres limitations, notamment en termes de
reproductibilité.

5.3. Reproductibilité

La reproductibilité est un critère essentiel de validité dans le domaine de la simulation
numérique : on attend généralement de simulations exécutées avec la même configuration
qu’elles donnent les mêmes résultats. Or, dans un contexte distribué, les modes de syn-
chronisation exercent une influence déterminante sur la reproductibilité des simulations.

5.3.1. Définition

Dans le cadre de la simulation de SMA, nous pouvons considérer deux types de
reproductibilité. La reproductibilité stricte consiste à reproduire exactement et à chaque
pas de temps le même comportement des agents entre deux simulations, de sorte que d’un
point de vue microscopique le déroulé de la simulation soit le même. La reproductibilité
statistique consiste à seulement s’assurer que les résultats sont similaires à l’échelle
macroscopique.

Le niveau de reproductibilité requis pour la simulation d’un modèle dépend du
contexte de l’étude et des besoins de l’utilisateur. La plateforme MASON accorde, par
exemple, une importance particulière à la reproductibilité stricte, alors que la plateforme
de simulation à évènements SARL n’impose pas de telle contrainte, compte tenu de
l’aspect naturellement stochastique des SMA. Dans le cadre du développement d’une

124



Chapitre 5. Synchronisation des données

Niveau Description

0 Aucune contrainte de reproductibilité.
1 Reproductibilité statistique.
2 Reproductibilité stricte à partitionnement et ordre d’exécution fixe.
3 Reproductibilité stricte à partitionnement fixe, indépendamment de l’ordre

d’exécution.
4 Reproductibilité stricte indépendamment du partitionnement.

Table 5.4. – Niveaux de reproductibilité dans un contexte de simulation distribuée.

plateforme de simulation générique, il est donc pertinent de s’intéresser à la question de
la reproductibilité.

La simulation distribuée introduit en outre davantage de contraintes pour permettre
la reproductibilité, notamment en raison de l’avancée stochastique des processus les uns
par rapport aux autres. Nous avons cependant établi un lien direct entre le niveau de
reproductibilité possible à atteindre et le mode de synchronisation des données utilisé.

Nous commençons d’abord par définir différents niveaux de reproductibilité, présentés
dans le tableau 5.4.

Le niveau 0 est atteint lorsqu’aucune forme de reproductibilité n’est observée. Deux
simulations lancées avec la même configuration peuvent alors donner des résultats
significativement différents.

Le niveau 1, déjà défini, est atteint quand les résultats globaux sont similaires.
Le niveau 2 est atteint lorsque la simulation est strictement reproductible en fixant le

partitionnement des agents et leur ordre d’exécution à l’échelle de chaque processus.
Dans le cas d’un partitionnement dynamique, nous supposons que la séquence de
partitionnement est la même entre deux simulations. À noter que fixer le partitionnement
des agents implique de fixer le nombre de processus à utiliser.

Le niveau 3 est atteint lorsque, en fixant le partitionnement, deux simulations sont
strictement reproductibles indépendamment de l’ordre d’exécution des agents à l’échelle
de chaque processus.

Le niveau 4, le plus élevé, est atteint lorsque deux simulations donnent strictement
le même résultat quel que soit le partitionnement du modèle, et quel que soit l’ordre
d’exécution des agents à l’échelle de chaque processus. C’est le seul niveau qui peut
prétendre à l’obtention de résultats indépendants de la distribution de la simulation, et
en particulier indépendants du nombre de processus utilisés.

5.3.2. Niveau de reproductibilité maximal

On observe que chaque niveau de reproductibilité est une condition nécessaire au niveau
suivant. Il est donc possible d’assigner un niveau de reproductibilité maximal pour chaque
mode de synchronisation.

Les niveaux 2, 3, et 4 impliquent que les résultats des simulations soient indépendants
de la vitesse d’avancement des processus. Or les communications effectuées dans le

125



Chapitre 5. Synchronisation des données

contexte du HardSyncMode dépendent de l’avancée relative des processus par rapport
aux autres, qui peut varier d’une exécution à l’autre. Le HardSyncMode ne peut donc
pas dépasser le niveau 1 de reproductibilité. De manière plus générale, tout mode
permettant les lectures ou écritures sur des agents distants au temps T implique que
les interactions et données lues peuvent dépendre de la vitesse d’avancement relative des
processus. Tous ces modes atteignent donc au maximum le niveau 1 de reproductibilité.
Nous supposons que pour la plupart des modèles, la reproductibilité statistique est
effectivement atteinte avec le HardSyncMode. Une telle affirmation ne peut cependant
se vérifier qu’expérimentalement, au cas par cas pour chaque modèle.

Les modes permettant les interactions au temps T seulement avec les agents locaux,
comme le GhostMode ou le PushGhostMode, permettent d’obtenir des exécutions ne
dépendant pas de la vitesse d’avancement des processus, car les données distantes sont
toujours lues à partir du pas de temps précédent. Cependant, les interactions entre agents
locaux peuvent dépendre de leur ordre d’exécution à l’échelle de chaque processus. Ces
modes peuvent donc atteindre le niveau 2, sans pouvoir le dépasser.

Les modes permettant seulement les lectures au temps T − 1, y compris pour les
agents locaux, permettent de rendre le comportement des agents locaux indépendant de
leur ordre d’exécution. Les modes GlobalGhostMode et PushGlobalGhostMode peuvent
dont prétendre atteindre le niveau 3 de reproductibilité.

Pour finir, avec les modes GlobalGhost, les données lues depuis un agent ne dépendent
pas de son état local ou distant. Ces modes peuvent donc atteindre le niveau 4 de
reproductibilité.

5.3.3. Niveau de reproductibilité effectif

Les niveaux de reproductibilité précédents sont les niveaux de reproductibilité maxi-
mum atteints par chaque mode, mais l’utilisation des modes ne suffit pas à réellement
atteindre le niveau de reproductibilité maximal.

Afin d’étudier la notion de reproductibilité effective, nous définissons l’état du système
au pas de temps t de la simulation comme l’ensemble de l’état des agents au pas de
temps t. Le mécanisme d’initialisation du système permet de construire les agents et
d’initialiser leurs états au pas de temps 0. Le mécanisme de transition permet à l’état
des agents et donc du système de passer du pas de temps t à t+ 1.

Dès lors, une simulation atteint effectivement le niveau de reproductibilité n si et
seulement si il est garanti que le mécanisme d’initialisation du système et le mécanisme
de transition atteignent le niveau n.

Nous définissons plus précisément l’état d’un agent comme l’ensemble de ses propriétés
influençant son comportement ou ses interactions avec les autres, comme par exemple sa
position, son champs de perception, ses voisins, sa couleur ou son énergie. En revanche,
l’identifiant d’un agent, généré automatiquement et utilisé comme une variable interne
nécessaire au fonctionnement du simulateur, ne figure généralement pas dans l’état de
l’agent.

126



Chapitre 5. Synchronisation des données

Processus 0

292 18 9 196 33 . . .

Processus 1

7 64 22 501 8 . . .

a0

a0

Figure 5.4. – Exemple de simulation spatiale distribuée atteignant le niveau 2 de
reproductibilité.

Niveau 2

Pour atteindre le niveau 2 de reproductibilité effective pour les modes autorisant les
interactions au temps T seulement sur les agents locaux, il suffit généralement de s’assurer
que le mécanisme de génération de nombres aléatoires atteint le niveau 2, ce qui est
notamment le cas avec les générateurs de nombres distribués déterministes introduits à
la section 3.5.2. Si l’initialisation du système et le comportement des agents se basent
exclusivement sur ce type de générateurs, les mécanismes d’initialisation et de transition,
et donc la simulation, atteignent effectivement le niveau 2 de reproductibilité.

Un exemple est présenté sur la figure 5.4. Chaque processus possède sa propre
séquence déterministe de nombres aléatoires. On constate, d’une part, que dans ce cas
le mécanisme de transition dépend de l’ordre d’exécution des agents, car les nombres
aléatoires consommés par chaque agent sur chaque processus dépendent de leur ordre
d’exécution. À noter que le problème se pose aussi dans le cas de la simulation séquentielle.
D’autre part, le mécanisme de transition dépend aussi de la séquence de partitionnement,
car les nombres consommés par les agents dépendent du processus auquel ils sont
assignés. Ainsi, quand a0 migre, il consomme les nombres du processus 0. Ce schéma
d’exécution peut dont atteindre la reproductibilité stricte à ordre d’exécution et séquence
de partitionnements fixes, mais ne peut la dépasser.

Niveau 3

L’utilisation des modes avec lectures à T − 1 sur tous les agents ne constitue pas une
condition suffisante pour atteindre les niveaux de reproductibilité 3 et 4.

Pour effectivement atteindre le niveau 3, qui consiste à obtenir une simulation
reproductible indépendamment de l’ordre d’exécution des agents à l’échelle de chaque

127



Chapitre 5. Synchronisation des données

Processus 0

292 18 9 196 33 . . .

11

84

28
. . .

16

1

68
. . .

27

145

34
. . .

Processus 1

7 64 22 501 8 . . .

79

8

92
. . .

44

102

19
. . .

a0

a0

. . .
92

8

79

Figure 5.5. – Exemple de simulation spatiale distribuée atteignant le niveau 3 de
reproductibilité.

processus mais avec une séquence de partitionnements fixée, il est nécessaire que les
mécanismes d’initialisation et de transition atteignent également le niveau 3. Les lectures
à T − 1 sur les agents locaux garantissent en partie des interactions entre agents
indépendantes de leur ordre d’exécution. Cependant, comme présenté dans l’exemple
précédent, utiliser des instances de générateurs à l’échelle du processus ne permet pas
d’atteindre le niveau 3.

Afin d’obtenir un mécanisme de transition avec un niveau 3 de reproductibilité, nous
proposons le schéma d’exécution illustré dans la figure 5.5.

La méthode consiste à embarquer un générateur de nombres aléatoires avec chaque
agent, de sorte que les nombres que chacun consomme ne dépendent plus de leur ordre
d’exécution par rapport aux autres.

Pour que le mécanisme d’initialisation atteigne le niveau 3, l’état des agents et les
graines de leurs générateurs doivent être définis de manière déterministe et indépendante
de l’ordre d’exécution des agents. De plus, compte tenu du grand nombre de générateurs
à initialiser, les graines des générateurs doivent être convenablement distribuées afin de
ne pas introduire de biais dans la simulation. Le partitionnement étant fixe dans ce cas,
ces objectifs peuvent être atteints en générant des graines à partir d’une instance de
générateur distribué déterministe au niveau du processus.

La combinaison de ces deux mécanismes permet d’atteindre la reproductibilité de
niveau 3 avec les modes n’autorisant que les interactions à T − 1. On remarque d’autre

128



Chapitre 5. Synchronisation des données

part, toujours sur la figure 5.5, que les nombres consommés par chaque agent ne
dépendent plus de leur migration. Ainsi, contrairement au cas de la figure 5.4, quand
l’agent a0 migre sur le processus 0, il continue de consommer des nombres depuis le
générateur qui lui a été assigné, indépendamment du processus auquel il est assigné. Dans
la pratique, la migration du générateur avec l’état de l’agent ne pose pas de problème,
car l’état des générateurs déterministes comme le générateur congruentiel linéaire ou
le Mersenne Twister sont facilement sérialisables. Le mécanisme de transition est donc
indépendant de la séquence de partitionnement, et donc de niveau 4. Cependant, le
mécanisme d’initialisation n’atteint pas le niveau 4 : en effet, l’initialisation du générateur
de nombres aléatoires dépend ici du processus sur lequel est initialisé a0. Le fait que la
position initiale des agents dans le modèle soit indépendante du nombre de processus ou
du partitionnement initial n’est pas non plus garanti dans ce cas.

Niveau 4

Nous détaillons dans cette section une méthode générique pour obtenir un mécanisme
d’initialisation de niveau 4, en l’illustrant par la figure 5.6.

La solution consiste à considérer une séquence d’agents de taille N , avec un état
indéfini, ou vide. Dans le cadre de l’exécution distribuée, initialiser les agents selon
un partitionnement arbitraire consiste alors simplement à initialiser le nombre d’agents
nécessaires sur chaque processus. L’instanciation des agents s’effectue donc de manière
distribuée, mais indépendamment du partitionnement ou du nombre de processus car à
ce stade les états des agents sont vides et donc nécessairement tous égaux. Un indice i
(séquence I sur la figure 5.6) est alors associé à chaque agent de manière arbitraire.

La séquence de coordonnées aléatoires POS de taille N est ensuite initialisée
grâce à un générateur de nombres aléatoires séquentiel, initialisé indépendamment du
partitionnement et du nombre de processus. La séquence générée est donc commune à
tous les processus. Les coordonnées à l’indice i sont alors associées à l’agent i. La séquence
de graines aléatoires RNG de taille N est ensuite initialisée de la même façon, puis un
générateur est associé à chaque agent de sorte que la graine à l’indice i soit utilisée
par l’agent i : la même graine est ainsi toujours associée aux mêmes coordonnées. Les
éléments de chaque tableau ne dépendant pas du nombre de processus ou de l’assignation
des indices, l’état initial des agents, et donc le mécanisme d’initialisation, atteignent alors
le niveau 4 de reproductibilité.

Ce mécanisme d’initialisation en séquence, qui consiste à attribuer une valeur à chaque
agent, est généralisable à tout modèle en initialisant des tableaux de valeurs de taille N
pour chaque propriété des agents avec un niveau 4 de reproductibilité.

Nous définissons enfin un mécanisme reproductible d’initialisation d’un échantillon,
qui permet d’associer une valeur v seulement à un sous-ensemble d’agents. Ce cas
correspond par exemple à l’infection d’un nombre n d’agents au début de la simulation
d’un modèle épidémiologique. Dans ce cas, un échantillon de n indices est créé de
manière reproductible sur tous les processus grâce à un générateur de nombres aléatoires
séquentiel, puis la valeur v est associée aux agents correspondant aux indices sélectionnés.

Pour les deux mécanismes d’initialisation, il est possible de considérer des fonctions

129



Chapitre 5. Synchronisation des données

Processus 0

0 1 2 3 4 5 . . .I:

(0,3) (2,2) (6,0) (1,1) (4,3) (2,3) . . .POS:

123 14 232 45 72 103 . . .RNG:

17

116

54
. . .

122

14

23
. . .

47

76

13
. . .

2

29

17
. . .

44

21

110
. . .

. . .

Processus 1

Figure 5.6. – Exemple de simulation spatiale distribuée atteignant le niveau 4 de
reproductibilité.

130



Chapitre 5. Synchronisation des données

d’initialisation plutôt que des valeurs. Leurs appels sont alors naturellement distribués
car réalisés seulement sur les processus associés aux agents concernés.

La combinaison de ces mécanismes d’initialisation avec les modes de synchronisation
ne permettant que les lectures à T−1 permettent d’obtenir une reproductibilité stricte de
niveau 4, dans laquelle le déroulement microscopique des modèles et donc leurs résultats
globaux ne dépendent pas du nombre de processus utilisés.

Dans l’exemple précédent, la localisation des agents est décrite comme de simples
coordonnées. Dans le cas d’un environnement à base de graphe, la localisation est donnée
par un nœud du graphe. Il est alors nécessaire, pour initialiser la localisation des agents
de manière reproductible, d’une part de générer l’environnement indépendamment du
nombre de processus, puis de générer un tableau de nœuds de taille N indépendamment
du nombre de processus.

Actuellement, l’initialisation d’agents avec une reproductibilité de niveau 4 n’est
assurée que pour les environnements à base de grille discrète dans FPMAS. La possibilité
d’exécuter ce type de modèles spatiaux avec une reproductibilité stricte assurée quel que
soit le nombre de processus est déjà une contribution par rapport à notre étude des
plateformes existantes.

Nous terminons ici la caractérisation théorique des modes de synchronisation, pour
maintenant les aborder d’un point de vue expérimental.

5.4. Performances

Les modes précédemment définis se basent sur des stratégies de communication très
diverses, allant de la communication point à point avec gestion stricte de la concurrence
du HardSyncMode aux communications collectives sans gestion des écritures distantes du
GhostMode. L’objectif de nos expérimentations consiste donc dans un premier temps à
évaluer, de la manière la plus générique possible, le coût en temps de calcul des différents
modes de synchronisation.

5.4.1. Modèle test

Afin d’évaluer les coûts de chaque mode de la manière la plus général possible, nous
utilisons d’abord une méthode basée sur le Méta-modèle introduit au chapitre 4. Nous
disposons en particulier des mêmes environnements et types de modèles déjà introduits.

Pour tester les performances en lectures et en écritures des modes, nous définissons
un modèle à base de graphe pur de type Small-World avec N = 1000 000, K = 8 et
p = 0,1. Un tel graphe, avec son haut niveau d’agrégation et sa faible longueur de chemin
caractéristique, permet à la fois de générer de nombreuses interactions entre agents locaux
mais aussi des interactions avec des agents distants sur tous les processus, ce qui permet
de tester les performances des modes de synchronisation dans différentes situations. Le
cas des écritures concurrentes est par exemple digne d’intérêt car chaque agent local fait
régulièrement l’objet d’écritures depuis des agents locaux et distants à chaque pas de
temps.

131



Chapitre 5. Synchronisation des données

Comportement Description

READ_ONE Lecture d’un agent sélectionné au hasard parmi les voisins.
READ_ALL Lecture de tous les voisins.
WRITE_ONE Écriture d’un agent sélectionné au hasard parmi les voisins.
WRITE_ALL Écriture de tous les voisins.

