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Chapter 1 – Introduction

SINCE the inception of writing, humans have sought to protect their information from
unwanted people. Two famous techniques, renowned since antiquity, are the steganog-
raphy and the cryptography. While both terms are composed of the suffix “graphy”,
signifying “writing”, their prefixes, “stegano” and “crypto”, carry different meanings:
“covered” for the former and “hidden” for the latter. More precisely, the steganography
involves concealing the message itself (by covering it most of the time), while cryptog-
raphy consists in hiding the meaning of the message. In history, we can find a lot of
examples for steganography and cryptography: the Greek Histiaeus used to shave his
slaves’ heads to write messages on their skin and waited for his slaves’ hair to regrow
before to send them (steganography), while the Spartan military employed the Scytale,
a cylinder with a strip of parchment wrapped around it, upon which a message was
written (cryptography).

Traditionally, cryptography was used for military purposes. The most famous example
is the Enigma machine used by the Nazi Germany during World War II. The Enigma
machine is composed of a keyboard (for the 26 letters of the alphabet) along with a
set of rotating disks, called rotors, that “scramble” the alphabet letters. The settings of
the machine, and especially the arrangement of the rotors determines the encryption
scheme. The Enigma machine is also famous because it represents the first example of
electronic cryptography; prior to its use, cryptography was entirely “handmade”. The
security of the machine relied on the fact that at this time, no machine was powerful
enough to try all the possible arrangements to decipher a given encryption.
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Chapter 1 – Introduction

However, today, cryptography is deployed in various domains, not limited to military
communications. It is used in electronic commerce, personal communication, and
the deployment of secure messaging applications. In short, cryptography is present
wherever there is data to protect.

1.1 Foundations of Cryptography

Traditionally, cryptographic primitives used to rely on a single secret key used for both
encryption and decryption. Besides still being used nowadays, notably the Advanced
Encryption Standard (AES), such cryptographic schemes have some drawbacks, such
as the fact that they require an efficient and secure way to share keys among concerned
users. In the 1970s, Diffie and Hellman [58] introduced a new kind of cryptography with
their key exchange protocol in which cryptographic schemes use a pair of keys instead
of only one key: one key of the pair must be kept secret and is used for decryption, while
the other is publicly known and used for encryption. Cryptographic schemes with only
one key are referred to as symmetric or secret key, while those with a pair of keys are
referred to as asymmetric or public key. In this thesis, we will mainly use asymmetric
cryptographic primitives as they are better suited for messages sharing.

Cryptography provides four guarantees to users.
• Confidentiality: only the authorized receiver can learn the content of the mes-

sage;
• Integrity: the receiver can ensure that the message has not been altered;
• Authenticity: the receiver can verify the origin of the message (that the sender is

who she claims to be);
• Non-Repudiation: the sender cannot deny being the origin of the message.

1.2 Context

Nowadays, data are omnipresent in our daily lives, and we deal with a lot of them without
even realizing it. For example, a typical workday for an office worker, let us call her
Alice, could unfold as follows: first, she wakes up at around 6 a.m. to the sound of her
connected alarm clock, then she checks her social media accounts before taking the bus
to go to the office. During lunch, she visits a restaurant with her colleagues, and after
work, she takes the underground to meet her personal trainer at the gym. While waiting,
she books an appointment with her dentist on her phone. On her way back home, she
stops by the grocery store to pick up the order she placed during her afternoon break,
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and finally, she ends the day by watching TV series online. As we can observe, an
average person like Alice deals with and also generates a significant amount of data in
a single day. It begins during the night and in the morning when the connected alarm
clock analyzes Alice’s sleep to determine the perfect time to wake her up. When Alice
is active on social media, she accesses others’ data while also sharing her own when
she posts photos, for example. While taking the bus, Alice uses her travel card, which
contains various information about her. At work, Alice handles the company’s and its
clients’ data, and during lunch, when she uses her credit card for payment, sensitive
data is involved. When she books her medical appointment on the underground, she
deals with sensitive data in an insecure environment. At the gym with her personal
trainer, she shares data collected by her connected watch and an associated training
application. When collecting her order at the store, she has to pay online, thus sending
sensitive data over the internet. Finally, while watching series online, she consumes a
significant amount of data and shares some information about her preferences.

Storing data securely and efficiently is one of the most studied and challenging areas
today. On one hand, storing an increasing amount of data (and keeping it readily
available) demands significant resources, including electricity and water. In an era
of environmental concerns, there is a strong motivation to research efficient storage
solutions that reduce the size of stored data. On the other hand, privacy concerns are on
the rise, with users becoming more cautious about the data they share and with whom
they share it, in light of recent laws such as the General Data Protection Regulation
(GDPR) established by the European Union in 2016 to protect personal data. There
exist several methods to store data while keeping its privacy, including encryption ( such
as AES for symmetric and RSA for asymmetric encryption), differential privacy (adding
noise to data), and data masking techniques like tokenization and pseudonymization.

However, there is also a need to share data, which necessitates the development of
advanced data sharing techniques. This forms the scope of this thesis. We condider that
there are three types of data sharing: i) when information is shared from one individual
to a group of users, ii) when information is shared from one individual to a group with
common attributes, and iii) when information is shared from one individual to another.
In this thesis, we focus on the first two types of data sharing, studying two cryptographic
primitives known as Broadcast Encryption and Attribute-Based Encryption, which re-
spectively fall into the contexts of i) and ii).

Furthermore, it is essential to acknowledge that data are not only stored but also
processed by servers to respond to user requests, which sometimes requires substantial
computational power from the server. While some promising theoretical techniques for
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storage and computations over encrypted data, such as Gentry’s fully homomorphic
encryption (FHE), have been developed, they are often inefficient and resource-intensive
for practical deployment. It is important to note that, although highly challenging and
intriguing, FHE is beyond the scope of this thesis.

1.3 Encryption Scheme for Data Sharing

To a group of users. For this type of sharing we focus on broadcast encryption
(BE) [66] schemes. A broadcast encryption scheme is a public key encryption system
that encrypts messages for a specific subset of users, ensuring that only users within
that subset can decrypt them. Figure 1.1 provides a brief and informal overview of how
a broadcast encryption scheme operates.

Figure 1.1: Broadcast encryption scheme, simplified.

In our daily lives, such schemes find application in scenarios like paid television or se-
cure data sharing. Another cryptographic primitive, known as broadcast and trace (BT),
serves a dual purpose by enabling both broadcast encryption and traitor tracing. The
latter is a mechanism that helps identify individuals, or at least one of them, responsible
for creating a pirate decoder for the broadcast encryption scheme. Broadcast and
trace is also employed in the realm of paid television to uncover those responsible for
distributing illegal decoders online.

An encryption scheme is considered efficient when its parameters remain independent
of the number of users within the scheme, even when dealing with large user bases. For
broadcast encryption schemes, achieving constant-size ciphertexts has been possible
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since 2005 using standard objects and assumptions. However, attaining constant-size
public and private keys under standard assumptions remains an open challenge. In
the context of traitor tracing, there is currently no scheme that offers constant-size
ciphertexts, even when considering non-standard assumptions. Currently, the most
efficient broadcast encryption and broadcast and trace schemes rely on a combination of
pairing and lattice techniques to optimize efficiency. Nevertheless, this approach has the
drawback of partial reliance on computational problems that could be compromised by
a quantum computer. Therefore, in this thesis, we propose efficient schemes that do not
merge these two domains. Whenever feasible, we aim to provide generic constructions
of such schemes, enabling implementation with either pairings or lattices.

To a group with common attributes. For this type of sharing we concentrate on
attribute-based encryption [126] (ABE) schemes. An attribute-based encryption scheme
is a public key encryption system in which messages and secret keys are associated
with either a set of attributes or an access policy. There are two types of attribute-based
encryption schemes: ciphertext policy attribute-based encryption (CP-ABE), where
ciphertexts are linked to access policies, and secret keys are linked to sets of attributes;
and key policy attribute-based encryption (KP-ABE), where the roles of attributes and
access policies are reversed. We provide a brief and informal overview of how the
CP-ABE scheme operates in Figure 1.2. A KP-ABE scheme can be described similarly.

Figure 1.2: Ciphertext policy attribute-based encryption scheme, simplified.

Since both ciphertexts and secret keys in attribute-based encryption schemes depend
on attribute sets, designing efficient schemes that keep the size of keys and ciphertexts
independent of the maximum number of attributes in the scheme is quite challenging.
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While some schemes have achieved either constant size ciphertexts or constant size
secret keys, there is currently no scheme that accomplishes both. Additionally, it
is important to note that the complexity of the access policies affects the scheme’s
efficiency: the more complex the policy, the less efficient the scheme becomes. However,
some applications, such as developing a sharing platform for connected objects, require
fine-grained access control. In this thesis, we have chosen to focus on improving the
efficiency of attribute-based encryption schemes by using simple access policies.

1.4 Our Toolbox of Cryptographic Primitives

The goal of our thesis is to propose generic constructions for broadcast encryption and
attribute-based encryption schemes. The advantage of these constructions lies in the
modularity of our results. However, developing such constructions is not a straightfor-
ward task, and we must employ two underlying additional primitives: identity-based en-
cryption with wildcards and cryptographic accumulators. Furthermore, these primitives
require new features or security properties to be effectively utilized in our constructions.

Identity-based encryption with wildcards [4]. An identity-based encryption with
wildcards (WIBE) scheme is a public key encryption system wherein ciphertexts are
encrypted based on a vector known as a pattern. Only users possessing a pattern
corresponding to the encryption pattern can decipher the message. Patterns are defined
within a set that includes a special symbol, “⋆”, referred to as a “wildcard”. A secret key
created for pattern P can decrypt a ciphertext associated with pattern P

′
if and only

if, for all i ∈ {1, · · · , L} (where L ∈ N is the length of both patterns), either Pi = ⋆ or
P

′
i = ⋆ or Pi = P

′
i . In this scenario, we say that P matches P

′
, denoted as P =⋆ P

′
.

For visual clarity, Figure 1.3 provides an example illustrating matching and not matching
patterns for patterns defined over {0, 1, ⋆}∗.

Figure 1.3: Example of matching and not matching patterns.

In Figure 1.4, we provide a brief and informal overview of how an identity-based
encryption with wildcards scheme operates.
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Figure 1.4: Identity-based encryption with wildcards scheme, simplified.

Cryptographic accumulators [27]. A cryptographic accumulator is a system de-
signed to aggregate a set of values into a concise representation while also possessing
the capability to prove the membership of any element using a piece of information
referred to as a witness. This system is parameterized by a tuple consisting of private
and secret keys. In Figure 1.5, we provide a brief and informal explanation of how
an accumulator scheme functions.

Figure 1.5: Cryptographic accumulator, simplified.

1.5 Contributions

We hereby present all our contributions, categorizing them into two distinct categories:
those pertaining to the building blocks (WIBE and accumulators), and those related to
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advanced primitives for data sharing (BE and ABE).

We commence by detailing our contributions related to the building blocks.
Contribution 1.1: we define a novel type of identity-based encryption with wildcards

scheme known as privacy-preserving key keneration (PPKG-WIBE). In this scheme,
the key generation algorithm is replaced by an interactive protocol involving three
entities: a user requesting a key for a pattern P , a pattern certification center
certifying that the requesting user indeed possesses P , and a key generation
center responsible for creating the key for P . Additionally, we introduce a new
security property for PPKG-WIBE schemes, ensuring that the key generation
center remains unaware of any information about P .

Contribution 1.2: we introduce a novel security property for identity-based encryption
with wildcards schemes, known as pattern-hiding. This property safeguards
the encryption pattern, ensuring its confidentiality even from users authorized to
decrypt. This property supersedes an existing property that protects the encryption
pattern but only from users not allowed to decrypt.

Contribution 1.3: we also elaborate two new identity-based encryption with wildcards
scheme: the first scheme has constant size ciphertext while the second scheme
is pattern-hiding.

Contribution 1.4: we propose the first privacy-preserving key generation identity-based
encryption with wildcards instantiation.

Contribution 1.5: in the context of cryptographic accumulators, we introduce a novel
security property termed unforgeability of private evaluation. This property aims
to prevent the forgery of the accumulated value when it is computed using the
scheme’s private key.

Contribution 1.6: we also introduce a novel type of accumulator known as dually
computable accumulators. These accumulators incorporate two distinct evaluation
algorithms: one that requires the scheme’s secret key as input and another that
relies solely on the public key.

Contribution 1.7: we present two novel accumulator schemes. The first one is original
in the literature because it creates the compact representation using the secret
key, while the witness is generated using only the public key. Our second scheme
is a dually computable accumulator.

And here are our contributions in the realm of advanced primitives.
Contribution 2.1: we present a generic construction for broadcast encryption schemes,

along with a variant known as augmented broadcast encryption, derived from
identity-based encryption with wildcards schemes. For the augmented broadcast
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encryption variant, we establish the necessity of our newly introduced pattern-
hiding security property for identity-based encryption with wildcards schemes.

Contribution 2.2: by combining our generic constructions and novel schemes, we in-
troduce a new broadcast encryption scheme featuring ciphertexts of constant size,
secure under standard assumptions. Additionally, this marks the first instance of
an augmented broadcast encryption scheme secure under standard assumptions.

Contribution 2.3: in the domain of attribute-based encryption schemes, we propose a
novel scheme constructed using dually computable accumulators. This innovation
results in the first attribute-based encryption scheme with constant size cipher-
texts and secret keys. It is also noteworthy that this marks the first application
of cryptographic accumulators for encryption, extending their use beyond key
management.

Contribution 2.4: we explore, through a practical use case involving a sharing platform
for connected devices, the utility of ciphertext policy attribute-based encryption for
access control. We provide evidence that when this encryption method safeguards
both the access policy associated with the ciphertext and the user’s attributes
during secret key requests, our access control protocol upholds the privacy of all
platform participants. Furthermore, we introduce a novel ciphertext policy attribute-
based encryption scheme derived from the privacy-preserving key generation
identity-based encryption with wildcards scheme.

These contributions have led to the acceptance of some articles, while others are
currently under submission.

• Our two articles “(Augmented) Broadcast Encryption From Identity-Based Encryp-
tion with Wildcards” [20] and “Dually Computable Cryptographic Accumulators and
Their Application To Attribute-Based Encryption”[22] were respectively presented
at the 21st International Conference on Cryptology and Network (CANS 2022)
and the 22st International Conference on Cryptology and Network (CANS 2023).

• Our articles “SoK: Recent Developments in Cryptographic Accumulators - Proper-
ties, Security, and Beyond” (presenting Contribution 1.5) and “Adapting Identity-
based Encryption with Wildcards to Access Control” (Contributions 1.1, 1.4 and
2.4) are under submission. More details about our publications are given in
Section 8.

Table 1.1 provides a list of articles and chapters where you can find our various
contributions.
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Contributions Chapter In submission Accepted
Proceedings Extended Version

Contribution 1.1 4.2
√

Contribution 1.2 [20] [21]Contribution 1.3 4.3Contribution 1.4 √
Contribution 1.5 5.3Contribution 1.6 [22] [23]Contribution 1.7 5.4
Contribution 2.1 6.1 [20] [21]Contribution 2.2
Contribution 2.3 6.2 [22] [23]
Contribution 2.4 6.3

√

Table 1.1: Summary of our contributions and publications.

1.6 Organization of this Thesis

This thesis comprises five technical chapters, in addition to this introduction. Chapter 2
provides the necessary mathematical background required for a comprehensive under-
standing of this manuscript. In Chapter 3, we present some cryptographic preliminaries.
Chapter 4 is dedicated to the identity-based encryption with wildcards primitive, featuring
a formal definition of the scheme, its associated properties, our contributions to this
primitive, and our novel instantiations. Moving on to Chapter 5, we shift our focus to
cryptographic accumulators. This chapter formally introduces the primitive, engages
in discussions regarding its properties and applications, presents our new functional-
ities, and unveils our innovative accumulator schemes. In Chapter 6, we explore the
applications of the aforementioned primitives in two data sharing schemes: broadcast
encryption and attribute-based encryption, complete with a practical use case. Finally,
Chapter 7 summarizes the contributions made in this thesis.
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Chapter 2 – Mathematical Background

IN this chapter, we introduce the notations used in this manuscript along with the
mathematical notions and security assumptions. We also present some cryptographic
preliminaries and techniques that we will use in this thesis.

2.1 Notations and Mathematical Background

• Vectors are written with bold face lower case letters, patterns and matrices with
bold face upper case letters.

• R,N,Z,ZN = Z/NZ respectively represent the usual sets of real numbers, natural
numbers, integers and integers modulo N .

• GL(n,Zp) for n ∈ N and p prime is the set of n× n invertible matrices over Zp. It
is called the general linear group.

• For a set S and an integer l, Sl corresponds to S × · · · × S︸ ︷︷ ︸
l times

.

• For a, b ∈ N we denote {1, 2, · · · , a} as [a], and {a, a + 1, · · · , b} as Ja, bK when
a ̸= 1.

• For every finite set S, x← S denotes a uniformly random element x from the set
S.

• A security parameter is denoted by λ, where λ ∈ N.
• The notation “∈ poly(λ)” means to be polynomial in the security parameter.
• Unless specified, we consider that any Probabilistic Polynomial Time (PPT) adver-

sary A has output in {0, 1}.
• The advantage of an adversary A to win a security game Game is written AdvGame

A .
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Definition 2.1.1 Negligible function. A function ϵ : N→ R is called negligible if for all
k ∈ N, there exists N ∈ N such that for all n ≥ N , we have that |ϵ(n)| < 1

nk .

Definition 2.1.2 Characteristic polynomial [73]. A set X = {x1, · · · , xn} with ele-
ments xi ∈ Zp can be represented by a polynomial following an idea introduced in [67].
The polynomial ChX [z] =

∏n
i=1(xi + Z) from Zp[Z], where Z is a formal variable, is

called the characteristic polynomial of X . In what follows, we will denote this polynomial
simply by ChX and its evaluation at a point y as ChX (y).

Definition 2.1.3 Elementary symmetric polynomial. The elementary symmetric poly-
nomial on n ∈ N variables {Xi} of degree k ≤ n is the polynomial σk(X1, · · · , Xn) =∑
1≤i1 ̸≤···̸≤ik≤n

Xi1 · · ·Xik . Notice that σ1(X1, · · · , XN) =
∑n

i=1Xi and σn =
∏n

i=1Xi.

Note 2.1.1 Let X = {X1, · · · , Xn}. Notice that ChX [Z], which is equals to
∏n

i=1(Xi+Z)

by definition, is also equals to Zn + σ1(X1, · · · , Xn)Z
n−1 + σ2(X1, · · · , Xn)Z

n−2 + · · · +
σn(X1, · · · , Xn).

We now recall some algebra definitions.

Definition 2.1.4 Group. Let G be a non-empty set and · be a binary law over G. We
say that (G, ·) is a group if it satisfies three requirements:

• the law · is associative, meaning that for all g1, g2, g3 ∈ G, we have that (g1 ·g2) ·g3 =
g1 · (g2 · g3);

• there exists an identity element in G, denoted 1G, such that for all g ∈ G, we have
that 1G · g = g · 1G = g;

• for each g1 ∈ G, there exists an element g2 ∈ G such that g1 · g2 = 1G and
g2 · g1 = 1G, where 1G is the identity element. For each g1, the element g2, called
the inverse of g1, is unique and denoted by g−1

1 .

Notation 2.1.1 For any g ∈ G and any i ∈ N, we write gi = g · · · · · g︸ ︷︷ ︸
i times

.

Notation 2.1.2 We here decided to define a group with multiplicative notation ·. We
can also define a group with additive notation, where the law, the identity element and
the inverse element of g1 are respectively written +, 0G and −g1.

Definition 2.1.5 Commutative group. The group (G, ·) is said to be commutative (or
abelian) if for all g1, g2 ∈ G, g1 · g2 = g2 · g1.
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Definition 2.1.6 Finite group. (G, ·) is said to be finite if G is finite.

Definition 2.1.7 Subgroup. Let H be a subset of G. (H, ·) is a subgroup of (G, ·) if it
satisfies three requirements:

• 1G ∈ H.
• For all h1, h2 ∈ H, h1 · h2 ∈ H.
• For all h ∈ H, h−1 ∈ H.

Definition 2.1.8 For any element g ∈ G, the set
{
gk|k ∈ N

}
that consists of all integer

powers of g and denoted by ⟨g⟩ is the subgroup generated by g.

Definition 2.1.9 Order. The order of a (finite) group is the number of elements in the
set. The order of an element g ∈ G, written |g|, is the order of the finite subgroup ⟨g⟩
generated by g, i.e. the least positive integer n such that gn = 1 (if it exists).

Definition 2.1.10 Cyclic group. A group (G, ·) is said to be cyclic if there exists an
element g ∈ G such that G = ⟨g⟩. g is then called the generator of the group (G, ·).

Note 2.1.2 Any group G of prime order is cyclic, and any element g ∈ G \ {1G} is a
generator of G.

Definition 2.1.11 Direct product of groups. Let (G, ∗) and (H,⊙) be two groups. The
direct product of (G, ∗) and (H,⊙) is the group denoted (G, ∗)×(H,⊙) with elements (g, h)

where g ∈ G and h ∈ H. For all g1, g2 ∈ G, h1, h2 ∈ H, (g1, h1) · (g2, h2) = (g1 ∗ g2, h1 ⊙ h2)
where · denote the group operation of (G, ∗)× (H,⊙).

Definition 2.1.12 Group isomorphism. Let (G, ∗) and (H,⊙) be two groups and
f : G→ H be a bijective function (i.e. injective, meaning that each element of H is only
paired with one element of G, and surjective, meaning that each element of H has an
antecedent by f in G). If for all g1, g2 ∈ G, f(g1 ∗ g2) = f(g1) ⊙ f(g2) then f is a group
isomorphism.

Definition 2.1.13 Groups isomorphic. Two groups (G, ∗) and (H,⊙) are said to be
isomorphic if there exists an isomorphism from one to the other. In this case, we write
(G, ∗) ≈ (H,⊙).
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Note 2.1.3 A group (G, ∗) can be isomorphic to the direct product of several groups
(H1,⊙1), · · · , (Hl,⊙l), for l an integer. In this case we write (G, ∗) ≈ (H1,⊙1) × · · · ×
(Hl,⊙l).

In the following we will refer to the group (G, ·) as G and 1G will sometimes be written 1.
Thus sometimes (G, ∗) ≈ (H,⊙) will be denoted G ≈ H.

Definition 2.1.14 Ring. Let A be a non-empty set provided with two internal law +

(addition) and · (multiplication). We say that (A,+, ·) is a ring if:
• (A,+) is a commutative group, where the (additive) identity element is written 0A

and the (additive) inverse of element a ∈ A is written −a.
• Multiplication is associative: for all a1, a2, a3 ∈ A, (a1 · a2) · a3 = a1 · (a2 · a3).
• Multiplication is distributive with respect to addition: for all a1, a2, a3 ∈ A, a1 · (a2 +
a3) = (a1 · a2) + (a1 · a3) and (a2 + a3) · a1 = (a2 · a1) + (a3 · a1).

Definition 2.1.15 Commutative ring. The ring (A,+, ·) is said to be commutative if
the multiplication is commutative, meaning that for all a1, a2 ∈ A, a1 · a2 = a2 · a1.

Definition 2.1.16 Multiplicative identity. Let (A,+, ·) be a ring. If there exists an
element 1A ∈ A such that for all a ∈ A, a ̸= , 1A · a = a · 1A = a, we say that 1A is the
multiplicative identity. The ring (A,+, ·) is then called unit ring.

Definition 2.1.17 Multiplicative inverse. Let (A,+, ·) be a ring. For a1 ∈ A, if there
exists an element a2 ∈ A such that a1 · a2 = 1A and a2 · a1 = 1A we say that a2 is the
multiplicative inverse of a1 and is written a−1

1 .

Definition 2.1.18 Field. A ring (A,+, ·) is called a field if all elements in A except 0A
have a multiplicative inverse.

Notation 2.1.3 The ring (A,+, ·) is sometimes refer to as A and a field is often denoted
by (F ,+, ·) or simply by F .

Definition 2.1.19 Vector space. Let F be a field, and V be a non-empty set together
with two binary operations + : V × V → V and · : F × V → V . We say that (V ,+, ·)F is a
vector space over a field F if it satisfies the following conditions, where elements of F
are called scalar and elements of V are called vectors:

• (V ,+) is an abelian group.
• Scalar multiplication is associative: for any λ1, λ2 ∈ F ,v ∈ V , λ1·(λ2·v) = (λ1·λ2)·v.
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• Scalar multiplication is distributive over vector addition: for any v1,v2 ∈ V and any
λ ∈ F , λ(v1 + v2) = λv1 + λv2.

• Scalar multiplication is distributive over scalar addition: for any λ1, λ2 ∈ F and any
v ∈ V : (λ1 ⊕ λ2) · v = λ1 · v + λ2 · v, where ⊕ is the addition law over F .

• There exists an element 1F ∈ F such that for all v ∈ V , 1F · v = v · 1F = v. This
element is called the identity element of scalar multiplication.

In the following, we will refer to the vector space (V ,+, ·)F as VF , or as V over F .

Definition 2.1.20 Linear combination. Let V be a vector space over field F and
{v1,v2, · · · ,vk} (for k ∈ N) be a set of elements of V . A linear combination of the
elements v1,v2, · · · ,vk is an element of V of the form

a1 · v1 + a2 · v2 + · · ·+ akvk

where the scalar a1, · · · ak ∈ F are called the coefficients of the linear combination.

Definition 2.1.21 Linear independence. Let V be a vector space over field F and
{v1,v2, · · · ,vk} (for k ∈ N) be a set of elements of V . The elements v1,v2, · · · ,vk are
said to be linearly independent if a linear combination of them results in the vector 0 if
and only if all its coefficients are zero.

Definition 2.1.22 Basis and dimension. Let V be a vector space over field F , and B
be a subset of V . We say that B is a basis of V if its elements are linearly independent
and if every element of V can be written as a unique finite linear combination of the
elements of B. The number of elements in B is called the dimension of V and is the
same for all bases of V . If |B| is finite, we say that V has finite dimension.

Definition 2.1.23 Linear isomorphism. Let V ,W be two vector spaces over the same
field F . A function f : V → W is to be a linear map if for any two vectors v1,v2 ∈ V and
any scalar λ ∈ F the following conditions are respected:

• f(v1 + v2) = f(v1) + f(v2).
• f(λv1) = λf(v1).

If f is bijective then f is called linear isomorphism.

Note 2.1.4 Let F be a field and F n be the set of the n-tuples of elements of F . Then F n

is a vector space over F .
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Definition 2.1.24 Canonical basis. Let ei for i ∈ [n] be vectors equals to F except at
position i where they are equals to 1F . Then {ei}ni=1 form an basis of F n and is called
standard basis or canonical basis.

Let V be a vector space of finite dimension n over field F and ϕ : F n → V be a linear
isomorphism. Then the image of {ei}ni=1 by ϕ forms the canonical basis of V .

2.2 Bilinear Pairing

In this thesis, we will focus on a particular branch of cryptography, called pairing-based
cryptography which relies on a specific function called a pairing. We formally define
this function, its properties and security assumptions related.

2.2.1 Definitions

Definition 2.2.1 Bilinear Pairing. A bilinear pairing on (G1,G2,GT ), where G1,G2,GT

are three groups of same order N , is a map e : G1×G2 → GT that satisfies the following
conditions:

1. Bilinearity: for all g1 ∈ G1, g2 ∈ G2, a, b ∈ ZN , e(ga1 , gb2) = e(g1, g2)
ab.

2. Non-degeneracy: for all g1 ∈ G1, g2 ∈ G2 such that g1 ̸= 1G1 and g2 ̸= 1G2 , we have
that e(g1, g2) ̸= 1GT

, where 1G1 ,1G2 ,1GT
are respectively the identity element of

G1,G2,GT .
3. Computability: e must be efficiently computable.

Actually there exist three kinds of bilinear pairing:
• Type 1: in this kind of paring G1 = G2. The pairing is also said to be symmetric. In

this case we will denote G1 by G.
• Type 2: in this kind of pairing G1 ̸= G2 and there exists an efficiently computable

isomorphism ψ : G2 → G1.
• Type 3: in this kind of pairing G1 ̸= G2 and no efficiently computable isomorphism

is known from G2 to G1 (or from G1 to G2).

Note 2.2.1 In the above definition, the groups order N can be either prime or composite.
The group G2 is written H sometimes.
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Some works, such as [69], show that Type 3 pairing offers better performance and
flexibility. Therefore it this thesis we will try as much as possible to use Type 3 bilinear
pairing, when instantiating our cryptographic schemes in the bilinear pairing setting.