Table 5.5. – Type de comportements en lectures et en écritures.

Le graphe d’interactions est partitionné en début de simulation grâce à Zoltan. Les
expériences du chapitre 4 ont déjà prouvé la capacité de Zoltan à équilibrer la charge et les
communications entre les processus dans le cas d’un graphe Small-World. Nous utilisons
pour ces expériences un taux de déséquilibre de 1,02, pour éviter que des processus ne
soient associés à aucun nœud y compris lors de l’utilisation de 64 processus. Nous forçons
alors Zoltan à maintenir des communications entre tous les processus, afin d’éviter les
biais.

Une fois le partitionnement effectué, les agents exécutent un comportement qui consiste
à réaliser des lectures et des écritures, pendant 1000 pas de temps. Afin d’obtenir des
résultats de performances génériques, nous enrichissons le Méta-modèle avec la définition
de plusieurs types de comportements, présentés dans le tableau 5.5. Il est possible
de combiner deux types de comportement différents. Par exemple, le comportement
READ_ONE_WRITE_ALL signifie que chaque agent effectue une lecture sur un voisin choisi
au hasard, puis effectue une écriture sur tous ses voisins.

Le volume des données des agents est défini comme un paramètre du Méta-modèle,
afin d’observer l’influence des volumes de communication.

L’étude de performances suivante permet d’évaluer deux caractéristiques des modes de
synchronisation :

1. Les performances globales des modes en lectures et en écritures dans l’environne-
ment considéré selon le nombre de processus.

2. Le temps individuel d’une lecture ou d’une écriture locale ou distante avec chaque
mode.

Pour ce faire, nous mesurons pour chaque expérience, sur chaque processus et à chaque
pas de temps, les données suivantes :

— Nl,l : Nombre de lectures entre deux agents locaux
— tl,l : Temps total passé à faire des lectures locales
— Nl,d : Nombre de lectures entre un agent local et un agent distant
— tl,d : Temps total passé à faire des lectures distantes
— Ne,l : Nombre d’écritures entre deux agents locaux
— te,l : Temps total passé à faire des écritures locales
— Ne,d : Nombre d’écritures entre un agent local et un agent distant
— te,d : Temps total passé à faire des écritures distantes
— ts : Temps de synchronisation
Les expériences ont été menées avec FPMAS 1.6 [2] et la version 1.1 de l’implémentation

132



Chapitre 5. Synchronisation des données

du Meta-Modèle [3]. L’intégralité des données brutes sont accessibles librement et de
manière pérenne grâce à la plateforme dat@UBFC [28].

5.4.2. Lectures

Nous cherchons dans un premier temps à analyser le coût des lectures selon les modes
de synchronisation. La figure 5.7 présente les temps observés dans le contexte d’un
modèle où les agents exécutent un comportement de type READ_ALL. Les expérimentations
ont été menées avec les trois modes implémentés dans FPMAS : GhostMode (G),
GlobalGhostMode (GG) et HardSyncMode (HS).

Pour chaque pas de temps, les valeurs mesurées sont sélectionnées à partir du processus
maximisant la quantité suivante :

tl,l + tl,d + te,l + te,d + ts (5.1)

D’autres méthodes sont envisageables, comme la moyenne des valeurs obtenues sur
chaque processus. La sélection du maximum permet cependant d’obtenir une borne
maximale du coût des lectures, et de considérer un ensemble de valeurs ayant réellement
été mesurées sur un processus. Dans la pratique, le taux de déséquilibre de 2% garantit
cependant une faible variation des valeurs entre les processus, quelle que soit la méthode
de sélection des valeurs. Nous réalisons ensuite la somme des valeurs sélectionnées à
chaque pas de temps, par type de valeur.

Nous faisons ensuite la moyenne des temps totaux obtenus sur 10 itérations de chaque
expérience réalisées avec des graines aléatoires différentes. La taille des données des agents
est fixée à 16 octets, ce qui correspond à un volume relativement faible.

La hauteur totale des barres ne doit pas être perçue comme un temps d’exécution
total d’un modèle réel. En effet, les agents effectuent des lectures mais n’ont pas de
comportement réel basé sur les données lues. En outre, nous ne mesurons que les temps
passés dans les méthodes de synchronisation, de lectures et d’écritures, afin de s’affranchir
au maximum des biais liés à des détails d’implémentation de la plateforme qui ne sont
pas liés aux modes de synchronisation. La somme pour chaque pas de temps des valeurs
sélectionnées par le maximum de la quantité présentée dans l’équation 5.1 ne constitue
pas non plus une estimation exacte du temps d’exécution réel du modèle.

On observe tout d’abord, à partir de deux processus, une bonne diminution des
temps d’interactions en fonction du nombre de processus quel que soit le mode. Ce
résultat s’explique principalement par la répartition de la charge et des communications
permises par Zoltan, mais prouve également que l’augmentation du nombre de processus
n’engendre pas une explosion des temps de communication réels. Dans certains cas,
l’exécution avec un seul processus, qui n’implique aucune communication, est plus
efficace que l’exécution avec plusieurs processus. En effet, nous considérons ici que le
comportement des agents se résume à des interactions, sans considérer de travail local.
Le surcoût dû aux communications compense donc rapidement le gain en temps de calcul
induit par la distribution de la charge.

Le temps de synchronisation du GlobalGhostMode avec un processus correspond
essentiellement au temps de mise à jour des copies ghost des agents locaux. De manière

133



Chapitre 5. Synchronisation des données

Figure 5.7. – Décomposition temporelle des différentes opérations de synchronisation
pour un modèle READ_ALL sur 1000 pas de temps.

générale, les différences de temps des lectures locales entre les différents modes sont le
fruit de détails d’implémentation de FPMAS, tels que la gestion des copies des agents
ou de la concurrence. Ce temps est systématiquement le plus faible pour le GhostMode,
car, dans ce cas, notre implémentation des lectures consiste à trivialement renvoyer une
référence vers l’agent.

Le temps des lectures distantes est négligeable pour les modes GhostMode et Global-
GhostMode par rapport au HardSyncMode. En effet, dans ces deux modes, la lecture
d’agents délégués est similaire à la lecture des agents locaux. En revanche, on observe que
les communications point à point nécessaires au HardSyncMode représentent un temps
significatif. Le temps de synchronisation associé à ce mode, qui consiste simplement à
attendre la fin de l’exécution du pas de temps par les autres processus en répondant
aux dernières requêtes, est bien plus faible que dans le cas des autres modes. En effet,
l’essentiel de la charge de travail associée aux lectures distantes pour les modes GhostMode
et GlobalGhostMode se concentre sur l’étape de synchronisation, qui consiste à importer
les données à jour de tous les agents délégués.

Nous poursuivons notre analyse avec une estimation du coût individuel nécessaire à
la réalisation d’une lecture locale ou distante pour chaque mode. L’analyse précédente
montre que selon le mode, le coût d’une lecture peut se retrouver dans les étapes de
lecture en elle-même ou de synchronisation selon différentes proportions. Afin de pouvoir
comparer le coût individuel des lectures selon les modes, nous proposons d’abord d’évaluer

134



Chapitre 5. Synchronisation des données

(a) Lectures locales. (b) Lectures distantes.

Figure 5.8. – Temps de lectures individuelles pour un modèle READ_ALL.

le coût d’une lecture locale grâce à la formule suivante :

t′l,l =
tl,l
Nl,l

(5.2)

Nous considérons donc ici que les lectures locales n’ont aucune influence sur le temps de
synchronisation. En revanche, nous évaluons le temps d’une lecture distante grâce à la
formule suivante :

t′l,d =
tl,d + ts
Nl,d

(5.3)

Nous répartissons ainsi le coût des lectures distantes entre le temps passé à faire
l’opération de lecture elle-même et le temps de synchronisation.

Les coûts individuels des lectures sont présentés sur la figure 5.8. Les valeurs sont
obtenues en appliquant les formules 5.2 et 5.3 à la somme des valeurs sélectionnées à
chaque pas de temps selon le même procédé que pour la figure 5.7. La valeur finale
est obtenue par la moyenne de 10 expériences, et les valeurs minimales et maximales
observées sont représentées grâce aux barres d’erreurs.

On observe d’abord que ces résultats justifient les ordres de grandeurs de coût des
lectures distantes utilisés au chapitre 4, ainsi que l’aspect négligeable des temps de
lectures locales par rapport aux lectures distantes.

On constate ensuite que la visualisation des coûts de lectures locales confirment le
surcoût du GlobalGhostMode par rapport au GhostMode, qui correspond à la gestion des
copies ghost, ainsi que le surcoût du HardSyncMode dû aux mécanismes de gestion de la
concurrence. Le temps individuel de lecture locale est relativement constant en fonction
du nombre de processus, malgré une légère augmentation pour le HardSyncMode, pour

135



Chapitre 5. Synchronisation des données

Figure 5.9. – Décomposition temporelle des différentes opérations de synchronisation
pour un modèle READ_ONE sur 1000 pas de temps.

laquelle nous n’avons actuellement pas d’explication précise. Une cause probable pourrait
être liée à une trop forte occupation de la mémoire par rapport aux autres modes, ce
qui ralentit les accès à la mémoire dans le nœud de calcul, constitué de 16 cœurs. Cette
explication est confortée par la réduction de la hausse au delà de 16 processus, encore plus
marquée dans les cas READ_ONE (figure 5.10) et WRITE_ALL (figure 5.12) présentés dans
la suite. D’autres causes possibles incluent des incertitudes sur la méthode ou d’autres
causes liées à l’implémentation de FPMAS.

L’augmentation du temps de lectures distantes en fonction de tous les modes est
nettement plus nette. Nous supposons cette fois que cette augmentation est due à la
hausse de complexité des communications avec la hausse du nombre de processus, qu’elles
soient collectives (GhostMode et GlobalGhostMode) ou point à point (HardSyncMode). En
effet, il est plus simple pour un processus de communiquer avec trois autres processus
qu’avec 63 autres, or la structure de graphe Small-World implique des communications
avec tous les processus disponibles.

Nous terminons enfin cette analyse avec les résultats d’un modèle avec des comporte-
ments de type READ_ONE, présentés dans les figures 5.9 et 5.10.

La plupart des considérations précédentes sont encore valides dans ce cas, à l’exception
de l’efficacité du HardSyncMode par rapport aux autres. En effet, ce mode n’importe
les données des agents qu’en cas de lecture effective, contrairement au GhostMode et
au GlobalGhostMode qui importent systématiquement toutes les données des agents
délégués, même si ceux-ci ne sont pas lus. Les coûts individuels de lectures avec ces
derniers modes s’en trouvent grandement augmentés par rapport au cas du modèle

136



Chapitre 5. Synchronisation des données

(a) Lectures locales. (b) Lectures distantes.

Figure 5.10. – Temps de lectures individuels pour un modèle READ_ONE.

READ_ALL, car le nombre de lectures diminue largement mais le temps de synchronisation
reste identique.

Le HardSyncMode, qui réalise des lectures au temps T avec des communications point
à point au cours du pas de temps, n’est donc pas systématiquement plus coûteux que le
GhostMode et le GlobalGhostMode, qui réalisent des lectures au temps T − 1 avec des
communications collectives en fin de pas de temps.

5.4.3. Écritures

Les performances des écritures ne sont évaluées que dans le cas du HardSyncMode. En
effet, c’est le seul mode parmi ceux implémentés qui permet la réalisation d’écritures
distantes. Dans ce contexte, les performances d’un modèle WRITE_ALL sont présentées
dans la figure 5.11.

Contrairement aux lectures, qui peuvent avoir lieu simultanément, les écritures
requièrent un accès exclusif à chaque agent. À noter cependant que malgré la hausse
des accès concurrents due à l’augmentation du nombre de processus, le HardSyncMode
reste efficace jusqu’à 64 processus. Ces résultats sont confirmés par le coût des écritures
individuelles présentés dans la figure 5.12. On observe même que ces coûts sont du même
ordre de grandeur que le coût des lectures individuelles calculé pour le modèle READ_ALL
(figure 5.8).

En effet, la réalisation des lectures et des écritures requièrent chacune le même nombre
de messages pour demander la ressource, l’importer, et libérer l’opération, à la seule
différence que lors d’une écriture il est nécessaire de renvoyer les données à jour. Or le
volume de données associées aux agents dans cette expérience est relativement faible

137



Chapitre 5. Synchronisation des données

Figure 5.11. – Décomposition temporelle des différentes opérations de synchronisation
pour un modèle WRITE_ALL sur 1000 pas de temps avec le HardSyncMode.

(a) Écritures locales. (b) Écritures distantes.

Figure 5.12. – Temps d’écritures individuelles pour un modèle WRITE_ALL avec le
HardSyncMode.

138



Chapitre 5. Synchronisation des données

(16 octets). Les lectures et les écritures représentent donc un coût en communication
similaire.

Il semble donc que la gestion de la concurrence d’accès plus stricte dans le cas des
écritures n’engendre pas une hausse de coût significative par rapport aux lectures. En
effet, l’exclusivité des accès s’applique à l’échelle des agents, et non à l’échelle des
processus. Par exemple, même si pour 64 processus tous les processus requièrent l’accès
exclusif à un agent du processus P , il est peu probable, avec en moyenne 15 625 agents par
processus, que plusieurs processus requièrent simultanément l’accès au même agent. Or
le processus P peut accorder aux autres processus plusieurs accès exclusifs à des agents
différents. La concurrence d’accès en écriture doit donc être assurée dans la théorie, afin
d’assurer la cohérence du peu d’écritures réellement concurrentes, mais ne pose pas de
fortes contraintes dans la pratique. Cette conclusion n’est pas le fruit d’un biais dû à
notre configuration. Le graphe Small-World se veut au contraire représentatif de modèles
Multi-Agents réels nécessitant des écritures distantes. En effet, dans le cas d’un modèle
réel, et encore davantage si les interactions ont lieu selon des relations de proximité
géographique, la probabilité d’écritures réellement concurrentes est faible si le nombre
d’agents est largement supérieur au nombre de processus. Nous supposons également
une certaine uniformité des interactions : les conclusions seraient autres dans le cas d’un
graphe d’interactions avec un haut niveau de centralité.

Nous pouvons augmenter les contraintes de concurrence avec le cas d’un modèle
READ_ALL_WRITE_ONE, dont les résultats sont présentés sur la figure 5.13. On observe que
les performances du HardSyncMode restent stables en combinant lectures et écritures.
Nous ne présentons pas ici l’évolution des coûts individuels de lectures et d’écritures, car
il est difficile dans ce cas de répartir de manière pertinente le temps de synchronisation
entre les lectures et les écritures, ce qui rend notamment la formule 5.3 inapplicable en
l’état.

Nos expérimentations sur le Méta-Modèle permettent d’estimer les performances des
algorithmes d’équilibrage de charge et de synchronisation pour des classes de modèles
génériques. Nous pouvons dès lors chercher à confirmer les résultats attendus sur un
modèle réel. Or des implémentations des comportements d’infection dans un modèle
épidémiologique sont assimilables aux comportements READ_ALL et WRITE_ALL.

139



Chapitre 5. Synchronisation des données

Figure 5.13. – Décomposition temporelle des différentes opérations de synchronisation
pour un modèle READ_ALL_WRITE_ONE sur 1000 pas de temps avec le
HardSyncMode.

5.5. Impact sur les résultats des modèles

Pour confirmer les performances des modes de synchronisation sur un modèle réel
et pour évaluer leur impact sur les résultats des modèles, nous nous affranchissons du
Méta-modèle au profit de l’analyse d’un modèle épidémiologique. L’implémentation du
modèle constitue également une démonstration des capacités de FPMAS et des concepts
abstraits introduits jusqu’à présent.

5.5.1. Modèle Virus

Nous étudions le cas d’un modèle épidémiologique SIRD (Susceptible, Infecté, Rétabli,
Décédé, ou Susceptible, Infected, Removed, Dead pour la version anglophone), basé sur
un environnement à base de grille de taille X × Y dans lequel N agents, initialisés
aléatoirement et uniformément sur l’environnement, se déplacent aléatoirement dans leur
voisinage de Moore à chaque pas de temps. À l’initialisation, ni agents sont sélectionnés
aléatoirement et passent à l’état Infecté. Le modèle est simulé pendant T pas de temps.

À chaque pas de temps, les agents Infectés peuvent guérir et passer à l’état Rétabli
avec une probabilité γ, mourir et passer à l’état Décédé avec une probabilité µ, ou infecter
chaque agent voisin Susceptible avec une probabilité α.

Telle est la spécification du modèle Virus, indépendamment de l’environnement de
simulation considéré, séquentiel ou distribué.

140



Chapitre 5. Synchronisation des données

Paramètre Valeur

X × Y 1500× 1500
N 1 000 000
ni 10
T 1000
γ 0,035
µ 0,005
α 0,25

Table 5.6. – Paramètres d’expérimentation du modèle Virus.

Il est possible d’implémenter ce modèle de manière distribuée dans FPMAS à partir
des interfaces de lecture et d’écriture. Le mécanisme d’infection décrit peut en particulier
être implémenté de deux manières différentes :

— Version en lecture seule : les agents Susceptibles réalisent une expérience de
Bernoulli de paramètre β pour chaque voisin Infecté. Si le résultat d’au moins
une est positif, l’agent devient Infecté.

— Version avec écritures : les agents Infectés infectent directement leurs voisins
susceptibles en changeant leur état avec une probabilité β.

Conformément aux propriétés des modes de synchronisation implémentés dans FP-
MAS, la version avec écritures ne peut s’exécuter sans violation des règles du modèle
qu’avec le HardSyncMode. En revanche, le GhostMode, le GlobalGhostMode et le
HardSyncMode peuvent être utilisés pour simuler le modèle en lecture seule. À noter
que la version en lecture seule correspond à un comportement de type READ_ALL, et que
la version avec écritures correspond à un comportement WRITE_ALL. Chaque écriture,
qui inclut par défaut la lecture des données actuelles, correspond alors à la vérification
de l’état susceptible des agents et à leur infection éventuelle. Les résultats obtenus avec
le Méta-Modèle pour ces types de comportements (figure 5.7 et 5.11) permettent déjà
de prédire dans une certaine mesure les performances attendues pour chaque version du
modèle épidémiologique.

Les expériences ont été menées avec FPMAS 1.6 [2] et la version 1.1 de l’implémentation
du modèle Virus [5]. L’intégralité des données brutes sont accessibles librement et de
manière pérenne grâce à la plateforme dat@UBFC [28].

5.5.2. Performances

Nous étudions d’abord les performances de FPMAS dans le cadre de la simulation
du modèle Virus, en faisant varier le nombre de processus. Les paramètres du modèle
sont donnés dans le tableau 5.6. Ces paramètres ont été choisis empiriquement pour faire
apparaitre la dynamique classique des courbes de résultats des modèles SIRD tout en
étalant la courbe d’infection sur les 1000 pas de temps de la simulation, mais aussi pour
assurer un nombre d’agents par processus décent même sur 64 processus, tout en gardant
une taille de modèle compatible avec une exécution sur un seul processus.

141



Chapitre 5. Synchronisation des données

(a) Temps d’exécution (b) Accélération par rapport à l’utilisation d’un
seul processus

Figure 5.14. – Performances de la simulation du modèle virus

Les résultats de performances pour les modes de synchronisation considérés sont donnés
dans la figure 5.14. La figure 5.14a montre les temps d’exécution pour chaque nombre
de processus considéré, avec une échelle logarithmique en ordonnée. Chaque valeur est
obtenue par la moyenne de 10 expériences avec des graines aléatoires différentes. La
figure 5.14b montre l’accélération (ou « speedup ») pour chaque nombre de processus,
définit comme Sp = T0/Tp où Tp désigne le temps d’exécution sur p processus. La courbe
linéaire montre l’accélération idéale, pour laquelle l’exécution sur p processus divise le
temps d’exécution par p par rapport à une exécution séquentielle.

On observe tout d’abord qu’en termes de temps d’exécution, les résultats obtenus sont
globalement cohérents avec les résultats présentés dans la section 5.4.2, en particulier
ceux relatifs au modèle READ_ALL auquel correspond le modèle Virus en lecture seule.
Les différences s’expliquent d’une part par l’utilisation d’un modèle spatial, impliquant
une structure globale de graphe dynamique, et d’autre part par le comportement réel
des agents. On retrouve cependant la tendance générale des performances relatives des
différents modes de synchronisation :

— Le mode le plus performant est le GhostMode.
— Le GlobalGhostMode est légèrement plus lent, en raison de la gestion des copies

ghost.
— Le HardSyncMode est le plus coûteux, en raison de l’utilisation de communications

point à point et de l’importation systématique des données des agents.
On pourrait s’étonner de l’équivalence des performances du HardSyncMode pour les

modèles en lecture seule et avec écritures. Ces résultats confirment cependant les
conclusions déjà établies à la section 5.4.3, selon laquelle les coûts des lectures et des

142



Chapitre 5. Synchronisation des données

écritures individuelles dans les modèles READ_ALL et WRITE_ALL sont similaires, en raison
de la faible concurrence d’accès réelle à chaque agent.

Pour finir, on observe dans la figure 5.14b que tous les modes font preuve d’une
accélération acceptable. On peut noter la présence atypique d’une hausse supra-linéraire
de l’accélération avec le HardSyncMode sur le modèle en lecture seule de 32 à 64
processus : le nombre de processus double, et pourtant S64/S32 = T32/T64 > 2. Cette
hausse peut s’expliquer par le découpage à base de grille et par la distribution des
communications elles-mêmes : avec un découpage sur 64 processus, même si le nombre
global de communications augmente, le nombre de communications de chaque processus
avec ses voisins diminue.

Même si l’analyse sur d’autres modèles seraient pertinente, nous considérons que
l’analyse générique de performances permise par le Méta-Modèle et sa confirmation par
les résultats du modèle Virus valident en grande partie les performances des modes de
synchronisation implémentés dans FPMAS. Nous poursuivons l’étude expérimentale des
modes de synchronisation avec l’influence des modes sur la reproductibilité réelle des
simulations.

5.5.3. Reproductibilité

Nous proposons ici une analyse expérimentale de la reproductibilité effective des modes
GhostMode et HardSyncMode dans le cas du modèle Virus.

Il a déjà été démontré théoriquement à la section 5.3 que le GlobalGhostMode
est capable d’atteindre le niveau de reproductibilité le plus haut, qui garantit une
reproductibilité stricte indépendamment du partitionnement et donc du nombre de
processus. Des résultats expérimentaux ont validé la capacité d’atteindre ce niveau de
reproductibilité avec FPMAS.

Le HardSyncMode n’offre théoriquement aucune garantie de reproductibilité, et le
GhostMode se limite à la reproductibilité stricte à partitionnement et ordre d’exécution
des agents fixés. Nous quantifions ici la capacité de ces modes à dépasser ces limites dans
la pratique.

Nous basons l’étude de la reproductibilité sur le cas de référence de la figure 5.15, ob-
tenu par la simulation d’un modèle Virus avec les mêmes paramètres que précédemment
(tableau 5.6) en GlobalGhostMode avec 10 graines différentes. Les résultats de chaque
expérience, représentés superposés sur la figure, sont obtenus avec 64 processus, mais ne
dépendent pas du nombre de processus. Ce mode atteignant le niveau de reproductibilité
le plus élevé, la variabilité entre les courbes ne dépend que de la graine aléatoire, d’où
son utilisation comme référence.

Nous étudions d’abord le cas du HardSyncMode. La figure 5.16 montre les résultats
de 10 expérimentations avec les mêmes paramètres que pour la figure 5.15, mais avec
le HardSyncMode, 64 processus, et une graine aléatoire fixée. On observe donc ici la
variabilité propre au HardSyncMode entre plusieurs exécutions à partitionnement et ordre
d’exécution fixés sur 64 processus. Or cette variabilité est clairement négligeable par
rapport à celle liée à la graine aléatoire (figure 5.15), dans la version en lecture seule
(figure 5.16a) comme dans la version avec écritures (figure 5.16b).

143



Chapitre 5. Synchronisation des données

Figure 5.15. – Analyse de la reproductibilité du GlobalGhostMode avec 10 graines
différentes (lecture seule), utilisée comme cas de référence.

On en déduit que même si le HardSyncMode n’offre aucune garantie de reproductibilité
stricte à partitionnement et ordre d’exécution fixe, celui-ci atteint dans la pratique une
forme de reproductibilité statistique dans les mêmes conditions, au moins dans le cas du
modèle Virus.

Nous étudions ensuite la variabilité liée à l’utilisation du GhostMode en fonction
du nombre de processus. La superposition des courbes de la figure 5.17 est cette fois
obtenue avec les résultats d’expérience sur différents nombres de processus, donné par
l’ensemble P . Chaque courbe est obtenue par la moyenne de 10 expériences avec des
graines différentes pour chaque nombre de processus 2. En effet, utiliser la même graine
avec des nombres de processus différents n’a que très peu de sens, car les séquences de
nombre générés sur chaque processus par la méthode présentée à la section 3.5.2 seront
fondamentalement différentes. Effectuer la moyenne sur 10 expériences permet de limiter
la variabilité liée à la génération de nombres aléatoires, pour se concentrer sur celle liée
au nombre de processus.

Là encore, on observe que la variabilité de la figure 5.17 est négligeable par rapport
au cas de référence. Le GhostMode permet donc d’atteindre une forme de reproductibilité
statistique indépendante du nombre de processus, et donc potentiellement indépendante
du partitionnement, au moins dans le cas du modèle Virus.

Même si une étude plus fine et extensive de ces phénomènes reste nécessaire, on constate
que le GhostMode et le HardSyncMode peuvent atteindre dans la pratique des niveaux de
reproductibilité statistique qui dépassent le niveau de reproductibilité stricte équivalent
qui leur a été assigné à la section 5.3. De tels niveaux de reproductibilité statistique
peuvent s’avérer largement suffisants pour l’utilisateur final, même si une reproductibilité

2. Les 10 mêmes graines que pour le cas de référence sont systématiquement utilisées.

144



Chapitre 5. Synchronisation des données

(a) HardSyncMode avec la même graine sur 10
itérations (lecture seule).

(b) HardSyncMode avec la même graine sur 10
itérations (écritures).

Figure 5.16. – Analyse de la reproductibilité du HardSyncMode entre des itérations avec
la même configuration.

Figure 5.17. – Analyse de la reproductibilité du GhostMode pour différents nombres de
processus.

145



Chapitre 5. Synchronisation des données

stricte n’est pas garantie.

146



Chapitre 5. Synchronisation des données

5.5.4. Influence de la gestion des lectures et écritures

Nous terminons cette série d’expérimentations par une étude de l’impact des règles
de gestion des lectures et écritures définies par chaque mode de synchronisation sur les
résultats des modèles. En effet, les modes GhostMode, GlobalGhostMode et HardSyncMode
sont utilisables pour simuler le modèle Virus en lecture seule ou avec écritures, sans violer
les règles du modèle. L’utilisation de chaque mode donne cependant lieu à différentes
gestions des lectures et écritures, conformément à ce qui a été présenté dans le tableau 5.1.

La figure 5.18 présente des résultats obtenus avec chaque mode sur 64 processus.
Comme précédemment, chaque courbe correspond à la moyenne de 10 itérations avec
des graines différentes, afin de limiter les causes de variabilité autres que celles dues
aux différentes gestions des lectures et écritures par les modes de synchronisation. On
constate cette fois une variabilité non négligeable entre certains modes par rapport à la
variabilité de référence de la figure 5.15, notamment au niveau des courbes Removed et
Infected.

L’avance des courbes en HardSyncMode pour le modèle avec écritures est synonyme
d’une propagation plus rapide de l’infection. En effet, dans cette configuration, l’exécution
du comportement d’un agent peut donner lieu à l’infection de plusieurs autres agents au
temps T , y compris s’ils sont localisés sur d’autres processus. Si les agents infectés au
temps T n’ont pas encore été exécutés, ils pourront à leur tour infecter d’autres agents
au temps T .

En comparaison, la courbe avec le HardSyncMode en lecture seule est plus lente, car
même si la lecture de l’état infecté des voisins a lieu au temps T , au plus un agent
(l’agent lui-même) peut être infecté lors de l’exécution du comportement d’un agent. Les
résultats ainsi obtenus sont similaires à ceux du GhostMode, avec une très légère avance
pour le HardSyncMode. Le fait de lire systématiquement l’état des agents distants au
temps T depuis les processus distants n’a donc pas un impact significatif sur les résultats
du modèle, et peut représenter un coût inutile dans ce cas. Ce constat peut s’expliquer
par la faible proportion d’infections ayant lieu entre des agents exécutés sur des processus
différents.

Pour finir, la courbe d’infection avec le GlobalGhostMode est retardée par rapport aux
autres modes. En effet, la totalité des lectures s’effectuant à T − 1, y compris sur les
agents locaux, les agents infectés au temps T ne peuvent transmettre le virus qu’à partir
du pas de temps suivant.

Or aucune de ces expérimentations ne viole les spécifications du modèle d’origine,
données à la section 5.5.1. Il est donc clair que les modalités d’interactions imposées
par les modes de synchronisation, ou plus particulièrement les adaptations du modèle
d’origine à ces modalités, peuvent avoir un impact sur les résultats des modèles. Selon
les besoins de l’utilisateur, cet impact peut être significatif ou non. Par exemple, dans
le cas du modèle Virus, la variation de la hauteur du pic d’infection observée avec les
différents modes peut être considérée comme une variable critique.

147



Chapitre 5. Synchronisation des données

Figure 5.18. – Comparaison des résultats obtenus avec différents modes de synchroni-
sation

5.6. Synthèse

Dans ce chapitre, nous avons d’abord présenté les enjeux liés à la gestion des lectures
et des écritures distantes dans la simulation distribuée de SMA, notamment en termes
de temporalité des interactions. D’où la définition d’une interface générique permettant
d’implémenter divers modes de synchronisation des données, ainsi que la spécification
de plusieurs modes, dont trois ont été implémentés dans FPMAS. Nous avons ensuite
mené une étude extensive de ces modes dans la suite du chapitre. Une étude théorique a
d’abord été réalisée, avec une comparaison des modes selon les possibilités d’interactions
entre agents distants, et selon les garanties de reproductibilité. Une première étude
expérimentale basée sur le Méta-Modèle a ensuite permis de comparer de manière
générique les modes de synchronisation implémentés dans FPMAS. Grâce à une seconde
étude expérimentale basée sur le modèle Virus, nous avons pu confirmer les performances
des modes de synchronisation sur un modèle réel, et obtenir des résultats préliminaires sur
les niveaux de reproductibilité effectifs de ces modes et sur leur impact sur les résultats
des modèles.

Il apparait alors que chaque mode possède des avantages spécifiques par rapport aux
autres, résumés dans le tableau 5.7 pour les modes implémentés. Le HardSyncMode est le
plus efficace en termes d’interactions, car il est le seul à permettre les écritures cohérentes
au temps T entre les processus. Ce mode nécessite donc peu d’adaptation des modèles
à l’environnement distribué, en comparaison des autres modes qui permettent seulement
les lectures. Le GhostMode est le plus performant, car il nécessite peu de communications

148



Chapitre 5. Synchronisation des données

Mode Interactions Performances Reproductibilité

GhostMode + +++ ++
GlobalGhostMode + ++ +++
HardSyncMode +++ + +

Table 5.7. – Comparaison qualitative des modes de synchronisation implémentés dans
FPMAS selon différents critères.

collectives et doit gérer un minimum de copies ghost. Le GlobalGhostMode est enfin
le seul mode permettant d’atteindre la reproductibilité stricte indépendamment du
partitionnement et du nombre de processus.

Le choix du mode de synchronisation est donc nécessairement le fruit d’un compromis
issu des besoins de l’utilisateur final. D’où l’intérêt de proposer des plateformes de
simulation distribuée de SMA permettant la mise en place de différents modes de
synchronisation.

149



Chapitre 6.

Conclusion

Ce dernier chapitre est l’occasion de dresser un bilan de nos contributions au domaine
de la simulation distribuée de SMA, ainsi que leurs perspectives.

Bilan

Le chapitre 1 a été l’occasion de définir les problématiques relatives au contexte de notre
étude. Nous pouvons alors dresser le bilan de nos travaux au regard de nos questions de
recherches.

Quelles sont les difficultés à surmonter pour permettre la simulation distribuée de
SMA ?

Notre propre expérience de développement de la plateforme FPMAS ainsi que l’étude
de l’état de l’art nous ont permis d’isoler des problèmes communs à toute distribution
de simulation de SMA, notamment la distribution des SMA, l’équilibrage de charge et
la synchronisation des données. La synthèse des plateformes RepastHPC, D-MASON,
Pandora et FLAME présentée au chapitre 2 selon ces axes de réflexion, même s’ils ne
sont souvent abordés que de manière implicite par leurs concepteurs, tend à justifier la
généricité de notre approche. De plus, nous avons pu fournir dans les chapitres 3, 4 et 5
une analyse détaillée de ces problèmes sous forme de composants génériques à implé-
menter, en montrant comment les solutions mises en place par les plateformes existantes
pouvaient s’inclure dans l’architecture logicielle générique proposée. L’aboutissement de
ces travaux sur une plateforme C++ de simulation distribuée de SMA fonctionnelle,
robuste et efficace montre que la résolution des problèmes présentés n’est pas seulement
nécessaire mais également suffisante pour mettre en place la simulation distribuée de tout
SMA générique.

Quel est le niveau de satisfaction des objectifs d’ergonomie, d’efficacité et de
validité des résultats atteint par les solutions proposées dans les plateformes de
simulation distribuées existantes ? Quelles sont les limitations selon les types de
modèles ?

L’efficacité des plateformes est généralement garantie par leur concepteur, sans quoi
leur existence n’aurait que peu d’utilité dans le contexte de la simulation distribuée.

150



Nous avons cependant pu constater de grandes disparités en termes d’ergonomie et de
validité des résultats. En effet, une des limitations des plateformes existantes réside dans
la nécessité de compétences en parallélisme pour les utiliser. Nous avons non seulement
fait le choix d’abstraire au maximum les problématiques liées à la distribution, mais
aussi montré qu’il est possible de concevoir une plateforme de simulation distribuée
respectant ce principe grâce aux interfaces introduites dans la partie II et à l’exemple
d’implémentation de FPMAS.