Definition 2.2.2 Asymmetric bilinear pairing groups [79, 85]. Asymmetric bilinear
pairing groups (of prime order) Γ = (p,G1,G2,GT , g1, g2, e) are tuple of prime p, cyclic
groups G1,G2, GT of order p, g1 ∈ G1, g2 ∈ G2 generators of respectively G1 and G2,
and a bilinear pairing e : G1 × G2 → GT . An asymmetric bilinear pairing group also
possesses efficient algorithms, called generic group operations, for computing group
operations, evaluating the bilinear pairing, deciding membership of the groups, equality
of group elements and sampling generators of the groups.

Note 2.2.2 From this definition, we can easily derived the definition of asymmetric
bilinear pairing groups of composite order, and symmetric bilinear pairing groups of
prime or composite order.

In the following, we denote by G a generator of (a)symmetric bilinear pairing groups.
Such generator takes as input a security parameter 1λ. For short, we will sometimes
used the term bilinear pairing group to denote (a)symmetric bilinear pairing group for
prime (resp. composite) order.

We now present some properties and notations about bilinear pairing groups.

Property 2.2.1 [90] Let Γ = (N,G,GT , g, e) be a symmetric bilinear pairing group of
composite order. Let N = p1p2 · · · pm, where p1, p2, · · · , pm are distinct primes. For
each pi, G has a subgroup of order pi denoted by Gpi. We let g1, · · · , gm denote gen-
erators of Gp1 through Gpm respectively. Each element g ∈ G can be expressed as
g = ga11 g

a2
2 · · · gamm for some a1, · · · , am ∈ ZN , where each ai is unique modulo pi. We will

refer to gai1 as the “Gpi component” of g. When ai is congruent to zero modulo pi, we say
that g has no Gpi component. The subgroups Gp1 , · · · ,Gpm are “orthogonal” under the
bilinear map e, meaning that if h ∈ Gpi and u ∈ Gpj for i ̸= j, then e(h, u) = 1GT

, where
1GT

denotes the identity element in GT .

Definition 2.2.3 Canceling bilinear maps [90]. We say that a bilinear map e : G×H→
GT is canceling if there are subgroups G1, · · · ,Gm of G and H1, · · · ,Hm of H such that
G ∼= G1 × · · · × Gm, H ∼= H1 × · · · × Hm, and e(gi, hj) = 1T whenever gi ∈ Gi, hj ∈ Hj for
i ̸= j.
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This structure is achieved naturally when the groups G,H,GT are of composite order
N = p1p2 · · · pm (where p1, · · · , pm are distinct primes), since we may set Gi = Gpi,
Hi = Hpi to be the subgroups of order pi for each i.

Notation 2.2.1 In this work, we will consider individual elements of G1 or G2 but also
“vectors” of group elements. For any vector v = (v1, · · · , vl) ∈ Zl

p and gβ ∈ Gβ, gvβ denote
a l-tuple of elements of Gβ, for β = 1, 2:

gvβ := (gv1β , · · · , g
vl
β )

For any a ∈ Zp and u, v ∈ Zl
p, we have:

gavβ := (gav1β , · · · , gavlβ ), gv+u
β := (gv1+u1β , · · · , gvl+ulβ )

Then we define

e(gv1 , g
u
2 ) :=

l∏
i=1

e(gvi1 , g
ui
2 ) = e(g1, g2)

v·u.

Here all the computations are done modulo p.

2.2.2 Security Assumptions and Problems

In this section we present bilinear pairing related security problems and assumptions
that we will use in this thesis.

Definition 2.2.4 Decisional Diffie-Hellman problem in G1 (DDH1) [30]. Let Γ =

(p,G1,G2,GT , g1, g2, e) be an asymmetric bilinear pairing group of prime order and a, b, c
be randoms in Zp. The DDH1 problem consists, given as input ∆ = (Γ, g1, g2, g

a
1 , g

b
2) and

t, in deciding if t = gab1 or t = gab+c1 . An adversary A solves the DDH problem in G1 with
advantage ϵ if

AdvDDH1
A :=

∣∣Pr [A(∆, gab1 ) = 1
]
− Pr

[
A(D, gab+c1 ) = 1

]∣∣ ≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of a, b, c ∈ Zp and the random bits consumed by A.

The dual of above problem is Decisional Diffie-Hellman problem in G2 (denoted as
DDH2), which is identical to DDH1 with the roles of G1 and G2 reversed.
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Definition 2.2.5 Computational Diffie-Hellman problem in G2 (CDH). Let Γ = (p,G1,

G2,GT , e, g1, g2) be an asymmetric bilinear pairing group of prime order and a, b be
randoms in Zp. The CDH problem in G2 consists, given as input (Γ, ga2 , gb2), in computing
gab2 . An adversary A wins the CDH problem in G2 with advantage ϵ if

AdvCDHA := Pr
[
A(Γ, ga2 , gb2) = gab2

]
≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of a, b ∈ Zp and the random bits consumed by A.

Definition 2.2.6 Symmetric External Diffie-Hellman assumption (SXDH) [34]. The
SXDH assumption holds if DDH problems are intractable in both G1 and G2.

Definition 2.2.7 Decisional Linear problem (DLin) [34]. Let Γ = (p,G,GT , g, e) be a
symmetric bilinear pairing group of prime order, u, v, h be arbitrary generators of G and
a, b, c be randoms in Zp. The DLin problem consists, given as input ∆ = (Γ, u, v, h, ua, vb)

and t, in deciding if t = ha+b or t = hc. An adversary A solves the DLin problem with
advantage ϵ if

AdvDLin
A :=

∣∣Pr [A(∆, ha+b) = 1
]
− Pr [A(∆, hc) = 1]

∣∣ ≥ ϵ

where the probability is taken over the random choice of generators g, u, v, h ∈ G, the
random choice of a, b, c ∈ Zp and the random bits consumed by A.

Definition 2.2.8 eXternal Decision Linear 1 problem (XDLin1) [6]. Let Γ = (p,G1,G2,
GT , g1, g2, e) be an asymmetric bilinear pairing group group of prime order and x, y, a, b, c
be randoms in Zp. The XDLin1 problem consists, given as input a tuple ∆ = (g1, g

x
1 , g

y
1 , g

ax
1 ,

gby1 , g2, g
x
2 , g

y
2 , g

ax
2 , g

by
2 ) and t, in deciding if t = ga+b1 or t = gc1. An adversary A solves the

XDLin1 problem with advantage ϵ if

AdvXDLin1
A :=

∣∣Pr [A(∆, ga+b1 ) = 1
]
− Pr [A(∆, gc1) = 1]

∣∣ ≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of x, y, a, b in Zp and the random bits consumed by A.

The eXternal Decision Linear 2 Assumption (XDLin2) is defined similarly, except that
t is equal either to ga+b2 , or to gc2.
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Definition 2.2.9 ℓ-Bilinear Diffie-Hellman Exponent problem (ℓ-BDHE) [33]. Let Γ =

(p,G,GT , g, e) be a symmetric bilinear pairing group of prime order, h be a generator of G
and α be a random in Z∗

p. The ℓ-BDHE problem consists, given (g, h, gα, gα
2
, · · · , gαl−1

,

gα
l+1
, · · · , gα2l

), in computing e(g, h)αl . An adversary A solves the ℓ-BDHE problem with
advantage ϵ if

Advℓ-BDHE
A := Pr

[
A(g, h, gα, gα2

, · · · , gαl−1

, gα
l+1

, · · · , gα2l

) = e(g, h)α
l
]
≥ ϵ

where the probability is taken over the random choice of generators g, h in G, the random
choice of α in Z∗

p, and the random bits used by A.

Definition 2.2.10 q-strong Diffie-Hellman Problem (q-SDH) [32]. Let G1,G2 be two
cyclic groups of prime order p, where possibly G1 = G2. Let g1 be a generator of G1, g2
a generator of G2 and x be random in Z∗

p. The q-SDH problem consists, given a (q + 3)-
tuple (g1, g

x
1 , g

x2

1 , · · · , gx
q

1 , g2, g
x
2 ) ∈ G

q+1
1 × G2

2, in computing a pair (g1/(x+c)1 , c) ∈ G1 × Zp.
An adversary A solves the q-SDH problem with advantage ϵ if

Advq−SDH
A := Pr

[
A(g1, gx1 , · · · , gx

q

1 , g2, g
x
2 ) = (g

1/(x+c)
1 , c)

]
≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of x ∈ Z∗

p, and the random bits consumed by A.

Note that when G1 = G2, the pair (g2, gx2 ) is redundant since in that case this pair can be
generated by raising (g1, g

x
1 ) to a random power.

Note 2.2.3 This problem is a stronger version of the original q-SDH problem, introduced
by Boneh and Boyen in 2004 [31]. The reduction of the 2004 version to the 2008 version
can be done easily, as explained in [133].

We now present a modified version of this problem, introduced in 2016 by Ghosh et
al. [73].

Definition 2.2.11 (symmetric) q-strong Bilinear Diffie Hellman problem (q-sSBDH)
[73]. Let Γ = (p,G,GT , g, e) be a symmetric bilinear pairing group of prime order and
x be random in Z∗

p. The q-sSBDH problem consists, given as input a (q + 1)-tuple of
elements (g, gx, g(x

2), · · · , g(xq)) ∈ Gq+1, in computing a pair (c, e(g, g)1/(x+c)) ∈ Zp × GT

for a freely chosen value c ∈ Zp \ {−x}. An adversary A solves the q-sSBDH problem
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with advantage ϵ if

Advq−sSBDH
A := Pr

[
A(g, gx, g(x2), · · · , g(xq)) = (c, e(g, g)1/(x+c))

]
≥ ϵ

where the probability is taken over the random choice of generator g ∈ G1, the random
choice of x ∈ Z∗

p, and the random bits consumed by A.

In this thesis, we will use the asymmetric different version of the above problem, that we
present below.

Definition 2.2.12 (asymmetric) q-strong Bilinear Diffie Hellman problem (q-SBDH)
. Let Γ = (p,G1,G2,GT , g1, g2, p) be an asymmetric bilinear pairing group of prime order
and x be random in Z∗

p. The q-SBDH problem consists, given as input a (2q + 2)-tuple
of elements (g1, g

x
1 , g

(x2)
1 , · · · , g(x

q)
1 , g2, g

x
2 , g

(x2)
2 , · · · , g(x

q)
2 ) ∈ G

q+1
1 × G

q+1
2 , in computing a

pair (c, e(g1, g2)1/(x+c)) ∈ Zp ×GT for a freely chosen value c ∈ Zp \ {−x}. An adversary
A solves the q-SBDH problem with advantage ϵ if

Advq−SBDH
A := Pr

[
A(g1, gx1 , g

(x2)
1 , · · · , g(x

q)
1 , g2, g

x
2 , g

(x2)
2 , · · · , g(x

q)
2 )

= (c, e(g1, g2)
1/(x+c))

]
≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of x ∈ Z∗

p, and the random bits consumed by A.

We easily see that the q-SBDH problem is reductible to the q-SDH problem: for a
given q-SBDH tuple (g1, g

x
1 , · · · , gx

q

1 , g2, g
x
2 , · · · , gx

q

2 ), one can create the truncated tuple
(g1, g

x
1 , · · · , gx

q

1 , g2, g
x
2 ) and inputs it to the oracle of q-SDH problem, to obtain (g

1/(x+c)
1 , c)

and finally (c, e(g
1/(x+c)
1 , g2)) = (c, e(g1, g2)

1/(x+c)).

Definition 2.2.13 n-Extended Decisional Diffie-Hellman problem in G1 (n-eDDH) [91].
Let Γ = (p,G1,G2,GT , g1, g2, e) be an asymmetric bilinear pairing group, κ be a random
in Z∗

p and ω, {hi, γi}ni=1 be randoms in Zp. The n-eDDH problem consists, given as input

∆ = (Γ, gκ1 ,
{
gω+γihi1 , gγi1 , g

hi
1

}n
i=1

) and t in deciding if t = gκω1 or t is a random element y
of G1. A PPT adversary A solves the DDH problem in G with advantage ϵ if

Advn−eDDH
A := |Pr [A(∆, gκω1 )]− Pr [A(∆, y)]| ≥ ϵ

where the probability is taken over the random choice of generator g1 ∈ G1, κ ∈ Z∗
p,

ω, {hi, γi}ni=1 ∈ Zp and the random bits consumed by A.
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Definition 2.2.14 General Subgroup Decision problem (GSD) [26, 90]. Let S0, S1, S2,

· · · , Sk be non-empty subsets of [m] such that for each 2 ≤ j ≤ k, either Sj ∩ S0 = ∅ =

Sj ∩S1 or Sj ∩S0 ̸= ∅ ̸= Sj ∩S1. Let Γ = (N = p1 · · · pm,G,GT , e be a symmetric bilinear
pairing composite order group and randoms Z0 ← GS0 , Z1 ← GS1 , Z2 ← GS2 , · · · , Zk ←
GSk

. The general subgroup decision problem consists, given ∆ = (Γ, Z2, · · · , Zk) and t,
in deciding if t = Z0 or t = Z1. An adversary A solves the general subgroup decision
problem with advantage ϵ if

AdvGSDA := |Pr [A(∆, Z0) = 1]− Pr [A(∆, Z1) = 1]| ≥ ϵ

where the probability is taken over the random choice of Z0, · · · , Zk and the random bits
consumed by A.

2.3 Dual Pairing Vector Spaces

Dual Pairing Vector Spaces is a concept of pairing-based cryptography, introduced
by Okamoto and Takashima [118, 117] that we will use in this thesis to build our
cryptographic schemes and prove their security. In this section we present this concept
along with its properties and security assumptions.

2.3.1 Definitions and Properties

Definition 2.3.1 Dual Pairing Vector Spaces (DPVS) [117]. Dual pairing vector
spaces (p,V ,V ∗,GT ,A,A

∗) are a tuple of a prime p, two N -dimensional vector spaces
V ,V ∗ over Zp, a cyclic group GT of order p, and their canonical bases i.e., A =

(a1, · · · ,aN) of V and A∗ = (a∗
1, · · · ,a∗

N) of V ∗ that satisfy the following conditions:
• Non-degenerate bilinear pairing: there exists a polynomial-time computable non-

degenerate bilinear pairing e : V × V ∗ → GT i.e., e(sx, ty) = e(x,y)st and if
e(x,y) = 1T for all y ∈ V ∗, then x = 0.

• Dual orthonormal bases: A,A∗, and e satisfy e(ai,a∗
j) = g

δi,j
T for all i and j, where

δi,j = 1 if i = j, and 0 otherwise, and gT ̸= 1T ∈ GT .
• Distorsion maps: endomorphisms ϕi,j of V such that ϕi,j(aj) = ai and ϕi,j(ak) = 0

if k ̸= j are polynomial-time computable. Moreover, endomorphisms ϕ∗
i,j of V ∗ such

that ϕi,j(a∗
j) = a∗

i and ϕi,j(a∗
k) = 0 if k ̸= j are also polynomial-time computable.

We call ϕi,j and ϕ∗
i,j “distortion maps”.
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We now present a typical construction of dual pairing vector space as a product of
bilinear pairing group, that was first presented in [118]. Let Γ = (p,G1,G2,GT , g1, g2, e)

be an asymmetric bilinear pairing group of prime order. The construction (where the
description of distortion maps is omitted) is the following:

• Vector spaces V and V ∗: V :=

N︷ ︸︸ ︷
G1 × · · · × G1 and V ∗ :=

N︷ ︸︸ ︷
G2 × · · · × G2, whose

elements are expressed by N -dimensional vectors, x := (gx11 , · · · , g
xN
1 ) and y :=

(gy12 , · · · , g
yN
2 ), respectively (xi, yi ∈ Fq for i = 1, · · · , N ).

• Canonical bases A and A∗: A := (a1, · · · ,aN) of V , where a1 := (g1, 1, · · · , 1),
a2 := (1, g1, 1, · · · , 1), · · · , aN := (1, · · · , 1, g1). A∗ := (a∗

1, · · · ,a∗
N) of V ∗, where

a∗
1 := (g2, 1, · · · , 1), a∗

2 := (1, g2, 1, · · · , 1), · · · , a∗
N := (1, · · · , 1, g2).

• Pairing operation: e(x,y) :=
∏N

i=1 e(g
xi
1 , g

yi
2 ) = e(g1, g2)

∑N
i=1 xiyi = e(g1, g2)

x·y ∈
GT for the above x ∈ V and y ∈ V ∗.

• Base change: canonical basis A is changed to basis B := (b1, · · · , bN) of V
using a uniformly chosen (regular) linear transformation, X := (χi,j)← GL(N, Fp),
such that bi =

∑N
j=1 χi,jaj, (i = 1, · · · , N). A∗ is also changed to basis B∗ :=

(b∗1, · · · , b∗N) of V ∗, such that (ϑ)i,j := (X⊤)−1, b∗i =
∑N

j=1 ϑi,ja
∗
j , (i = 1, · · · , N).

We see that e(bi, b∗j) = e(g1, g2)
δi,j , (δi,j = 1 if i = j, and δi,j = 0 if i ̸= j), i.e. B and

B∗ are dual orthonormal basis of V and V ∗.
• Intractable Problem: one of the most natural decisional problems is the decisional

subspace problem (DSP). The DSPN1,N2 assumption is: it is hard to distinguish
v := vN2+1bN2+1+· · ·+vN1bN1 from u := (v1b1+· · ·+vN1bN1), where (v1, · · · , vN1)←
FN1
q and N2 + 1 < N1. DSP is intractable if the generalized DDH or DLin problems

are intractable.
• Trapdoor: although the DSP problem is assumed to be intractable, it can be

efficiently solve by using trapdoor t∗ ∈ span⟨b∗1, · · · , b∗N2
⟩. Given v := vN2+1bN2+1 +

· · · + vN1bN1 from u := (v1b1 + · · · + vN1bN1), we can tell v from u using t∗ since
e(v, t∗) = 1 and e(u, t∗) ̸= 1 with high probability.

In our work, for simplicity of the reading, we will use the following (simplified) definition
of DPVS.

Definition 2.3.2 Dual pairing vector spaces (DPVS) [51]. For a prime p and a fixed
(constant) dimension n, two random bases B = (b1, · · · , bn) and B∗ = (b∗1, · · · , b∗n) of Zn

p

are said to be dual orthonormal, if bi · b∗j = 0 (mod p) whenever i ̸= j, and bi · b∗i = ψ

(mod p) for all i, where ψ is a uniformly random element of Z∗
p. For generators g1 ∈ G1

and g2 ∈ G2, notice that e(gbi1 , g
b∗j
2 ) = 1 whenever i ̸= j, where 1 here denotes the identity

element in GT . We denote by Dual(Zn
p ) an algorithm that generates dual pairing vector
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spaces.

For n1, · · · , nd fixed (constant) dimension, d tuples of two random bases Bi,B
∗
i of Zni

p for
i = 1, · · · , d, are said to be dual orthonormal if bj,i · b∗k,i = 0 mod p whenever j ̸= k, and
bj,i · b∗j,i = ψ mod p for all j and i, where ψ is a random element of Z∗

p. A generation
algorithm of such tuples is denoted by Dual(Zn1

p , · · · ,Znd
p ).

Note 2.3.1 In the above definition, one can choose, for convenience, to use ψ = 1 as in
the work of Lewko [89]. In our work, we do not enforce the condition ψ = 1, though it
remains a possibility.

We now present a way to produce new dual orthonormal bases from randomly sampled
dual orthonormal bases. This construction was presented by Lewko in [90].

Let B,B∗ be dual orthonormal bases, m ≤ n be fixed positive integers and A ∈ Zm×m
p

be an invertible matrix. We let Sm ⊆ [n] be a subset of size m, and define new dual
orthonormal bases BA,BA∗ as follows. We let Bm denote the n × m matrix over Zp

whose columns are the vectors bi ∈ B such that i ∈ Sm. Then BmA is also an n×m
matrix. We form BA by retaining all of the vectors bi ∈ B for i /∈ Sm and exchanging
the bi for i ∈ Sm with the columns of BmA. To define B∗

A, we similarly let B∗ denote
the n ×m matrix over Zp whose columns are the vectors of b∗i ∈ B∗ such that i ∈ Sm.
Then B∗

m(A
−1)⊤ is also an n×m matrix, where (A−1)⊤ denotes the transpose of A−1.

We form B∗
A by retaining all of the vector b∗i ∈ B∗ for i /∈ Sm and exchanging the b∗i for

i ∈ Sm with the columns of B∗
m(A

−1)⊤.

The following lemma formalized the fact that the above constructed bases (BA,B
∗
A) are

dual orthonormal.

Lemma 2.3.1 [90] For any fixed positive integers m ≤ n, any fixed invertible matrix
A ∈ Zm×m

p and set Sm ⊆ [n] of size m, if (B,B∗) ← Dual(Zd
p), then (BA,BA∗) is also

distributed as a random sample from Dual(Zd
p). In particular, the distribution of (BA,BA∗)

is independent of A.

Definition 2.3.3 Parameter hiding [90]. In the above construction, if the distribution of
the final bases (BA,BA∗) reveals nothing about the matrix A employed, we say that the
construction is parameter hiding.
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Note 2.3.2 Dual orthonormal bases (B,B∗) in prime order groups achieved canceling
bilinear maps. Each subgroup Gi corresponds to the span of vector bi in the exponent
of group G1, and each subgroup Hi corresponds to the span of the vector b∗i in the
exponent of group G2.

2.3.2 Security Assumptions and Problems

In this subsection, we introduce dual pairing vector spaces security assumptions and
problems that we will use in our security proofs.

Definition 2.3.4 Decisional subspace problem in G1 (DS1) [51]. Let Γ = (p,G1,G2,GT ,

g1, g2, e) be an asymmetric bilinear pairing group of prime order, k, n be fixed positive
integers that satisfy 2k ≤ n, (B,B∗) be two random dual orthonormal bases of Zn

p and
τ1, τ2, µ1, µ2 be randoms of Zp. Define the following elements

u1 = g
µ1.b

∗
1+µ2.b

∗
k+1

2 , · · · ,uk = g
µ1.b

∗
k+µ2b

∗
2k

2 ,

v1 = gτ1.b11 , · · · ,vk = gτ1.bk1 ,

w1 = g
τ1.b1+τ2bk+1

1 , · · · ,wk = gτ1.bk+µ2b2k1 .

The decisional subspace problem in G1 consists, given tuple ∆ = (Γ, g
b∗1
2 , · · · , g

b∗k
2 , g

b∗2k+1

2 ,

· · · , gb
∗
n

2 , g
b1
1 , · · · , gbn1 ,u1, · · · ,uk, µ2) and (t1, · · · , tk), in deciding if (t1, · · · , tk) = (v1, · · · ,

vk) or (t1, · · · , tk) = (w1, · · · ,wk). An adversaryA solves the decisional subspace prob-
lem in G1 with advantage ϵ if

AdvDS1A := |Pr [A(∆,v1, · · · ,vk) = 1]− Pr [A(D,w1, · · · ,wk) = 1]| ≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of B,B∗, τ1, τ2, µ1, µ2 and the random bits consumed by A.

Lemma 2.3.2 If the decisional Diffie Hellman problem (DDH) in G1 holds, then the
decisional subspace problem in G1 (DS1) also holds.

The idea of the proof is that if there exists an adversary that breaks the decisional
subspace problem in G1, then one can create an adversary against the DDH problem
in G1. For more details on the proof, refer to [51]. The decisional subspace problem
in G2 is defined as identical to DS1 with the roles of G1 and G2 reversed. DS2 holds if
DDH in G2 holds. The proof is done as for G1.
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We now present three problems, Problem 1, Problem 2 and Problem 3, useful for
our security proofs. These three problems were first defined in [114] for the symmetric
bilinear setting, and proven to hold if DLin holds. We adapt them to the asymmetric
bilinear setting, and prove that they hold if XDLin1 and XDLin2 hold.

Definition 2.3.5 Problem 1. Let Γ = (p,G1,G2,GT , g1, g2, e) be an asymmetric bilinear
pairing group of prime order, (D,D∗) be random dual orthonormal bases of Z4n+2

p ,
D̂∗ = (d∗

0, · · · ,d∗
n,d

∗
2n+1, · · · ,d∗

4n+1) and ω, γ, z be randoms of Zp. For i ∈ J2, nK define
the following elements

e0,1 = g
ωd1+γd4n+1

1 , e1,1 = g
ωd1+zdn+1+γd4n+1

1 , ei = gωdi
1 .

Problem 1 consists, given ∆ = (Γ,D, D̂∗, {ei}i∈J2,nK) and t, in deciding if t = e0,1 or
t = e1,1. An adversary A solves Problem 1 with advantage ϵ if

AdvP1
A := |Pr [A(∆, e0,1) = 1]− Pr [A(∆, e1,1) = 1]| ≥ ϵ

where the probability is taken over the random choice of generator g1 ∈ G1, random
choice of (D,D∗), ω, γ, z in Zp, and the random bits consumed by A.

Lemma 2.3.3 For any adversary A, there is a probabilistic adversary B, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,
AdvP1

A (λ) ≤ AdvXDLin1
B (λ) + 5/p.

Definition 2.3.6 Problem 2. Let Γ = (p,G1,G2,GT , g1, g2, e) be an asymmetric bilinear
pairing group of prime order, (D,D∗) be random dual orthonormal bases of Z4n+2

p ,
D̂ = (d0, · · · ,dn,d2n+1, · · · ,d4n+1) and δ, τ, δ0, ω, σ be random elements of Zp. For
i ∈ [n] define the following elements

h∗
0,i = g

δd∗
i+δ0d

∗
3n+i

2 , h∗
1,i = g

δd∗
i+τd

∗
n+i+δ0d

∗
3n+i

2 , ei = g
ωdi+σdn+i

1 .

Problem 2 consists, given ∆ = (Γ, D̂,D∗, {ei}i∈[n]) and {tß}i∈[n], in deciding if (t1, · · · , tn) =
(h∗

0,1, · · · ,h∗
0,n) or (t1, · · · , tn) = (h∗

1,1, · · · ,h∗
1,n). An adversary A solves Problem 2 with

advantage ϵ if

AdvP2
A :=

∣∣∣Pr [A(∆, {e0,i}i∈[n]) = 1
]
− Pr

[
A(∆, {e1,i}i∈[n]) = 1

]∣∣∣ ≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
random choice of (D,D∗), δ, τ, δ0, ω, σ in Zp, and the random bits consumed by A.
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Lemma 2.3.4 For any adversary A, there is a probabilistic adversary B, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,
AdvP2

A (λ) ≤ AdvXDLin2
B (λ) + 5/p.

Definition 2.3.7 Problem 3. Let Γ = (p,G1,G2,GT , g1, g2, e) be an asymmetric bi-
linear pairing group of prime order, (D,D∗) be two random dual orthonormal bases
of Z4n+2

p , D̂ = (d0, · · · ,dn,d2n+1, · · · ,d4n+1), D̂∗ = (d∗
0, · · · ,d∗

n,d
∗
2n+1, · · · ,d∗

4n+1) and
τ, δ0, ω, ω

′
, ω

′′
, κ

′
, κ

′′ be randoms in Zp. For i ∈ [n] define the following elements

h∗
0,i = g

τd∗
n+i+δ0d

∗
3n+i

2 , h∗
1,i = g

τd∗
2n+i+δ0d

∗
3n+i

2 ,

ei = g
ω
′
dn+i+ω

′′
d2n+i

1 , f i = g
κ
′
dn+i+κ

′′
d2n+i

1 .

Problem 3 consists, given ∆ = (Γ, D̂, D̂∗, {ei,f i}i∈[n]) and {ti}i∈[n], in deciding if (t1, · · · , tn)
= (h∗

0,1, · · · ,h∗
0,n) or (t1, · · · , tn) = (h∗

1,1, · · · ,h∗
1,n). An adversary A solves Problem 3

with advantage ϵ if

AdvP3
A :=

∣∣∣Pr [A(∆,{h∗
0,i

}
i∈[n]) = 1

]
− Pr

[
A(∆,

{
h∗

1,i

}
i∈[n]) = 1

]∣∣∣ ≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
random choice of (D,D∗), τ, δ0, ω, ω

′
, ω

′′
, κ

′
, κ

′′ in Zp, and the random bits consumed by
A.

Lemma 2.3.5 For any adversary A, there is a probabilistic adversary B, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,
AdvP3

A (λ) ≤ AdvXDLin2
B (λ) + 7/p.