La quantité de travail nécessaire pour adapter un modèle existant à l’exécution
distribuée représente une autre limitation en termes d’ergonomie, ce qui nous mène au
problème de validité des résultats. En effet, si l’implémentation distribuée de certains
modèles est difficile, elle est parfois impossible sans changer leurs règles ou sans tolérer
leur violation, par exemple par la gestion incohérente des interactions entre agents
distants. Nous avons pu voir au chapitre 2 que les modèles Multi-Agents peuvent exposer
différents besoins en termes de lectures et d’écritures. Or l’analyse de l’état de l’art
montre que les solutions existantes imposent aux modèles la lecture seule en mode ghost
sur tous les agents (D-MASON), seulement sur les agents distants (RepastHPC), l’envoi
de messages explicites en fin de pas de temps pour les interactions entre agents (FLAME),
ou des solutions avec un impact critique sur la distribution et le schéma d’exécution des
agents (Pandora). Aucune des solutions étudiées ne permet la réalisation de lectures ou
d’écritures concurrentes entre les processus au cours d’un pas de temps, une fonctionnalité
pourtant nécessaire à la simulation de nombreux modèles Multi-Agents. Nous avons par
ailleurs montré au chapitre 5 l’impact que peut avoir la distribution, et particulièrement la
synchronisation des données, sur la reproductibilité de la simulation, qui peut représenter
un critère de validité important pour certains utilisateurs. D’où la nécessité de mettre
en place des solutions flexibles pouvant adapter l’exécution distribuée à la diversité des
modèles Multi-Agents.

Comment mettre en place des solutions adaptables à tout type de modèle pour
atteindre ces objectifs ?

Les expérimentations menées aux chapitres 3 et 5 montrent la nécessité d’adapter
les techniques d’équilibrage de charge et de synchronisation des données à la diversité
des modèles Multi-Agents et des besoins de l’utilisateur par exemple en termes de
performance et de reproductibilité. C’est pourquoi nous défendons la conception par
interface des plateformes de simulation distribuées de SMA génériques. Cette conception
permet d’apporter simplement des solutions indépendantes aux problèmes précédemment
évoqués, comme nous l’avons fait par les algorithmes présentés dans la partie II. Le
schéma de distribution proposé au chapitre 3 permet notamment de préserver la structure
des modèles indépendamment de leur partitionnement, ce qui permet aux algorithmes
d’équilibrage inclus à la plateforme de produire des partitions sans aucune contrainte
relative à la distribution du modèle. Les exemples des chapitres 4 et 5 montrent par
ailleurs la possibilité d’implémenter des solutions diverses à chaque problème à partir
d’une interface commune, sans altérer le reste du système. Il est alors possible de
trivialement passer d’un algorithme à l’autre sans altérer l’implémentation des modèles,

151



ce qui permet à l’utilisateur de facilement choisir les solutions correspondant le mieux à
ses besoins, sans pour autant se soucier des détails d’implémentation des composants ou
des problèmes liés à la distribution. Les nombreux résultats présentés dans ce document
pour le Méta-Modèle ou le modèle Virus avec divers algorithmes d’équilibrage de charge
ou de synchronisation des données ne sont qu’un aperçu de la flexibilité permise par
l’architecture logicielle générique utilisée par FPMAS.

Perspectives

Notre étude se focalise avant tout sur la structure de l’architecture logicielle proposée et
sur la définition des problèmes à résoudre. Ainsi l’exploration des solutions possibles aux
problèmes de la distribution des SMA, de l’équilibrage de charge et de la synchronisation
constituent en eux-mêmes des sujets de recherche. L’état de l’art et nos propres exemples
d’algorithmes d’équilibrage de charge et de synchronisation des données montrent à la
fois la possibilité et la nécessité d’implémenter et d’analyser d’autres solutions.

Même si nous avons étudié les performances des algorithmes de partitionnement de
graphe dans le contexte de la simulation distribuée de SMA, il est possible d’intégrer à
FPMAS de nombreuses implémentations d’algorithmes d’équilibrage basés sur d’autres
concepts ou conçus et analysés spécifiquement pour la simulation distribuée de SMA.

La synchronisation des données offre également de bonnes perspectives, comme les
modes définis dans ce document mais n’ayant pas encore été implémentés, ou la
conception d’autres modes permettant de satisfaire de nouveaux besoins. Notre étude
partielle de la reproductibilité effective dans le cas du modèle Virus semble justifier la
nécessité d’une étude plus détaillée de l’impact de la synchronisation des données sur la
reproductibilité des simulations.

L’applicabilité de la plateforme logicielle proposée à la distribution d’autres modèles
ou plateformes de simulation, comme envisagé avec la plateforme GAMA, constitue des
opportunités en termes d’exécution large échelle pour la communauté Multi-Agents.

Enfin, de nombreuses optimisations de la plateforme FPMAS sont souhaitables. Si
elle permet de résoudre facilement les problèmes de continuité et de synchronisation des
données pour tout SMA générique, la structure interne à base de graphe est cependant
très limitante en termes de performances, notamment dans le cas des simulations spatiales
continues ou à base de grille. Il est donc pertinent d’envisager l’utilisation de structures
de données internes plus adaptées au modèle simulé, tout en préservant l’abstraction et
la flexibilité de la distribution qui constituent les atouts de FPMAS.

152



Liste des algorithmes

1. Migration des agents locaux. . . . . . . . . . . . . . . . . . . . . . . . . 53
2. Création des agents délégués. . . . . . . . . . . . . . . . . . . . . . . . 55
3. Nettoyage des agents délégués. . . . . . . . . . . . . . . . . . . . . . . . 56
4. Gestion de la localisation des agents délégués. . . . . . . . . . . . . . . 59
5. Distribution d’un modèle Multi-Agents. . . . . . . . . . . . . . . . . . 60
6. Création des agents délégués pour une représentation à base de graphe. 63
7. Génération de nombres aléatoires déterministes et distribuées . . . . . 69

8. Fonction de requêtes à fournir à Zoltan. . . . . . . . . . . . . . . . . . 87
9. Équilibrage de charge basé sur Zoltan. . . . . . . . . . . . . . . . . . . 88
10. Équilibrage de charge spatialisé statique. . . . . . . . . . . . . . . . . . 89
11. Équilibrage de charge spatialisé dynamique. . . . . . . . . . . . . . . . 90
12. Algorithme d’équilibrage de charge à base de grille. . . . . . . . . . . . 92

13. Implémentation du GhostMode. . . . . . . . . . . . . . . . . . . . . . . 113
14. Implémentation du GlobalGhostMode. . . . . . . . . . . . . . . . . . . 114
15. Implémentation du MutexClient. . . . . . . . . . . . . . . . . . . . . . 116
16. Implémentation du MutexServer (partie 1). . . . . . . . . . . . . . . . 118
17. Implémentation du MutexServer (partie 2). . . . . . . . . . . . . . . . 119
18. Implémentation du HardSyncMode. . . . . . . . . . . . . . . . . . . . . 120

19. Sérialisation ObjectPack . . . . . . . . . . . . . . . . . . . . . . . . . . 172
20. Exemple de sérialisation d’un type fondamental (entier) . . . . . . . . 173
21. Exemple de sérialisation d’un tableau dynamique . . . . . . . . . . . . 174

153



Liste des logiciels

Les logiciels listés ici sont archivés par Software Heritage 1 et identifiés grâce à un
identifiant persistent, le SWHID. Cet identifiant constitue une référence permanente vers
les sources des logiciels cités ou utilisés dans ces travaux, indépendamment de l’évolution
de leurs dépôts sources (par exemple hébergés sur GitHub ou sur une instance GitLab),
qui eux ne fournissent aucune garantie de pérénité. Conformément aux recommendations
de Software Heritage:

— le SWHID contient autant d’informations contextuelles que possible.
— seul le SWHID est inclus dans la version imprimable, et pas les URL complets vers

Software Heritage, car il n’y a pas non plus de garantie de stabilité du schéma URI
du site à long terme.

[1] Paul Breugnot, FPMAS 2019. FEMTO-ST. swhid : ⟨swh:1:dir:c1192b4e6f
d5a094ad086bdb9b554bcad4a0906e;origin=https://github.com
/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b2
0;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641⟩.

[2] Paul Breugnot, FPMAS version 1.6, 2019. FEMTO-ST.
swhid : ⟨swh:1:rel:782cb0732ac4c66e0db27f3fc9253da3d470b4cb;origin=h
ttps://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a
23d647c94eabb82b20⟩.

[3] Paul Breugnot, FPMAS MetaModel version 1.1, 2022. FEMTO-ST.
swhid : ⟨swh:1:rel:403dd6c0fc3ad6266a20347c188ea3665778ea81;origin=h
ttps://github.com/FPMAS/fpmas-metamodel;visit=swh:1:snp:2ce461b4cd9
c927b9da0eb4946baa6e617e3630e⟩.

[4] Paul Breugnot, FPMAS ObjectPack 2019. FEMTO-ST.
swhid : ⟨swh:1:cnt:0bc16fa2d4ce5b93384702c6bc20e5a9c8933e2c;origin=h
ttps://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a
23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b
6b8fc641;path=/src/fpmas/io/datapack.h⟩.

[5] Paul Breugnot, FPMAS Virus Model version 1.1, 2022. FEMTO-ST.
swhid : ⟨swh:1:rel:564e3f717b327686f3dc213a6b7ac850a4f8ce49;origin=h
ttps://github.com/FPMAS/fpmas-virus;visit=swh:1:snp:8285b6abcb436ff
c65d74f57f514c012534f0e3b⟩.

1. https://www.softwareheritage.org/

154

http://archive.softwareheritage.org/swh:1:dir:c1192b4e6fd5a094ad086bdb9b554bcad4a0906e;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641
http://archive.softwareheritage.org/swh:1:dir:c1192b4e6fd5a094ad086bdb9b554bcad4a0906e;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641
http://archive.softwareheritage.org/swh:1:dir:c1192b4e6fd5a094ad086bdb9b554bcad4a0906e;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641
http://archive.softwareheritage.org/swh:1:dir:c1192b4e6fd5a094ad086bdb9b554bcad4a0906e;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641
http://archive.softwareheritage.org/swh:1:rel:782cb0732ac4c66e0db27f3fc9253da3d470b4cb;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20
http://archive.softwareheritage.org/swh:1:rel:782cb0732ac4c66e0db27f3fc9253da3d470b4cb;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20
http://archive.softwareheritage.org/swh:1:rel:782cb0732ac4c66e0db27f3fc9253da3d470b4cb;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20
http://archive.softwareheritage.org/swh:1:rel:403dd6c0fc3ad6266a20347c188ea3665778ea81;origin=https://github.com/FPMAS/fpmas-metamodel;visit=swh:1:snp:2ce461b4cd9c927b9da0eb4946baa6e617e3630e
http://archive.softwareheritage.org/swh:1:rel:403dd6c0fc3ad6266a20347c188ea3665778ea81;origin=https://github.com/FPMAS/fpmas-metamodel;visit=swh:1:snp:2ce461b4cd9c927b9da0eb4946baa6e617e3630e
http://archive.softwareheritage.org/swh:1:rel:403dd6c0fc3ad6266a20347c188ea3665778ea81;origin=https://github.com/FPMAS/fpmas-metamodel;visit=swh:1:snp:2ce461b4cd9c927b9da0eb4946baa6e617e3630e
http://archive.softwareheritage.org/swh:1:cnt:0bc16fa2d4ce5b93384702c6bc20e5a9c8933e2c;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641;path=/src/fpmas/io/datapack.h
http://archive.softwareheritage.org/swh:1:cnt:0bc16fa2d4ce5b93384702c6bc20e5a9c8933e2c;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641;path=/src/fpmas/io/datapack.h
http://archive.softwareheritage.org/swh:1:cnt:0bc16fa2d4ce5b93384702c6bc20e5a9c8933e2c;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641;path=/src/fpmas/io/datapack.h
http://archive.softwareheritage.org/swh:1:cnt:0bc16fa2d4ce5b93384702c6bc20e5a9c8933e2c;origin=https://github.com/FPMAS/FPMAS;visit=swh:1:snp:be7ac44b4d620fe1b5324a23d647c94eabb82b20;anchor=swh:1:rev:044e84a675e6f80d4a21c14769e57e5b6b8fc641;path=/src/fpmas/io/datapack.h
http://archive.softwareheritage.org/swh:1:rel:564e3f717b327686f3dc213a6b7ac850a4f8ce49;origin=https://github.com/FPMAS/fpmas-virus;visit=swh:1:snp:8285b6abcb436ffc65d74f57f514c012534f0e3b
http://archive.softwareheritage.org/swh:1:rel:564e3f717b327686f3dc213a6b7ac850a4f8ce49;origin=https://github.com/FPMAS/fpmas-virus;visit=swh:1:snp:8285b6abcb436ffc65d74f57f514c012534f0e3b
http://archive.softwareheritage.org/swh:1:rel:564e3f717b327686f3dc213a6b7ac850a4f8ce49;origin=https://github.com/FPMAS/fpmas-virus;visit=swh:1:snp:8285b6abcb436ffc65d74f57f514c012534f0e3b
https://www.softwareheritage.org/


[6] Karen Devin et al., Zoltan 2022. Sandia National Laboratories.
url : https://sandialabs.github.io/Zoltan/(visité le 12/10/2022), swhid :
⟨swh:1:dir:2cf75d4a15c616741c455d00436e9c4c0f1463f0;origin=https://g
ithub.com/sandialabs/Zoltan;visit=swh:1:snp:c1f903fb0092cd0e78479322
84042f5f982efce2;anchor=swh:1:rev:f6361719dd66cac62db8dbed120704e436
a5ee81⟩.

[7] Niels Lohmann, Json for Modern C++ 2022. swhid : ⟨swh:1:dir:4c18fc5d12
4bd70a990f09524cae031967ef01ce;origin=https://github.com/nlohmann/js
on;visit=swh:1:snp:19a433a9ec78180ed98b31e8dae5216c5db5bfd9;anchor=s
wh:1:rev:a3e6e26dc83a726b292f5be0492fcc408663ce55⟩.

[8] Tiago P. Peixoto, Python Graph-Tool version 2.45, mai 2022.
url : https://graph-tool.skewed.de/(visité le 27/10/2022), swhid :
⟨swh:1:rel:314dff4d8c8f7711eb6975468c6a3ecbdc76e1d4;origin=https://g
it.skewed.de/count0/graph-tool;visit=swh:1:snp:27454cfe8416332b1d1f
ce9b491a61f25d6a71a5⟩.

[9] Robert Ramey, Boost Serialization Library 2004. Boost.
url : https://www.boost.org/doc/libs/1_80_0/libs/serialization/doc/i
ndex.html(visité le 25/10/2022), swhid : ⟨swh:1:dir:0421ff4708cc7c1766ccc
9c2bc095ec6298e324e;origin=https://github.com/boostorg/serialization
;visit=swh:1:snp:d73d1fcca6866709e759d8532a04e82fcac0a986;anchor=swh
:1:rev:3f322d4adc3c88a667751ad66ce19217a3bba1f9⟩.

[10] Uri Wilensky, NetLogo 1999.
Center for Connected Learning and Computer-Based Modeling.
url : http://ccl.northwestern.edu/netlogo/(visité le 18/10/2022), swhid :
⟨swh:1:dir:1bf75ffd6af135d31d28fa66cf66390d26b4e2dd;origin=https://g
ithub.com/NetLogo/NetLogo;visit=swh:1:snp:67e0601fe0c4e88d119941c41f
407ad50c9410cf;anchor=swh:1:rev:ce236224a4bf88f2b08c17a92fe3a8341de6
a720⟩.

[11] Uri Wilensky, NetLogo Flocking Model 1998.
Center for Connected Learning and Computer-Based Modeling.
url : http://ccl.northwestern.edu/netlogo/models/Flocking(visité le
18/10/2022), swhid :
⟨swh:1:cnt:3f43029c8fed33edd254cfa53f801b2186dceb9e;origin=https://g
ithub.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff76
77b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a
3a7;path=/Sample%20Models/Biology/Flocking.nlogo⟩.

[12] Uri Wilensky, NetLogo Models Library 1999.
Center for Connected Learning and Computer-Based Modeling.
url : http://ccl.northwestern.edu/netlogo/models/(visité le 18/10/2022),
swhid : ⟨swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=h
ttps://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc2

155

https://sandialabs.github.io/Zoltan/
http://archive.softwareheritage.org/swh:1:dir:2cf75d4a15c616741c455d00436e9c4c0f1463f0;origin=https://github.com/sandialabs/Zoltan;visit=swh:1:snp:c1f903fb0092cd0e7847932284042f5f982efce2;anchor=swh:1:rev:f6361719dd66cac62db8dbed120704e436a5ee81
http://archive.softwareheritage.org/swh:1:dir:2cf75d4a15c616741c455d00436e9c4c0f1463f0;origin=https://github.com/sandialabs/Zoltan;visit=swh:1:snp:c1f903fb0092cd0e7847932284042f5f982efce2;anchor=swh:1:rev:f6361719dd66cac62db8dbed120704e436a5ee81
http://archive.softwareheritage.org/swh:1:dir:2cf75d4a15c616741c455d00436e9c4c0f1463f0;origin=https://github.com/sandialabs/Zoltan;visit=swh:1:snp:c1f903fb0092cd0e7847932284042f5f982efce2;anchor=swh:1:rev:f6361719dd66cac62db8dbed120704e436a5ee81
http://archive.softwareheritage.org/swh:1:dir:2cf75d4a15c616741c455d00436e9c4c0f1463f0;origin=https://github.com/sandialabs/Zoltan;visit=swh:1:snp:c1f903fb0092cd0e7847932284042f5f982efce2;anchor=swh:1:rev:f6361719dd66cac62db8dbed120704e436a5ee81
http://archive.softwareheritage.org/swh:1:dir:4c18fc5d124bd70a990f09524cae031967ef01ce;origin=https://github.com/nlohmann/json;visit=swh:1:snp:19a433a9ec78180ed98b31e8dae5216c5db5bfd9;anchor=swh:1:rev:a3e6e26dc83a726b292f5be0492fcc408663ce55
http://archive.softwareheritage.org/swh:1:dir:4c18fc5d124bd70a990f09524cae031967ef01ce;origin=https://github.com/nlohmann/json;visit=swh:1:snp:19a433a9ec78180ed98b31e8dae5216c5db5bfd9;anchor=swh:1:rev:a3e6e26dc83a726b292f5be0492fcc408663ce55
http://archive.softwareheritage.org/swh:1:dir:4c18fc5d124bd70a990f09524cae031967ef01ce;origin=https://github.com/nlohmann/json;visit=swh:1:snp:19a433a9ec78180ed98b31e8dae5216c5db5bfd9;anchor=swh:1:rev:a3e6e26dc83a726b292f5be0492fcc408663ce55
http://archive.softwareheritage.org/swh:1:dir:4c18fc5d124bd70a990f09524cae031967ef01ce;origin=https://github.com/nlohmann/json;visit=swh:1:snp:19a433a9ec78180ed98b31e8dae5216c5db5bfd9;anchor=swh:1:rev:a3e6e26dc83a726b292f5be0492fcc408663ce55
https://graph-tool.skewed.de/
http://archive.softwareheritage.org/swh:1:rel:314dff4d8c8f7711eb6975468c6a3ecbdc76e1d4;origin=https://git.skewed.de/count0/graph-tool;visit=swh:1:snp:27454cfe8416332b1d1fce9b491a61f25d6a71a5
http://archive.softwareheritage.org/swh:1:rel:314dff4d8c8f7711eb6975468c6a3ecbdc76e1d4;origin=https://git.skewed.de/count0/graph-tool;visit=swh:1:snp:27454cfe8416332b1d1fce9b491a61f25d6a71a5
http://archive.softwareheritage.org/swh:1:rel:314dff4d8c8f7711eb6975468c6a3ecbdc76e1d4;origin=https://git.skewed.de/count0/graph-tool;visit=swh:1:snp:27454cfe8416332b1d1fce9b491a61f25d6a71a5
https://www.boost.org/doc/libs/1_80_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_80_0/libs/serialization/doc/index.html
http://archive.softwareheritage.org/swh:1:dir:0421ff4708cc7c1766ccc9c2bc095ec6298e324e;origin=https://github.com/boostorg/serialization;visit=swh:1:snp:d73d1fcca6866709e759d8532a04e82fcac0a986;anchor=swh:1:rev:3f322d4adc3c88a667751ad66ce19217a3bba1f9
http://archive.softwareheritage.org/swh:1:dir:0421ff4708cc7c1766ccc9c2bc095ec6298e324e;origin=https://github.com/boostorg/serialization;visit=swh:1:snp:d73d1fcca6866709e759d8532a04e82fcac0a986;anchor=swh:1:rev:3f322d4adc3c88a667751ad66ce19217a3bba1f9
http://archive.softwareheritage.org/swh:1:dir:0421ff4708cc7c1766ccc9c2bc095ec6298e324e;origin=https://github.com/boostorg/serialization;visit=swh:1:snp:d73d1fcca6866709e759d8532a04e82fcac0a986;anchor=swh:1:rev:3f322d4adc3c88a667751ad66ce19217a3bba1f9
http://archive.softwareheritage.org/swh:1:dir:0421ff4708cc7c1766ccc9c2bc095ec6298e324e;origin=https://github.com/boostorg/serialization;visit=swh:1:snp:d73d1fcca6866709e759d8532a04e82fcac0a986;anchor=swh:1:rev:3f322d4adc3c88a667751ad66ce19217a3bba1f9
http://ccl.northwestern.edu/netlogo/
http://archive.softwareheritage.org/swh:1:dir:1bf75ffd6af135d31d28fa66cf66390d26b4e2dd;origin=https://github.com/NetLogo/NetLogo;visit=swh:1:snp:67e0601fe0c4e88d119941c41f407ad50c9410cf;anchor=swh:1:rev:ce236224a4bf88f2b08c17a92fe3a8341de6a720
http://archive.softwareheritage.org/swh:1:dir:1bf75ffd6af135d31d28fa66cf66390d26b4e2dd;origin=https://github.com/NetLogo/NetLogo;visit=swh:1:snp:67e0601fe0c4e88d119941c41f407ad50c9410cf;anchor=swh:1:rev:ce236224a4bf88f2b08c17a92fe3a8341de6a720
http://archive.softwareheritage.org/swh:1:dir:1bf75ffd6af135d31d28fa66cf66390d26b4e2dd;origin=https://github.com/NetLogo/NetLogo;visit=swh:1:snp:67e0601fe0c4e88d119941c41f407ad50c9410cf;anchor=swh:1:rev:ce236224a4bf88f2b08c17a92fe3a8341de6a720
http://archive.softwareheritage.org/swh:1:dir:1bf75ffd6af135d31d28fa66cf66390d26b4e2dd;origin=https://github.com/NetLogo/NetLogo;visit=swh:1:snp:67e0601fe0c4e88d119941c41f407ad50c9410cf;anchor=swh:1:rev:ce236224a4bf88f2b08c17a92fe3a8341de6a720
http://ccl.northwestern.edu/netlogo/models/Flocking
http://archive.softwareheritage.org/swh:1:cnt:3f43029c8fed33edd254cfa53f801b2186dceb9e;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Flocking.nlogo
http://archive.softwareheritage.org/swh:1:cnt:3f43029c8fed33edd254cfa53f801b2186dceb9e;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Flocking.nlogo
http://archive.softwareheritage.org/swh:1:cnt:3f43029c8fed33edd254cfa53f801b2186dceb9e;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Flocking.nlogo
http://archive.softwareheritage.org/swh:1:cnt:3f43029c8fed33edd254cfa53f801b2186dceb9e;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Flocking.nlogo
http://ccl.northwestern.edu/netlogo/models/
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7


9fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f249788937
34bea63a3a7⟩.

[13] Uri Wilensky, NetLogo Virus Model 1998.
Center for Connected Learning and Computer-Based Modeling.
url : http://ccl.northwestern.edu/netlogo/models/Virus(visité le
18/10/2022), swhid : ⟨swh:1:cnt:36885749060bdb7e52b9f7c861268419486995
75;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edf
ef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c112
8f24978893734bea63a3a7;path=/Sample%20Models/Biology/Virus.nlogo⟩.

[14] Uri Wilensky, NetLogo Wolf Sheep Predation Model 1997.
Center for Connected Learning and Computer-Based Modeling. url :
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation(visité
le 18/10/2022), swhid :
⟨swh:1:cnt:de69ddb21d1388618630e7ddc16899fd342851fe;origin=https://g
ithub.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff76
77b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a
3a7;path=/Sample%20Models/Biology/Wolf%20Sheep%20Predation.nlogo⟩.

156

http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://archive.softwareheritage.org/swh:1:dir:60ec979000826ef87ee8fc836695a81be81304c4;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7
http://ccl.northwestern.edu/netlogo/models/Virus
http://archive.softwareheritage.org/swh:1:cnt:36885749060bdb7e52b9f7c86126841948699575;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Virus.nlogo
http://archive.softwareheritage.org/swh:1:cnt:36885749060bdb7e52b9f7c86126841948699575;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Virus.nlogo
http://archive.softwareheritage.org/swh:1:cnt:36885749060bdb7e52b9f7c86126841948699575;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Virus.nlogo
http://archive.softwareheritage.org/swh:1:cnt:36885749060bdb7e52b9f7c86126841948699575;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Virus.nlogo
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://archive.softwareheritage.org/swh:1:cnt:de69ddb21d1388618630e7ddc16899fd342851fe;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Wolf%20Sheep%20Predation.nlogo
http://archive.softwareheritage.org/swh:1:cnt:de69ddb21d1388618630e7ddc16899fd342851fe;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Wolf%20Sheep%20Predation.nlogo
http://archive.softwareheritage.org/swh:1:cnt:de69ddb21d1388618630e7ddc16899fd342851fe;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Wolf%20Sheep%20Predation.nlogo
http://archive.softwareheritage.org/swh:1:cnt:de69ddb21d1388618630e7ddc16899fd342851fe;origin=https://github.com/NetLogo/models;visit=swh:1:snp:143b8edfef5d7c73bc29fb7ff7677b58a1688e09;anchor=swh:1:rev:f5d3d913e75cf7c1128f24978893734bea63a3a7;path=/Sample%20Models/Biology/Wolf%20Sheep%20Predation.nlogo


Bibliographie

[15] Hafiz Usman Ahmed, Ying Huang et Pan Lu.
« A Review of Car-Following Models and Modeling Tools for Human and
Autonomous-Ready Driving Behaviors in Micro-Simulation ».
In : Smart Cities 4.1 (1 mars 2021), p. 314-335. issn : 2624-6511.
doi : 10.3390/smartcities4010019.

[16] Jérémy Albouys et al.
« SMACH : Multi-agent Simulation of Human Activity in the Household ».
In : Advances in Practical Applications of Survivable Agents and Multi-Agent
Systems : The PAAMS Collection. Sous la dir. d’Yves Demazeau et al.
Lecture Notes in Computer Science.
Cham : Springer International Publishing, 2019, p. 227-231.
isbn : 978-3-030-24209-1. doi : 10.1007/978-3-030-24209-1_19.

[17] Jérémy Albouys Perrois et al.
« Étude de différentes configurations d’autoconsommation collective de l’énergie
à l’échelle du quartier à l’aide de la simulation multi-agent ».
In : 28th Journées Francophones sur les Systèmes Multi-Agents (JFSMA).
Angers, France, 2020. url :
https://hal.archives-ouvertes.fr/hal-03195521 (visité le 15/07/2021).

[18] George Almasi. « PGAS (Partitioned Global Address Space) Languages ».
In : Encyclopedia of Parallel Computing. Sous la dir. de David Padua.
Boston, MA : Springer US, 2011, p. 1539-1545. isbn : 978-0-387-09766-4.
doi : 10.1007/978-0-387-09766-4_210.

[19] Robert Axelrod et William D. Hamilton. « The Evolution of Cooperation ».
In : Science (27 mars 1981). doi : 10.1126/science.7466396.

[20] Mohamed Azeroual et al. « Simulation Tools for a Smart Grid and Energy
Management for Microgrid with Wind Power Using Multi-Agent System ».
In : Wind Engineering 44.6 (1er déc. 2020), p. 661-672. issn : 0309-524X.
doi : 10.1177/0309524X19862755.

[21] Arnaud Banos et al. « Coupling Micro and Macro Dynamics Models on
Networks : Application to Disease Spread ».
In : Multi-Agent Based Simulation XVI.
Sous la dir. de Benoit Gaudou et Jaime Simão Sichman.
Lecture Notes in Computer Science.
Cham : Springer International Publishing, 2016, p. 19-33.
isbn : 978-3-319-31447-1. doi : 10.1007/978-3-319-31447-1_2.

157

https://doi.org/10.3390/smartcities4010019
https://doi.org/10.1007/978-3-030-24209-1_19
https://hal.archives-ouvertes.fr/hal-03195521
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1126/science.7466396
https://doi.org/10.1177/0309524X19862755
https://doi.org/10.1007/978-3-319-31447-1_2


[22] Eric Blanchart et al. « SWORM : An Agent-Based Model to Simulate the
Effect of Earthworms on Soil Structure ».
In : European Journal of Soil Science 60.1 (2009), p. 13-21. issn : 1365-2389.
doi : 10.1111/j.1365-2389.2008.01091.x.

[23] Jim Blythe et Alexey Tregubov.
« FARM : Architecture for Distributed Agent-Based Social Simulations ».
In : Massively Multi-Agent Systems II. Sous la dir. de Donghui Lin et al.
Lecture Notes in Computer Science.
Cham : Springer International Publishing, 2019, p. 96-107.
isbn : 978-3-030-20937-7. doi : 10.1007/978-3-030-20937-7_7.

[24] Luciano Bononi et al. « A New Adaptive Middleware for Parallel and
Distributed Simulation of Dynamically Interacting Systems ». In : Eighth IEEE
International Symposium on Distributed Simulation and Real-Time Applications.
Eighth IEEE International Symposium on Distributed Simulation and
Real-Time Applications. Oct. 2004, p. 178-187. doi : 10.1109/DS-RT.2004.3.

[25] Francisco Borges et al. « Care HPS : A High Performance Simulation Tool for
Parallel and Distributed Agent-Based Modeling ».
In : Future Generation Computer Systems 68 (1er mars 2017), p. 59-73.
issn : 0167-739X. doi : 10.1016/j.future.2016.08.015.

[26] Francisco Borges et al. « Strip Partitioning for Ant Colony Parallel and
Distributed Discrete-event Simulation ».
In : Procedia Computer Science. International Conference On Computational
Science, ICCS 2015 51 (1er jan. 2015), p. 483-492. issn : 1877-0509.
doi : 10.1016/j.procs.2015.05.272.

[27] Paul Breugnot.
Detailed Execution Times of Several FPMAS Meta-model Instances.
29 mars 2023. doi : 10.25666/DATAUBFC-2023-04-11-03.

[28] Paul Breugnot.
Execution Times and Results of Instances of an FPMAS Epidemiological Model.
29 mars 2023. doi : 10.25666/DATAUBFC-2023-04-11-02.

[29] Paul Breugnot et al.
« A Synchronized and Dynamic Distributed Graph Structure to Allow the
Native Distribution of Multi-Agent System Simulations ».
In : 2021 29th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). PDP 2021. Valladolid, Spain, mars 2021,
p. 54-61. doi : 10.1109/PDP52278.2021.00017.

[30] Paul Breugnot et al.
« Data Synchronization in Distributed Simulation of Multi-Agent Systems ».
In : Advances in Practical Applications of Agents, Multi-Agent Systems, and
Complex Systems Simulation. The PAAMS Collection. PAAMS 2022.
Sous la dir. de Frank Dignum et al. Lecture Notes in Computer Science.

158

https://doi.org/10.1111/j.1365-2389.2008.01091.x
https://doi.org/10.1007/978-3-030-20937-7_7
https://doi.org/10.1109/DS-RT.2004.3
https://doi.org/10.1016/j.future.2016.08.015
https://doi.org/10.1016/j.procs.2015.05.272
https://doi.org/10.25666/DATAUBFC-2023-04-11-03
https://doi.org/10.25666/DATAUBFC-2023-04-11-02
https://doi.org/10.1109/PDP52278.2021.00017


Cham : Springer International Publishing, 2022, p. 50-62.
isbn : 978-3-031-18192-4. doi : 10.1007/978-3-031-18192-4_5.

[31] Benjamin Brock, Aydın Buluç et Katherine Yelick.
« BCL : A Cross-Platform Distributed Data Structures Library ».
In : Proceedings of the 48th International Conference on Parallel Processing.
ICPP 2019.
New York, NY, USA : Association for Computing Machinery, 5 août 2019,
p. 1-10. isbn : 978-1-4503-6295-5. doi : 10.1145/3337821.3337912.

[32] Aydın Buluç et al. « Recent Advances in Graph Partitioning ».
In : Algorithm Engineering : Selected Results and Surveys.
Sous la dir. de Lasse Kliemann et Peter Sanders.
Lecture Notes in Computer Science.
Cham : Springer International Publishing, 2016, p. 117-158.
isbn : 978-3-319-49487-6. doi : 10.1007/978-3-319-49487-6_4.

[33] Umit V. Catalyurek et Cevdet Aykanat. « Hypergraph-Partitioning-Based
Decomposition for Parallel Sparse-Matrix Vector Multiplication ». In : IEEE
Transactions on Parallel and Distributed Systems 10.7 (juill. 1999), p. 673-693.
issn : 1558-2183. doi : 10.1109/71.780863.

[34] Umit V. Catalyurek et al.
« A Repartitioning Hypergraph Model for Dynamic Load Balancing ».
In : Journal of Parallel and Distributed Computing 69.8 (août 2009), p. 711-724.
issn : 07437315. doi : 10.1016/j.jpdc.2009.04.011.

[35] Umit V. Catalyurek et al. « Hypergraph-Based Dynamic Load Balancing for
Adaptive Scientific Computations ».
In : 2007 IEEE International Parallel and Distributed Processing Symposium.
2007 IEEE International Parallel and Distributed Processing Symposium.
Mars 2007, p. 1-11. doi : 10.1109/IPDPS.2007.370258.

[36] Sheryl L. Chang et al. « Modelling Transmission and Control of the COVID-19
Pandemic in Australia ».
In : Nature Communications 11.1 (1 11 nov. 2020), p. 5710. issn : 2041-1723.
doi : 10.1038/s41467-020-19393-6.

[37] Philippe Charles et al.
« X10 : An Object-Oriented Approach to Non-Uniform Cluster Computing ».
In : ACM SIGPLAN Notices 40.10 (12 oct. 2005), p. 519-538. issn : 0362-1340.
doi : 10.1145/1103845.1094852.