The proofs of Lemmas 2.3.3, 2.3.4 and 2.3.5 are done in Appendix C of our paper [21],
which is the full version of our work [20]. It follows the reductions made for [114]’s
problems to DLin (which themselves relies on [115]’s proofs as [114]’s problems 1 and
2 are essentially the same as [115]’s basic problems 1 and 2.)

We also introduce two problems, Problem 1 bis and Problem 2 bis, inspired by [115]’s
Problem 1 and Problem 2 respectively. We moved [115] problems from symmetric to
asymmetric bilinear pairings setting, and prove that they hold if XDLin1 and XDLin2 hold.

Definition 2.3.8 Problem 1 bis. Let Γ = (p,G1,G2,GT , g1, g2, e) be an asymmetric
bilinear pairing group of prime order, (D,D∗) be two random dual orthonormal bases of
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Z4n+2
p , D̂∗ = (d∗

0, · · · ,d∗
n,d

∗
2n+1, · · · , d∗

4n+1), ω, γ be random elements of Zp and {zi}ni=1

be random vector of Zn
p . For i ∈ J2, nK define the following elements

e0,1 = g
ωd1+γd4n+1

1 , e1,1 = g
ωd1+

∑n
l=1

∑n
j=1 zl,jdn+l+γd4n+1

1 , ei = gωdi
1 .

Problem 1 bis consists, given ∆ = (Γ,D, D̂∗, {ei}i∈J2,nK) and t, in deciding if t = e0,1 or
t = e1,1. An adversary A solves Problem 1 bis with advantage ϵ if

AdvP1b
A := |Pr [A(∆, t) = 1]− Pr [A(∆, t) = 1]| ≥ ϵ

where the probability is taken over the random choice of generator g1 ∈ G1, random
choice of (D,D∗), ω, γ in Zp, {zi}ni=1 in Zn

p and the random bits consumed by A.

Lemma 2.3.6 For any adversary A, there is a probabilistic adversary B, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,
AdvP1b

A (λ) ≤ AdvXDLin1
B (λ) + 5/p.

Definition 2.3.9 Problem 2 bis. Let Γ = (p,G1,G2,GT , g1, g2, e) be an asymmetric
bilinear pairing group of prime order, (D,D∗) be random dual orthonormal bases of
Z4n+2
p , D̂ = (d0, · · · ,dn,d2n+1, · · · ,d4n+1), δ, τ, δ0, ω, σ be random elements of Zp, {δi}ni=1

be random vectors of Zn
p , Z be a n× n invertible matrix over Zp, and U = (Z−1)⊤. For

i ∈ [n] define the following elements

h∗
0,i = g

δd∗
i+

∑n
j=1 δi,jd

∗
3n+i

2 , h∗
1,i = g

δd∗
i+

∑n
j=1 ui,jd

∗
n+i+

∑n
j=1 δi,jd

∗
3n+i

2 , ei = g
ωdi+τ

∑n
j=1 zi,jdn+i

1 .

Problem 2 bis consists, given ∆ = (Γ, D̂,D∗, {ei}i∈[n]) and {ti}i∈[n], in deciding if
(t1, · · · , tn) = (h∗

0,1, · · · ,h∗
0,n) or (t1, · · · , tn) = (h∗

1,1, · · · ,h∗
1,n). An adversary A solves

Problem 2 bis with advantage ϵ if

AdvP2b
A :=

∣∣∣Pr [A(∆,{h∗
0,i

}
i∈[n]) = 1

]
− Pr

[
A(∆,

{
h∗

1,i

}
i∈[n]) = 1

]∣∣∣ ≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
random choice of (D,D∗), δ, τ, δ0, ω, σ in Zp, {δi}ni=1 of Zn

p , Z in GL(n,Zp) and the ran-
dom bits consumed by A.

Lemma 2.3.7 For any adversary A, there is a probabilistic adversary B, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,
AdvP2b

A (λ) ≤ AdvXDLin2
B (λ) + 5/p.
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Proofs of Lemmas 2.3.6 and 2.3.7 are done in Appendix C of our paper [21]. They are
based on [115]’s proofs, and the idea is to prove that Problem 1 bis and Problem 2 bis
hold if Problem 1 and Problem 2 hold respectively.

We now introduce a new security problem for dual pairing vector spaces: the fixed
argument dual pairing vector spaces inversion problem. This problem is the first com-
putational problem for dual pairing vector spaces, and can be reduced to CDH in G2

(Definition 2.2.5).

Definition 2.3.10 Fixed argument dual pairing vector spaces inversion problem
(FA-DPVS-I). Let Γ = (p,G1,G2,GT , e, g1, g2) be an asymmetric bilinear pairing group,
(D,D∗) ← Dual(Z2

p) be two dual orthonormal bases where di · d∗
i = ψ for i ∈ {1, 2},

ψ ∈ Z∗
p and where 1 denotes the identity element of GT . The FA-DPVS-I problem

consists, given (Γ, gd2
1 , g

d∗
1

2 , g
d∗
2

2 ), in computing gd1
1 . An adversary A solves FA-DPVS-I

problem with advantage ϵ if

AdvFA−DPV S−IA :=
∣∣∣Pr [A(Γ, gd2

1 , g
d∗
1

2 , g
d∗
2

2 ) = gd1
1

]∣∣∣ ≥ ϵ

where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of (D,D∗) and the random bits consumed by A.

Lemma 2.3.8 The fixed argument dual pairing vector spaces inversion assumption has
a unique solution.

Proof 2.3.1 Breaking the assumption means to find an element t = (gt11 , g
t2
1 ) ∈ G2

1 for
t1, t2 ∈ Zp such that e(t, g

d∗
1

2 ) = e(g1, g2)
ψ

e(t, g
d∗
2

2 ) = 1

(2.1)

where ψ ∈ Z∗
p and 1 is the identity element of GT . The above system can be rewritten

as e(g
t1
1 , g

d∗1,1
2 ) · e(gt21 , g

d∗1,2
2 ) = e(g1, g2)

ψ

e(gt11 , g
d∗2,1
2 ) · e(gt21 , g

d∗2,2
2 ) = 1

(2.2)

In the exponent, the system becomest1d∗1,1 + t2d
∗
1,2 = ψ

t1d
∗
2,1 + t2d

∗
2,2 = 0

(2.3)
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and has a unique solution if d∗1,1d∗2,2 − d∗2,1d∗1,2 ̸= 0. By case-based reasoning we have
that d∗1,1d∗2,2 − d∗2,1d∗1,2 = 0 if

• (d∗1,1, d
∗
1,2) or (d∗2,1, d∗2,2) is equal to (0, 0). This is not possible by dual pairing vector

spaces definition.
• (d∗1,1, d

∗
1,2) and (d∗2,1, d

∗
2,2) are respectively equals to either (d∗1,1, 0) and (d∗2,1, 0) or

(0, d∗1,2) and (0, d∗2,2). In these cases the system ( 2.3) becomes

t1d∗1,1 = ψ

t1d
∗
2,1 = 0

ort2d∗1,2 = ψ

t2d
∗
2,2 = 0

, which does not have a solution. By definition of dual pairing vector

spaces, this is not possible.
• (d∗1,1, d

∗
1,2) = (d∗2,1, d

∗
2,2) which is not possible by definition of dual pairing vector

spaces.
• (d∗2,1, d

∗
2,2) = (d∗1,2, d

∗
1,1). In this case the equation d∗1,1d∗2,2 − d∗2,1d∗1,2 = 0 that can be

rewritten as d∗1,1d∗2,2 = d∗2,1d
∗
1,2 becomes d∗21,1 = d∗21,2. We now have two cases:

– either d∗1,1 = d∗1,2 thus in this case (d∗1,1, d
∗
1,2) = (d∗2,1, d

∗
2,2) which is not possible

by definition of dual pairing vector spaces;

– or d∗1,1 = −d∗1,2 thus in this case the system 2.3 becomes

−d∗1,2t1 + d∗1,2t2 = 0

d∗1,2t1 − d∗1,2t2 = 0

and thus

0 = ψ

d∗1,2t1 = d∗1,2t2
which is not possible as ψ ̸= 0.

Thus, by construction d∗1,1d∗2,2 − d∗2,1d∗1,2 ̸= 0 and the above system as a unique solution:
t = gd1

1 . □

Theorem 2.3.1 If the computational Diffie-Hellman assumption in G2 holds, then the
fixed argument dual pairing vector spaces inversion assumption holds.

To do the proof of the above theorem, we need an intermediate problem.

Definition 2.3.11 Intermediate problem (IP). Let Γ = (p,G1,G2,GT , e, g1, g2) be an
asymmetric bilinear pairing group and a, b be randoms in Zp. The intermediate problem
consists, (Γ, ga1 , g

a
2 , g

b
2), in computing gab1 . An adversary A solves the intermediate

problem with advantage ϵ if

AdvIPA :=
∣∣Pr [A(Γ, ga1 , ga2 , gb2) = gab1

]∣∣ ≥ ϵ
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where the probability is taken over the random choice of generators (g1, g2) ∈ G1 × G2,
the random choice of a, b ∈ Zp and the random bits consumed by A.

Theorem 2.3.2 If CDH in G2 holds, then the intermediate problem holds.

Proof 2.3.2 We prove the contrapositive. Let B be an adversary that breaks the inter-
mediate problem with non-negligible advantage. We build A that uses B to break CDH
in G2.
A is given (Γ, ga2 , g

b
2). Using type 2 pairings, there exists ϕ from G2 to G1. Then A gives

to B: (Γ, ϕ(ga2) = ga1 , g
a
2 , g

b
2). The latter answers with gab1 and A returns ϕ(gab1 ) = gab2

as her answers. Notice that A’s advantage is equal to B’s advantage, therefore it is
non-negligible. □

Note 2.3.3 Notice that the above proof is possible only when considering type 2 pairings
(Section 2.2.2).

Note 2.3.4 The intermediate problem has a unique solution. Indeed we can rewrite
the problem as a fixed pairing inversion problem [68] as its aim is to find, given g2 ∈ G2

and e(g1, g2)ab ∈ GT (computed from the other inputs of the problem), t ∈ G1 such that
e(t, g2) = e(g1, g2)

ab. Then as stated in [68], as e is non-degenerate and the groups
G1,G2 and GT are cyclic of prime order p, then solution to the above problem is unique.

Now we reduce the fixed argument dual pairing vector spaces inversion problem to the
intermediate problem.

Theorem 2.3.3 If the intermediate problem holds, then fixed argument dual pairing
vector spaces inversion problem holds.

Proof 2.3.3 We prove the contrapositive. Let B be an adversary that breaks the FA-
DPVS-I problem with non-negligible advantage. We build A that uses B to break the
intermediate problem.
A is given (Γ, ga1 , g

a
2 , g

b
2). A runs Dual(Z2

p) to get (B,B∗) dual orthonormal bases of
dimension 2. Then A defines new orthonormal bases (D,D∗) as follows: d1 = abb1,
d2 = ab2, d∗

1 = b∗1 and d∗
2 = bb∗2. We easily notice that (D,D∗) are dual orthonormal.

Then A gives (Γ, gd2
1 , g

d∗
1

2 , g
d∗
2

2 ) to B. Notice that gd2
1 = (ga1)

b2, gd
∗
1

2 = g
b∗1
2 and gd

∗
2

2 = (gb2)
d∗
2 .

B answers with t = (t1, t2) ∈ G2
1, which is equal to gd1

1 ∈ G2
1 by uniqueness of the solu-

tion in FAP-DPVS-I assumption, and can be rewrite as (g
d1,1

1 , g
d1,2

1 ). By construction, it
is equal to (g

abb1,1
1 , g

abb1,2
1 ) and A can returns t(b1,1)

−1

1 as her answers as it is equal to gab1 .□
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The proof of the theorem 2.3.1 is done by combining Theorem 2.3.2 and Theorem 2.3.3.
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THIS chapter introduces formal methods for establishing the security of cryptographic
schemes. Additionally, it presents three cryptographic primitives that we will use in
this thesis.

3.1 Proving Security

When it comes to security, cryptography follows the principle established in the 19th
century by Kerckhoffs: to ensure the security of an encryption scheme, the method must
be public (it will inevitably become public one day). Only a small part of the method,
known as the key, should remain secret and be easily changeable.

Traditionally, proving the security of a cryptographic scheme consisted of searching for
attacks on this scheme. If no attack that contradicts the scheme’s security property
was found, the scheme was considered secure. However, we can never be certain
that an attack does not exist, and another method is needed to prove the security of
cryptographic primitives. In this section, we present such a method, called provable
security, along with two ways to realize proofs in this paradigm. We also introduce
different types of attacks an adversary can launch and security models.

3.1.1 Provable Security

Provable security is an approach for demonstrating the security of a cryptographic
scheme, introduced in the 1980s. Its principle is to relate the security of a crypto-
graphic scheme to that of its underlying primitives or (well-established) computational
or decisional problems. To prove security in this paradigm, one must first identify the
security goals and the adversary’s capabilities of the cryptographic scheme. Then,
do the same for the underlying primitives and computational problems. Finally, one
provides a reduction showing how to transform an adversary that breaks the security
goals of the scheme into an adversary that breaks the security goals of the underlying
primitives and problems [1]. In short, provable security guarantees that a scheme is
secure relative to a specific security definition against a given adversarial model and
under a particular assumption. The adversary’s capabilities are defined with respect to
the kinds of attacks and according to a model that defines the attack environment.

Therefore, the security of cryptographic schemes relies on the difficulty of the underlying
mathematical problems. If these problems are successfully solved, the security of
the schemes is compromised. That is why cryptographic schemes are built upon
mathematical problems that are presumed to be “hard” to solve. An example of such
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a “hard” problem is the factorization of an integer N into two large primes p and q.
Here “hard” actually means that breaking the problem requires performing so many
operations that, without unlimited computational power, it is not possible to complete all
the computations in a reasonable time. The notion of “reasonable time” has evolved
over the years. For instance, when Alan Turing attempted to break Enigma, he had less
than a day to find the machine settings, as new settings were used each day.

3.1.2 Proofs Methods

In provable security, the security proofs can be done in two ways: game-based and
simulation-based.

Game-based security. In the game-based approach, security property of the scheme
is linked to a particular event and security is demonstrated in the form of a game
between a challenger C and an adversary A (usually modeled as a PPT algorithm).
The adversary’s goal is to solve the game with non-negligible probability, using a set of
query oracles modeling her capabilities according to the security model and the type
of attacks. Her advantage in winning the game is determined based on the type of
the associated problem. If the problem is decisional, then A’s advantage is defined
as the difference between her probability of winning the game and the probability
of winning the game through random guessing. On the other hand, if the problem
is computational, A’s advantage is defined as her probability of winning the game
with a random proposal. If the adversary’s advantage is negligible, we say that the
primitive satisfies the security property. However, in some cases, reductions are too
complicated to be be accomplished in a single step. That is why Shoup [130] formalized
the game-hopping technique in 2004. In this methodology, a proof starts with an
initial game that comes from the security property to prove. From the initial game, a
sequence of subsequent games is constructed, with the final one being simple enough
for direct analysis. Importantly, it must be proven that the adversary A cannot detect any
difference between two consecutive games in the sequence. Ultimately, the probability of
an adversary winning the first security game is reduced to her advantage in winning the
last security game. In this manuscript, we will utilize this method for our security proofs.

Simulation-based security. In the simulation-based approach, the security of a
scheme is established by demonstrating that an adversary’s capabilities in the real
execution of the primitive are no greater than what they can achieve in an ideal scenario,
which is inherently secure by definition. This concept is often referred to as the real
world/ideal world paradigm. To demonstrate the indistinguishability of these two worlds,
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the objective is to present an ideal world adversary, commonly known as a simulator, for
each real world adversary. The key criterion is that the output generated by the simulator
should be indistinguishable from the output produced by the real world adversary.

We now present possible attacks by the adversary and the environments in which
these attacks can occur.

3.1.3 Attacks by the Adversary

In the sequel, we employ the game-based security approach and address a deci-
sional problem. The adversary is given a ciphertext from which she must solve the
problem; this ciphertext is referred to as the challenge ciphertext. The adversary is
also granted the ability to submit queries to the challenger. For any cryptographic
encryption scheme, we consider three types of attacks in which the adversary has
a varying levels of attacking capability.

• Chosen-Plaintext Attack (CPA): in this scenario, the adversary can acquire cipher-
texts of their choice. It is worth noting that for public-key schemes, providing the
adversary with the public key is enough to facilitate these attacks.

• Non-Adaptive Chosen-Ciphertext Attack (CCA1) [111]: in this scenario, the ad-
versary possesses the scheme’s public key and has access to an oracle for the
decryption function. However, the adversary can only make queries to this oracle
before receiving the challenge ciphertext.

• Adaptive Chosen-Ciphertext Attack (CCA2) [122]: in this scenario, the adversary,
in addition to the public key, also has access to an oracle for the decryption
function. Importantly, the adversary can make queries to this oracle even after
receiving the challenge ciphertext. However, there is a restriction: the adversary
cannot request the decryption of the challenge ciphertext itself.

CPA attacks are less powerful than CCA1 attacks, and CCA1 attacks, in turn, are less
powerful than CCA2 attacks. In this thesis, we prioritize the efficiency of schemes over
their security levels, so we will primarily focus on CPA security.

3.1.4 Attack Environments

Attack environments can be defined according to several models. We here present
some of them.
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Computational model [74]. In the computational model, an adversary is an arbitrary
probabilistic algorithm with limitations, and cryptographic primitives are represented as
(tuples of) algorithms that adhere to security and constructive assumptions (for example,
encryption and decryption are inversely related).

Standard model. In a computational model, if the adversary’s limitations are solely
related to time and computing power, we refer to this as the standard model. In this
model, the security of cryptographic schemes is established solely based on complexity
assumptions. It is important to note that proofs in the standard model are recognized to
be complex and challenging to attain, and schemes proven to be secure in this model
often encounter efficiency

There are additional security models in which cryptographic primitives are substituted
with idealized versions, with the aim of simplifying the proof.

Random oracle model (ROM) [25]. Within this computational model, a theoretical
black box known as the random oracle is presumed to exist and be accessible to the
adversary. Random oracles are commonly employed as ideal substitutes for crypto-
graphic hash functions when robust randomness within their output domain is necessary.
When queried at a new domain point, the random oracle produces a randomly selected
value from its range. For previously queried points, it retrieves the same value that it
provided initially, as it retains all of its responses in memory.

Generic group model (GGM) [105]. Within this computational model, the adversary
gains access to an oracle responsible for executing group operations. In this context,
efficient group encodings are substituted with randomly chosen encodings, thereby
preventing the adversary from exploiting any specific group structure.

Other models. Other, less frequently employed models exist, such as the weak multi-
linear maps model [108] which encompass all known categories of attacks on multilinear
map1 or the ideal cipher model [128] where block ciphers are substituted with a random
permutation for every key.

1A multilinear map is defined a bilinear map except that the map e now takes as input n elements
instead of 2.

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

52



Chapter 3 – Cryptographic Preliminaries

3.1.5 Computing Power

Computers are getting more and more powerful following the observation of Moore from
1965 [109], which states that computer processing speeds roughly double every two
years. Therefore, while in the 1980s we considered that 260 operations were computa-
tionally infeasible, a few years ago in 2008, the bound was 280, and we are now going
to consider that 2100 operations are not possible. To maintain the security of existing
cryptographic schemes, the sizes of their parameters (i.e. the keys) are increased to
overcome the growing power of computers.

For several years, the possibility of deploying super powerful computers, called quan-
tum computers, has made the community wonder about the robustness of existing
cryptographic schemes. This is due to the fact that in 1994 Shor [129] proposed an
algorithm for quantum computers that reduces algorithms complexity, especially the
complexity of “hard” problems such as factorization or discrete logarithm. On the other
hand, problems relying on error-correcting codes or a mathematical object called lattices
are supposed to be resistant against a quantum computer.

3.2 Public Key Encryption Schemes

A public key encryption scheme is an encryption system parameterized by a secret key
and a public key. Encryption is performed using the scheme’s public key, and decryption
is only possible with knowledge of the scheme’s secret key.

Definition 3.2.1 Public key encryption scheme (PKE). A public key encryption scheme
E consists of three algorithms:

• KeyGen: the key generation algorithm takes as input a security parameter λ, and
returns a pair of secret key sk and public key pk.

• Encrypt: the encryption algorithm takes as input a public key pk along with a
message m and returns ct the encryption of m under pk.

• Decrypt: the decryption algorithm takes as input a secret key sk along with a
ciphertext ct and returns a message m′.

Definition 3.2.2 Correctness. A public key encryption scheme E = (KeyGen,Encrypt,
Decrypt) is said to be correct if for all security parameter 1λ, all honestly generated key
pair (sk,pk)← KeyGen(1λ), and all message m, Pr [Decrypt(sk,Encrypt(pk,m)) = m] =

1.
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An encryption scheme will be consider secure if it preserves the privacy of messages,
meaning that from a ciphertext no adversary can learn information about its plaintext,
except its length. This security notion is referred to as indistinguishability [74]. We now
formally present it.

Definition 3.2.3 Adaptive indistinguishability security. A public key encryption
scheme E = (KeyGen,Encrypt,Decrypt) is said to satisfy adaptive indistinguishability
security if the advantage of any adversary A of winning the security game presented in
Figure 3.1 is negligible. Let C be a challenger.

• SETUP: C takes as input a security parameter λ, runs KeyGen(λ) to get
(sk,pk) and gives pk to A.

• CHALLENGE: A chooses two challenge messages m0,m1 of same length and
sends them to C. The latter picks b← {0, 1} and returns to A the challenge
ciphertext ctb ← Encrypt(pk,mb).

• GUESS: A outputs a guess bit b′ ∈ {0, 1}. A wins the security game if b′ = b.

Figure 3.1: Adaptive indistinguishability security game for public key encryption schemes.

In the above definition, adversary A gives to challenger C the two challenge messages
m0,m1 after seeing the scheme’s public key. There exists a weaker notion of indistin-
guishability security, called selective indistinguishability in which the adversary must
choose challenge messages before seeing the scheme’s public key. The formal defini-
tion can easily be derived from the above definition. Selective security, while perhaps
justified in some cases, is too restrictive for realistic applications. That is why in this
thesis we will focus on adaptive security.

Note 3.2.1 There exists another required security for encryption scheme, non-malleability
[60] which requires the inability of an adversary, given a challenge ciphertext, to output a
different ciphertext such that the plaintexts underlying both ciphertexts are “meaningfully
related”.

In this thesis, as we focus on privacy concerns we will mainly focus on indistinguishability
security.

These security goals IND (indistinguishability) and NM (non-malleability) can be “mixed”
with the types of attacks seen in Section 3.1. It gives us the following security notions:
IND-CPA, IND-CCA1, IND-CCA2, NM-CPA, . . ..
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Combining this with what we said in the Section 3.1, we get that in this manuscript we
will focus on adaptive IND-CPA security.

Based on the definition of public encryption schemes, the literature has introduced
numerous encryption schemes, often referred to as “advanced”. These innovative
schemes not only enhance the confidentiality of public key encryption but also introduce
new functionalities. In Chapters 4 and 6, we will introduce several such advanced
encryption schemes. We now present another public encryption scheme, called inner
product encryption scheme. Although we do not make any contributions to this primitive,
it will serve as a foundational component for our research.

3.3 Inner Product Encryption Schemes

Informally, in a inner product encryption scheme, a secret key is associated to a vector,
let us say u while a ciphertext is associated to a vector denoted v and the former can
decrypt the latter if and only if ⟨u,v⟩ = 0.

Definition 3.3.1 Inner product encryption scheme (IPE) [84]. An inner product
encryption scheme consists of four algorithms:

• Setup: the setup algorithm takes as input a security parameter λ and a vector
length n ∈ N and outputs a master secret key msk along with a public key pk.

• KeyGen: the key generation algorithm takes as input a master secret key msk and
a vector u and returns a secret key sku created for u.

• Encrypt: the encryption algorithm takes as input a public key pk, a vector v and a
message m to encrypt. It returns a ciphertext ctv of message m, according to v.

• Decrypt: the decryption algorithm takes as input a secret key sku and a ciphertext
ctv and outputs a message m′.

Definition 3.3.2 Correctness. An inner product encryption scheme is said to be
correct if for all security parameter λ, all integer n, every honestly generated key pairs
(msk,pk)← Setup(λ, n), every messages m and every vectors u,v such that ⟨u,v⟩ = 0,

Pr [Decrypt(KeyGen(msk,u),Encrypt(pk,v,m)) = m] = 1.

Regarding security, IPE schemes can satisfy two indistinguishability security properties:
the first one, called payload-hiding security, prevents any adversary to learn information
about the plaintext from the ciphertext; and the second, called attribute-hiding security,
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prevents any adversary to learn information about the encryption vector, from the ci-
phertext. The latter property is said to be weak if the adversary is not allowed to query
secret keys that can decrypt the challenge ciphertext, otherwise it is said to be fully or
strong.

Definition 3.3.3 Adaptive payload-hiding security (PH-IPE) [84]. An inner product
encryption scheme is said to satisfy adaptive payload-hiding security (or to be adaptively
payload-hiding) if all PPT adversaries A have at most negligible advantage in winning
the game presented in Figure 3.2, where A’s advantage is defined as AdvPH−IPE

A (λ) :=

Pr
[
b
′
= b
]
− 1/2 for any λ ∈ N. Let C be a challenger.

• SETUP: C on input (λ, n) runs Setup(λ, n) to get (msk,pk) and gives pk to A.
• KEY QUERY: A may adaptively query a key for vector u. In response, A is

given by C the corresponding secret key sku ← KeyGen(msk,u).
• CHALLENGE: A sends to C challenge pattern v along with two challenge

messages m0,m1. The latter randomly picks b ← {0, 1} and returns to A
ctb ← Encrypt(pk,v,mb).

• KEY QUERY: A may continue to issue key query for vector u and is given
sku ← KeyGen(msk,u).

• GUESS: A outputs a bit b′ and wins if b′ = b and if, for all u for which a key
was queried, the condition ⟨u,v⟩ ≠ 0 holds.

Figure 3.2: Adaptive payload-hiding security game for inner product encryption schemes.

We now present the definition of adaptive strong attribute-hiding security.

Definition 3.3.4 Adaptive strong attribute-hiding security (sAH-IPE) [84]. An inner
product encryption scheme is said to satisfy adaptive strong attribute-hiding security (or
to be adaptively strong attribute-hiding) if all PPT adversaries A have at most negligible
advantage in winning the game presented in Figure 3.3, where A’s advantage is defined
as AdvsAH−IPE

A (λ) := Pr
[
b
′
= b
]
− 1/2 for any λ ∈ N. Let C be a challenger.

The definition of adaptive weak attribute-hiding security (wAH-IPE) can easily be
derived from the one above, by changing the restriction on vectors for which se-
cret key as queried. The new restriction is that any queried vector u must satisfy
⟨u,v0⟩ = ⟨u,v1⟩ = 1.

Note 3.3.1 We can combine simultaneously weak attribute-hiding security and payload-
hiding security as in the former the adversary cannot query keys that decrypt the
challenge ciphertext, thus two different challenge messages can be used; but we cannot
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• SETUP: C on input (λ, n) runs Setup(λ, n) to get (msk,pk) and gives pk to A.
• KEY QUERY: A may adaptively query a key for vector u. In response, A is

given by C the corresponding secret key sku ← KeyGen(msk,u).
• CHALLENGE: A sends to C two challenge patterns v0 and v1 along with a

challenge message m. The latter randomly picks b← {0, 1} and returns to A
ctb ← Encrypt(pk,vb,m).

• KEY QUERY: A may continue to issue key query for vector u. A is then given
sku ← KeyGen(msk,u).

• GUESS: A outputs a bit b′ and wins if b′ = b and if, for all u for which a key
was queried, the condition ⟨u,v⟩ ≠ 0 holds.

Figure 3.3: Adaptive strong attribute-hiding security game for inner product schemes.

do the same with strong attribute-hiding. However this does not mean that an IPE
scheme cannot be both payload-hiding and strong attribute-hiding, it only means that
both property must be proven separately.

Note 3.3.2 Payload-hiding security is weaker that weak attribute-hiding security, which
is itself weaker than strong attribute-hiding security.

3.4 Signature Schemes

A digital signature scheme, also known simply as a signature scheme, is a primitive
used to verify the authenticity and integrity of messages. Briefly, it is parameterized by
both a signing key, which is kept secret, and a verification key, which is made public and
each user possesses her own pair of keys. The signature of a message is done with the
signing key and the verification is done using the verification key.

Definition 3.4.1 Digital signature scheme. A digital signature scheme consists of
three algorithms:

• Setup(λ): the setup algorithm takes as input a security parameter λ and outputs a
signing key sk along with a verification key vk.

• Sign(sk,m): the signature algorithm takes as input a signing key sk and a message
m and returns a signature σ.

• Verify(vk, σ,m): the verification algorithm takes as input a verification key vk, a
signature σ and a message m. It returns 1 if the signature σ is a valid signature of
message m, and return 0 otherwise.
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Definition 3.4.2 Correctness. A signature scheme is said to be correct if for all security
parameter λ, every honestly generated key pair (sk, vk)← Setup(λ), every message m:

Pr [Verify(vk,Sign(sk,m),m) = 1] = 1.

Definition 3.4.3 Adaptive unforgeability (Unf). A signature scheme is said to sat-
isfy adaptive unforgeability security if all PPT adversaries A have at most negligible
advantage in the game presented in Figure 3.4, where A’s advantage is defined as

AdvUnf
A (λ) := Pr [Verify(vk, σ∗,m∗) = 1|(m∗, σ∗)← A(vk)] = 1.

Let C be a challenger.

SETUP: C on input λ runs Setup(λ) to get (sk, vk) and sends vk to A.
SIGNATURE QUERY: A chooses a message m and sends it to C, who responds

with σ ← Sign(sk,m).
GUESS: A outputs a message m∗ and a signature σ∗ and wins the game if m∗ was

not queried to C and Verify(vk, σ∗,m∗) = 1.

Figure 3.4: Adaptive unforgeability security game.

3.5 Dual System Encryption Framework

The dual system encryption (DSE) framework is a novel approach within the provable
security paradigm. It was introduced by Waters in 2009 [137] to establish the (adaptive)
security of public key encryption schemes. This framework operates within the context
of game-based security and will be employed in this thesis to demonstrate the security
of our encryption schemes.

Within this framework, encryption schemes are designated as dual system encryption
schemes if both ciphertexts and private keys can assume two indistinguishable forms:
normal or semi-functional (SF). Normal secret keys and ciphertexts are generated
through the system’s key generation or encryption algorithm and behave as expected
in a typical encryption scheme. Semi-functional ciphertexts and secret keys are solely
utilized in the security proof, not in the actual system. An important characteristic is
that a normal key can decrypt both normal or semi-functional ciphertexts, and a normal
ciphertext can be decrypted by both normal or semi-functional secret keys. However,
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attempting to decrypt a semi-functional ciphertext with a semi-functional secret key will
result in failure.
In this framework, a security proof is established through a sequence of games, which
are demonstrated to be indistinguishable one to each other. The initial game is the
scheme’s original security game, involving normal secret keys and ciphertexts. The
subsequent game closely resembles the first, with the exception that the challenge ci-
phertext is now semi-functional. We contend that no adversary can discern this alteration
(except by violating a security assumption) because all provided secret keys are normal
and, therefore, capable of decrypting the challenge ciphertext (assuming the decryption
condition is met), regardless of whether it is normal or semi-functional. Let q ∈ N repre-
sents the number of key requests that an attacker is permitted to make. Accordingly,
we define games 1 to q as follows: in Gamek, the first k keys are semi-functional, while
the remaining keys are normal; the challenge ciphertext remains semi-functional. In
Gameq both the keys and the challenge ciphertext are semi-functional. As none of
the provided keys can effectively decrypt the challenge ciphertext (since all keys are
semi-functional, the challenge ciphertext is as well), demonstrating security at this stage
becomes straightforward.
When proving indistinguishability of Gamek and Gamek−1, we actually create a simu-
lator who is prepared to generate a semi-functional challenge ciphertext and is also
ready to make the k-th key either normal or semi-functional. This situation presents a
potential problem. Indeed, the simulator can determine whether key k is semi-functional
by testing decryption with a semi-functional ciphertext (created by her) that should be
decrypted by the normal form of the k-th secret key. To address this issue, Waters
proposed the use of “tag” in dual-system encryption schemes: random tag values are
associated with each ciphertext and secret key, and decryption only succeeds when
the tag values of the ciphertext and the decrypting key are different. If the simulator
creates a semi-functional ciphertext for herself that should be decrypted by the k-th
key assuming it is normal, she would only be able to create one with an identical tag,
and thus decryption will fail even if the secret key is normal. Since an adversary can
only query secret keys that cannot decrypt the challenge ciphertext, this correlation of
tags is hidden from her, and the tags appear randomly distributed from the adversary’s
perspective.
This solution introduces additional complications to the security proof of the scheme
and increases the size of its parameters. That is why Lewko and Waters [95] proposed
a different approach to address the aforementioned paradox. Instead of causing de-
cryption to fail when the simulator attempts to test the semi-functionality of the k-th
key, they ensure that decryption succeeds even when the key is semi-functional. To
achieve this, they introduce a variant of semi-functional keys, which they refer to as
“nominally” semi-functional keys. These keys are distributed similarly to semi-functional
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keys but are, in fact, correlated with semi-functional ciphertexts. Consequently, when
a nominally semi-functional key is employed to decrypt a semi-functional ciphertext,
the interaction of these two semi-functional components leads to cancellation, resulting
in successful decryption.

Composite order groups and dual system encryption framework. Lewko and
Waters [95] provided encryption schemes in the (symmetric) bilinear pairing groups
of composite order setting, with security proofs made with the dual system encryption
framework. Their idea is to take the group order N equals to p1p2p3, where p1, p2, p3
a three different primes. They define the subgroups Gp1 ,Gp3 as normal space and
the subgroup Gp2 as semi-functional space. As composite order groups achieve the
structure of canceling bilinear maps (Definition 2.2.3), it is easy to see that a normal key
will decrypt both a normal and a semi-functional ciphertext, and that a normal ciphertext
can be decrypted by both a normal and a semi-functional key. However, decryption of a
semi-functional ciphertext by a semi-functional key is not possible (unless if the key is
nominally) as there would be an extra component in Gp2. The indistinguishability (from
the adversary point of view) between normal and semi-functional secret keys and cipher-
texts is guaranteed by the general subgroup decision assumption (Definition 2.2.14).

Dual pairing vector spaces and dual system encryption framework. Lewko [90]
propose encryption schemes, proven to be secure with the dual system encryption
framework, in the bilinear pairing prime order groups setting. Her idea is to exploit the
fact that dual pairing vector spaces satisfy the canceling bilinear maps structure. In her
scheme, dual orthonormal bases (B,B∗) are sampled for a dimension n ∈ N. Let k ∈ N

such that k ≤ 2n. Then normal keys and ciphertexts are defined using vectors b1, · · · , bk
and b∗1, · · · , b∗k while semi-functional keys and ciphertexts are defined using vectors
b1, · · · , bn and b∗1, · · · , b∗n. With this definition, it is clear that normal keys will decrypt
normal or semi-functional ciphertexts, that normal ciphertexts will be decrypted by
normal or semi-functional keys but semi-functional keys will not decrypt semi-functional
ciphertext (unless if the key is nominally semi-functional). From the adversary point
of view, normal and semi-functional secret keys and ciphertexts are indistinguishable,
thanks to the parameter hiding property of DPVS (Definition 2.3.3).
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Chapter 4 – First Cryptographic Tool: Identity-Based Encryption with Wildcards

THE first cryptographic tool we used in this thesis is identity-based encryption with
wildcards (WIBE), introduced in 2006 by Abdalla et al. [4]. Informally, in such primitive
secret keys and ciphertexts are associated with vectors, over a set that contains a
“wildcard” symbol denoted “⋆”. Decryption is possible if and only if the secret key vector
and the ciphertext vector are equals at all positions different from the wildcard ⋆.
In the sequel, we first give the definition of identity-based encryption with wildcards and
its properties, such as the anonymity property that states that a ciphertext does not
reveal any information about its associated pattern. In Section 4.2 we present a generic
construction of an anonymous WIBE scheme, proposed by Abdalla et al. [2]. Then in
Section 4.2.2 we present two of our contributions which are two new security properties
for identity-based encryption with wildcards schemes, called privacy-preserving key
generation and pattern-hiding security: the former transforms the key generation of a
WIBE into an interactive protocol between a key generation center (KGC), a pattern
audit center (PAC) and a user that is requesting a secret key, and states the KGC center
does not learn any information about the user’s pattern when creating a key; the latter is
an extension of the anonymity property. Finally, in Section 4.3 we propose three new
identity-based encryption with wildcards instantiations: the first scheme is a normal
WIBE scheme with constant size ciphertext, the second scheme is pattern-hiding and
the last scheme has privacy-preserving key generation.

4.1 Identity-Based Encryption with Wildcards (WIBE)

4.1.1 Definitions

Definition 4.1.1 Pattern [4, 85]. A pattern P is a vector (P1, · · · , PL) ∈ UL, where U is
a set with a special wildcard symbol “⋆”, and L ∈ N.
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Let P
′
= (P

′
1, · · · , P

′
L) and P = (P1, · · · , PL) be two patterns. P

′
belongs to P , denoted

P
′ ∈⋆ P , if and only if ∀i ∈ {1, · · · , L}, (P ′

i = Pi) ∨ (Pi = ⋆). P
′

matches P , denoted
P

′
=⋆ P , if and only if ∀i ∈ {1, · · · , L}, (P ′

i = Pi) ∨ (Pi = ⋆) ∨ (P
′
i = ⋆). Notice that if

P
′ ∈⋆ P then P

′
=⋆ P .

Notation 4.1.1 For a pattern P ∈ UL,W (P ) denoted the set of all indices i ∈ {1, · · · , L}

such that Pi = ⋆, and
−
W (P ) is the complementary set. Clearly W (P ) ∩

−
W (P ) = ∅ and

W (P ) ∪
−
W (P ) = {1, · · · , L}.

Definition 4.1.2 Identity-based encryption with wildcards (WIBE) [4, 85]. An identity-
based encryption with wildcards scheme consists of four algorithms:

• Setup(λ, L): the setup algorithm takes as input a security parameter λ ∈ N and
pattern length L ∈ N. It outputs a public key pk and a master secret key msk.

• KeyDer(msk,P ): the key derivation algorithm takes as input a master secret key
msk and a pattern P and creates a secret key skP for P . It can also take as input
a secret key skP

′ for a pattern P
′
instead of msk and then derives a secret key for

any pattern P ∈⋆ P
′
.

• Encrypt(pk,P ,m): the encryption algorithm takes as input a public key pk, a
pattern P and a message m. It outputs ciphertext ct of message m, for pattern P .

• Decrypt(skP , ct,P
′
): the decryption algorithm takes as input a user secret key

skP for a pattern P and a ciphertext ct for a pattern P
′
, and it returns a message

m′.

Definition 4.1.3 Correctness [85]. An identity-based encryption with wildcards scheme
is said to be correct if for all security parameter λ ∈ N, all integer L ∈ N, every honestly
generated key pair (pk,msk) ← Setup(λ, L), every messages m, and every patterns
P ,P

′ ∈ UL, such that P
′
=⋆ P :

Pr
[
Decrypt(KeyDer(msk,P

′
),Encrypt(pk,P ,m)) = m

]
= 1.

Definition 4.1.4 Adaptive indistinguishability security (IND-WIBE) [4, 85]. An
identity-based encryption with wildcards scheme is said to satisfy adaptive indis-
tinguishability security if all PPT adversaries A have at most negligible advantage
in winning the game presented in Figure 4.1, where A’s advantage is defined as
AdvIND−WIBE

A (λ) := Pr
[
b
′
= b
]
− 1/2 for any λ ∈ N.
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SETUP: challenger C on input (λ, L) runs Setup(λ, L) to generate pk and msk, and
gives pk to A.

KEY QUERY: adversary A may adaptively query a key for pattern P . In response,
A is given the corresponding secret key skP ← KeyGen(msk,P ).

CHALLENGE: A chooses challenge pattern P ∗ and challenge messages m0,m1,
and sends them to C. The latter picks a random bit b and gives to A ct∗ ←
Encrypt(pk,P ∗,mb).

KEY QUERY: The adversary may continue to issue key queries for additional
pattern P . A is given the corresponding key skP ← KeyGen(msk,P ).

GUESS: A outputs a bit b′, and wins the game if b′ = b and if, for all P for which a
key was queried, the condition P ̸=⋆ P

∗ holds.

Figure 4.1: Adaptive indistinguishability security game for identity-based encryption with wild-
cards schemes.

The next definition presents the anonymous security property of WIBE schemes, in-
troduced by [2], that states that it is hard for an adversary given a ciphertext to guess
which previously chosen message was encrypted.

Definition 4.1.5 Adaptive anonymous security (ANO-WIBE) [2]. An identity-based
encryption with wildcards scheme is said to satisfy adaptive anonymous security if all
PPT adversaries A have at most negligible advantage in winning the game presented
in Figure 4.2, where A’s advantage is defined as AdvANO−WIBE

A (λ) := Pr
[
b
′
= b
]
− 1/2

for any λ ∈ N.

SETUP: challenger C on input (λ, L) runs Setup(λ, L) to generate keys pk and msk,
and gives pk to A.

KEY QUERY: adversary A may adaptively query a key for pattern P . In response,
A is given the corresponding secret key skP ← KeyGen(msk,P ).

CHALLENGE: A chooses two challenge patterns P 0,P 1 and challenge messages
m0,m1, and sends them to C. The latter picks a random bit b and gives to A
ctb ← Encrypt(pk,P b,mb).

KEY QUERY: The adversary may continue to issue key queries for additional
pattern P . A is given the corresponding key skP ← KeyGen(msk,P ).

GUESS: A outputs a bit b′ , and wins if b′ = b and if, for all pattern P for which a key
was queried, the condition P ̸=⋆ P

0 and P ̸=⋆ P
1 holds.

Figure 4.2: Adaptive anonymous security game for identity-based encryption with wildcards
schemes.

Note 4.1.1 In the anonymous security game for identity-based encryption with wild-
cards, the adversary is allowed to query secret keys that do not decrypt the challenge
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ciphertext. In Section 4.2.2 we present a stronger security notion in which the adversary
is allowed to query secret keys that decrypt the challenge ciphertext, at the condition
that decryption is possible no matter the challenge pattern chosen.

4.1.2 Generic Construction of Anonymous WIBE Scheme

Here we present a generic construction, proposed by Abdalla et al. [2], of anonymous
identity-based encryption with wildcards scheme, from inner product encryption (see
Section 3.3). Briefly, in an IPE scheme secret keys and ciphertexts are associated to
a vector, and decryption is possible if the inner product of the secret key’s vector and
the ciphertext’s vector is equal to 0. For more details on this primitive, refer to Section 3.3.

In the construction, patterns belong to the set {0, 1, ⋆}. The key idea of the construction
is to double the pattern length and simulate wildcard positions with 0 positions in the
IPE vector. To do so they introduce two algorithms that we will call ExtendingKeyPattern
and ExtendingCtPattern, that work as follows.

Algorithm 4.1 ExtendingKeyPattern
Input: key pattern P of length n
Output: pattern u of length 2n

1: i← 1, j ← 1
2: while i ≤ n, j ≤ 2n do
3: if Pi ̸= ⋆ then
4: uj ← 1 and uj+1 ← Pi
5: else
6: uj ← 0 and uj+1 ← 0
7: end if
8: j ← j + 2, i← i+ 1
9: end while

10: return u

Algorithm 4.2 ExtendingCtPattern
Input: ciphertext pattern P of length n

Output: pattern v of length 2n

1: i← 1, j ← 1
2: while i ≤ n, j ≤ 2n do
3: if Pi ̸= ⋆ then
4: vj ← −ri ·Pi, vj+1 ← ri for ri ← Zp
5: else
6: vj ← 0 and vj+1 ← 0
7: end if
8: j ← j + 2, i← i+ 1
9: end while

10: return v

We present in Figure 4.3 how both algorithm work on an example.

Figure 4.3: ExtendingKeyPattern and ExtendingCtPattern on a example.
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We now present the construction in Figure 4.4.

Let IPE = (Setup,KeyGen,Encrypt,Decrypt) be an inner product encryption
scheme. We construct WIBE = (Setup,KeyGen,Encrypt,Decrypt) an identity-
based encryption with wildcards scheme from IPE.

• Setup(λ, L): the setup algorithm runs Setup(λ, 2L) to get (msk,pk) and out-
puts them.

• KeyGen(msk,P ) : the key generation algorithm creates the pattern u of
length 2L by running ExtendingKeyPattern on input P . Then it returns skP ←
KeyGen(msk,u).

• Encrypt(pk,P
′
,m): the encryption algorithm creates the pattern v of length

2L by running ExtendingCtPattern on input P
′
. The encryption algorithm

returns ct← Encrypt(pk,v,m).
• Decrypt(skP , ct,P

′
): the decryption algorithm returns Decrypt(skP , ct).

Figure 4.4: Generic construction of anonymous identity-based encryption with wildcards scheme
from inner product encryption scheme.

Regarding correctness and security Abdalla et al. [2] prove that if the underlying IPE
scheme is correct and weak attribute-hiding, then the obtained WIBE scheme is respec-
tively correct and anonymous. We refer the interested reader to [2]’s work for more
details.

Note 4.1.2 Actually to be able to make this generic construction, Abdalla et al. [2] intro-
duced a new kind of IPE schemes: inner product encryption scheme with generalized
key delegation. This new feature of IPE schemes is needed in order to obtain the key
delegation algorithm of the WIBE scheme. In this thesis, we will use WIBE scheme
without key delegation, therefore we omit in our presentation of the generic construction
the delegation part. We also rewrite KeyDer algorithm by KeyGen in the WIBE scheme
for the same reason.

4.2 Our Contributions to WIBE: New Security Properties

We now present two of our contributions regarding identity-based encryption with
wildcards, which are two new security properties. The first one, that we call privacy-
preserving key generation protects the privacy of pattern used for key generation while
the second, called pattern-hiding is an extension of the anonymous property.

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

66



Chapter 4 – First Cryptographic Tool: Identity-Based Encryption with Wildcards

4.2.1 Introducing Privacy-Preserving Key Generation WIBE

When looking at identity-based encryption with wildcards security properties, we notice
that that they either protects the message encrypted (with indistinguishability security,
see Definition 4.1.4) or the pattern associated to the ciphertext (anonymous security,
see Definition 4.1.5). For future applications, such as one presented in Section 6.3, we
decided to introduce a new security property that protects the privacy of the pattern
during key generation. In other words, we need a WIBE scheme in which the authority
does not learn any information about patterns associated to secret keys.

As such property cannot be included as is in the previously given definition of WIBE
(Definition 4.1.2), we need to define a new kind of WIBE: privacy-preserving key gener-
ation WIBE scheme. The below definition is based on the work that has been done on
e.g., blind signatures [47, 121], or privacy-preserving key generation (PPKG) ABE [131].
In this definition the generation of decryption keys is transform into an interactive pro-
tocol between a key generation center (KGC) (that knows the master secret key), a
pattern certification center (PAC) and a user, in such a way that the user finally obtain
the secret key skP, while each party protects its own input. In the next definition, the
name of key generation protocol algorithms that are ran by KGC are written in blue,
those ran by user in green and in orange those that are run by PAC.

Note 4.2.1 In the following we use the notation m̃sk to denote a part of msk, given as
an optional input some algorithms. Notice that m̃sk is not enough to generate secret
keys and might be equals to ∅ in some cases.

Definition 4.2.1 WIBE scheme with privacy-preserving key generation. (PPKG-
WIBE) An identity-based encryption with wildcards scheme with privacy-preserving key
generation consists of seven algorithms:

• Setup(λ, L): the setup algorithm, run by KGC, takes as input a security parameter
λ ∈ N and the maximal pattern length L. It outputs a public key pk and a master
secret key msk.

• UserTemKeyGen(pk): the user’s temporary key generation algorithm is run by
user. It takes public key pk as input and outputs user’s temporary public key tpkuser
and user’s temporary secret key tskuser.

• BlindTokenGen(m̃sk,pk,P, tpkuser): the blind token generation algorithm is run by
PAC. It takes pk, user’s pattern P, and user’s temporary public key tpkuser as input
and outputs a blind token btP for pattern P.
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• BlindKeyGen(msk,pk,btP): the blind key generation algorithm is run by KGC. It
takes msk, pk, and user’s blind token btP as input and outputs blind secret key
bsk for pattern P.

• KeyExtract(bskP, tskuser): the key extract algorithm is run by user locally. It takes
blind secret key bskP and user’s temporary secret key tskuser as input and outputs
the final secret key sk for pattern P.

• Encrypt(pk,P′
,m): the encryption algorithm takes as input the public key pk, a

pattern P
′ and a message m. It outputs ciphertext ct for pattern P

′.
• Decrypt(skP, ct,P′

): the decryption algorithm takes as input a user secret key skP

for a pattern P and a ciphertext ct for a pattern P
′, and returns a message m′.

We present in Figure 4.5 the interactive protocol of the key generation.

Figure 4.5: The key generation interactive protocol.

With this new definition of WIBE, we easily notice that if we want to protect KGC from
learning pattern P for which a key is queried we require that the output of BlindTokenGen
does not leak any information about the pattern. We formalize this requirement with
the following security definition that states that no adversary can distinguish a blind
token for pattern P 0 from a blind token for pattern P 1, where P 0,P 1 are chosen by the
adversary.

Definition 4.2.2 Adaptive privacy-preserving key generation WIBE security. We
define the following oracles: (i) Blind Token Oracle OBT (P

′
) that takes as input pattern

P
′ and outputs corresponding blind token btP′ and (ii)OBK(btP′ ) that takes as input blind

token btP′ and outputs corresponding blind key bskP′ . A WIBE scheme is said to satisfy
adaptive privacy-preserving key generation security if for any PPT adversary A, the ad-
vantage ofA to win the game presented in Figure 4.6 is negligible. Let C be a challenger.

For our future use of such a WIBE, KGC will be playing the adversary’s role.
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SETUP: C on input (λ, L) runs Setup(λ, L) to get pk,msk and gives pk to A.
TOKEN or KEYQUERY: A queries oracles OBT and OBK freely.
CHALLENGE: A submits two patterns P0 and P1 where |P0| = |P1|. C chooses

b ∈ {0, 1} randomly and queries OBT on input Pb. It returns blind token btPb

to A.
TOKEN or KEYQUERY: A queries oracles OBT and OBK freely.
GUESS: A outputs its guess b′ and wins if b = b

′.

Figure 4.6: Adaptive privacy-preserving key generation security game for PPKG-WIBE schemes.

4.2.2 New Security Property of Pattern-Hiding

In this section, we introduce a new security property for WIBE schemes: pattern-hiding
security.

Definition 4.2.3 Adaptive pattern-hiding security (PH-WIBE). An identity-based en-
cryption with wildcards scheme is said to satisfy adaptive pattern-hiding security (or
is adaptively pattern-hiding) if all PPT adversaries A have at most negligible advan-
tage in winning the game presented in Figure 4.7, where A’s advantage is defined as
AdvPH−WIBE

A (λ) := Pr
[
b
′
= b
]
− 1/2 for any λ ∈ N. Let C be a challenger.

SETUP: C on input (λ, L) runs Setup(λ, L) to generate keys pk and msk, and gives
pk to A.

KEY QUERY: adversary A may adaptively query a key for pattern P . In response,
A is given the corresponding secret key skP ← KeyGen(msk,P ).

CHALLENGE: A chooses two challenge patterns P 0,P 1 and challenge message
m, and sends them to C. The latter picks a random bit b and gives to A
ctb ← Encrypt(pk,P b,m).

KEY QUERY: The adversary may continue to issue key queries for additional
pattern P , and is given the corresponding key skP ← KeyGen(msk,P ).

GUESS: A outputs a bit b′, and wins if b′ = b and if, for all P for which a key was
queried, the condition P =⋆ P

0 ∧ P =⋆ P
1 or P ̸=⋆ P

0 ∧ P ̸=⋆ P
1 holds.

Figure 4.7: Adaptive pattern-hiding security game for identity-based encryption with wildcards
schemes.

We now establish the following theorem, that presents the relation between our new
security property and existing the one of anonymity.

Theorem 4.2.1 Pattern-hiding security implies anonymous security for WIBE schemes.
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Proof 4.2.1 We prove the contrapositive. Let B be an adversary against anonymous
security, that wins with non negligible advantage ϵ and let C be a challenger for pattern-
hiding security. We construct, in Figure 4.8, an adversary A that wins the pattern-hiding
security game, by using B. Let C be a challenger.

• SETUP: C on input (λ, L) runs Setup(λ, L) to get pk,msk, and sends pk to A
and B.

• KEY QUERY: adversary B chooses a pattern P for which she requires a
key and sends it to A. The latter sends P to C who answers with skP ←
KeyGen(msk,P ).

• CHALLENGE: B chooses two challenge patterns P 0,P 1 along with challenge
messages m0,m1 and sends them to A. The latter picks b̃← {0, 1} and sends
to C patterns P 0,P 1 and message mb̃. C chooses b ← {0, 1} and returns
ctb ← Encrypt(pk,P b,mb̃) to A, who sends it to B.

• KEY QUERY: B may continue to issue key queries for additional pattern P . A
queries C and returns to B the answer of skP ← KeyGen(msk,P ).

• GUESS: B outputs a bit b′ to A, who outputs it as her own guess.

Figure 4.8: Construction of PH-WIBE adversary from ANO-WIBE adversary.

B is an admissible adversary, meaning that she will always output a key for pattern P

such that P ̸=⋆ P
0 and P ̸=⋆ P

1 . Thus the pattern-hiding security game restrictions
are respected.
Let us evaluate A’s advantage. If b̃ = b, then B is given a challenge ciphertext as
expected and thus wins the security game with advantage ϵ. If b̃ ̸= b, as the challenge
ciphertext is not of the form expected by B (for example she can receive the result
of Encrypt(pk,P 0,m1)), her advantage in winning the security game is equivalent as
making a random guess, thus is equal to 1/2. Therefore, AdvPH−WIBE

A (λ) = ϵ − 1/2

which is non negligible. □

4.3 Another Contribution: Our New WIBE Instantiations

In this section, we present three identity-based encryption with wildcards schemes.
The first scheme has constant-size ciphertext but does not provide the pattern-hiding
property, while the second scheme does not have constant-size ciphertext but is proved
to satisfy pattern-hiding. The third scheme is a privacy-preserving key generation WIBE.

Our three identity-based encryption with wildcards schemes have the particularity that
they do not allow key derivation for a pattern from another pattern’s key (thus KeyDer
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algorithm will be written KeyGen). Plus, we restrict the first and the second scheme key
pattern space to {0, 1}L\

{
0L
}

and ciphertext pattern spaces to {0, ⋆}L\
{
0L
}

for the first
scheme and to {0, ⋆}L\

{
⋆L
}

for our second scheme. These restrictions are required
for a future use of our WIBE schemes as building blocks for data sharing primitives.
Notice that with this key pattern space, the decryption condition now requires that the
key pattern belongs (i.e. ∈⋆) to the ciphertext pattern and no longer that both patterns
match (i.e. =⋆). Also, notice that our two instantiations are made for these restrictions
specifically therefore they do not work without them. For the third instantiation, patterns
for both keys and ciphertexts belong to {0, 1, ⋆}L.

Let P ∈ {0, 1}L\
{
0L
}

be a pattern. We set I = {i ∈ [L]|Pi = 1} andO = {i ∈ [L]|Pi = 0};
notice that [L] = I ∪ O.

4.3.1 A WIBE Scheme With Constant Size Ciphertext

Intuition. Kim et al. [86] proposed an identity-based encryption with wildcards, in the
symmetric prime order bilinear group setting. Their scheme has constant size ciphertext
and satisfies selective IND-WIBE-CPA security under the ℓ-BDHE problem. We first
adapt it to the keys and ciphertexts patterns we are interested in, i.e. respectively
{0, 1}L\

{
0L
}

, and {0, ⋆}L\
{
0L
}

and moved it to asymmetric prime order bilinear group
setting. This results in a new scheme, with shorter secret keys and ciphertexts. Then
we modified our scheme in order to obtain adaptive security. To do so, we followed [86]’s
idea to use composite order groups and the dual system encryption framework. Finally,
we moved our scheme from the composite order bilinear group setting to the prime
order bilinear group setting, for efficiency and security reasons. We were able to do
this change thanks to the use of dual pairing vectors spaces and following the works of
Lewko [90] and Chen et al. [51].
An important point to notice here is in the Setup algorithm: in [86]’s schemes, ran-
dom groups elements hi (for i = 1, · · · , L) are generated by the scheme authority and
put in the public key. In our scheme, the authority will pick random elements ai (for
i = 1, · · · , L) in Zp, sets hi = gai1 and gives in the public key hd2

i , for d2 ∈ D for D one
base of the DPVS. This change was necessary for the security proof as the adversary
against the security assumption, that simulates the scheme’s authority receives d2 in
the exponent of g1 which means she cannot compute hd2

i if hi is not of the form gai1 for ai
known by the adversary.