[38] Cédric Chevalier et François Pellegrini.
« PT-Scotch : A Tool for Efficient Parallel Graph Ordering ».
In : Parallel Computing. Parallel Matrix Algorithms and Applications 34.6
(1er juill. 2008), p. 318-331. issn : 0167-8191.
doi : 10.1016/j.parco.2007.12.001.

159

https://doi.org/10.1007/978-3-031-18192-4_5
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1109/71.780863
https://doi.org/10.1016/j.jpdc.2009.04.011
https://doi.org/10.1109/IPDPS.2007.370258
https://doi.org/10.1038/s41467-020-19393-6
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1016/j.parco.2007.12.001


[39] Silvano Cincotti, Marco Raberto et Andrea Teglio. « Credit Money and
Macroeconomic Instability in the Agent-based Model and Simulator Eurace ».
In : Economics 4.1 (1er déc. 2010). issn : 1864-6042.
doi : 10.5018/economics-ejournal.ja.2010-26.

[40] Claudio Cioffi-Revilla. A Methodology for Complex Social Simulations.
SSRN Scholarly Paper ID 2291156.
Rochester, NY : Social Science Research Network, 1er jan. 2010.
doi : 10.2139/ssrn.2291156.

[41] Simon Coakley et al. « Exploitation of High Performance Computing in the
FLAME Agent-Based Simulation Framework ». In : 2012 IEEE 14th
International Conference on High Performance Computing and Communication
2012 IEEE 9th International Conference on Embedded Software and Systems.
2012 IEEE 14th International Conference on High Performance Computing and
Communication 2012 IEEE 9th International Conference on Embedded Software
and Systems. Juin 2012, p. 538-545. doi : 10.1109/HPCC.2012.79.

[42] Nicholson Collier et Michael North. « Parallel Agent-Based Simulation with
Repast for High Performance Computing ». In : SIMULATION (6 nov. 2012).
doi : 10.1177/0037549712462620.

[43] U. P. C. Consortium, Dan Bonachea et Gary Funck.
UPC Language and Library Specifications, Version 1.3. LBNL-6623E. Lawrence
Berkeley National Lab. (LBNL), Berkeley, CA (United States), 16 nov. 2013.
doi : 10.2172/1134233.

[44] Gennaro Cordasco, Carmine Spagnuolo et Vittorio Scarano.
« Toward the New Version of D-MASON : Efficiency, Effectiveness and
Correctness in Parallel and Distributed Agent-Based Simulations ».
In : 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). Mai 2016, p. 1803-1812.
doi : 10.1109/IPDPSW.2016.52.

[45] Gennaro Cordasco et al. « Bringing Together Efficiency and Effectiveness in
Distributed Simulations : The Experience with D-Mason ».
In : SIMULATION 89.10 (1er oct. 2013), p. 1236-1253. issn : 0037-5497.
doi : 10.1177/0037549713489594.

[46] Massimo Cossentino et al. « ASPECS : An Agent-Oriented Software Process
for Engineering Complex Systems ». In : Autonomous Agents and Multi-Agent
Systems 20.2 (1er mars 2010), p. 260-304. issn : 1573-7454.
doi : 10.1007/s10458-009-9099-4.

[47] Gabriele D’Angelo et Moreno Marzolla. « New Trends in Parallel and
Distributed Simulation : From Many-Cores to Cloud Computing ».
In : Simulation Modelling Practice and Theory 49 (1er déc. 2014), p. 320-335.
issn : 1569-190X. doi : 10.1016/j.simpat.2014.06.007.

160

https://doi.org/10.5018/economics-ejournal.ja.2010-26
https://doi.org/10.2139/ssrn.2291156
https://doi.org/10.1109/HPCC.2012.79
https://doi.org/10.1177/0037549712462620
https://doi.org/10.2172/1134233
https://doi.org/10.1109/IPDPSW.2016.52
https://doi.org/10.1177/0037549713489594
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1016/j.simpat.2014.06.007


[48] Samir Das et al.
« GTW : A Time Warp System for Shared Memory Multiprocessors ».
In : Proceedings of Winter Simulation Conference.
Proceedings of Winter Simulation Conference. Déc. 1994, p. 1332-1339.
doi : 10.1109/WSC.1994.717527.

[49] Christophe Deissenberg, Sander van der Hoog et Herbert Dawid.
« EURACE : A Massively Parallel Agent-Based Model of the European
Economy ».
In : Applied Mathematics and Computation 204.2 (oct. 2008), p. 541-552.
issn : 00963003. doi : 10.1016/j.amc.2008.05.116.

[50] Giani Di Caro et Marco Dorigo.
« AntNet : Distributed Stigmergetic Control for Communications Networks ».
In : Journal of Artificial Intelligence Research 9 (1er déc. 1998), p. 317-365.
issn : 1076-9757. doi : 10.1613/jair.530.

[51] Edsger W. Dijkstra, W. H. J. Feijen et A. J. M. van Gasteren.
« Derivation of a Termination Detection Algorithm for Distributed
Computations ».
In : Control Flow and Data Flow : Concepts of Distributed Programming.
Sous la dir. de Manfred Broy. Springer Study Edition.
Berlin, Heidelberg : Springer, 1986, p. 507-512. isbn : 978-3-642-82921-5.
doi : 10.1007/978-3-642-82921-5_13.

[52] Giovanni Dosi et Andrea Roventini. « Agent-Based Macroeconomics and
Classical Political Economy : Some Italian Roots ».
In : Italian Economic Journal 3.3 (1er nov. 2017), p. 261-283. issn : 2199-3238.
doi : 10.1007/s40797-017-0065-z.

[53] Joshua M. Epstein et Robert Axtell.
Growing Artificial Societies : Social Science from the Bottom Up.
Brookings Institution Press, 11 oct. 1996. 234 p. isbn : 978-0-262-05053-1.
Google Books : xXvelSs2caQC.

[54] August Ernstsson et al. « SkePU 3 : Portable High-Level Programming of
Heterogeneous Systems and HPC Clusters ». In : International Journal of
Parallel Programming 49.6 (1er déc. 2021), p. 846-866. issn : 1573-7640.
doi : 10.1007/s10766-021-00704-3.

[55] Jacques Ferber et Olivier Gutknecht. « A Meta-Model for the Analysis and
Design of Organizations in Multi-Agent Systems ». In : Proceedings
International Conference on Multi Agent Systems (Cat. No.98EX160).
Proceedings International Conference on Multi Agent Systems (Cat.
No.98EX160). Juill. 1998, p. 128-135. doi : 10.1109/ICMAS.1998.699041.

161

https://doi.org/10.1109/WSC.1994.717527
https://doi.org/10.1016/j.amc.2008.05.116
https://doi.org/10.1613/jair.530
https://doi.org/10.1007/978-3-642-82921-5_13
https://doi.org/10.1007/s40797-017-0065-z
http://books.google.com/books?id=xXvelSs2caQC
https://doi.org/10.1007/s10766-021-00704-3
https://doi.org/10.1109/ICMAS.1998.699041


[56] Jacques Ferber et Jean-Pierre Müller.
« Influences and Reaction : A Model of Situated Multiagent Systems ».
In : Proceedings of second international conference on multi-agent systems
(ICMAS-96) (1996), p. 72-79.

[57] Stan Franklin et Art Graesser.
« Is It an Agent, or Just a Program ? : A Taxonomy for Autonomous Agents ».
In : Intelligent Agents III Agent Theories, Architectures, and Languages. Sous la
dir. de Jörg P. Müller, Michael J. Wooldridge et Nicholas R. Jennings.
Lecture Notes in Computer Science. Berlin, Heidelberg : Springer, 1997,
p. 21-35. isbn : 978-3-540-68057-4. doi : 10.1007/BFb0013570.

[58] Richard M. Fujimoto. « Parallel and Distributed Discrete Event Simulation :
Algorithms and Applications ».
In : Proceedings of 1993 Winter Simulation Conference - (WSC ’93).
Proceedings of 1993 Winter Simulation Conference - (WSC ’93). Déc. 1993,
p. 106-114. doi : 10.1109/WSC.1993.718035.

[59] Richard M. Fujimoto. « Parallel Discrete Event Simulation ».
In : Communications of the ACM 33.10 (1er oct. 1990), p. 30-53.
issn : 0001-0782. doi : 10.1145/84537.84545.

[60] Michael R. Garey et David S. Johnson.
Computers and Intractability : A Guide to the Theory of NP-Completeness.
First Edition. Series of Books in the Mathematical Sciences.
W. H. Freeman, 1979. isbn : 0-7167-1045-5 978-0-7167-1045-5.

[61] Benoit Gaudou et al. « COMOKIT : A Modeling Kit to Understand, Analyze,
and Compare the Impacts of Mitigation Policies Against the COVID-19
Epidemic at the Scale of a City ». In : Frontiers in Public Health 0 (2020).
issn : 2296-2565. doi : 10.3389/fpubh.2020.563247.

[62] Zaiyi Guo, Peter M. A. Sloot et Joc Cing Tay.
« A Hybrid Agent-Based Approach for Modeling Microbiological Systems ».
In : Journal of Theoretical Biology 255.2 (21 nov. 2008), p. 163-175.
issn : 0022-5193. doi : 10.1016/j.jtbi.2008.08.008.

[63] Olivier Gutknecht et Jacques Ferber.
« The MadKit Agent Platform Architecture ». In : Infrastructure for Agents,
Multi-Agent Systems, and Scalable Multi-Agent Systems.
Sous la dir. de Tom Wagner et Omer F. Rana.
Lecture Notes in Computer Science. Berlin, Heidelberg : Springer, 2001,
p. 48-55. isbn : 978-3-540-47772-3. doi : 10.1007/3-540-47772-1_5.

[64] Ross A. Hammond et Robert Axelrod. « The Evolution of Ethnocentrism ».
In : Journal of Conflict Resolution 50.6 (1er déc. 2006), p. 926-936.
issn : 0022-0027. doi : 10.1177/0022002706293470.

162

https://doi.org/10.1007/BFb0013570
https://doi.org/10.1109/WSC.1993.718035
https://doi.org/10.1145/84537.84545
https://doi.org/10.3389/fpubh.2020.563247
https://doi.org/10.1016/j.jtbi.2008.08.008
https://doi.org/10.1007/3-540-47772-1_5
https://doi.org/10.1177/0022002706293470


[65] Andreas Horni, Kai Nagel et Kay W. Axhausen.
The Multi-Agent Transport Simulation MATSim. Ubiquity Press, 10 août 2016.
isbn : 978-1-909188-77-8 978-1-909188-75-4 978-1-909188-78-5
978-1-909188-76-1. doi : 10.5334/baw.

[66] Andreas Huth et Christian Wissel.
« The Simulation of the Movement of Fish Schools ».
In : Journal of Theoretical Biology 156.3 (7 juin 1992), p. 365-385.
issn : 0022-5193. doi : 10.1016/S0022-5193(05)80681-2.

[67] David R. Jefferson. « Virtual Time ». In : ACM Transactions on
Programming Languages and Systems 7.3 (1er juill. 1985), p. 404-425.
issn : 0164-0925. doi : 10.1145/3916.3988.

[68] Richard M. Karp. « Reducibility among Combinatorial Problems ».
In : Complexity of Computer Computations. Sous la dir. de
Raymond E. Miller, James W. Thatcher et Jean D. Bohlinger.
The IBM Research Symposia Series. Boston, MA : Springer US, 1972, p. 85-103.
isbn : 978-1-4684-2001-2. doi : 10.1007/978-1-4684-2001-2_9.

[69] George Karypis et Vipin Kumar.
« Multilevel K-Way Hypergraph Partitioning ».
In : VLSI Design 11 (1999), e19436. issn : 1065-514X.
doi : 10.1155/2000/19436.

[70] Georges Karypis et Vipin Kumar.
« Multilevel Algorithms for Multi-Constraint Graph Partitioning ».
In : SC ’98 : Proceedings of the 1998 ACM/IEEE Conference on Supercomputing.
SC ’98 : Proceedings of the 1998 ACM/IEEE Conference on Supercomputing.
Nov. 1998, p. 28-28. doi : 10.1109/SC.1998.10018.

[71] Ayesha Kashif et al. « Simulating the Dynamics of Occupant Behaviour for
Power Management in Residential Buildings ».
In : Energy and Buildings 56 (1er jan. 2013), p. 85-93. issn : 0378-7788.
doi : 10.1016/j.enbuild.2012.09.042.

[72] Mariam Kiran et al. « FLAME : Simulating Large Populations of Agents on
Parallel Hardware Architectures ».
In : Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems : Volume 1 - Volume 1. AAMAS ’10.
Toronto, Canada : International Foundation for Autonomous Agents and
Multiagent Systems, 10 mai 2010, p. 1633-1636. isbn : 978-0-9826571-1-9.

[73] Yoann Kubera, Philippe Mathieu et Sébastien Picault. « IODA : An
Interaction-Oriented Approach for Multi-Agent Based Simulations ». In :
Autonomous Agents and Multi-Agent Systems 23.3 (1er nov. 2011), p. 303-343.
issn : 1573-7454. doi : 10.1007/s10458-010-9164-z.

163

https://doi.org/10.5334/baw
https://doi.org/10.1016/S0022-5193(05)80681-2
https://doi.org/10.1145/3916.3988
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1155/2000/19436
https://doi.org/10.1109/SC.1998.10018
https://doi.org/10.1016/j.enbuild.2012.09.042
https://doi.org/10.1007/s10458-010-9164-z


[74] Leslie Lamport.
« Time, Clocks, and the Ordering of Events in a Distributed System ».
In : Communications of the ACM 21.7 (1er juill. 1978), p. 558-565.
issn : 0001-0782. doi : 10.1145/359545.359563.

[75] Vincent Laperrière et al. « Structural Validation of an Individual-Based
Model for Plague Epidemics Simulation ».
In : Ecological Complexity. Special Section : Environmental Micro-Simulation :
From Data Approximation to Theory Assessment 6.2 (1er juin 2009), p. 102-112.
issn : 1476-945X. doi : 10.1016/j.ecocom.2008.08.001.

[76] Guillaume Laville et al. « Using GPU for Multi-Agent Soil Simulation ».
In : 2013 21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing. Fév. 2013, p. 392-399.
doi : 10.1109/PDP.2013.63.

[77] Pablo Alvarez Lopez et al. « Microscopic Traffic Simulation Using SUMO ».
In : 2018 21st International Conference on Intelligent Transportation Systems
(ITSC). 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). Nov. 2018, p. 2575-2582. doi : 10.1109/ITSC.2018.8569938.

[78] John C.S. Lui et M.F. Chan. « An Efficient Partitioning Algorithm for
Distributed Virtual Environment Systems ». In : IEEE Transactions on Parallel
and Distributed Systems 13.3 (mars 2002), p. 193-211. issn : 1558-2183.
doi : 10.1109/71.993202.

[79] Sean Luke et al. « MASON : A Multiagent Simulation Environment ».
In : SIMULATION 81.7 (1er juill. 2005), p. 517-527. issn : 0037-5497.
doi : 10.1177/0037549705058073.

[80] Nancy A. Lynch. « Shared Variable Types ». In : Distributed Algorithms. T. 9.4.
Elsevier, 16 avr. 1996, p. 244-249. isbn : 978-0-08-050470-4.

[81] Charles M. Macal. « Everything You Need to Know about Agent-Based
Modelling and Simulation ».
In : Journal of Simulation 10.2 (1er mai 2016), p. 144-156. issn : 1747-7778.
doi : 10.1057/jos.2016.7.

[82] Charles M. Macal et al. « CHISIM : AN AGENT-BASED SIMULATION
MODEL OF SOCIAL INTERACTIONS IN A LARGE URBAN AREA ».
In : 2018 Winter Simulation Conference (WSC).
2018 Winter Simulation Conference (WSC). Déc. 2018, p. 810-820.
doi : 10.1109/WSC.2018.8632409.

[83] Artur Malinowski et Paweł Czarnul. « Multi-Agent Large-Scale Parallel
Crowd Simulation with NVRAM-based Distributed Cache ».
In : Journal of Computational Science 33 (1er avr. 2019), p. 83-94.
issn : 1877-7503. doi : 10.1016/j.jocs.2019.04.004.

164

https://doi.org/10.1145/359545.359563
https://doi.org/10.1016/j.ecocom.2008.08.001
https://doi.org/10.1109/PDP.2013.63
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/71.993202
https://doi.org/10.1177/0037549705058073
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1109/WSC.2018.8632409
https://doi.org/10.1016/j.jocs.2019.04.004


[84] Artur Malinowski et al.
« Multi-Agent Large-Scale Parallel Crowd Simulation ». In : Procedia Computer
Science. International Conference on Computational Science, ICCS 2017, 12-14
June 2017, Zurich, Switzerland 108 (1er jan. 2017), p. 917-926. issn : 1877-0509.
doi : 10.1016/j.procs.2017.05.036.

[85] Nicolas Marilleau, Christophe Lang et Patrick Giraudoux.
« Coupling Agent-Based with Equation-Based Models to Study Spatially
Explicit Megapopulation Dynamics ».
In : Ecological Modelling 384 (24 sept. 2018), p. 34-42.
doi : 10.1016/j.ecolmodel.2018.06.011.

[86] Nicolas Marilleau et al. « Multiscale MAS Modelling to Simulate the Soil
Environment : Application to Soil Ecology ».
In : Simulation Modelling Practice and Theory 16.7 (1er août 2008), p. 736-745.
issn : 1569-190X. doi : 10.1016/j.simpat.2008.04.021.

[87] Dominique Masse et al. « MIOR : An Individual-Based Model for Simulating
the Spatial Patterns of Soil Organic Matter Microbial Decomposition ».
In : European Journal of Soil Science 58.5 (2007), p. 1127-1135.
issn : 1365-2389. doi : 10.1111/j.1365-2389.2007.00900.x.

[88] Philippe Mathieu et Yann Secq. « ENVIRONMENT UPDATING AND
AGENT SCHEDULING POLICIES IN AGENT-BASED SIMULATORS ».
In : Proceedings of the 4th International Conference on Agents and Artificial
Intelligence. International Conference on Agents and Artificial Intelligence. T. 1.
SciTePress, 2012, p. 170-175. isbn : 978-989-8425-96-6.
doi : 10.5220/0003732301700175.

[89] Makoto Matsumoto et Takuji Nishimura.
« Mersenne Twister : A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator ». In : ACM Transactions on Modeling and
Computer Simulation 8.1 (1er jan. 1998), p. 3-30. issn : 1049-3301.
doi : 10.1145/272991.272995.

[90] Fabien Michel. « The IRM4S Model : The Influence/Reaction Principle for
Multiagent Based Simulation ». In : Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems. AAMAS ’07.
Honolulu, Hawaii : Association for Computing Machinery, 14 mai 2007, p. 1-3.
isbn : 978-81-904262-7-5. doi : 10.1145/1329125.1329289.

[91] Stanley Milgram. « The Small World Problem ».
In : Psychology today 2.1 (1967), p. 60-67.

[92] Jayadev Misra. « Distributed Discrete-Event Simulation ».
In : ACM Computing Surveys 18.1 (1er mars 1986), p. 39-65. issn : 0360-0300.
doi : 10.1145/6462.6485.

165

https://doi.org/10.1016/j.procs.2017.05.036
https://doi.org/10.1016/j.ecolmodel.2018.06.011
https://doi.org/10.1016/j.simpat.2008.04.021
https://doi.org/10.1111/j.1365-2389.2007.00900.x
https://doi.org/10.5220/0003732301700175
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/1329125.1329289
https://doi.org/10.1145/6462.6485


[93] Gildas Morvan et Yoann Kubera.
« On Time and Consistency in Multi-Level Agent-Based Simulations ».
7 mars 2017. doi : 10.48550/arXiv.1703.02399. arXiv : 1703.02399 [cs].

[94] Gildas Morvan, Alexandre Veremme et Daniel Dupont.
« IRM4MLS : The Influence Reaction Model for Multi-Level Simulation ».
In : Multi-Agent-Based Simulation XI.
Sous la dir. de Tibor Bosse, Armando Geller et Catholijn M. Jonker.
Lecture Notes in Computer Science. Berlin, Heidelberg : Springer, 2011,
p. 16-27. isbn : 978-3-642-18345-4. doi : 10.1007/978-3-642-18345-4_2.

[95] MPI Forum. MPI : A Message-Passing Interface Standard 3.1. Rapp. tech.
4 juin 2015, p. 868.
url : https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (visité
le 06/01/2022).

[96] Michael J. North et al.
« Complex Adaptive Systems Modeling with Repast Simphony ».
In : Complex Adaptive Systems Modeling 1.1 (13 mars 2013), p. 3.
issn : 2194-3206. doi : 10.1186/2194-3206-1-3.

[97] Robert W. Numrich et John Reid.
« Co-Array Fortran for Parallel Programming ».
In : ACM SIGPLAN Fortran Forum 17.2 (1er août 1998), p. 1-31.
issn : 1061-7264. doi : 10.1145/289918.289920.

[98] OpenMP Architecture Review Board. OpenMP API Specification 5.2.
Rapp. tech. Nov. 2021, p. 669. url : https://www.openmp.org/wp-content/up
loads/OpenMP-API-Specification-5-2.pdf (visité le 06/01/2022).

[99] Stephen K. Park et Keith W. Miller.
« Random Number Generators : Good Ones Are Hard to Find ».
In : Communications of the ACM 31.10 (1er oct. 1988), p. 1192-1201.
issn : 0001-0782. doi : 10.1145/63039.63042.

[100] Dirk Pawlaszczyk et Steffen Strassburger.
« Scalability in Distributed Simulations of Agent-Based Models ».
In : Proceedings of the 2009 Winter Simulation Conference (WSC).
Proceedings of the 2009 Winter Simulation Conference (WSC). Déc. 2009,
p. 1189-1200. doi : 10.1109/WSC.2009.5429429.

[101] François Pellegrini et Jean Roman.
« Scotch : A Software Package for Static Mapping by Dual Recursive
Bipartitioning of Process and Architecture Graphs ».
In : High-Performance Computing and Networking.
Sous la dir. d’Heather Liddell et al. Lecture Notes in Computer Science.
Berlin, Heidelberg : Springer, 1996, p. 493-498. isbn : 978-3-540-49955-8.
doi : 10.1007/3-540-61142-8_588.

166

https://doi.org/10.48550/arXiv.1703.02399
https://arxiv.org/abs/1703.02399
https://doi.org/10.1007/978-3-642-18345-4_2
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.1145/289918.289920
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1145/63039.63042
https://doi.org/10.1109/WSC.2009.5429429
https://doi.org/10.1007/3-540-61142-8_588


[102] Manisa Pipattanasomporn, Hasan Feroze et Saifur Rahman. « Multi-Agent
Systems in a Distributed Smart Grid : Design and Implementation ».
In : 2009 IEEE/PES Power Systems Conference and Exposition.
2009 IEEE/PES Power Systems Conference and Exposition. Mars 2009, p. 1-8.
doi : 10.1109/PSCE.2009.4840087.

[103] Konstantin Popov et al.
« Parallel Agent-Based Simulation on a Cluster of Workstations ».
In : Parallel Processing Letters 13.04 (1er déc. 2003), p. 629-641.
issn : 0129-6264. doi : 10.1142/S0129626403001562.

[104] Saifur Rahman, Manisa Pipattanasomporn et Yonael Teklu.
« Intelligent Distributed Autonomous Power Systems (IDAPS) ».
In : 2007 IEEE Power Engineering Society General Meeting.
2007 IEEE Power Engineering Society General Meeting. Juin 2007, p. 1-8.
doi : 10.1109/PES.2007.386043.

[105] Dhananjai M. Rao.
« Accelerating Parallel Agent-Based Epidemiological Simulations ».
In : Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation. SIGSIM PADS ’14.
New York, NY, USA : Association for Computing Machinery, 18 mai 2014,
p. 127-138. isbn : 978-1-4503-2794-7. doi : 10.1145/2601381.2601387.

[106] Dhananjai M. Rao et Alexander Chernyakhovsky.
« Parallel Simulation of the Global Epidemiology of Avian Influenza ».
In : 2008 Winter Simulation Conference. 2008 Winter Simulation Conference.
Déc. 2008, p. 1583-1591. doi : 10.1109/WSC.2008.4736241.

[107] Paul Richmond. « Resolving Conflicts between Multiple Competing Agents in
Parallel Simulations ». In : Euro-Par 2014 : Parallel Processing Workshops.
Sous la dir. de Luís Lopes et al. Lecture Notes in Computer Science.
Cham : Springer International Publishing, 2014, p. 383-394.
isbn : 978-3-319-14325-5. doi : 10.1007/978-3-319-14325-5_33.

[108] Paul Richmond et Mozhgan K. Chimeh.
« FLAME GPU : Complex System Simulation Framework ». In : 2017
International Conference on High Performance Computing Simulation (HPCS).
2017 International Conference on High Performance Computing Simulation
(HPCS). Juill. 2017, p. 11-17. doi : 10.1109/HPCS.2017.12.

[109] Omar Rihawi, Yann Secq et Philippe Mathieu.
« Synchronization Policies Impact in Distributed Agent-Based Simulation ».
In : Distributed Computing and Artificial Intelligence.
Sous la dir. de Sigeru Omatu et al.
Advances in Intelligent Systems and Computing.
Cham : Springer International Publishing, 2013, p. 19-26.
isbn : 978-3-319-00551-5. doi : 10.1007/978-3-319-00551-5_3.

167

https://doi.org/10.1109/PSCE.2009.4840087
https://doi.org/10.1142/S0129626403001562
https://doi.org/10.1109/PES.2007.386043
https://doi.org/10.1145/2601381.2601387
https://doi.org/10.1109/WSC.2008.4736241
https://doi.org/10.1007/978-3-319-14325-5_33
https://doi.org/10.1109/HPCS.2017.12
https://doi.org/10.1007/978-3-319-00551-5_3


[110] Sebastian Rodriguez, Nicolas Gaud et Stéphane Galland.
« SARL : A General-Purpose Agent-Oriented Programming Language ».
In : 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT).
2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT). T. 3. Août 2014, p. 103-110.
doi : 10.1109/WI-IAT.2014.156.

[111] Alban Rousset. « Contribution à la distribution et à la synchronisation des
Systèmes Multi-Agents sur les super-calculateurs ».
These de doctorat. Besançon, 14 oct. 2016.
url : http://theses.fr/2016BESA2043 (visité le 28/04/2022).

[112] Alban Rousset et al. « A Survey on Parallel and Distributed Multi-Agent
Systems for High Performance Computing Simulations ».
In : Computer Science Review 22 (1er nov. 2016), p. 27-46. issn : 1574-0137.
doi : 10.1016/j.cosrev.2016.08.001.

[113] Alban Rousset et al. « Using Nested Graphs to Distribute Parallel and
Distributed Multi-agent Systems ». In : 2016 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP).
2016 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP). Fév. 2016, p. 710-717.
doi : 10.1109/PDP.2016.91.

[114] Xavier Rubio-Campillo.
« Pandora : A Versatile Agent-Based Modelling Platform for Social Simulation ».
In : Proceedings of SIMUL. SIMUL 2014 : The Sixth International Conference on
Advances in System Simulation. 1er jan. 2014, p. 29-34.
doi : 10.13140/2.1.5149.4086.

[115] Stuart J. Russell et Peter Norvig.
Artificial Intelligence : A Modern Approach. Fourth edition.
Pearson Series in Artificial Intelligence. Hoboken : Pearson, 2021.
isbn : 978-0-13-461099-3.

[116] David Scerri et al. « An Architecture for Modular Distributed Simulation with
Agent-Based Models ». In : Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems. AAMAS 2010. T. 1.
Toronto, Canada, 2010, p. 541-548.

[117] Thomas C. Schelling. « Dynamic Models of Segregation ».
In : The Journal of Mathematical Sociology 1.2 (1er juill. 1971), p. 143-186.
issn : 0022-250X. doi : 10.1080/0022250X.1971.9989794.

[118] Kirk Schloegel, George Karypis et Vipin Kumar.
« Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning ».
In : Euro-Par 2000 Parallel Processing. Sous la dir. d’Arndt Bode et al.

168

https://doi.org/10.1109/WI-IAT.2014.156
http://theses.fr/2016BESA2043
https://doi.org/10.1016/j.cosrev.2016.08.001
https://doi.org/10.1109/PDP.2016.91
https://doi.org/10.13140/2.1.5149.4086
https://doi.org/10.1080/0022250X.1971.9989794


Lecture Notes in Computer Science. Berlin, Heidelberg : Springer, 2000,
p. 296-310. isbn : 978-3-540-44520-3. doi : 10.1007/3-540-44520-X_39.

[119] Lisa M. Sokol, Jon B. Weissman et Paula A. Mutchler.
MTW : An Empirical Performance Study.
Institute of Electrical and Electronics Engineers (IEEE), 1991.
url : https://repository.lib.ncsu.edu/bitstream/handle/1840.4/4538/1
991_0076.pdf?sequence=1 (visité le 08/02/2022).

[120] Roberto Solar, Remo Suppi et Emilio Luque. « High Performance Distributed
Cluster-Based Individual-Oriented Fish School Simulation ».
In : Procedia Computer Science. Proceedings of the International Conference on
Computational Science, ICCS 2011 4 (1er jan. 2011), p. 76-85. issn : 1877-0509.
doi : 10.1016/j.procs.2011.04.009.

[121] Roberto Solar, Remo Suppi et Emilio Luque. « Proximity Load Balancing for
Distributed Cluster-based Individual-oriented Fish School Simulations ».
In : Procedia Computer Science. Proceedings of the International Conference on
Computational Science, ICCS 2012 9 (1er jan. 2012), p. 328-337.
issn : 1877-0509. doi : 10.1016/j.procs.2012.04.035.

[122] Vinoth Suryanarayanan, Georgios Theodoropoulos et Michael Lees.
« PDES-MAS : Distributed Simulation of Multi-agent Systems ».
In : Procedia Computer Science. 2013 International Conference on
Computational Science 18 (1er jan. 2013), p. 671-681. issn : 1877-0509.
doi : 10.1016/j.procs.2013.05.231.

[123] Patrick Taillandier et al. « Building, Composing and Experimenting Complex
Spatial Models with the GAMA Platform ».
In : GeoInformatica 23.2 (1er avr. 2019), p. 299-322. issn : 1573-7624.
doi : 10.1007/s10707-018-00339-6.

[124] Georgios Theodoropoulos et Brian Logan. « A FRAMEWORK FOR THE
DISTRIBUTED SIMULATION OF AGENT-BASED SYSTEMS ».
In : Modelling and Simulation : A Tool for the next Millenium, Proceedings of
the 13th European Simulation Multiconference (ESM’99). T. 1. 1999, p. 58-65.

[125] Guillermo Vigueras et al.
« A Comparative Study of Partitioning Methods for Crowd Simulations ».
In : Applied Soft Computing 10.1 (1er jan. 2010), p. 225-235. issn : 1568-4946.
doi : 10.1016/j.asoc.2009.07.004.

[126] Guillermo Vigueras et al.
« A Scalable Multiagent System Architecture for Interactive Applications ».
In : Science of Computer Programming. Special Section : The Programming
Languages Track at the 26th ACM Symposium on Applied Computing (SAC
2011) & Special Section on Agent-oriented Design Methods and Programming
Techniques for Distributed Computing in Dynamic and Complex Environments

169

https://doi.org/10.1007/3-540-44520-X_39
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/4538/1991_0076.pdf?sequence=1
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/4538/1991_0076.pdf?sequence=1
https://doi.org/10.1016/j.procs.2011.04.009
https://doi.org/10.1016/j.procs.2012.04.035
https://doi.org/10.1016/j.procs.2013.05.231
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1016/j.asoc.2009.07.004


78.6 (1er juin 2013), p. 715-724. issn : 0167-6423.
doi : 10.1016/j.scico.2011.09.002.

[127] Haoliang Wang et al.
« Scalability in the MASON Multi-Agent Simulation System ».
In : 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation
and Real Time Applications (DS-RT). 2018 IEEE/ACM 22nd International
Symposium on Distributed Simulation and Real Time Applications (DS-RT).
Oct. 2018, p. 1-10. doi : 10.1109/DISTRA.2018.8601006.

[128] Duncan J. Watts et Steven H. Strogatz.
« Collective Dynamics of ‘Small-World’ Networks ».
In : Nature 393.6684 (6684 juin 1998), p. 440-442. issn : 1476-4687.
doi : 10.1038/30918.

[129] Danny Weyns, Alexander Helleboogh et Tom Holvoet. « The
Packet-World : A Test Bed for Investigating Situated Multi-Agent Systems ».
In : Software Agent-Based Applications, Platforms and Development Kits.
Sous la dir. de Rainer Unland, Monique Calisti et Matthias Klusch.
Whitestein Series in Software Agent Technologies. Basel : Birkhäuser, 2005,
p. 383-408. isbn : 978-3-7643-7348-1. doi : 10.1007/3-7643-7348-2_16.

[130] Uri Wilensky et Kenneth Reisman. « Thinking Like a Wolf, a Sheep, or a
Firefly : Learning Biology Through Constructing and Testing Computational
Theories—An Embodied Modeling Approach ».
In : Cognition and Instruction 24.2 (1er juin 2006), p. 171-209. issn : 0737-0008.
doi : 10.1207/s1532690xci2402_1.

[131] Yadong Xu et al.
« Relaxing Synchronization in Parallel Agent-Based Road Traffic Simulation ».
In : ACM Transactions on Modeling and Computer Simulation 27.2 (27 mai
2017). issn : 1049-3301. doi : 10.1145/2994143.

[132] Huan Zhou et al.
« DART-MPI : An MPI-based Implementation of a PGAS Runtime System ».
In : Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models. PGAS ’14.
New York, NY, USA : Association for Computing Machinery, 6 oct. 2014,
p. 1-11. isbn : 978-1-4503-3247-7. doi : 10.1145/2676870.2676875.

170

https://doi.org/10.1016/j.scico.2011.09.002
https://doi.org/10.1109/DISTRA.2018.8601006
https://doi.org/10.1038/30918
https://doi.org/10.1007/3-7643-7348-2_16
https://doi.org/10.1207/s1532690xci2402_1
https://doi.org/10.1145/2994143
https://doi.org/10.1145/2676870.2676875


Annexes

171



Annexe A.

Sérialisation ObjectPack

Le principe de base de la sérialisation ObjectPack a déjà été introduit dans la
section 3.5.1. Nous fournissons ici quelques détails supplémentaires relatifs à l’implé-
mentation de cette technique de sérialisation.