This gives us our first WIBE scheme, presented in Figure 4.9. With the restrictions on
key and ciphertext pattern spaces and the notations we present above, we can rewrite
the decryption condition as follows: for patterns P ,P ∗ in respectively {0, 1}L\

{
0L
}
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• Setup(λ, L): generate an asymmetric bilinear pairing group Γ =
(p,G1,G2,GT , g1, g2, e) for prime order p. Sample random dual orthonormal
bases (D,D∗) ← Dual(Z4

p). Let d1, · · · ,d4 denote the elements of D and
d∗
1, · · · ,d∗

4 denote the elements of D∗. Pick α, a1, · · · , aL ← Zp. The public key
is computed as: pk = (Γ, e(g1, g2)

αd1.d
∗
1 , gd1

1 ,h1 = ga1·d2
1 , · · · ,hL = gaL·d2

1 ) and
the master secret key is msk = (α, g

d∗
1

2 , g
d∗
2

2 , a1, · · · , aL).

• KeyGen(msk,P
′
): pick r ← Zp. Compute β = g

αd∗
1+r·

∑
i∈I

ai·d∗
1−r·d∗

2

2 and υi =

g
r·ai·d∗

1
2 for i ∈ O. The secret key is skP

′ = (β, {υi}i∈O).
• Encrypt(pk,P ,m ∈ GT ): choose s ← Zp and compute ct = (c1, c2) where

c1 = m · (e(g1, g2)αd
∗
1·d1)s, c2 = gsd1

1 ·
∏

i∈W (P )

hsi = g
sd1+sd2

∑
i∈W (P )

ai

1 .

• Decrypt(skP
′ , ct,P ): compute β

′
= β

∏
i∈W (P )∩O

υi and finally c1 · 1

e(c2,β
′
)
.

Figure 4.9: Our identity-based encryption with wildcards scheme in prime order group, with
constant size ciphertext and adaptive security.

and {0, ⋆}L\
{
0L
}

, we have that P ∈⋆ P ∗ =⇒ ∀i ∈ [L], if P = 1 then P ∗
i = ⋆ and

thus I ⊆ W (P ∗).

Our Scheme. We now present in Figure 4.9 our new identity-based encryption with
wildcards scheme.

Theorem 4.3.1 Our first WIBE scheme is correct.

Proof 4.3.1 We have that

e(c2,β
′
) = e

gsd1
1 .

∏
i∈W (P )

hsi , g
αd∗

1+r.
∑
i∈I

ai.d
∗
1−r.d∗

2

2 ·
∏

i∈W (P )∩O

g
rd∗

1ai
2


= e

(
gsd1
1 , g

αd∗
1

2

)
.e

(
gsd1
1 , g

r.d∗
1(

∑
i∈I

ai+
∑

i∈W (P )∩O
ai)

2

)
.e

(
g
sd2

∑
i∈W (P )

ai

1 , g
−r.d∗

2
2

)

as thanks to dual vector spaces properties: e
(
gsd1
1 , g

−rd∗
2

2

)
= e(g1, g2)

0 and

e

(
g
sd2

∑
i∈W (P )

ai

1 , g
αd∗

1+r.
∑
i∈I

ai.d
∗
1+

∑
i∈W (P )∩O

r.ai.d
∗
1

2

)
= e(g1, g2)

0 = 1.

The first pairing is equal to (e(g1, g2)
αd1.d

∗
1)s which will canceled with the element of c1.
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The second pairing is equal to e(g1, g2)
srψ(

∑
i∈I

ai+
∑

i∈W (P )∩O
ai)

and the third pairing is equal

to e(g1, g2)
−rsψ

∑
i∈W (P )

ai

.
As user is allowed to decrypt then I ⊆ W (P ), thus we can rewrite I as I ∩W (P ) and
we have that

∑
i∈I

ai +
∑

i∈W (P )∩O
ai =

∑
i∈W (P )∩(I∪O)

ai =
∑

i∈W (P )

ai. Therefore multiplying the

two last pairings gives 1, and user can decrypt. □

Security. The following theorem establishes the security of our new WIBE scheme.

Theorem 4.3.2 If SXDH holds then our scheme satisfies adaptive IND-WIBE-CPA.

Our proof is based on the ones of [90] (Section 4.6) and [51] (Section 4) and is done
with the dual system encryption framework. [90]’s proof is done in the symmetric pairing
setting but moving from symmetric pairings to asymmetric pairings is not an issue if
elements are taken in the correct group (G1 for ciphertext and public key elements, and
G2 for secret keys elements).

Let us define semi-functional keys and semi-functional ciphertexts that we will use in the
proof. Let sk = (β, {υi}i∈O) be a normal key, and t3, t4, {tb,i}i∈O be random elements of
Zp. We define a semi-functional key as sk

′
= (β

′
,
{
υ

′
i

}
i∈O) where β

′
= β · gt3·d

∗
3+t4·d∗

4
2

and υ
′
i = υi · g

tb,i·d∗
3

2 for i ∈ O.
Let ct = (c1, c2) be a normal ciphertext, and z3, z4 ← Zp be random elements. We define
a semi-functional ciphertext as ct

′
= (c

′
1, c

′
2) where c′1 = c1 and c

′
2 = c2 · gz3·d3+z4·d4

1 .

We are going to prove Theorem 4.3.2 with a sequence of Q+ 3 hybrids games, where
Q ∈ N is the number of secret keys that an adversary can query.

• Game0: is the real IND-WIBE security game, presented in Figure 4.1.
• Game1: is as Game0 except that the challenge ciphertext is semi-functional.
• Game2−j: for j from 1 to Q, Game2−j is the same as Game1 except that the first j

keys are semi-functional and the remaining keys are normal.
• Game3: is the same as Game2−Q, except that the challenge ciphertext is a semi-

functional encryption of a random message in GT .

We prove indistinguishability between those security games by proving the three follow-
ing lemmas. The proofs are using assumptions DS1 and DS2, presented in Section 2.3.2.
Informally, we prove indistinguishability between the Q+ 3 games above as explained in
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Figure 4.10.

• Step 1: we prove that if an adversary can distinguish Game0 from Game1

then we can build an adversary with non-negligible advantage against DS1
with k = 2 and n = 4. This is formalized by Lemma 4.3.1.

• Step 2: we show that if an adversary can distinguish Game2−(j−1) from
Game2−j we can build an adversary with non-negligible advantage against
DS2 with k = 2 and n = 4. This is resumed in Lemma 4.3.2.

• Step 3: we prove that if an adversary can distinguish Game2−Q from Game3

then we can build an adversary with non-negligible advantage against DS1
with k = 1 and n = 4. This is traduced by Lemma 4.3.3. We actually prove
this in two steps, by randomizing each appearance of s in the c2 term of the
ciphertext, thereby severing its link with the blinding factor. The end result is a
semi-functional encryption of a random message. As a first step, we consider
an intermediary game, called Game2−Q′ , that is exactly like Game2−Q, except
that in the c2 term of the challenge ciphertext the coefficient of d2 is changed
from being s

∑
i∈W (P )

ai to a fresh random value in Zp. Then we prove that

– Step 3.1: if an adversary can distinguish Game2−Q from Game2−Q′ then
we can build an adversary with non-negligible advantage against DS1
with k = 1 and n = 4. This formalized by Lemma 4.3.4.

– Step 3.2: if an adversary can distinguish Game2−Q′ from Game3 then
we can build an adversary with non-negligible advantage against DS2
with k = 1 and n = 4, as stated in Lemma 4.3.5.

Figure 4.10: Informal security proof for our constant size ciphertext identity-based encryption
with wildcards scheme.

Lemma 4.3.1 If there exists a PPT algorithm A such that Adv0A−Adv1A is non-negligible,
then there exists a PPT algorithm B with non-negligible advantage against DS1 with
k = 2 and n = 4.

Proof 4.3.2 INIT: B is given ∆ = (Γ, g
b∗1
2 , g

b∗2
2 , g

b1
1 , g

b2
1 , g

b3
1 , g

b4
1 ,u1,u2, µ2) along with

t1, t2, distributed either as gτ1b11 , gτ1b21 or gτ1b1+τ2b31 , gτ1b2+τ2b41 .
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SETUP: B first chooses a random invertible matrix A ∈ Z2×2
p . She implicitly sets dual

orthonormal bases D,D∗ to: d1 = b1,d2 = b2, (d3,d4) = (b3, b4) ·A, d∗
1 = b∗1, d

∗
2 = b∗2,

(d∗
3,d

∗
4) = (b∗3, b

∗
4) · (A−1)⊤. We note that D,D∗ are properly distributed and reveal no

information about A. Notice also that B cannot produce gd
∗
3

2 , g
d∗
4

2 , but these will not be
needed to create normal keys. B chooses random values α, a1, · · · , aL ∈ Zp. A is given
the public key

pk = (Γ, e(g1, g2)
αd1·d∗

1 , gd1
1 ,h1 = ga1d2

1 , · · · ,hL = gaLd2
1 ).

The master secret key is msk = (α, g
d∗
1

2 , g
d∗
2

2 , a1, · · · , aL).

KEY QUERY: msk is known to B, which allows B to respond to all of A’s key queries by
calling the normal key generation algorithm.

CHALLENGE: A sends B a challenge pattern P and two messages (m0,m1). B chooses
a random bit b ∈ {0, 1} and encrypts mb under P as follows:

c1 = mb · (e(t1, gb
∗
1

2 ))α = mb · (e(t1, gd
∗
1

2 ))α , c2 = t1 · t
∑

i∈W (P )

ai

2 .

She gives the ciphertext ct∗ = (c1, c2) to A.

• If (t1, t2) = (gτ1b11 , gτ1b21 ), we have a normal ciphertext with randomness τ1: c1 =

(mb(e(g1, g2)
d1·d∗

1α)τ1, and c2 = g
τ1d1+τ1d2

∑
i∈W (P )

ai

1 . Thus B has properly simulated
Game0.

• If (t1, t2) = (gτ1b1+τ2b31 , gτ1b2+τ2b41 ), c1 = mb · (e(g1, g2)b1·b
∗
1α)τ1 · e(g1, g2)τ2b3b

∗
1α =

mb · (e(g1, g2)d1·d∗
1α)τ1 and c2 = g

τ1d1+τ1d2
∑

i∈W (P )

ai+τ2b3+τ2b4
∑

i∈W (P )

ai

1 .

This ciphertext has an additional term with coefficients in basis b3, b4, which form the
vector τ2(1,

∑
i∈W (P )

ai). To compute coefficients in the basis (d3,d4) we multiply the matrix

A−1 by the transpose of this vector. Since A is random, these new coefficients are
uniformly random. Thus in this case the ciphertext is SF (with coefficients in the base
D) and B has properly simulated Game1. This allows B to leverage A’s non-negligible
difference in advantage between Game0 and Game1 to achieve a non-negligible advan-
tage against DS1. □
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Lemma 4.3.2 If there exists a PPT algorithm A such that Adv2−(j−1)
A − Adv2−jA is non-

negligible, then there exists a PPT algorithm B with non-negligible advantage against
DS2 with k = 2 and n = 4.

Proof 4.3.3 INIT: B is given ∆ = (Γ, gb11 , g
b2
1 , g

b∗1
2 , g

b∗2
2 , g

b∗3
2 , g

b∗4
2 ,u1,u2, µ2) along with

t1, t2, distributed either as gτ1b
∗
1

2 , g
τ1b

∗
2

2 or gτ1b
∗
1+τ2b

∗
3

2 , g
τ1b

∗
2+τ2b

∗
4

2 .

SETUP: B chooses a random invertible matrix A ∈ Z2×2
q . Then she implicitly sets

dual orthonormal bases D,D∗ to: d1 = b1, d2 = b2, (d3,d4) = (b3, b4) · A, d∗
1 = b∗1,

d∗
2 = b∗2,(d

∗
3,d

∗
4) = (b∗3, b

∗
4) · (A−1)⊤. We note that D,D∗ are properly distributed and

reveal no information about A. B chooses random values α, a1, · · · , aL ∈ Zp. A is given
the public key

pk = (Γ, e(g1, g2)
αd1.d

∗
1 , gd1

1 ,h1 = ga1d2
1 , · · · ,hL = gaLd2

1 ).

The master secret key is msk = (α, g
d∗
1

2 , g
d∗
2

2 , a1, · · · , aL).

KEY QUERY: B knows msk and gd
∗
3

2 , g
d∗
4

2 , thus can easily call the key generation algorithm
or produce semi-functional keys. It allows B to answer to all A’s key queries.

• To answer the first j-1 key queries that A makes, B runs the semi-functional key
generation algorithm to produce semi-functional keys.

• To answer to the j-th key query for P j, B responds with:

β = (g
b∗1
2 )α · t

∑
i∈I

ai

1 · t−1
2 , υi = tai1 for i ∈ O.

– If t1, t2 = g
τ1b

∗
1

2 , g
τ1b

∗
2

2 , then skP j is a normal key with randomness τ1: β =

g
d1α+τ1d

∗
1

∑
i∈I

ai−τ1d∗
2

2 and υi = g
τ1d

∗
1ai

2 , for i ∈ O.

– If t1, t2 = g
τ1b

∗
1+τ2b

∗
3

2 , g
τ1b

∗
2+τ2b

∗
4

2 , β = g
d1α+τ1d

∗
1

∑
i∈I

ai−τ1d∗
2+τ2

∑
i∈I aib

∗
3−τ2b∗4

2 and υi =

g
τ1d

∗
1ai+τ2b

∗
3

2 , for i ∈ O.
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• For the remaining key queries, B runs the normal key generation algorithm.

CHALLENGE: At some point, A sends to B two messages m0,m1 and a challenge pattern
P . B chooses a random bit b ∈ {0, 1} and encrypts mb under P as follows:

c1 = mb · (e(u1, g
b∗1
2 ))α = mb · (e(g1, g2))αd1·d∗

1µ1

and c2 = u1 · u
∑

i∈W (P )

ai

2 = g
µ1d1+µ1d2

∑
i∈W (P )

ai+µ2b3+µ2b4
∑

i∈W (P )

ai

1 .

Suppose that B decides not to be honest, and find the nature of the j-th key by itself.
To do so, she creates a ciphertext for a pattern P ∗ such that P j ∈⋆ P ∗. She tries to
decrypt it with skP j to learn if skP j is a normal or a semi-functional key (a normal key
will decrypt correctly while a SF key will with high probability fail to decrypt). Let us see
that by construction even if skP j is SF it will decrypt correctly.
Suppose that t1, t2 = (g

τ1b
∗
1+τ2b

∗
3

2 , g
τ1b

∗
2+τ2b

∗
4

2 ). During decryption, B obtains the term

e

(
g
µ2b3+µ2

∑
i∈W (P∗)

aib4

1 , g
τ2b

∗
3

∑
i∈I

ai−τ2b∗4

2 · g
τ2b

∗
3

∑
i∈W (P∗)∩O

ai

2

)
.

In the exponent we have µ2(b3+b4
∑

i∈W (P ∗)

aib4) ·τ2(b∗3
∑

i∈W (P ∗)

ai−b∗4) because P j ∈⋆ P ∗

implies I ∩ (W (P ∗) ∪ O) = W (P ∗). The term in the exponent is: µ2τ2ψ
∑

i∈W (P ∗)

ai −µ2τ2

ψ
∑

i∈W (P ∗)

ai = 0. Thus it will decrypt, and B will have no information about the j-th key ’s

nature.

In the authorized case, P j /∈⋆ P . Let’s see that the extra coefficients in basis (b3, b4)

of the ciphertext and the extra coefficients in basis (b∗3, b
∗
4) of the key are distributed as

random vectors in the spans of (d3,d4) and (d∗
3,d

∗
4) respectively. To express them in

basis (d3,d4) and (d∗
3,d

∗
4) respectively, we multiply them by A−1 and A⊤ respectively.

Since the distribution of everything given to A except for the j−th key and the challenge
ciphertext is independent of the random matrix A and P j /∈⋆ P , we can conclude that
these coefficients are uniformly random. Thus B has properly simulated Game2−j in
this case.
If t1, t2 = g

τ1b
∗
1

2 , g
τ1b

∗
2

2 then the coefficients of the semi functional part of the ciphertext are
uniformly random. Thus B has properly simulated Game2−(j−1) in this case. Therefore B
can leverage A’s non-negligible difference in advantage between these games to obtain
a non-negligible advantage against DS2. □
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Lemma 4.3.3 If there exists a PPT algorithm A such that Adv2−QA − Adv3A is non-
negligible, then there exists a PPT algorithm B with non-negligible advantage against
DS1 with k = 1 and n = 4.

We prove this lemma in two steps, by randomizing each appearance of s in the c2 term
of the ciphertext, thereby severing its link with the blinding factor. The end result is
a semi-functional encryption of a random message. As a first step, we consider an
intermediary game, called Game2−Q′ , that is exactly like Game2−Q, except that in the c2
term of the challenge ciphertext the coefficient of d2 is changed from being s

∑
i∈W (P )

ai to

a fresh random value in Zp. We denote the advantage of an algorithm A in this game

by AdvQ
′

A . We first prove the following lemma.
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Lemma 4.3.4 If there exists a PPT algorithm A such that Adv2−QA − Adv2−Q
′

A is non-
negligible, then there exists a PPT algorithm B with non-negligible advantage against
DS1 with k = 1 and n = 4.

Proof 4.3.4 INIT: B is given ∆ = (Γ, g
b∗1
2 , g

b∗3
2 , g

b∗4
2 , g

b1
1 , g

b2
1 , g

b3
1 , g

b4
1 , u1, µ2), along with t1

either equal to gτ1b11 or gτ1b1+τ2b21 .

SETUP: B implicitly sets d1 = b3,d2 = b2,d3 = b1,d4 = b4, and d∗
1 = b∗3,d

∗
2 = b∗2,d

∗
3 =

b∗1,d
∗
4 = b∗4.

This enables B to produce gd1
1 , g

d2
1 , g

d3
1 , g

d4
1 . We note also that D,D∗ are properly dis-

tributed dual orthonormal bases, and that B can produce gd
∗
1

2 , g
d∗
3

2 and gd
∗
4

2 but does not
know g

d∗
2

2 . B chooses random values α, a1, · · · , aL ∈ Zp. She gives A the public key

pk = (Γ, e(g1, g2)
αd1·d∗

1 , gd1
1 ,h1 = ga1d2

1 , · · · ,hL = gaLd2
1 ).

KEY QUERY: we note that B does not know the full master secret key, but she knows
u1 = g

µ1b
∗
1+µ2b

∗
2

2 , µ2 and a1, · · · , aL. This allows her to produce semi-functional keys as
follows: when A requests a key for some pattern P

′
, B chooses random values r′ , t4 ∈

Zp. She sets r = µ2r
′ and forms the secret key as: β = (u1)

−r′ · g
αd∗

1+µ2r
′ ∑
i∈I

aid
∗
1+t4d

∗
4

2 ,

υi = g
µ2r

′
aid

∗
1+tb,id

∗
3

2 .

We obtain that β = g
αd∗

1+rd
∗
1

∑
i∈I

ai−rd∗
2+(−r′µ1)d∗

3+t4d
∗
4

2 . The coefficients of d∗
3,d

∗
4 are uni-

formly random thus it is a SF key.

CHALLENGE: A submits two messages m0,m1 and a challenge pattern P . B chooses
b ∈ {0, 1} and forms the challenge ciphertext as follows:

c1 = mb · (e(g1, g2)αd1·d∗
1)s, c2 = g

sd1+sd2
∑

i∈W (P )

ai

1 · t1 · gzd4
1

where s, z ← Zp.

• If t1 is equal to gτ1b11 then c2 = g
sd1+sd2

∑
i∈W (P )

ai+τ1d3+zd4

1 which is a semi functional
ciphertext and B simulates Game2−Q.

• If t1 = gτ1b1+τ2b21 then c2 = g
sd1+(s

∑
i∈W (P )

ai+τ2)d2+τ1d3+zd4

1 is a semi functional cipher-
text with randomized coefficients for d2, thus B simulates Game2−Q′ .
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Therefore, B can leverage A’s non-negligible difference of advantage between these
two games to achieve a non-negligible advantage against DS1. □

Note 4.3.1 All queried keys shared µ1, µ2 in their randomness. However, as it is in
exponent and “randomized" by other random elements, then for an adversary it is
indistinguishable from a truly random element.

Lemma 4.3.5 If there exists a PPT algorithm A such that Adv2−Q
′

A − Adv3A is non-
negligible, then there exists a PPT algorithm B with non-negligible advantage against
DS1 with k = 1 and n = 4.

Proof 4.3.5 INIT: B is given ∆ = (Γ, g
b∗1
2 , g

b∗3
2 , g

b∗4
2 , g

b1
1 , g

b2
1 , g

b3
1 , g

b4
1 , u1, µ2), along with t1

either equal to gτ1b11 or gτ1b1+τ2b21 .

SETUP: B implicitly sets d1 = b2,d2 = b3,d3 = b1,d4 = b4, and d∗
1 = b∗2,d

∗
2 = b∗3,d

∗
3 =

b∗1,d
∗
4 = b∗4.

This enables B to produce gd1
1 , g

d2
1 , g

d3
1 , g

d4
1 , but not d2. We note also that D,D∗ are

properly distributed dual orthonormal bases, and that B can produce gd
∗
2

2 , g
d∗
3

2 and gd
∗
4

2

but does not know g
d∗
1

2 . B chooses random values α′
, a1, · · · , aL ∈ Zp. She computes

e(gb31 , g
b∗3
2 )α = e(g1, g2)

αd2·d∗
2 = e(g1, g2)

αψ = e(g1, g2)
αd1·d∗

1 . She gives A the public key

pk = (Γ, e(g1, g2)
αd1·d∗

1 , gd1
1 ,h1 = ga1d2

1 , · · · ,hL = gaLd2
1 ).

KEY QUERY: We note that B does not know the full master secret key, but she knows
u1 = g

µ1b
∗
1+µ2b

∗
2

2 , µ2 and a1, · · · , aL. This allows her to produce SF keys as follows: when
A requests a key for some pattern P

′
, B chooses random values r′ , t4 ∈ Zp. She sets

r = µ2r
′ and forms the secret key as: β = (u1)

(α
′
+r

′ ∑
i∈I

ai)

.g
−µ2r

′
d∗
2+t4d

∗
4

2 , υi = ur
′ai

1 .
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We obtain that β = g
αd∗

1+rd
∗
1

∑
i∈I

ai−rd∗
2+(α

′
µ1+r

′
µ1

∑
i∈I

ai)d
∗
3+t4d

∗
4

2 and υi = g
rd∗

1ai+r
′
µ1aid

∗
3

2 . The
coefficients of d∗

3,d
∗
4 are uniformly random thus it is a SK key.

CHALLENGE: A submits messages m0,m1 and challenge pattern P , B chooses b ∈
{0, 1} and forms the challenge ciphertext as follows: s, w, z ← Zp,

c1 = mb · (e(g1, g2)αd1·d∗
1)s, c2 = gsd1+wd2

1 · t1 · gzd4
1

• If t1 is equal to gτ1b11 then c2 = gsd1+wd2+τ1d3+zd4
1 is a semi functional ciphertext with

the second appearance of s randomized. In this case B simulates Game2−Q′ .
• If t1 is equal to gτ1b1+τ2b21 then c2 = g

(s+τ2)d1+wd2+τ1d3+zd4

1 which is a semi functional
ciphertext with randomized coefficients for d1 and d2. Thus in this case B simulates
Game3.

Therefore, B can leverage A’s non-negligible difference of advantage between these
two games to achieve a non-negligible advantage against DS1. □

Combining lemmas 4.3.4 and 4.3.5 we obtain lemma 6.2.3. Along with lemmas 2.3.2,
4.3.1 and 4.3.2, this completes the proof of theorem 4.3.2.

Note 4.3.2 Our first WIBE does not satisfy pattern-hiding security. We can easily see
that as in order to decrypt, one must know which parts of her secret key she has to take
according to the ciphertext pattern. That means that this pattern must be given to make
decryption working, and thus the scheme is not pattern-hiding.

4.3.2 Our Pattern-Hiding WIBE Scheme

Intuition. Additionally we tried to add pattern-hiding security to our first WIBE scheme.
We based on work on the works of Lewko et al. [91] and Okamoto et al. [115, 114]:
they propose Inner Product Encryption (IPE) schemes with different levels of security.
We easily see a similarity between strong (resp. weak) attribute-hiding security of IPE,
Definition 4.2.3, and pattern-hiding, Definition 4.2.3 (resp. anonymity, Definition 4.1.5)
security of WIBE. It is that similarity that we are going to exploit.

First let us briefly present the ideas of the above quoted works. Let L ∈ N be the vectors
length. In these works each position of the vector is associated to a different vector
of the DPVS, thus they need a DPVS with dimension L. Actually they use DPVS with
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dimension L+ 1 to have one vector that “carries” the scheme secret key α (as we did in
our first scheme).
To bring security (indistinguishability and weak attribute-hiding) [91] increases the DPVS
dimension to 2L + 3 to add 1-dimensional randomness space to the secret keys, 1-
dimensional randomness space to the ciphertexts and L-dimensional hidden subspace
to realize the semi-functional forms of the secret keys and ciphertexts in the security
proof. [115] improved [91]’s scheme security: in the latter, the security assumption is
non-standard and non-static, while in the former the security assumption is the DLin
assumption, which is a standard, static assumption that brings higher security. This is
done at the cost of less efficiency as they increase by n− 1 the dimension of the secret
keys randomness space, thus the DPVS dimension is now equal to 3L+ 2.
Finally, to bring fully attribute-hiding security, [114] increased the hidden subspace from
L to 2L, which results in a scheme with DPVS dimension equals to 4L+2. This enlarge-
ment in needed as Okamato et al. extended the Dual System Encryption framework:
secret keys can now have three forms (normal, temporal 1 and temporal 2) while cipher-
texts can have five forms (normal, temporal 0, temporal 1, temporal 2 and unbiased).

Based on that, we transform [114]’s IPE scheme in a WIBE scheme with keys patterns
space equals to {0, 1}L\

{
0L
}

and ciphertexts patterns space equals to {0, ⋆}L\
{
⋆L
}

.
Our idea to deal with wildcards is simply to only keep the pattern positions equals to 1

in the secret key and the pattern positions equals to 0 in the ciphertext. This gives us
our second WIBE scheme, presented in Figure 4.11.

It is important here to notice that the decryption condition in our second WIBE is
expressed differently from the one of our first WIBE. Indeed, for patterns P ,P ∗ in
respectively {0, 1}L\

{
0L
}

and {0, ⋆}L\
{
⋆L
}

, we have that P ∈⋆ P ∗ =⇒ ∀i ∈ [L], if

P ∗
i ̸= ⋆ then Pi = P ⋆

i = 0 and thus I ∩
−
W (P ∗) = ∅.

Our pattern-hiding scheme. In Figure 4.11 we present our pattern-hiding WIBE
scheme.

Theorem 4.3.3 Our WIBE scheme is correct.

Proof 4.3.6

e(c2, skP
′ ) = e

gs1d0+s2d4L+1

1 ·
∏

i∈
−
W (P )

hs3i , g
αd∗

0+
∑
j∈I

rjd
∗
j+

L∑
l=1

ηl·d∗3L+l

2


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• Setup(λ, L): generate an asymmetric bilinear pairing group Γ =
(p,G1,G2,GT , g1, g2, e) for prime order p. Sample random dual orthonormal
bases (D,D∗) ← Dual(Z4L+2

p ). Let d0, · · · ,d4L+1 denote the elements of D
and d∗

0, · · · ,d∗
4L+1 denote the elements of D∗. Pick α← Zp. The public key is

computed as: pk = (Γ, e(g1, g2)
αd0.d

∗
0 , gd0

1 , g
d4L+1

1 ,h1 = gd1
1 , · · · ,hL = gdL

1 ) and
the master secret key is msk = (α, g

d∗
0

2 , g
d∗
1

2 , · · · g
d∗
L

2 , g
d∗
3L+1

2 · · · , gd
∗
4L

2 ).
• KeyGen(msk,P

′
): pick r,η ∈ ZL

p . The secret key is skP
′ =

g
αd∗

0+
∑
j∈I

rjd
∗
j+

L∑
l=1

ηl·d∗
3L+l

2 .
• Encrypt(pk,P ,m ∈ GT ): choose s1, s2, s3 ← Zp and compute ct = (c1, c2)

where

c1 = m · (e(g1, g2)αb
∗
0·b0)s1 , c2 = g

s1d0+s2d4L+1

1 ·
∏

i∈
−
W (P )

hs3i .