L’algorithme 19 présente le point d’entrée de la sérialisation/déserialisation avec la
librairie ObjectPack. L’espace mémoire est alloué automatiquement par la méthode
Sérialiser, de manière transparente à l’utilisateur, qui peut avoir accès aux données
sérialisées à envoyer grâce à l’espace mémoire référencé par la méthode EspaceMémoire.
Les données reçues peuvent être stockées directement dans l’espace mémoire grâce à cette
même référence, puis désérialisées grâce à la méthode Désérialiser. Les appels aux
méthodes TailleMémoire, Écrire et Lire font implicitement référence aux règles
de sérialisation définies pour le type de l’élément passé en paramètre, qu’elles soient
prédéfinies par la librairie ou définies par l’utilisateur. La position actuelle fait référence à
la position à laquelle lire ou écrire les données dans l’espace mémoire, utilisée notamment
pour la sérialisation des types fondamentaux.

Algorithme 19 Sérialisation ObjectPack
1: algorithme Sérialiser(élément)
2: Allouer un espace mémoire de taille TailleMémoire(élément)
3: Initialiser la position actuelle au début de l’espace mémoire
4: Écrire(espace mémoire, élément)
5: fin algorithme

6: algorithme Désérialiser(élément)
7: Initialiser l’élément à une valeur par défaut ▷ allocation de mémoire
8: Initialiser la position actuelle au début de l’espace mémoire
9: Lire(espace mémoire, élément)

10: fin algorithme

11: algorithme EspaceMémoire
12: retourner référence vers l’espace mémoire
13: fin algorithme

Un exemple de sérialisation pour un type fondamental est donné dans l’algorithme 20.
La position actuelle est incrémentée au fur et à mesure des écritures ou des lectures dans

172



l’espace. Dans les langages C ou C++, la copie des données est typiquement réalisée
directement grâce à la méthode memcpy, d’où l’efficacité de la méthode.

Algorithme 20 Exemple de sérialisation d’un type fondamental (entier)
1: algorithme TailleMémoire(entier)
2: retourner taille de l’entier en octets
3: fin algorithme

4: algorithme Écrire(espace mémoire, entier)
5: Copier l’entier dans l’espace mémoire à la position actuelle
6: Avancer la position actuelle de TailleMémoire(entier)
7: fin algorithme

8: algorithme Lire(espace mémoire, entier)
9: Copier les données de l’espace mémoire à la position actuelle dans l’entier

10: Avancer la position actuelle de TailleMémoire(entier)
11: fin algorithme

Un exemple de fonctions de sérialisation pour un tableau dynamique est proposé dans
l’algorithme 21. Le tableau contient des éléments de type arbitraire. Le tableau est donc
lui même un type dit composé, et non fondamental.

Les appels aux méthodes TailleMémoire (ligne 4), Écrire (ligne 11) et Lire
(ligne 18) correspondent à des appels récursifs aux méthodes de sérialisation associées
au type d’élément du tableau. La récursion s’arrête lorsqu’un type fondamental est
atteint. Pour la plupart des types composés, l’utilisateur appelle seulement les fonctions
de sérialisation prédéfinies par la librairie, sans avoir à se soucier de la gestion de l’espace
mémoire interne à la librairie, d’où un haut niveau d’abstraction.

173



Algorithme 21 Exemple de sérialisation d’un tableau dynamique
1: algorithme TailleMémoire(tableau dynamique)
2: taille ← TailleMémoire(nombre d’éléments du tableau)
3: pour chaque élément du tableau faire
4: taille ← taille + TailleMémoire(élément)
5: fin pour
6: retourner taille
7: fin algorithme

8: algorithme Écrire(espace mémoire, tableau dynamique)
9: Écrire(espace mémoire, taille du tableau)

10: pour chaque élément du tableau faire
11: Écrire(espace mémoire, élément)
12: fin pour
13: fin algorithme

14: algorithme Lire(espace mémoire, tableau dynamique)
15: Lire(espace mémoire, nombre d’éléments du tableau)
16: Capacité du tableau dynamique ← nombre d’éléments
17: pour i de 0 à nombre d’éléments faire
18: Lire(espace mémoire, tableau[i])
19: fin pour
20: fin algorithme

174



Annexe B.

Discussion sur les coûts de
communication du Méta-Modèle

La modélisation des communications dans le Méta-modèle soulève quelques questions.
Dans un modèle réel, le coût réel des communications entre deux agents dépend de
nombreux paramètres, tels que le comportement des agents, le volume des données à
transmettre, ainsi que le mode de synchronisation des données qui définit les modalités
d’interactions avec un agent distant. Ces modes sont détaillés dans le chapitre 5.
Néanmoins nous apportons ici quelques éléments de réflexion génériques sur la gestion
des communications.

On peut distinguer deux cas.
— Le coût réel de communication γS(ai, aj) est constant, quel que soit le com-

portement de ai. C’est par exemple le cas quand la synchronisation consiste à
importer à la fin de chaque pas de temps les données à jours de aj , comme
dans le cas de D-MASON, de RepastHPC, ou du GhostMode de FPMAS. En
effet, une fois l’agent importé, le comportement de ai n’engendrera pas de
nouvelle communication. L’importation de plusieurs agents peut alors être réalisée
grâce à des communications dites collectives. Le coût des communications lié à
l’importation de aj ne s’applique qu’une seule fois, indépendamment du nombre
d’interactions de ai avec aj , et indépendamment du nombres d’agents locaux
interagissant avec aj . En effet, si deux agents locaux sont amenés à interagir avec
un même agent distant, le coût réel de communication est mutualisé entre les deux
agents locaux car les données de l’agent distant ne sont importés qu’une fois pour
les deux.

— Le coût réel de la communication γS(ai, aj) dépend du comportement de ai. C’est
notamment le cas avec les méthodes qui consistent à importer à la volée les données
de l’agent aj lorsqu’une interaction est nécessaire, grâce à des communications
point à point, comme avec le HardSyncMode de FPMAS. Dans ce cas, le coût
de l’importation de aj peut s’appliquer plusieurs fois si plusieurs interactions
avec aj ont lieu pendant l’exécution du comportement de ai. A l’inverse, aucune
communication n’aura lieu si ai n’interagit finalement pas avec aj . Contrairement
au cas précédent, le coût des communications entre ai et aj est alors à considérer
de manière individuelle.

La méthode d’estimation du temps d’exécution présentée au chapitre 4 utilise des
temps de communication constants. On compte le nombre de relations de chaque agent

175



local avec des agents distants, et on suppose que le temps de communication s’applique
une fois à chaque relation. Le coût de communication simulé ne prend donc pas en
compte le comportement des agents. Ce biais peut cependant se compenser en adaptant
le paramètre représentant le temps de communication en fonction du nombre moyen
d’interactions entre deux agents. Le coût de communication simulé s’applique ensuite
de manière individuelle : on ne considère pas la mutualisation possible des coûts de
communication. Le temps d’exécution estimé ne correspond donc rigoureusement à aucun
des deux cas précédents. Il possède cependant l’avantage d’être indépendant du mode de
synchronisation, et d’être très proche des liens réels entre agents distants. En effet, les
temps de communications estimés sont directement proportionnels au nombre de liens
distants. Ce modèle de communication correspond en outre exactement au calcul des
coûts de communication effectué par Zoltan dans notre configuration de l’équilibrage de
charge à base de graphe.

176



Annexe C.

Conversion d’un modèle SMA vers le
modèle de graphe de Zoltan

La construction des liens et le calcul de leurs poids décrits dans l’algorithme 8
nécessitent un mécanisme permettant de convertir notre représentation de système Multi-
Agents en un graphe interprétable par Zoltan. Un exemple est donné sur la figure C.1.
La figure C.1a représente les interactions entre agents sous forme d’un graphe orienté,
conformément à la modélisation introduite au chapitre 3 : un lien orienté de ai vers aj
signifie qu’aj appartient au voisinage de ai, et donc qu’ai peut interagir avec aj . Un
poids est associé à chaque lien. La figure C.1b montre la conversion vers un graphe non
orienté exploitable par Zoltan, conformément à l’algorithme 8. On remarque que dans
cette configuration, le coût en communications des partitions considéré par Zoltan est
calculé de manière analogue au Méta-modèle, le poids des liens correspondant ici aux
paramètres représentant les temps de communication. On remarque notamment qu’avec
le modèle de la figure C.1b, Zoltan ne considère pas les possibles mutualisations des
coûts de communications entre les agents a1 et a2. En effet le coût en communication
du partitionnement représenté, qui associe a1 et a2 à un processus et a3 à un autre,
correspond à la somme des coûts individuels w4 +w2 +w3. Le mécanisme de conversion
est donc plus proche du cas où les communications dépendent du comportement des
agents, le poids des liens étant défini individuellement pour chaque relation.

La figure C.2 montre un mécanisme de conversion plus adapté au cas où les
communications réelles ne dépendent pas du comportement des agents, même si cette
solution n’a pas été mise en pratique. On suppose tout d’abord que le poids des liens, et
donc le coût des relations, ne dépend pas du comportement des agents mais des agents

a1

a2

a3

w1

w2

w3

w4

(a) Modèle Multi-Agents

a1

a2

a3

w1

w2 + w3

w4

(b) Modèle Zoltan à base de graphe non orienté

Figure C.1. – Transformation d’un modèle Multi-Agents vers le modèle de graphe
utilisé par Zoltan.

177



a1

a2

a3

w1

w3

w2

w3

(a) Modèle Multi-Agents

a1

a2

a3w3

w1

w2

(b) Modèle Zoltan à base d’hypergraphe

Figure C.2. – Transformation d’un modèle Multi-Agents vers le modèle d’hypergraphe
utilisé par Zoltan.

avec lesquels ils sont en relation, dont les données sont importées à chaque itération.
Ainsi les coûts des relations de a1 à a3 et de a2 à a3 sont égaux et valent w3. Le coût du
partitionnement considéré avec la méthode de la figure C.1b, d’une valeur de w3+w3+w2,
est alors surestimé car a3 n’est importé qu’une seule fois donc le coût w3 n’est réellement
appliqué qu’une fois. Le modèle à base d’hypergraphe de la figure C.2b permet de prendre
en compte la mutualisation des coûts de communication, en assignant un coût de w3+w2

au partitionnement représenté, plus réaliste dans le cas où le coût réel des communications
ne dépend pas du comportement des agents.

Ainsi l’adaptation en graphe simple représente mieux les coûts réels du HardSyncMode
de FPMAS, et l’adaptation en hypergraphe représente mieux ceux du GhostMode ou du
GlobalGhostMode. Même si ces considérations permettent d’adapter finement Zoltan au
cas de la simulation distribuée de SMA, nos expérimentations avec la conversion à base
de graphe simple ainsi que des poids unitaires permettent déjà d’obtenir des résultats
robustes, l’objectif de Zoltan consistant dans tous les cas à minimiser la quantité totale
de communications.

178



Titre : Distribution et synchronisation des simulations de Systèmes Multi-Agents

Mots clés : Systèmes Multi-Agents, Simulation Distribuée, Équilibrage de Charge, Synchronisation 
des Données

Résumé : La  simulation  de  Systèmes  Multi-
Agents (SMA) permet d’expliquer et de prédire
le  comportement des systèmes complexes  dans
de nombreux domaines tels que l’épidémiologie,
l’économie ou l’environnement. La grande taille
des  modèles  étudiés  mène  à  l’utilisation  du
Calcul  Haute  Performance  et  de  la  simulation
distribuée  pour  lever  ces  limites.  L’aspect
naturellement  parallèle  des  agents  en  fait
d’excellents  candidats  à  l’exécution  distribuée,
qui  pose  cependant  de  nombreux  problèmes,
comme la continuité des données, l’équilibrage
de  charge  ou  la  synchronisation  des  données
entre  les  processus.  Une  architecture  logicielle
générique permettant de résoudre ces problèmes
de  manière  flexible  et  indépendamment  du
contexte  de  développement  est  proposée.  Une
conception  par  interface  fait  émerger  des
composants indépendants et abstraits nécessaires

à  la  distribution  de  toute  simulation  de  SMA.
Nous  proposons  une  analyse  qualitative  et
quantitative de méthodes d’équilibrage de charge
d’une  part,  notamment  basées  sur  l’application
de  partitionnements  de  graphe  à  la  simulation
distribuée  de  SMA,  et  de  modes  de
synchronisation  des  données  d’autre  part,  dont
certains  permettent  la  gestion  des  lectures  et
écritures concurrentes entre les processus. Cette
analyse  montre  que  les  avantages  de  chaque
méthode dépendent des modèles et des besoins
des utilisateurs, d’où l’intérêt de la conception de
plateformes de simulation modulables basées sur
des interfaces permettant de facilement intégrer
de nouvelles méthodes. L’architecture logicielle
proposée  est  essentiellement  issue  de  notre
expérience  de  développement  de  FPMAS,  une
plateforme  C++  de  simulation  distribuée  de
SMA basée sur les solutions proposées.

Title : Distribution and synchronisation of Multi-Agent Systems

Keywords : Multi-Agent Systems, Distributed Simulation, Load Balancing, Data Synchronisation

Abstract : Multi-Agent  Systems  (MAS)
simulation  allows  to  explain  and  predict  the
behavior  of  complex  systems  in  various  fields
such as epidemiology, economy or environment.
The  large  size  of  studied  models  leads  to  the
usage  of  High  Performance  Computing  and
distributed simulation to overcome those limits.
The  naturally  parallel  aspect  of  agents  make
them  excellent  candidates  to  the  distributed
execution,  that  however  poses  many problems,
such as data continuity, load balancing or data
synchronisation  between  processes.  A  generic
software architecture that allows to solve those
problems  in  a  flexible  way  and  independently
from the development context  is  proposed.  An
interface  based  design  brings  out  independent
and  abstract  components  required  for  the

distribution of any MAS simulation. We propose
a  qualitative  and  quantitative  analysis  of  load
balancing  methods  on  the  one  hand,  notably
based on the application of graph partitioning to
the distributed simulation of MAS, and of data
synchronisation modes on the other hand, among
which some allow the management of concurrent
reads  and  writes  between  processes.  This
analysis shows that advantages of each method
depend  on  models  or  user  needs,  hence  the
interest  for  the  design  of  modular  simulation
platforms based on interfaces that allow to easily
integrate  new methods.  The proposed software
architecture  essentially  comes  from  our
development  experience  of  FPMAS,  a  C++
distributed  MAS simulation  platform based  on
proposed solutions.

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon


	Systèmes Multi-Agents et simulation distribuée
	Contexte et problématique
	Simulation de Systèmes Multi-Agents
	Simulation distribuée
	Objectifs de la thèse
	Problématique
	Plan du mémoire

	État de l'art
	Systèmes Multi-Agents
	La notion d'agent
	Systèmes complexes
	Environnement

	Simulation de Systèmes Multi-Agents
	Architecture de calcul distribuée
	Distribution d'une simulation de SMA
	Exécution
	Continuité des données

	Synchronisation des données
	Lectures
	Écritures non concurrentes
	Écritures concurrentes
	Nécessité des écritures

	Synchronisation temporelle
	Équilibrage de charge
	Méthodes par découpage de l'environnement
	Méthodes par partitionnement de graphe
	Méthodes par proximité spatiale
	Autres méthodes

	Plateformes de simulation distribuée
	Repast HPC et D-MASON
	Pandora
	FLAME
	Autres Travaux

	Synthèse


	Conception et analyse d'une architecture logicielle générique dédiée à la simulation distribuée de Systèmes Multi-Agents
	Distribution des Systèmes Multi-Agents
	Contexte d'exécution distribuée
	Contexte Multi-Agents
	Exécution par pas de temps
	Environnement

	Algorithmes de distribution génériques
	Migration
	Création et nettoyage des agents délégués
	Gestion de la localisation
	Distribution

	Cas de la représentation à base de graphe
	Principe
	Motivations
	Spécialisation des algorithmes
	Exemple de distribution

	Autres problèmes de distribution
	Sérialisation des données
	Génération de nombres aléatoires

	Synthèse

	Équilibrage de charge
	Approche théorique de l'équilibrage de charge
	Problème de partitionnement
	Problème de repartitionnement

	Interface générique
	Spécification
	Période d'application

	Modèles test
	Modèles à base de graphes purs
	Modèles spatiaux uniformes
	Modèles spatiaux non uniformes
	Meta-Modèle

	Algorithmes d'équilibrage
	Équilibrage de charge à base de graphe
	Équilibrage de charge spatialisé statique
	Équilibrage de charge spatialisé dynamique
	Équilibrage de charge à base de grille

	Performances et comparaisons
	Graphe pur
	Modèle spatial uniforme
	Modèle spatial non uniforme

	Synthèse

	Synchronisation des données
	Modes de synchronisation
	Lectures et écritures
	Interface de synchronisation
	GhostMode
	GlobalGhostMode
	HardSyncMode
	PushGhostMode et PushGlobalGhostMode

	Limites d'interactions
	Reproductibilité
	Définition
	Niveau de reproductibilité maximal
	Niveau de reproductibilité effectif

	Performances
	Modèle test
	Lectures
	Écritures

	Impact sur les résultats des modèles
	Modèle Virus
	Performances
	Reproductibilité
	Influence de la gestion des lectures et écritures

	Synthèse

	Conclusion

	Liste des algorithmes
	Liste des logiciels
	Bibliographie
	Annexes
	Sérialisation ObjectPack
	Discussion sur les coûts de communication du Méta-Modèle
	Conversion d'un modèle SMA vers le modèle de graphe de Zoltan