• Decrypt(skP
′ , ct): compute c1 · 1

e(c2,sk
P

′ )
.

Figure 4.11: Our identity-based encryption with wildcards scheme in prime order group, with
adaptive indistinguishability and adaptive pattern-hiding security.

= e
(
gs1d0
1 , g

αd∗
0

2

)
· e

g
∑

i∈
−
W (P )

di·s3

1 , g

∑
j∈I

rjd
∗
j

2


The last row is obtained thanks to dual vector spaces properties. The first pairing
cancels itself with the pairing in c1. Now, let’s see the value of

∑
i∈

−
W (P )

di ·
∑
j∈I

d∗
j . As user

with pattern P
′
is allowed to decrypt, I ∩

−
W (P ) = ∅, and thanks to dual vector spaces

properties, the above product is equal to 0 and decryptor obtains m. □

Security. The following theorem establishes the security of our new WIBE scheme.

Theorem 4.3.4 If XDLin1,XDLin2 hold, then our scheme satisfies adaptive indistin-
guishability and is pattern-hiding, in the standard model.

We are going to prove this theorem in two steps: first by proving the pattern-hiding
security, then the adaptive indistinguishability.

Pattern-hiding security. Let us start with the proof that our scheme is pattern-hiding,
as stated by the following lemma.
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Lemma 4.3.6 If XDLin1,XDLin2 hold, then our scheme satisfies pattern-hiding security.

The proof is done as in [114] (Section 4.3.3), except that it is in the asymmetric setting.
The different forms of ciphertext are defined according to challenge patterns P 0,P 1. c1
is the same in all forms, just c2 is different. We use a sequence of 4Q + 3 games:

• Game0: is the original pattern-hiding security game, presented in Figure 4.7.
• Game1: is as Game0 except that the ciphertext is changed to temporal 0 form: let
b ∈ {0, 1} , t ∈ Zp and suppose that P b

1 = 0. Define c2 as

g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+tdL+1

1 (4.1)

This game is also called Game2−0−4.
• For 1 ≤ h ≤ Q (the number of keys queried), we define the following 4 games:

– Game2−h−1: in this game, the challenge ciphertext is changed to temporal 1
form: let b ∈ {0, 1} , t, u, ũ ∈ Zp. Define c2 as

g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P b)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1 (4.2)

and the first h− 1 keys are temporal 2 forms: let x ∈ ZL
p be a random vector.

Define the key as

g
αd∗

0+
∑
j∈I

rjd
∗
j+

∑
j∈I

xjd
∗
2L+j+

L∑
l=1

ηl·d∗
3L+l

2 (4.3)

while the remaining keys are normal.
– Game2−h−2: in this game the h-th key is changed to temporal 1 form: let

z ∈ ZL
p be a random vector. Define the key as

g
αd∗

0+
∑
j∈I

rjd
∗
j+

∑
j∈I

zjd
∗
L+j+

L∑
l=1

ηl·d∗
3L+l

2 (4.4)

while the remaining keys and the challenge ciphertext are the same as in
Game2−h−1.

– Game2−h−3: in this game, challenge ciphertext is changed to temporal 2 form:
let b ∈ {0, 1} , t, t̃, u, ũ ∈ Zp. Define c2 as

g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P 0)

dL+i+t̃
∑

i∈
−
W (P 1)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

(4.5)
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while all the queried keys are the same as in Game2−h−2.
– Game2−h−4: in this game, the h-th key is changed to temporal 2 form (eq. 4.3)

while the remaining keys and the challenge ciphertext are as in Game2−h−3.

• Game3: the challenge ciphertext is changed to unbiased form: let b ∈ {0, 1} , w, w̃, t, t̃,
u, ũ ∈ Zp. Define c2 as

g

s1d0+s2d4L+1+w
∑

i∈
−
W (P 0)

di+w̃
∑

i∈
−
W (P 1)

di+t
∑

i∈
−
W (P 0)

dL+i+t̃
∑

i∈
−
W (P 1)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

(4.6)
while all the queried keys are temporal 2 form (eq. 4.3). In this game, the advan-
tage of adversary is 0.

Informally, indistinguishability between those games is proven as in the original proof,
using problems 1,2 and 3 (Definitions 2.3.5, 2.3.6 and 2.3.7). We present the informal
security proof in Figure 4.12.

• Step 1: we prove that if there exists an adversary that can distinguish Game0

from Game1 then there exists an adversary that breaks Problem 1. This is
formalized by Lemma 4.3.7.

• Step 2: we show that Game2−(h−1)−4 can conceptually be changed into
Game2−h−1. The advantage of an adversary in distinguishing theses games
is equal to 4/p when h = 1, otherwise it is equal to 3/p. This is summarized
by Lemma 4.3.8.

• Step 3: we prove that if there exists an adversary that can distinguish
Game2−h−1 from Game2−h−2 then there exists an adversary that breaks Prob-
lem 2, as stated in Lemma 4.3.9.

• Step 4: we show that Game2−h−2 can conceptually be changed into
Game2−h−3. The advantage of an adversary in distinguishing theses games
is equal to 4

p|I
+ 5/p. Here we had to modify [114]’s change of bases as it was

not working with our scheme. This is summarized in Lemma 4.3.10.
• Step 5: we prove that if there exists an adversary that can distinguish

Game2−h−3 from Game2−h−4 then there exists an adversary that breaks Prob-
lem 3 as formalized by Lemma 4.3.11.

• Step 6: we show that Game2−Q−4 can conceptually be changed into Game3.
The advantage of an adversary in distinguishing theses games is equal to
3/p, as stated in Lemma 4.3.12.

Figure 4.12: Informal security proof for our pattern-hiding identity-based encryption with wild-
cards scheme.
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We now start the formal proof.

Lemma 4.3.7 For any adversary A, there exists a probabilistic adversary B against
Problem 1, whose running time is essentially the same as that of A, such that for any
security parameter λ,

∣∣∣Adv(0)A (λ)− Adv
(1)
A (λ)

∣∣∣ ≤ AdvP1
B (λ).

Proof 4.3.7 To prove lemma 4.3.7, we construct a probabilistic machine B against
Problem 1 using an adversary A in a security game (Game0 or Game1) as a black box
as follows.

INIT: B is given a Problem 1 instance (Γ,D, D̂∗, eβ,1, {ei}i∈J2,nK).

SETUP: B plays a role of the challenger in the security game against adversary A. She
provides A a public key pk = (Γ, e(g1, g2)

αd0.d
∗
0 , gd0

1 , g
d4L+1

1 ,h1 = gd1
1 , · · · ,hL = gdL

1 ) of
Game0′ (and Game1).

KEY QUERY: When a key query is issued for a pattern P , B answers normal key skP ,
that is computed using B̂∗ of the Problem 1 instance.

CHALLENGE: When B receives an encryption query with challenge plaintext m and
patterns P 0,P 1 from A, B computes the challenge ciphertext (c1, c2) s.t.,

c1 = m · e(g1, g2)s1αd0d
∗
0 c2 = g

s1d0+s2d4L+1

1 · eβ,1 ·
∏

i∈
−
W (P b)\{1}

ei,

where s1, s2 ← Zp, b← {0, 1} and {di}i=0,4L+1 , eβ,1, {ei}i=2,··· ,L is part of the Problem 1
instance.

GUESS: A finally outputs bit b′. If b = b
′, B outputs β ′

= 1. Otherwise, B outputs β ′
= 0.

Let us see that the distribution of A’s view in the above-mentioned game, simulated
by B given a Problem 1 instance with β ∈ {0, 1}, is the same as that in Game0 (resp.
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Game1) if β = 0 (resp. β = 1).

We will consider the distribution of c2. When β = 0, challenge ciphertext element c2 is

c2 = g
s1d0+s2d4L+1

1 · eβ,1 ·
∏

i∈
−
W (P b)\{1}

ei

= g

s1d0+s2d4L+1+ωd1+γd4L+1+ω
∑

i∈
−
W (P b)\{1}

di

1

= g

s1d0+s3
∑

i∈
−
W (P b)

+s
′
2d4L+1

1

where s3 = ω, s
′
2 = s2 + γ, s1 ∈ Zp are uniformly and independently distributed.

When β = 1, challenge ciphertext element c2 is

c2 = g
s1d0+s2d4L+1

1 · eβ,1 ·
∏

i∈
−
W (P b)\{1}

ei

= g

s1d0+s2d4L+1+ωd1+zdL+1+γd4L+1+ω
∑

i∈
−
W (P b)\{1}

di

1

= g

s1d0+s3
∑

i∈
−
W (P b)

+tdL+1+s
′
2d4L+1

1

where t = z, s3 = ω, s
′
2 = s2 + γ, s1 ∈ Zp are uniformly and independently distributed.

Therefore, the above c1, c2 give a challenge ciphertext in Game0 when β = 0 and that in
Game1 when β = 1. Thus,∣∣∣Adv(0′ )A (λ)− Adv

(1)
A (λ)

∣∣∣
=

∣∣Pr [B1(λ, ϱ)→ 1|ϱ← GP1
0 (λ, L)

]
− Pr

[
B1(λ, ϱ)→ 1|ϱ← GP1

1 (λ, L)
]∣∣

≤ AdvP1
B1
(λ).

This complete the proof of lemma 4.3.7. □
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Lemma 4.3.8 For any adversary A,
∣∣∣Adv(2−(h−1)−4)

A (λ)− Adv
(2−h−1)
A (λ)

∣∣∣ ≤ ϵ, for ϵ = 4/p

when h = 1 and ϵ = 3/p when h ≥ 2.

Proof 4.3.8 We start with the case h = 1, i.e. the proof for
∣∣∣Adv(1)A (λ)− Adv

(2−1−1)
A (λ)

∣∣∣ ≤
4/p.

We define an intermediate game, Game1′ , and will show the equivalence of the distri-
bution of the views of A in Game1 and that in Game1′ and those in Game2−1−1 and in
Game1′ .

Game1′ : Game1′ is the same as Game1 except that the c2 of the challenge ciphertext
for (challenge plaintext m and) patterns P 0,P 1 is:

c2 = g

s1d0+s3
∑

i∈
−
W (P b)

di+
2L∑
i=1

ridL+i+s2d4L+1

1

where ri ← Zp for i ∈ [2L], r = (r1, · · · , r2L) ̸= 02L, and all the other variables are
generated as in Game1.

Let us see that the distribution of (pk,
{

sk(j)
}
j∈[Q]

, c1, c2) in Game1 and that in Game1′

are equivalent except with negligible probability.

We will consider the distribution in Game1. We define new dual orthonormal bases
(B,B∗) below. Pick F ← GL(2L,Zp), and set

bL+1

...
b3L

 = F−1 ·


dL+1

...
d3L

 ,


b∗L+1

...
b∗3L

 = F⊤ ·


d∗
L+1
...

d∗
3L

 ,

and
B = (d0, · · · ,dL, bL+1, · · · , b3L,d3L+1, · · · ,d4L+1)

B∗ = (d∗
0, · · · ,d∗

L, b
∗
L+1, · · · , b∗3L,d∗

3L+1, · · · ,d∗
4L+1).
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Then, B,B∗ are dual orthonormal bases. Notice that then dL+1 is equal to F ·


bL+1

...
b3L

,

thus can be written as dL+1 = f1,1bL+1 + f1,2bL+2 + · · ·+ f1,2Lb3L, with

F =


f1,1 f1,2, · · · f1,2L

f2,1 f2,2, · · · f2,2L
...

f2L,1 f2L,2, · · · f2L,2L

 .

Challenge ciphertext c2 is expressed as

g

s1d0+s3
∑

i∈
−
W (P b)

di+tbL+1+s2d4L+1

1 = g

s1b0+s3
∑

i∈
−
W (P b)

bi+t(f1,1bL+1+f1,2bL+2+···+f1,2Lb3L)+s2b4L+1

1

= g

s1b0+s3
∑

i∈
−
W (P b)

bi+
2L∑
i=1

ribL+i+s2b4L+1

1

where s1, s2, s3 ← Zp and r = (ri = tf1,i)i∈ [2L]. Vector r is uniformly distributed in Z2L
p

\
{
02L
}

except for probability 1/p and independent of all the other variables.

In Game1, skP is g
αd∗

0+
∑
j∈I

rjd
∗
j+

L∑
l=1

ηl·d∗
3L+l

2 = g
αb∗0+

∑
j∈I

rjb
∗
j+

L∑
l=1

ηl·b∗3L+l

2 , where r, {ηl}l∈[L] ← Zp,
for every queried key.

In the light of the adversary’s view, (B,B∗) is consistent with public key (Γ, e(g1, g2)
αd0·d∗

0 , gd0
1 ,

g
d4L+1

1 ,h1 = gd1
1 , · · · ,hL = gdL

1 ). Moreover, the challenge ciphertext in Game1 can be
conceptually changed to that in Game1′ except with probability 1/p.

Let’s see that the distribution of (pk,
{

sk(j)
}
j∈[Q]

, c1, c2) in Game2−1−1 and that in Game1′

are equivalent except with probability 3/p.

We will consider the distribution in Game2−1−1. We define new dual orthonormal bases
(B,B∗) as above. Challenge ciphertext c2 is expressed as

g

s1d0+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P b)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i+s2d4L+1

1

= g

s1b0+s3
∑

i∈
−
W (P b)

bi+t
∑

i∈
−
W (P b)

(
2N∑
j=1

fi,jbL+j)+u
∑

i∈
−
W (P 0)

(
2L∑
j=1

fi,jbL+j)

1 · g
ũ

∑
i∈

−
W (P 1)

(
2L∑
j=1

fi,jbL+j)+s2b4L+1

1
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= g

s1b0+s3
∑

i∈
−
W (P b)

bi+
2L∑
i=1

ribL+i+s2b4L+1

1

where s1, s2, s3 ← Zp and vector r such that for i ∈ [2L], ri = t
∑

j∈
−
W (P b)

fj,i +u
∑

j∈
−
W (P 0)

fj,i+

ũ
∑

j∈
−
W (P 1)

fj,i.

Vector r ̸= 02L except with probability 3/p, is uniformly distributed in Z2L
p \
{
02L
}

, and
independent of all the other variables. For the queried keys, the same as above holds
also in Game2−1−1.

In the light of the adversary’s view, (B,B∗) is consistent with public key (Γ, e(g1, g2)
αd0·d∗

0 , gd0
1 ,

g
d4L+1

1 ,h1 = gd1
1 , · · · ,hL = gdL

1 ). Moreover, the challenge ciphertext in Game2−1−1 can
be conceptually changed to that in Game1′ except with probability 3/p.

This completes the proof when h = 1.

Now h ≥ 2, i.e. proof for
∣∣∣Adv(2−(h−1)−4)

A (λ)− Adv
(2−h−1)
A (λ)

∣∣∣ ≤ 3/p.

We define an intermediate game, Game2−(h−1)−4′ , and will show the equivalence of the
distribution of the views of A in Game2−(h−1)−4 and that in Game2−(h−1)−4′ and those in
Game2−h−1 and in Game2−(h−1)−4′ .

Game2−(h−1)−4′ : Game2−(h−1)−4′ is the same as Game2−(h−1)−4 except that the element
c2 of the challenge ciphertext for (challenge plaintext m and) patterns P 0,P 1 is:

c2 = g

s1d0+s3
∑

i∈
−
W (P b)

di+
L∑

i=1
ridL+i+u

∑
i∈

−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i+s2d4L+1

1

where ri ← Zp for i ∈ [L], r = (r1, · · · , rL) ̸= 0L, and all the other variables are gener-
ated as in Game2−(h−1)−4.
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Let’s see that the distribution of (pk,
{

sk(j)
}
j∈[Q]

, c1, c2) in Game2−(h−1)−4 and that in

Game2−(h−1)−4′ are equivalent except with probability 2/p.

We will consider the distribution in Game2−(h−1)−4. We define new dual orthonormal
bases (B,B∗) below. We generate F ← GL(L,Zp), and set

bL+1

...
b2L

 = F−1


dL+1

...
d2L



b∗L+1

...
b∗2L

 = F⊤


d∗
L+1
...

d∗
2L


and

B = (d0, · · · ,dL, bL+1, · · · , b2L,d2L+1, · · · ,d4L+1)

B∗ = (d∗
0, · · · ,d∗

L, b
∗
L+1, · · · , b∗2L,d∗

2L+1, · · · ,d∗
4L+1).

Then B and B∗ are dual orthonormal bases. Challenge ciphertext c2 is expressed as

g

s1d0+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P0)

dL+i+t̃
∑

i∈
−
W (P1)

dL+i+u
∑

i∈
−
W (P0)

d2L+i+ũ
∑

i∈
−
W (P0)

d2L+i+s2d4L+1

1

= g

s1b0+s3
∑

i∈
−
W (P b)

bi+t
∑

i∈
−
W (P0)

(
L∑

j=1
fi,jbL+j)+t̃

∑
i∈

−
W (P1)

(
L∑

j=1
fi,jbL+j)+u

∑
i∈

−
W (P0)

b2L+i+ũ
∑

i∈
−
W (P0)

b2L+i+s2b4L+1

1

= g

s1b0+s3
∑

i∈
−
W (P b)

bi+
∑L

i=1 ribL+i+u
∑

i∈
−
W (P0)

b2L+i+ũ
∑

i∈
−
W (P0)

b2L+i+s2b4L+1

1

where s1, s2, s3, u, ũ ← Zp and r is defined such that for i ∈ [L], ri = t
∑

j∈
−
W (P 0)

fj,i + t̃
∑

j∈
−
W (P 1)

fj,i. Thus r ̸= 0L except with probability 2/p, is uniformly distributed

and independent of all the other variables.

When 1 ≤ j ≤ h− 1, the j-th queried key skP (j) is

g
αd∗

0+
∑
j∈I

rjd
∗
j+

∑
j∈I

xjd2L+j+
L∑

l=1
ηl·d∗

3L+l

2

= g
αb∗0+

∑
j∈I

rjb
∗
j+

∑
j∈I

xjb2L+j+
L∑

l=1
ηl·b∗3L+l

2

where {xj, rj}i,j∈[L] , {ηl}l∈[L] ← Zp. When h ≤ j ≤ Q, the j-th queried key skP (j) is

g
αd∗

0+
∑
j∈I

rjd
∗
j+

L∑
l=1

ηl·d∗
3L+l

2
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= g
αb∗0+

∑
j∈I

rjb
∗
j+

L∑
l=1

ηl·b∗3L+l

2

where{rj}j∈[L] , {ηl}l∈[L] ← Zp.

In the light of the adversary’s view, (B,B∗) is consistent with public key (Γ, e(g1, g2)
αd0·d∗

0 , gd0
1 ,

g
d4L+1

1 ,h1 = gd1
1 , · · · ,hL = gdL

1 ). Moreover, the challenge ciphertext in Game2−(h−1)−4

can be conceptually changed to that in Game2−(h−1)−4′ except with probability 2/p.

Let us see that the distribution of (pk,
{

sk(j)
}
j∈[Q]

, c1, c2) in Game2−h−1 and that in

Game2−(h−1)−4′ are equivalent except with probability 1/p.

We will consider the distribution in Game2−h−1. We define new dual orthonormal bases
(B,B∗) as above. Challenge ciphertext c2 is expressed as

g

s1d0+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P b)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 0)

d2L+i+s2d4L+1

1

= g

s1b0+s3
∑

i∈
−
W (P b)

bi+t
∑

i∈
−
W (P b)

(
L∑

j=1
bL+j)+u

∑
i∈

−
W (P 0)

b2L+i+ũ
∑

i∈
−
W (P 0)

b2L+i+s2b4L+1

1

= g

s1b0+s3
∑

i∈
−
W (P b)

bi+
L∑

i=1
ridL+i+

∑L
i=1 bL+i+u

∑
i∈

−
W (P 0)

b2L+i+ũ
∑

i∈
−
W (P 0)

b2L+i+s2b4L+1

1

where s1, s2, s3, u, ũ ← Zp and vector r such that for i ∈ [L], ri = t
∑

j∈
−
W (P b)

fj,i. Vector

r ̸= 0 except with probability 1/p, then is uniformly distributed in ZL
p \
{
0L
}

, and indepen-
dent of all the other variables.
For the queried keys, the same as above holds also in Game2−h−1.

In the light of the adversary’s view, (B,B∗) is consistent with public key (Γ, e(g1, g2)
αd0·d∗

0 , gd0
1 ,

g
d4L+1

1 ,h1 = gd1
1 , · · · ,hL = gdL

1 ). Moreover, the challenge ciphertext in Game2−h−1 can
be conceptually changed to that in Game2−(h−1)−4′ except with probability 1/p.

This completes the proof when h ≥ 2, and thus also the proof of lemma 4.3.8. □
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Lemma 4.3.9 For any adversary A, there exists a probabilistic adversary B, whose
running time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv2−h−1

A (λ)− Adv2−h−2
A (λ)

∣∣ ≤ AdvP2
B (λ).

Proof 4.3.9 We construct a probabilistic adversary B against Problem 2 using an ad-
versary A in a security game (Game2−h−1 or Game2−h−2) as a black box as follows.

INIT: B is given an integer h and (Γ, D̂,D∗,
{
h∗
β,i, ei

}
i∈[Q]

).

SETUP: B plays a role of the challenger in the security game against adversary A. She
provides A elements Γ, D̂

′ of Game2−(h−1)−4 (and Game2−h−1) for public key, where
D̂

′
= (d0, · · · ,dL, d4L+1) is obtained from the Problem 2 instance.

KEY QUERY: when the ι-th key query is issued for a pattern P , B answers as follows:
• When 1 ≤ ι ≤ h− 1, B answers keys of temporal 2 form, that are computed using
B∗ of the Problem 2 instance.

• When ι = h, B calculates skP using
{
h∗
β,i

}
i∈[Q]

, {d∗
i }i=0,3L+1,··· ,4L of the Problem 2

instance as follows: η = (η1, · · · , ηL)← ZL
p , ξi ← Zp for i ∈ [L]

skP = g
αd∗

0
2 ·

∏
i∈I

h∗ξi
β,i · g

∑
i∈[L]

ηid
∗
3L+i

2

• When ι ≥ h+ 1, B answers normal keys using B∗ of the Problem 2 instance.

CHALLENGE: when B receives an encryption query with challenge plaintext m and
patterns P 0,P 1 from A, she computes challenge ciphertext (c1, c2) s.t.

c1 = m · e(g1, g2)s1d0·d∗
0

c2 = g
s1d0+s2d4L+1

1 ·
∏

i∈
−
W (P b)

ei · g
u

∑
i∈

−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1
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where s1, s2, u, ũ ← Zp, b ← {0, 1} and {di}i=0,2L+1,··· ,3L,4L+1 , {ei}i∈[L] is a part of the
Problem 2 instance.

GUESS: A outputs bit b′. If b = b
′, B2−1 outputs β ′

= 1. Otherwise, B2−1 outputs β ′
= 0.

Let us see that if β = 0, then the distribution of A’s view in the above mentioned game,
simulated by B, is the same that in Game2−h−1, and that if β = 1 it is the same that in
Game2−h−2. Ciphertext element c2 is

g
s1d0+s2d4L+1

1 ·
∏

i∈
−
W (P b)

ei · g
u

∑
i∈

−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

= g
s1d0+s2d4L+1

1 ·
∏

i∈
−
W (P b)

g
ωdi+σdL+i

1 · g
u

∑
i∈

−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

= g

s1d0+s2d4L+1+ω
∑

i∈
−
W (P b)

di+σ
∑

i∈
−
W (P b)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

where s1, s2, ω, σ, u, ũ ∈ Zp are uniformly distributed.

Now let us see the value of skP . When β = 0, skP in case ι = h

g
αd∗

0
2 ·

∏
i∈I

h∗ξi
β,i · g

∑
i∈[L]

ηid
∗
3L+i

2 = g
αd∗

0
2 ·

∏
i∈I

g
δξid

∗
i+ξiδ0d

∗
3L+i

2 · g
∑

i∈[L]

ηid
∗
3L+i

2

= g
αd∗

0+
∑
j∈I

δξid
∗
j+

∑
i∈[L]

ϕid
∗
3L+i

2

where α, δ are uniformly and independently distributed and ϕi = ξiδ0 + ηi if i ∈ I and
ϕi = ηi otherwise. Therefore, generated c2, skP have the same joint distribution as in
Game2−h−1. When β = 1, skP in case ι = h

g
αd∗

0
2 ·

∏
i∈I

h∗ξi
β,i · g

∑
i∈[L]

ηid
∗
3L+i

2

= g
αd∗

0
2 ·

∏
i∈I

g
ξiδd

∗
i+ξiτdL+i+ξiδ0d

∗
3L+i

2 · g
∑

i∈[L]

ηid
∗
3L+i

2

= g
αd∗

0+
∑
i∈I

δξid
∗
j+

∑
i∈I

τξid
∗
L+i+

∑
i∈[L]

ϕid
∗
3L+i

2

where α, δ, τ are uniformly and independently distributed and ϕi = ξiδ0 + ηi if i ∈ I and
xi = ηi otherwise. Therefore, generated c2 and skP have the same joint distribution as
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in Game2−h−2. Thus
∣∣Adv2−h−1

A (λ)−A2−h−2(λ)
∣∣ ≤ AdvP2

B (λ). □

Lemma 4.3.10 For any adversary A,
∣∣∣Adv(2−h−2)

A (λ)− Adv
(2−h−3)
A

∣∣∣ ≤ 4
p|I| + 5/p.

This is the only part of the proof that cannot be done as in the original proof. Indeed, as
already said, [114] proved that Game2−h−2 can be conceptually changed to Game2−h−3

with a change of bases and an intermediate game. However, with their change of bases
D,D∗ to B,B∗, the h-th key of our scheme can no longer decrypt the ciphertext. Thus,
the adversary can distinguish the different games as in one case the h-th key decrypts
the challenge ciphertext but not in the other case. That is because, with the definition of
B,B∗, some elements of D (resp. D∗) are now linear combination of elements of B (resp.

B∗). Thus, the set
−
W (P b) ∩ I is no longer equal to ∅ (the decryption condition) but is

equal to
−
W (P b). In our proof, we change the way the new dual orthonormal bases are

computed. We define new dual orthonormal bases (B,B∗), following the idea of the last
lemma in the original proof. This solves the issue raised by our scheme’s construction
and allows us to prove the indistinguishability between the two games.

Proof 4.3.10 We will show that distribution (pk,
{

sk(j)
}
j∈[Q]

, c1, c2) in Game2−h−2 and

that in Game2−h−3 are equivalent. For that purpose, we define an intermediate game:
Game2−h−2′ , that is the same as Game2−h−2 except that element c2 of the challenge
ciphertext for challenge plaintext m and patterns P 0,P 1 is:

c2 = g

s1d0+s2d4L+1+
∑

i∈
−
W (P b)

s̃idi+
l∑

i=1
νidL+i

1 · g
u

∑
i∈

−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

where {s̃i ∈ Zp}i∈[L] ,ν ← ZL
p and all the other variables are generated as in Game2−h−2.

Notice that ν is equal to zero at position i such that i /∈
−
W (P 0) ∧ i /∈

−
W (P 1).
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Let us see that the distribution (pk,
{

sk(j)
}
j∈[Q]

, c1, c2) in Game2−h−2 and that in Game2−h−2′

are equivalent except with negligible probability.

We will consider the distribution in Game2−h−2. We define new dual orthonormal bases
(B,B∗), following the idea of the last lemma in the original proof. For i ∈ [L] let θi, τi ← Zp

and set

bi = τ−1
i di + θidL+i, b∗i = τid

∗
i bL+i = τidL+i b∗L+i = −θid∗

i + τ−1
i d∗

L+i ,

and
B = (d0, b1 · · · , bL, bL+1, · · · , b2L,d2L+1 · · ·d4L+1),

B∗ = (d∗
0, b

∗
1, · · · , b∗L, b∗L+1, · · · , b∗2L,d∗

2L+1, · · · ,d∗
4L+1).

We then easily verify that B and B∗ are dual orthonormal. The h-th queried key and
challenge ciphertext (sk(h), c1, c2) in Game2−h−2 are expressed over bases (D,D∗) and
(B,B∗) as

sk(h) = g
αd∗

0+
∑
j∈I

rjd
∗
j+

∑
j∈I

zjd
∗
L+j+

L∑
l=1

ηld
∗
3L+l

2

= g
αb∗0+

∑
j∈I

rjτjb
∗
j+

∑
j∈I

zj(τjb
∗
L+j+θjb

∗
j )+

L∑
l=1

ηlb
∗
3L+l

2

= g
αb∗0+

∑
j∈I

(rjτj+zjθj)b
∗
j+

∑
j∈I

zjτjb
∗
L+j+

L∑
l=1

ηlb
∗
3L+l

2

c2 = g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P b)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

= g

s1b0+s2b4L+1+s3
∑

i∈
−
W (P b)

(τibi−θibL+i)+t
∑

i∈
−
W (P b)

b∗L+i+u
∑

i∈
−
W (P 0)

b2L+i

1 · g
ũ

∑
i∈

−
W (P 1)

b2L+i

1

= g

s1b0+s2b4L+1+s3
∑

i∈
−
W (P b)

τibi+
∑

i∈
−
W (P b)

(t−s3θi)b∗L+i+u
∑

i∈
−
W (P 0)

b2L+i

1 · g
ũ

∑
i∈

−
W (P 1)

b2L+i

1

c1 = m.e(g1, g2)sd
∗
0d0 = m.e(g1, g2)sb

∗
0b0

where r̃j = rjτj + zjθj, z̃j = zjτj for j ∈ I and r̃j = wj = 0 otherwise, and s̃i = s3τi,

νi = t − s3θi for i ∈
−
W (P b) and s̃i = νi = 0 otherwise. s̃i, r̃i,ν,w are uniformly dis-

tributed for the position different of 0 and independent of all the other variables except
with probability 2

p|I| + 2/p.
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In the light of the adversary view, both (D,D∗) and (B,B∗) are consistent with public
key pk and the answered keys

{
sk(j)

}
j ̸=h

. Therefore, by using the above result for the

distribution of (sk(h), c1, c2),
{

sk(j)
}
j∈[Q]

and c2 can be expressed as keys and ciphertext

in two ways, in Game2−h−2 over bases (D,D∗) and in Game2−h−2′ over bases (B,B∗).
Thus, Game2−h−2 can be conceptually changed to Game2−h−2′ , except with probability
2
p|I| + 2/p.

Now let us see that the distribution (pk,
{

sk(j)
}
j∈[Q]

, c1, c2) in Game2−h−3 and that in

Game2−h−2′ are equivalent except with negligible probability. As above, we set new
bases (B,B∗). The h-th queried key sk(h) in Game2−h−3 is expressed as above in bases
D∗ and B∗, and the part of the ciphertext c1 in Game2−h−3 is given as above. Element c2
in Game2−h−3 is expressed over bases D and B as

g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P 0)

dL+i+t̃
∑

i∈
−
W (P 1)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

= g

s1b0+s2b4L+1+s3
∑

i∈
−
W (P b)

(τibi−θibL+i)+t
∑

i∈
−
W (P 0)

τ−1
i bL+i+t̃

∑
i∈

−
W (P 1)

τ−1
i bL+i+u

∑
i∈

−
W (P 0)

b2L+i

1

·g
ũ

∑
i∈

−
W (P 1)

b2L+i

1

We can define ν the coefficient vector of (bL+1, · · · ,d2L) as for i ∈ [L]:

νi =



τ−1
i t if i ∈

−
W (P 0) ∧ i /∈

−
W (P 1) ∧ b = 1

τ−1
i t̃ if i ∈

−
W (P 1) ∧ i /∈

−
W (P 0) ∧ b = 0

−s3θi + τ−1
i t if i ∈

−
W (P 0) ∧ i /∈

−
W (P 1) ∧ b = 0

−s3θi + τ−1
i t̃ if i ∈

−
W (P 1) ∧ i /∈

−
W (P 0) ∧ b = 1

−s3θi + τ−1
i t+ τ−1

i t̃ if i ∈
−
W (P 0) ∧ i ∈

−
W (P 1)

0 otherwise

and s̃i = s3τi for i ∈
−
W (P b). ν, {s̃i}i=1,··· ,L are uniformly distributed for the position

different of 0 and independent of the other variables except with probability 3/p .

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

97



Chapter 4 – First Cryptographic Tool: Identity-Based Encryption with Wildcards

Similar as above, we see that
{

sk(j)
}
j∈[Q]

and c2 can be expressed as keys and ci-

phertext in two ways, in Game2−h−3 over bases (D,D∗) and in Game2−h−2′ over bases
(B,B∗). Thus Game2−h−3 can be conceptually changed to Game2−h−2′ except with
probability 2

p|I| + 3/p. Combining both, we obtain lemma 4.3.10. □

Lemma 4.3.11 For any adversary A, there exists a probabilistic adversary B, whose
running time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv2−h−3

A (λ)− Adv2−h−4
A (λ)

∣∣ ≤ AdvP3
B (λ).

Proof 4.3.11 We construct a probabilistic adversary B against Problem 3 using an
adversary A in a security game (Game2−h−3 or Game2−h−4) as a black box as follows.

INIT: B is given an integer h and a Problem 3 instance, (Γ, D̂, D̂∗,
{
h∗
β,i, ei,f i

}
i∈[n]).

SETUP: B plays a role of the challenger in the security game against adversary A. She
provides A a public key pk = (Γ, e(g1, g2)

αd0d
∗
0 , gd0

1 , g
d4L+1

1 , gd1
1 , · · · , g

dL
1 of Game2−h−3

(and Game2−h−4), obtained from the Problem 3 instance.

KEY QUERY: when the ι-th key query is issued for a pattern P , B answers as follows:
• When 1 ≤ ι ≤ h− 1, B answers keys of temporal 2 form, that are computed using
D∗ of the Problem 3 instance.

• When ι = h, B calculates skP using (
{
h∗
β,i

}
i∈[L] , {d

∗
i }i=0,3L+1,··· ,4L) of the Problem

3 instance as follows: {σi, ξi}i∈[L] ← Zp,η = (η1, · · · , ηL)← ZL
p

skP = g
αd∗

0+
∑
i∈I

σid
∗
i+

∑
i∈[L]

ηid
∗
3L+i

2 ·
∏
i∈I

h∗ξi
β,i

• When ι ≥ h+ 1, B answers normal keys using D∗ of the Problem 3 instance.
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CHALLENGE: when B receives an encryption query with the challenge plaintext m and
patterns P 0,P 1 from A, B computes the challenge ciphertext (c1, c2) such that

c2 = g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di

1 ·
∏

i∈
−
W (P 0)

ei ·
∏

i∈
−
W (P 1)

f i

c1 = m · (e(g1, g2)αd0·d∗
0)s1

where s1, s2, s3 ← Zp, b ← {0, 1} and ({di}i=0,2L+1,··· ,3L,4L+1 , {ei}i∈[L] , {ei,f i}i∈[L]) is a
part of the Problem 3 instance.

GUESS: A finally outputs bit b′. If b = b
′, B outputs β ′

= 1. Otherwise, B2−2 outputs
β

′
= 0.

Let us see that the distribution of the view of adversary A in the above-mentioned
game, simulated by B given a Problem 3 instance with β ∈ {0, 1}, is the same as that in
Game2−h−3 (resp. Game2−h−4) if β = 0 (resp. β = 1).

We consider the joint distribution of c2 and skP . Ciphertext element c2 is

g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di

1 ·
∏

i∈
−
W (P 0)

ei ·
∏

i∈
−
W (P 1)

f i

= g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+
∑

i∈
−
W (P 0)

(ω
′
bL+i+ω

”b2L+i)

1

·g

∑
i∈

−
W (P 1)

(κ
′
bL+i+κ

”b2L+i)

1

= g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+
∑

i∈
−
W (P 0)

ω
′
bL+i+

∑
i∈

−
W (P 1)

κ
′
bL+i

1

·g

∑
i∈

−
W (P 0)

ω”b2L+i+
∑

i∈
−
W (P 1)

κ”b2L+i

1

where s1, s2, s3, ω
′
, ω”, κ

′
, κ” ∈ Zp are uniformly distributed.

Now let us see the value of skP . When β = 0, skP (in case ι = h) is

g
αd∗

0+
∑
i∈I

σid
∗
i+

∑
i∈[L]

ηid
∗
3L+i

2 ·
∏

i∈I h
∗ξi
β,i
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= g
αd∗

0+
∑
i∈I

σid
∗
i+

∑
i∈[L]

ηid
∗
3L+i+

∑
i∈I

(τξid
∗
L+i+ξiδ0d

∗
3L+i)

2

= g
αd∗

0+
∑
i∈I

σid
∗
i+

∑
i∈I

τξid
∗
L+i+

∑
i∈I

δ0ξiηid
∗
3L+i+

∑
i∈O

ηid
∗
3L+i

2

where α, σ, τ, δ0, {ηi}i∈[L] are uniformly and independently distributed. Therefore, gener-
ated c2, skP have the same joint distribution as in Game2−h−3.
When β = 1, skP (in case ι = h) is

g
αd∗

0+
∑
i∈I

σid
∗
i+

∑
i∈[L]

ηid
∗
3L+i

2 ·
∏

i∈I h
∗ξi
β,i

= g
αd∗

0+
∑
i∈I

σid
∗
i+

∑
i∈[L]

ηid
∗
3L+i+

∑
i∈I

(τξid
∗
2L+i+ξiδ0d

∗
3L+i)

2

= g
αd∗

0+
∑
i∈I

σid
∗
i+

∑
i∈I

τξid
∗
2L+i+

∑
i∈I

ξiδ0ηid
∗
3L+i+

∑
i∈O

ηid
∗
3L+i

2

where α, σ, τ, δ0, {ηi}i∈[L] are uniformly and independently distributed. Therefore, gener-
ated c2, skP have the same joint distribution as in Game2−h−4.

Thus,
∣∣Adv2−h−3

A (λ)−A2−h−4(λ)
∣∣ ≤ AdvP3

B (λ). □

Lemma 4.3.12 For any adversary A,
∣∣∣Adv2−Q−4

A (λ)− Adv3A(λ)
∣∣∣ ≤ 2

p|I| + 3/p.

Proof 4.3.12 To prove this lemma, we will show that distribution (pk, {skP j}j∈[Q] , c1, c2)

in Game2−Q−4 and that in Game3 are equivalent. For that purpose, we define new dual
orthonormal bases (B,B∗) as follows:

We generate θi ← Zp for i ∈ [L] and set for i ∈ [L], b2L+i = d2L+i−θidi, b∗i = d∗
i +θid

∗
2L+i

and
B = (d0, · · · ,d2L, b2L+1, · · · , b3L, b3L+1, · · · , b4L+1),

B∗ = (d∗
0, b

∗
1, · · · , b∗L,d∗

L+1, · · · ,d∗
4L+1)
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We then easily verify that B and B∗ are dual orthonormal, and are distributed the same
as the original bases (D,D∗).

Keys and challenge ciphertext {skP j}j∈[Q] , c1, c2 in Game2−Q−4 are expressed over
bases (D,D∗) and (B,B∗) as

skP j = g
αd∗

0+
∑
i∈I

rjid
∗
i+

∑
i∈I

xjid
∗
2L+i+

L∑
l=1

ηjl ·d
∗
3L+l

2

= g
αb∗0+

∑
i∈I

rji (b
∗
i−θid∗

2L+i)+
∑
i∈I

xjib
∗
2L+i+

L∑
l=1

ηjl ·b
∗
3L+l

2

= g
αb∗0+

∑
i∈I

rji b
∗
i+

∑
j∈I

(xji−r
j
i θi)b

∗
2L+i+

L∑
l=1

ηjl ·b
∗
3L+l

2

c1 = m · e(g1, g2)αd0d
∗
0s = m · e(g1, g2)αb0b

∗
0s

c2 = g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P b)

di+t
∑

i∈
−
W (P 0)

dL+i+t̃
∑

i∈
−
W (P 1)

dL+i+u
∑

i∈
−
W (P 0)

d2L+i+ũ
∑

i∈
−
W (P 1)

d2L+i

1

= g

s1b0+s2b4L+1+s3
∑

i∈
−
W (P b)

bi+t
∑

i∈
−
W (P 0)

bL+i+t̃
∑

i∈
−
W (P 1)

bL+i

1

· g
u

∑
i∈

−
W (P 0)

(b2L+i+θibi)+ũ
∑

i∈
−
W (P 1)

(b2L+i+θibi)

1

= g

s1b0+s2b4L+1+
L∑

i=1
νibi+t

∑
i∈

−
W (P 0)

bL+i+t̃
∑

i∈
−
W (P 1)

bL+i+u
∑

i∈
−
W (P 0)

b2L+i+ũ
∑

i∈
−
W (P 1)

b2L+i

1

where for i ∈ [L]:

x̃i =

{
xji − r

j
i θi if i ∈ I

0 otherwise
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and

νi =



0 if i /∈
−
W (P 0) ∧ i /∈

−
W (P 1)

θiu if i ∈
−
W (P 0) ∧ i /∈

−
W (P 1) ∧ b = 1

θiũ if i ∈
−
W (P 1) ∧ i /∈

−
W (P 0) ∧ b = 0

s3 + uθi if i ∈
−
W (P 0) ∧ i /∈

−
W (P 1) ∧ b = 0

s3 + ũθi if i ∈
−
W (P 1) ∧ i /∈

−
W (P 0) ∧ b = 1

s3 + (u+ ũ)θi if i ∈
−
W (P 1) ∧ i ∈

−
W (P 0)

are uniformly, independently (from other variables) distributed since s3, θ, tj ← Zp, ex-
cept with probability 2

p|I| + 3/p.

In the light of the adversary’s view, both (D,D∗) and (B,B∗) are consistent with public
key pk. Therefore, {skP j}j∈[Q] , c1, c2 can be expressed as keys and ciphertext in two
ways, in Game2−Q−4 over bases (D,D∗) and in Game3 over bases (B,B∗).

Thus, Game2−Q−4 can be conceptually changed to Game3. □

Combining all theses proofs, we obtain that any adversary has no advantage in winning
the security game. Adding to these the fact that Problem 1, Problem 2 and Problem
3 hold if XDLin1,XDLin2 hold, we have proven Lemma 4.3.6.

IND-WIBE-CPA security. We finally prove that our WIBE scheme satisfies indistin-
guishability, as stated in the following lemma.

Lemma 4.3.13 If XDLin1,XDLin2 hold, then our scheme satisfies adaptive indistin-
guishability.

Our proof is similar to the one of [91] (Section 3.5.2). It exploits the dual system
encryption through a sequence of Q+ 3 games, where Q ∈ N is the number of secret
keys an adversary is allowed to query.

• Game0 is the original game given in the WIBE security in Figure 4.1.
• Game1: is the same as Game0 except that the challenge ciphertext (c1, c2) for

challenge plaintexts (m0,m1) and challenge pattern P ∗ is changed into semi-
functional form: s1, s2, s3, t1, · · · , tL ← Zp, b← {0, 1}, and requires that P ∗

1 ̸= ⋆,

c1 = mb · e(g1, g2)αd0·d∗
0s1 , c2 = g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P∗)

di+
L∑

l=1
tldL+l

1

(4.7)
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• Game2−k (k ∈ [Q]): is the same as Game2−(k−1) (for k = 1, Game2−(k−1) is Game1)
except that the reply to the k-th key queried for P is changed into semi-functional
form: α, {rj}j∈I , {ηi, xi}i∈[L] ← Zp,

skP = g
αd∗

0+
∑
j∈I

rjd
∗
j+

L∑
l=1

xld
∗
L+l+

L∑
l=1

ηld
∗
3L+l

2 (4.8)

• Game3: is the same as Game2−Q except that the semi-functional challenge cipher-
text (c1, c2) for challenge plaintexts (m0,m1) and challenge pattern P ∗ is changed
into a randomized form: s′1, {s̃i}i∈[L] ← Zp

c1 = mb · e(g1, g2)αd0·d∗
0s1 , c2 = g

s
′
1d0+s2d4L+1+

L∑
i=1

s̃idi+
L∑

l=1
tldL+l

1
(4.9)

and all the other variables are generated as in Game2−Q.

Informally, the proof works as explained in Figure 4.13.

• Step 1: we prove that if an adversary can distinguish Game0 from Game1

then an adversary against Problem 1 bis (Definition 2.3.8) can be created.
This is formalized by Lemma 4.3.14.

• Step 2: we build an adversary against Problem 2 bis (Definition 2.3.9) using
an adversary that distinguishes Game2−(k−1) from Game2−k, as stated in
Lemma 4.3.16.

• Step 3: we prove that the advantage of an adversary in winning Game2−Q
is the same than the one of an adversary winning Game3; and the latter is
equal to 0. This is formalized by Lemma 4.3.17 and Lemma 4.3.18.

Figure 4.13: Informal indistinguishability security proof for our pattern-hiding identity-based
encryption with wildcards scheme.

The original proofs are made in the symmetric pairing settings but they can easily be
made in the asymmetric setting by taking elements in the correct group.
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Lemma 4.3.14 For any adversary A, there exists a probabilistic adversary B, whose
running time is essentially the same as that of A, such that for any security parameter λ,∣∣∣Adv(0)A (λ)− Adv

(1)
A (λ)

∣∣∣ = AdvP1b

B (λ).

Proof 4.3.13 In order to prove lemma 4.3.14, we construct a probabilistic adversary B
against Problem 1 bis by using any adversary A in a security game (Game0 or Game1)
as a black box as follows.

INIT: B is given a Problem 1 bis instance (Γ,D, D̂∗, eβ,1, {ei }i∈[n]).

SETUP: B plays a role of the challenger in the security game against adversary A. She
returns pk = (Γ, e(g1, g2)

αd0.d
∗
0 , gd0

1 , g
d4L+1

1 , h1 = gd1
1 , · · · ,hL = gdL

1 ) to A.

KEY QUERY: when a key queried is issued, B answers a correct secret key computed
by using D̂∗, i.e. a normal key.

CHALLENGE: when B gets challenge plaintexts m0,m1 and pattern P ∗ (with P ∗
1 ̸= ⋆) from

A, B returns (c1, c2) such that c1 = mb · e(g1, g2)αd0·d∗
0s1 and c2 = gs1d0

1 ·eβ,1 ·
∏

i∈
−
W (P ∗),i≥2

ei,

where eβ,1 and ei are from the Problem 1 bis instance, s1 ← Zp and b ∈ {0, 1}.

GUESS: A outputs a bit b′. If b = b
′, B outputs β ′

= 1. Otherwise, B outputs β ′
= 0.

Let us see that if β = 0, then the distribution of (c1, c2) is the same as that in Game0. If
β = 1, the distribution of (c1, c2) is the same as that in Game1. If β = 0,

c2 = gs1d0
1 · eβ,1 ·

∏
i∈

−
W (P ∗),i≥2

ei

= gs1d0
1 · gωd1+γd4L+1

1 ·
∏

i∈
−
W (P ∗),i≥2

gωbi1

= g

s1d0+ω
∑

i∈
−
W (P∗)

di+γd4L+1

1 .

This is the challenge ciphertext in Game0. If β = 1,

c2 = gs1d0
1 · eβ,1 ·

∏
i∈

−
W (P ∗),i≥2

ei
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= gs1d0
1 · g

ωd1+
L∑

l=1
zldL+l+γd4L+1

1 ·
∏

i∈
−
W (P ∗),i≥2

gωbi1

= g

s1d0+ω
∑

i∈
−
W (P∗)

di+
L∑

l=1
zldL+l+γd4L+1

1 .

Because (z1, · · · , zL)← ZL
p \
{
0L
}

and γ are independently uniform, this is the challenge
ciphertext in Game1.

When β = 0, the advantage of A in the above game is equal to that in Game0, i.e.,
Adv

(0)
A (λ), and is also equal to Pr0 = Pr [B(∆, t)→ 0|β = 0]. Similarly, when β = 1,

we see that the advantage of A in the above game is equal to Adv
(1)
A (λ), and is also

equal to Pr1 = Pr [B(∆, t)→ 1|β = 1]. Therefore,
∣∣∣Adv(0)A (λ)− Adv

(1)
A (λ)

∣∣∣ = |Pr0−Pr1| =
AdvP1b

B (λ). This completes the proof. □

To prove lemma 4.3.16, we need the following lemma from [91], that we admit.

Lemma 4.3.15 [91] Let C = {(x,v)|x · v ̸= 0} ⊂ V × V ∗, where V is n-dimensional
vector space Zn

p , and V ∗ its dual. For all (x,v) ∈ C, for all (r,w) ∈ C,

Pr [x(ρU) = r ∧ v(τZ) = w] =
1

s
,

where Z ← GL(n,Zp), ρ, τ ← Z∗
p, U = (Z−1)⊤ and s = #C(= (pn − 1)(pn − pn−1)).

Lemma 4.3.16 For any adversary A, there exists a probabilistic adversary B, whose
running time is essentially the same as that of A, such that for any security parameter λ,∣∣∣Adv(2−(k−1))

A (λ)− Adv
(2−k)
A (λ)

∣∣∣ ≤ AdvP2b

B (λ) + 1/p.

Proof 4.3.14 In order to prove lemma 4.3.16, we construct a probabilistic adversary B
against Problem 2 bis by using any adversary A in a security game (Game2−(k−1) or
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Game2−k) as a black box as follows.

INIT: B is given a Problem 2 bis instance (Γ, D̂,D∗,
{
h∗
β,i, ei }i∈[n]).

SETUP: B plays a role of the challenger in the security game against adversary A. She
returns pk = (Γ, e(g1, g2)

αd0.d
∗
0 , gd0

1 , g
d4L+1

1 , h1 = gd1
1 , · · · ,hL = gdL

1 ) to A.

KEY QUERY: when the s-th key query is issued for predicate P , B answers as follows:
• When 1 ≤ s ≤ k − 1, B calculates and answers by using D̂∗

skP = g
αd∗

0+
∑
j∈I

rjd
∗
j+

L∑
l=1

xld
∗
L+l+

L∑
l=1

ηld
∗
3L+l

2 .

• When s = k, B calculates and answers skP as follows:{ξi ← Zp}i∈I ,

skP = g
αd∗

0
2 ·

∏
i∈I

h∗ξi
β,i
,

• When q ≥ k+1, B answers a correct secret key computed by using D∗, i.e. normal
key.

CHALLENGE: when B gets challenge plaintexts m0,m1 and pattern P ∗ from A, B cal-
culates and returns (c1, c2) such that c1 = mb · e(g1, g2)αd0·d∗

0s1 and c2 = g
s1d0+s2d4L+1

1 ·∏
i∈

−
W (P ∗)

ei, where ei are from the Problem 2 bis instance, s1, s2 ← Zp and b ∈ {0, 1}.

GUESS: A outputs a bit b′. If b = b
′, B outputs β ′

= 1. Otherwise, B outputs β ′
= 0.

Let us see that if β = 0, then the distribution of challenge (c1, c2) and skP is the same
as that in Game2−(k−1) except with probability 1/p. If β = 1, the distribution of challenge
(c1, c2) and skP is the same as that in Game2−k except with probability 1/p.

We consider the joint distribution of c2 and skP . Ciphertext element c2 is

c2 = g
s1d0+s2d4L+1

1 ·
∏

i∈
−
W (P ∗)

ei = g
s1d0+s2d4L+1

1 ·
∏

i∈
−
W (P ∗)

g
ωdi+τ

L∑
j=1

zi,jdL+j

1

= g

s1d0+s2d4L+1+ω
∑

i∈
−
W (P∗)

di+τ
L∑

j=1

∑
i∈

−
W (P∗)

zi,jdL+j

1
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= g

s1d0+s2d4L+1+ω
∑

i∈
−
W (P∗)

di+
L∑

j=1
t̃jdL+j

1

where s1, s2, ω ∈ Zp, t̃j =
∑

i∈
−
W (P ∗)

τzi,j and (t̃1, · · · , t̃L) ← ZL
p \ {0} are independently

uniform.

If β = 0, secret key (generated in case s = k) is

skP = g
αd∗

0
2 ·

∏
i∈I

h∗ξi
β,i

= g
αd∗

0+
∑
i∈I

ξiδd
∗
i+

∑
i∈I

L∑
j=1

ξiδi,jd
∗
3L+j

2

This is a normal secret key, thus distribution of (c1, c2), skP are as in Game2−(k−1) (i.e.
temporal ciphertext and normal key). If β = 1,

skP = g
αd∗

0
2 ·

∏
i∈I

h∗ξi
β,i

= g
αd∗

0+
∑
i∈I

ξiδd
∗
i+

∑
i∈I

L∑
j=1

ξiui,jd
∗
L+j+

∑
i∈I

L∑
j=1

ξiδi,jd
∗
3L+j

2

= g
αd∗

0+
∑
i∈I

ξiδd
∗
i+

L∑
j=1

x̃jd
∗
L+j+

∑
i∈I

L∑
j=1

ξiδi,jd
∗
3L+j

2

where x̃j =
∑
i∈I

ξiui,j and (x̃1, · · · , x̃L)← ZL
p \ {0}.

Since Z = (U−1)⊤ where Z = (zi,j) and U = (ui,j), we should verify the independence
of coefficient vectors t̃ = (t̃1, · · · , t̃l) in c2 and x̃ = (x̃1, · · · , x̃l) in skP . Notice that we
can rewrite t̃ and x̃ respectively as −→y ·U and −→x ·Z, where −→y and −→x are vectors such

that −→y i =

{
ξi if i ∈ I
0 otherwise

for i ∈ [L] and −→x i =

 τ if i ∈
−
W (P ∗)

0 otherwise
for i ∈ [L].

Since I ∩
−
W (P ∗) ̸= ∅ from condition on keys and challenge ciphertext, coefficients vec-

tors t̃ and x̃ are (pairwise)-independently and uniformly distributed under the condition
that −→y · −→x ̸= 0 (from lemma 4.3.15). Since (x1, · · · , xl), (t1, · · · , tl) ← ZL

p in Game2−k,
the event that(x, · · · , xl) · (t1, · · · , tl) = 0 occurs in the game with probability 1/p.
Thus this is a temporal 1 secret key, and the distribution of (c1, c2), skP are as in
Game2−k, except with probability 1/p.

When β = 0, the advantage of A in the above game is equal to that in Game2−(k−1),
i.e., Adv(2−(k−1))

A (λ), and is also equal to Pr0 = Pr [B(∆, t)→ 0|β = 0]. Similarly, when
β = 1, we see that the advantage of A in the above game is equal to Adv

(2−k)
A (λ), and is
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also equal to Pr1 = Pr [B(∆, t)→ 1|β = 1]. Therefore,
∣∣∣Adv(2−(k−1))

A (λ)− Adv
(2−h)
A (λ)

∣∣∣ ≤
|Pr0−Pr1|+ 1/p = AdvP2b

B (λ) + 1/p. This completes the proof. □

Lemma 4.3.17 For any adversary A, Adv(2−Q)
A (λ) = Adv

(3)
A (λ).

Proof 4.3.15 To prove lemma 4.3.17, we will show that distribution (pk,
{

sk(j)
}
j∈[Q]

, c1, c2)

in Game2−Q and that in Game3 are equivalent. For that purpose, we define new bases
B,B∗ as follows: we generate randoms {ξi,s}i,s∈[L] , {θi}i=1,···L and set for i ∈ [L]:

bL+i = dL+i −
L∑
s=1

ξi,sds − θid0, b∗i = d∗
i +

∑L
s=1 ξs,id

∗
L+s, b∗0 = d∗

0 +
L∑
s=1

θsd
∗
L+s

and
B = (d0,d1, · · · ,dL, bL+1, · · · , b2L,d2L+1, · · · ,d4L+1),

B∗ = (b∗0, b
∗
1, · · · , b∗L,d∗

L+1, · · · ,d∗
2L,d

∗
2L+1, · · · ,d∗

4L+1).

We then easily verify that B and B∗ are dual orthonormal, and are distributed the same
as the original bases, D,D∗. Keys and challenge ciphertext (

{
sk(j)

}
j∈[Q]

, c1, c2) in

Game2−Q are expressed over bases D and D∗ as

sk(j) = g
αd∗

0+
∑
i∈I

r
(j)
i d∗

i+
L∑

l=1
x
(j)
l d∗

L+l+
L∑

l=1
η
(j)
l d∗

3L+l

2 ,

c1 = mb · e(g1, g2)αd0·d∗
0s1 ,

c2 = g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P∗)

di+
L∑

l=1

tldL+l

1

Then,

sk(j) = g
αd∗

0+
∑
i∈I

r
(j)
i d∗

i+
L∑

l=1
x
(j)
l d∗

L+l+
L∑

l=1
η
(j)
l d∗

3L+l

2

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

108



Chapter 4 – First Cryptographic Tool: Identity-Based Encryption with Wildcards

= g
α(b∗0−

L∑
s=1

θsb
∗
L+s)+

∑
i∈I

r
(j)
i (b∗i−

L∑
s=1

ξi,sb
∗
L+s)+

L∑
l=1

x
(j)
l b∗L+l+

L∑
l=1

η
(j)
l b∗3L+l

2

= g
αb∗0+

∑
i∈I

r
(j)
i b∗i+

L∑
l=1

x̃
(j)
l b∗L+l+

L∑
l=1

η
(j)
l b∗3L+l

2

where x̃
(j)
l = −αθl −

∑
i∈I

r
(j)
i ξi,l + x

(j)
l for l ∈ [L], which are uniformly, independently

distributed since x(j)l ← Zp.

c2 = g

s1d0+s2d4L+1+s3
∑

i∈
−
W (P∗)

di+
L∑

l=1
tldL+l

1

= g

s1b0+s2b4L+1+s3
∑

i∈
−
W (P∗)

bi+
L∑

l=1
tl(bL+l+

L∑
s=1

ξl,sbs+θlb0)

1

= g

b0+(s1+
L∑

l=1

tlθl)+s2b4L+1+s3
∑

i∈
−
W (P∗)

bi+
L∑

l=1

tl
L∑

s=1
ξl,sbs+

L∑
l=1

tlbL+l

1

= g
s
′
1b0+s2b4L+1+

L∑
i=1

s̃ibi+
L∑

l=1

tlbL+l

1

where s′1 = s1 +
L∑
l=1

tlθl and s̃i =


L∑
l=1

tlξl,i if i /∈
−
W (P ∗)

L∑
l=1

tlξl,i + s3 if i ∈
−
W (P ∗)

for k ∈ [L].

which are uniformly, independently distributed since (t1, · · · , tl)← ZL
p \ {0}, {ξt,i} ← Zp.

In the light of the adversary’s view, both (D,D∗) and (B,B∗) are consistent with public
key pk = (Γ, e(g1, g2)

αd0.d
∗
0 , gd0

1 , g
d4L+1

1 ,h1 = gd1
1 , · · · ,hL = gdL

1 ). Therefore,
{

sk(j)
}
j∈[Q]

and c2 can be expressed as keys and ciphertext in two ways, in Game2−Q over bases
(D,D∗) and in Game3 over bases (B,B∗). Thus, Game2−Q can be conceptually changed
to Game3. □

Lemma 4.3.18 For any adversary A, Adv(3)A (λ) = 0.

Proof 4.3.16 The value of b is independent from the adversary’s view in Game3. Hence,
Adv

(3)
A (λ) = 0. □

Combining all theses proofs, we obtain that any adversary has no advantage in winning
the security game. Adding to these the fact that Problem 1 bis and Problem 2 bis hold if
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XDLin1,XDLin2 hold, we have proven Lemma 4.3.13.

Combining Lemmas 4.3.6 and 4.3.13 we proved Theorem 4.3.4.

4.3.3 Our PPKG-WIBE Scheme

We now present a privacy-preserving key generation WIBE instantiation. Our starting
point is the WIBE scheme obtained by the combination of [3] generic construction of
anonymous WIBE from IPE schemes (see Section 4.1.2), and the IPE of Lewko et
al. [91]. Our main contribution here is to find a way to protect the attributes of the
user by introducing a privacy-preserving interactive key generation. This is done by
using the properties of so-called Dual Pairing Vector Spaces. Our scheme is proven
secure in the generic group model, under well-known assumptions, namely Decisional
Diffie-Hellman and n-extended Decisional Diffie-Hellman introduced in [91]. We start
with the presentation of the WIBE that we will use as building block.

The Basic WIBE. The basic WIBE we will use for our construction is the one by
Abdalla et al. [3], derived from Lewko et al. IPE [91]. The latter, for vector of length n, is
using dual pairing vector space of dimension 2n+3, and as we saw in Section 4.1.2, the
WIBE for patterns of length L is running the IPE with n = 2L. Therefore the construction
presented in Figure 4.14 is using dual pairing vector spaces of length 4L + 3. Here
keys and ciphertexts patterns belong to {0, 1, ⋆}L.

• Setup(λ, L): generate an asymmetric bilinear group Γ =
(G1,G2,GT , g1, g2, e, p) and run Dual(Z4L+3

p ) to get two dual pairing vec-
tor spaces (D,D∗). The master secret key is msk = D∗ and the public key is
pk = (gd1

1 , · · · , gd2L
1 , g

d4L+1

1 , g
d4L+3

1 ).
• KeyGen(msk,P

′
): run ExtendingKeyPattern(P

′
) to get u, then compute

skP′ = g
ρ

2L∑
j=1

ujd
∗
j+d∗

4L+1+ηd
∗
4L+2

2 , where ρ, η ← Zp.
• Encrypt(msk,P ): run ExtendingCtPattern(P ) to get v, then compute c1 =

g
δ1(

2L∑
j=1

vjdj)+ξd4L+1+δ2d4L+3

1 , and c2 = m·e(g1, g2)ξ, where ξ, δ1, δ2 ∈ Zp are chosen
randomly. The ciphertext is ct = (c1, c2).

• Decrypt(skP
′ , ct,P ): the decryption consists in executing the IPE decryption,

as c2/e(c1, skP′ ).

Figure 4.14: Abdalla et al. [3] ’s anonymous WIBE scheme.

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

110



Chapter 4 – First Cryptographic Tool: Identity-Based Encryption with Wildcards

The following theorem is directly deduced from [3], which shows that the above WIBE
is anonymous if the underlying IPE is payload-hiding and attribute hiding and [91],
which proves that the used IPE is payload-hiding and attribute-hiding under the n-eDDH
assumption, where n = 2L in our case.

Theorem 4.3.5 The obtained WIBE is anonymous under the n-eDDH assumption.

For the proof of the above theorem, refer to [91].

Privacy-preserving key generation: intuition. To obtain a privacy-preserving key
generation, one idea could be to send the randomized extended version of a pattern. To
do so, we define the algorithm presented in Figure 4.15.

Algorithm 4.3 ExtendingKeyPatternRandomized
Input: key pattern P of length n
Output: randomized pattern u of length 2n

1: i← 1, j ← 1
2: while i ≤ n, j ≤ 2n do
3: if Pi ̸= ⋆ then
4: uj ← si and uj+1 ← si · Pi for si ← Zp
5: else
6: uj ← 0 and uj+1 ← 0
7: end if
8: j ← j + 2, i← i+ 1
9: end while

10: return u

Figure 4.15: Randomization of ExtendingKeyPattern algorithm.

However, it does not work since e.g., uj ̸= 0 ∧ uj+1 = 0 for j an odd number reveals that
Pj = 0. With the same reasoning one can recover positions of P equals to 1 and the
ones equal to ⋆, therefore recover P .

To avoid such problem, we propose to exploit the fact that [91]’s scheme makes
use of dual pairing vector spaces properties, of dimension 2n + 3. More precisely,

in [91]’s scheme, a secret key for a vector ν ∈ Zn
p is skν = g

ρ(
n∑

i=1
νid

∗
i )+d∗

2n+1+ηd
∗
2n+2

2 ,
where ρ, η ← Zp. Our idea is then to ask the Pattern Audit Center (PAC) to compute

x =
2n∏
i=1

g
ρ·ui·d∗

i
2 = g

ρ
∑

i∈[2n]

ui·d∗
i

2 where u ∈ Z2n
p is the result of ExtendingKeyPattern(P).
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PAC sends the result to the Key Generation Center (KGC).

But this is not enough since if KGC is not honest, it computes xdj for j = 1, · · · , 2n. If
uj ̸= 0 then the result is g2, otherwise it is equal to 1, where 1 is the identity element of
G2. From that, KGC can learn P as for j an odd number, if xdj ̸= 1∧ xdj+1 = 1 it reveals
that uj = 10 ∧ uj+1 = 0 thus that P ′

j = 0. With the same kind of reasoning KGC can find
positions equal to 1 and those equal to ⋆, therefore she can recover P .

Our second trick is to multiply x with a “security” component t = g

2n∑
j=1

τjd
∗
j

2 (where τj ← Zp

for j = 1, · · · , 2n). Hence, KGC is no more able to get 1 when computing (x · t)dl for
some l ∈ [2n]. But in order to recover its secret key, a user now needs to remove the

security component t. To do so she will use a token given by PAC: t−1 = g
−

2n∑
j=1

τjd
∗
j

2 . By
multiplying the value received from KGC with t−1, the user will get its private key.

However as is, PAC and user can recover from a key query the values g
d∗
2n+1+ηd

∗
2n+2

2 and
forged their own secret key.

To prevent this, we slightly modify the protocol so that KGC chooses ρ. First, user choose

a random θ ∈ Zp and gives PAC gθ2. The latter sends to KGC (
2n∏
i=1

g
ui·d∗

i
2 ·

2n∏
j=1

(gθ2)
τjd

∗
j , t

′
=

g
∑2n

j=1 τjd
∗
j

2 ). By raising the first received value to the power ρ and multiplying it by
g
d∗
4n+1+ηd

∗
4n+2

2 , KGC obtain the blind secret key. To recover its secret key, user is using
(t

′
)ρ given by KGC and his knowledge of θ.

Note 4.3.3 In order to make the above work, PAC must know a part of the secret key,
i.e. she must know d∗

1, · · · ,d∗
2n.

Our privacy-preserving key generation WIBE scheme. We now detail our privacy-
preserving key generation WIBE instantiation. From the above, the Setup, Encrypt
and Decrypt phases are the same than in Figure 4.14, our full scheme only modifies
the key generation process. Following Definition 4.2.1, we need to define the follow-
ing procedures: UserTemKeyGen(pk), BlindTokenGen(pk,P, tpkuser), BlindKeyGen(pk,
msk,btP) and KeyExtract(bskP, tskuser). Our full scheme is given in Figure 4.16. As in
Definition 4.2.1,the name of key generation protocol algorithms that are ran by KGC are
written in blue, those ran by user in green and in orange those that are run by PAC.
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• Setup(λ, L): generate an asymmetric bilinear group Γ =
(G1,G2,GT , g1, g2, e, p) and run Dual(Z4L+3

p ) to get two dual pairing vec-

tor spaces (D,D∗). The master secret key is msk = (g
d∗
4L+1

2 , g
d∗
4L+2

2 ) and the
public key is pk = (gd1

1 , · · · , gd2L
1 , g

d4L+1

1 , g
d4L+3

1 , g
d∗
1

2 , · · · , gd
∗
2L

2 ).
• UserTemKeyGen(pk): generate at random θ ← Zp and compute Θ = gθ2.

Then define tskuser = θ and tpkuser = Θ. The latter is sent to PAC.
• BlindTokenGen(pk,P , tpkuser): run ExtendingKeyPattern(P ) to get u, then

compute x = g

2L∑
l=1

ul·d∗
l

2 , t = Θ

2L∑
l=1

τld
∗
l and t

′
= g

2L∑
l=1

τld
∗
l

2 where τl ← Zp for

= 1, · · · , 2L. Set the blind token btP = (x · t, t′
) where x · t = g

2L∑
l=1

ul·d∗
l +θ

2L∑
l=1

τld
∗
l

2

and send it to KGC.
• BlindKeyGen(pk,msk,btP): pick two randoms ρ, η ← Zp and com-

pute bsk2 = (t
′
)ρ = g

ρ
2L∑
l=1

τld
∗
l

2 and bsk1 = (x · t)ρ · gd
∗
4L+1+ηd

∗
4L+2

2 =

g
ρ

2L∑
l=1

ul·d∗
l +ρθ

2L∑
l=1

τld
∗
l +d∗

4L+1+ηd
∗
4L+2

2 . The blind secret key bsk = (bsk1,bsk2) is
given to user.

• KeyExtract(bsk, tskuser): output final secret key: skP = bsk1 ·
(
bsk2

)−tskuser
=

g

2L∑
l=1

ul·d∗
l +d∗

4L+1+ηd
∗
4L+2

2 .

• Encrypt(msk,P ): run ExtendingCtPattern(P ) to get v, then compute c1 =

g
δ1(

2L∑
j=1

vjdj)+ξd4L+1+δ2d4L+3

1 , and c2 = m·e(g1, g2)ξ, where ξ, δ1, δ2 ∈ Zp are chosen
randomly. The ciphertext is ct = (c1, c2).

• Decrypt(skP
′ , ct,P ): the decryption consists in executing the IPE decryption,

as c2/e(c1, skP′ ).

Figure 4.16: Our privacy-preserving key generation identity-based encryption with wildcards
scheme.

The adaptive indistinguishability and the anonymity of our instantiation come directly
from the security of Lewko et al. [91] and the security of Abdalla et al. [3]’s construction.
Now let us prove it privacy-preserving key generation security.

Theorem 4.3.6 Our WIBE satisfies privacy-preserving key generation under DDH in G2.

We prove Theorem 4.3.6 with two games:
• Game0 is the original WIBE PPKG security game, as in Definition 4.2.2
• Game1 is as Game0 with the restriction that the adversary queries only challenge

patterns that are different at one position exactly.
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The idea of the proof is the following: we first prove that if there exists an adversary that
can win Game1, then we can build an adversary against DDH in G2 by using the latter’s
challenge to build to challenge token. Then we prove that we can build an adversary
against Game1 by using an adversary against Game0.

Note 4.3.4 To be able to reduce the privacy-preserving key generation security of our
scheme to DDH, we actually need to modify our scheme presented in Figure 4.16 by
replacing ExtendingKeyPattern by ExtendingKeyPatternRandomized.

Lemma 4.3.19 If DDH holds in G2, then the advantage of any adversary to win Game1

is negligible.

Proof 4.3.17 We prove the contrapositive. Let B be an adversary against Game1, that
wins with non negligible advantage. We construct below an adversary A against DDH
in G2, that wins with non negligible advantage.

• SETUP: challenger C chooses Γ = (G1,G2,GT , g1, g2, gT , p, e), randoms a, b, c← Zp

and b′ ∈ {0, 1} randomly. If b′ = 0, it sets t = gab2 , and t = gab+c2 otherwise. It sends
(Γ, ga2 , g

b
2, t) to A. The latter gives Γ to B, who chooses (D,D∗)← Dual(Z4L+3

p ) and
sends d∗

1, · · · ,d∗
2L to A.

• TOKEN or KEYQUERY: B can create key for patterns P
′ it chooses or asks A for

the associated token. The latter answer with btP′ ← BlindTokenGen(pk,P′
).

• CHALLENGE: B chooses P0,P1 such that for all i ∈ [L], i ̸= j, P 0
i = P 1

i and
P 0
j ̸= P 1

j where j ∈ [L]. We suppose w.l.o.g. that P 0
j = ⋆ and P 1

j = 0. B sends
both patterns to A. The latter creates the vector ũ which is equal to vector u

output by ExtendingKeyPatternRandomized, except that positions j and j + 1 are
removed. Notice that by definition of P0,P1 and by construction ũ is the same
for both patterns, and ũ has size equal to 2L− 2. A creates the blind token btPb

as follows: it chooses {τl}l=1,··· ,2L,l ̸=j and sets btPb = g

2L−2∑
l=1

ũl·d∗
l

2 · (ga2)
2L∑

l=1,l ̸=j
τld

∗
l · td∗

j ,

g

2L∑
l=1,l ̸=j

τld
∗
l

2 · (gb2)d
∗
j . It gives btPb to B.

• TOKEN or KEYQUERY: is the same than the previous TOKEN or KEYQUERY

step.

• GUESS: B outputs a bit b′ to A, who outputs it as its guess.
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Analysis: if b′ = 0, then t = gab2 and btPb = g

2L−2∑
l=1

ũl·d∗
l +a(

2L∑
l=1,l ̸=j

τld
∗
l +bd

∗
j )

2 , g

2L∑
l=1,l ̸=j

τld
∗
l +bd

∗
j

2 . By
setting θ = a and τj = b, we obtain a blind token for the pattern equals to ⋆ at position j
and tskuser = ga2 .

If b′ = 1, then t = gab+c2 and bt = g

2L−2∑
l=1

ũl·d∗
l +cd

∗
j+a(

2L∑
l=1,l ̸=j

τld
∗
l +bd

∗
j )

2 , g

2L∑
l=1,l ̸=j

τld
∗
l +bd

∗
j

2 . By setting
θ = a, τj = b and uj = c, we obtain a blind token for the pattern equals to 0 at position j
and tskuser = ga2 . □

Lemma 4.3.20 Game1 implies Game0.

Proof 4.3.18 We prove the contrapositive. Let B be an adversary that breaks PPKG
game (Game0) with non negligible advantage. We construct below an adversary A
against Game1 that wins with non negligible advantage.

• SETUP: challenger C runs Setup(λ, 1L) to get (G1,G2,GT , g1, g2, gT , p, e) and sends
it to A who sends it to B. The latter chooses (D,D∗) ← Dual(Z4L+3

p ) and sends
d∗
1, · · · ,d∗

2L to A, who sends it to C.

• TOKEN or KEYQUERY: B can create key for patterns P
′ it chooses or ask A for

a token associated to the chosen pattern. A asks C for the token. The latter
responds with btP′ ← BlindTokenGen(pk,P′

).

• CHALLENGE: A chooses P0,P1 such that for all i ∈ [2L], i ̸= j, P 0
i = P 1

i and
P 0
j ̸= P 1

j where j ∈ [L]; it sends it to C who chooses b ∈ {0, 1} and creates a token
θPb ← BlindTokenGen(pk,Pb). It sends θPb to A who sends θPb and P0,P1 to B.

• TOKEN or KEYQUERY: is the same than the previous TOKEN or KEYQUERY

step.

• GUESS: B outputs a bit b′ to A who outputs it as its guess. □

As B,A have no restriction on the challenge patterns, the simulation is perfect. Thus A
wins with a non negligible advantage.

Combining lemmas 4.3.19 and 4.3.20, we prove Theorem 4.3.6.
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4.4 Conclusion of This Chapter

This chapter introduced identity-based encryption with wildcards (WIBE) schemes. Our
contributions regarding that primitive is the definition of a stronger security property, call
pattern-hiding along with the introduction of a new kind of WIBE: privacy-preserving
key generation (ppkg) WIBE. In such scheme, the key generation is replaced by an
interactive protocol between three entities such that the entity that creates the key does
not learn the pattern associated to key, that is chosen by the entity requiring the key.
We also proposes three instantiations of WIBE: one scheme with constant size cipher-
text, one pattern-hiding scheme and one privacy-preserving key generation scheme.
It is interesting to notice that in our schemes, adding the pattern-hiding security prop-
erty is possible only at the cost of an efficiency loose. Indeed while we were able
to obtain a WIBE scheme with constant size ciphertext, we were only able to build a
pattern-hiding WIBE that has linear ciphertext size. We leave as an open problem the
proof that efficient pattern-hiding WIBE schemes are possible, and if applicable such a
construction. Regarding our privacy-preserving key generation WIBE, we started from
an existing WIBE scheme proposed by Abdalla et al. [3] and transformed it to obtain a
privacy-preserving key generation scheme. It might be interesting to find a generic way
to transform a WIBE scheme into a PPKG WIBE scheme.
In Chapter 6.1 we will see that our pattern-hiding security property is required in or-
der to build a specific data sharing scheme, called augmented broadcast encryption,
from a WIBE. Then, we will use our pattern-hiding WIBE instantiation to build such a
scheme. We will also use our third instantiation for a specific use case, presented
also in Chapter 6.3.
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THE second primitive we used as a building block is called cryptographic accumula-
tors. Briefly a cryptographic accumulator is a primitive that allows the representation of
a set of values by a short object (the accumulator) and offers the possibility to prove that
some input values are in the accumulator. Cryptographic accumulators were introduced
in 1993 by Benaloh and De Mare [27], and since then a lot of new properties, definitions
and notations were introduced. For example, originally any modification of the repre-
sented set required to recompute the associated accumulator. In 2002, Camenisch
and Lysyanskaya [46] proposed cryptographic accumulators that support sets modifica-
tions, meaning that after a modification of the represented set the accumulator can be
updated and does not have to be recomputed. They called this kind of accumulators
dynamic and qualified original accumulators as static. We can also cite the property of
universal cryptographic accumulators introduced by Li, Li and Xue [98] in 2007: such
schemes provide as any cryptographic accumulator (called then non-universal) proof of
membership, but also proof of non-membership for elements not in the represented set.
We start, in Section 5.1.1, by giving a definition of static and universal cryptographic
accumulators, along with an up-to-date overview of cryptographic accumulators and
state of the art. In Section 5.2 we propose several discussions on accumulators, on
the properties of undeniability [102] and delegatable [7] and on accumulators’ appli-
cations. Then Section 5.3 presents two of our contributions regarding cryptographic
accumulators: a new security property for cryptographic accumulator that protects
against the forgery of accumulators computed using the scheme’s secret key; and the
introduction of a new feature for cryptographic accumulators, called dually computable
accumulators. We end this chapter with Section 5.4 that presents our two accumulators
schemes: the first scheme improves the state of the art by being the first scheme using
dual pairing vector spaces and serves as a building block for our second instantiation,
which is the first dually computable accumulator.
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5.1 Cryptographic Accumulators

5.1.1 Definitions

Definition 5.1.1 Static universal accumulator [27, 63, 57]. A static universal crypto-
graphic accumulator scheme is a tuple of efficient algorithms defined as follows:

• Gen(λ, b): the generation algorithm takes as input a security parameter λ and a
bound b ∈ N ∪ {∞} such that if b ̸=∞ then the number of elements that can be
accumulated is bounded by b. It returns a key pair (skacc,pkacc), where skacc = ∅
if no trapdoor exists and pkacc contains the parameter b.

• Eval((skacc, )pkacc,X ): the evaluation algorithm takes as input the accumulator
(secret key skacc and) public key pkacc and a set X to be accumulated. It returns
an accumulator accX together with some auxiliary information aux.

• WitCreate((skacc, )pkacc,X ,accX ,aux, x,Type): the witness creation algorithm takes
as input the accumulator (secret key skacc and) public key pkacc, an accumulator
accX , the associated set X , auxiliary information aux, an element x and a boolean
Type. If Type = 0 and x ∈ X it outputs a membership witness mwitXx and if
Type = 1 and x /∈ X it outputs a non-membership witness nmwitXx .

• Verify(pkacc,accX ,witXx , x,Type): the verification algorithm takes as input the accu-
mulator public key pkacc, an accumulator accX , a witness witXx , an element x and a
boolean Type. If witXx = mwitXx , x ∈ X and Type = 0 it returns 1, if witXx = nmwitXx ,
x /∈ X and Type = 1 it returns 1, otherwise it returns 0.

Note 5.1.1 If b ̸=∞ then we say that the accumulator is bounded [15].

Notation 5.1.1 As one may have notice, membership witnesses are written “mwit” while
non-membership witnesses are denoted by “nmwit”. When considering general wit-
nesses, i.e. without considering its type, we will write wit. Sometimes when no confusion
is possible, we will drop the notation in the exponent of the associated set.

Note 5.1.2 Regarding the way witnesses are generated in WitCreate, the literature
gives four possibilities: (i) only using the public key [101], (ii) using the secret key [82],
(iii) using the public key or in a more efficient way using the secret key [14, 57], (iv) using
a specially created private key, called the evaluation key [73]. The evaluation algorithm
can take as input either both skacc and pkacc or only just one. If Eval takes as input skacc

(resp. pkacc) solely, we say that the accumulator has private evaluation (resp. public
evaluation). The same goes for WitCreate: depending on its input the accumulator
either has private witness generation or public witness generation.
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Some accumulators are trapdoorless meaning that skacc = ∅.

Definition 5.1.2 Correctness. A static, universal accumulator is said to be correct if for
all security parameters λ, all integer b ∈ N ∪ {∞}, all set of values X , and all elements
x, y such that x ∈ X and y /∈ X :

Pr


(skacc,pkacc)← Gen(λ, b), (accX ,aux)← Eval((skacc, )pkacc,X ),
mwitXx ←WitCreate((skacc, )pkacc,accX ,X ,aux, x,Type = 0)∧

nmwitXy ←WitCreate((skacc, )pkacc,accX ,X ,aux, x,Type = 1) :

Verify(pkacc,accX ,mwitx, x,Type = 0) = 1

∧Verify(pkacc,accX ,nmwity, y,Type = 1) = 1

 = 1

Regarding security of cryptographic accumulators, several notions were introduced such
as undeniability [102], indistinguishability [57] or zero-knowledge [73] for example. We
here only formally present the property of collision resistance, but in Section 5.1.2 we
give an exhaustive list of all accumulator security properties and an informal definition
for all of them. Informally a cryptographic accumulator is said to be collision resistant if
it is hard for an adversary to forge a membership (resp. non-membership) witness for
an element that is not (resp. that is) in the accumulated set.

Definition 5.1.3 Collision resistance [18, 57]. A static universal accumulator scheme
is said to satisfy collision resistance if all PPT adversaries A have at most negligible
advantage in the game presented in Figure 5.1, where A’s advantage is defined as

AdvCRA (λ) := Pr

 Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 0) = 1 ∧ x∗ /∈ X ∗

∨Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 1) = 1 ∧ x∗ ∈ X ∗ :

(skacc,pkacc)← Gen(λ, b), (X ∗,witx∗ , x∗)← A(pkacc)


Let C be a challenger.

Note 5.1.3 If the accumulator is non-universal, then in the above definitions remove the
non-membership related parts.

We now give the definition of two properties namely, subset query and multiset setting,
that are satisfied by the accumulator schemes we will present in Section 5.4.

Definition 5.1.4 Subset query [59, 73, 101]. A static (non-)universal accumulator is
said to satisfy subset query if witnesses can be generated for a subset of the accumu-
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SETUP: on input λ, C runs Gen(λ) to get (skacc,pkacc) and sends pkacc to A.
ACCUMULATOR QUERY: A chooses a set X and sends it to C. C returns to A accX ,

where accX ← Eval((skacc, )pkacc,X ).
WITNESSQUERY: A chooses a set X (or an accumulator accX previously queried),

an element x and a boolean Type and sends all to C. The latter runs
WitCreate((skacc, )pkacc,accX ,X , x,Type) to get witx and returns it to A.

GUESS: A returns a set X ∗, an element x∗ and a witness witx∗ and
wins if Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 0) = 1 ∧ x∗ /∈ X ∗ or
Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 1) = 1 ∧ x∗ ∈ X ∗.

ACCUMULATOR QUERY: A can continue to query accumulator for sets X .
WITNESSQUERY: A can continue to query witnesses for elements x.

Figure 5.1: Collision resistance security game.

lated set rather than individual elements.

Definition 5.1.5 Multiset setting [62, 73, 35]. A static (non-)universal accumulator is
said to satisfy multiset setting if sets that can be accumulated are multisets, meaning
that an element can be present more than once in the set. In this case, each element
is associated to a count (belonging to N) that is equal to 0 when the element is not in
accumulated.

5.1.2 Overview And State of The Art

As stated previously, through the years accumulators have been used for multiple
purposes. This results in new properties specific to individual needs and is how accumu-
lators became dynamic [46], universal [98], multisets [62] or even the recent property of
zero-knowledge [73], a privacy notion for accumulators. Unfortunately, all these new
properties and functionalities were added separately, giving rise to several definitions
of accumulators. That makes it complicated to have an overview of accumulators and
their properties. That is why in 2015, Derler et al. [57] proposed a unified formal model,
dealing with most of existing accumulators’ properties. Their work became a reference
when working with accumulators. However, since 2015 new relevant properties of
accumulators have been introduced, such as the zero-knowledge [73] security property
which extends indistinguishability [57], or the asynchronous [124] property which allows
witnesses to be still correct when a fixed number of operations on the accumulated set
have been carried out, without needing an update. Some functionalities, such as wit-
nesses computed not for a single element but for a subset, or the multiset setting which
allows an element to be accumulated more than once were not taken into account in the
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work of Derler et al.. In this section we present an up-to-date overview of accumulators
properties following Derler et al. definition for accumulators, and an updated state of the
art.

All properties presented in this section will be presented for asymmetric accumulators
but notice that many of them applied for symmetric accumulators as well. Our choice
is motivated by asymmetric accumulator better efficiency (refer to Section 5.2.1 for
more details about symmetric accumulators efficiency). We first list the features of
accumulators. We do not present correctness, subset query, multiset, and bounded
properties as they are formally given in Section 5.1.1.

• Sizes [45]: accumulator and witness sizes should be independent of the number
of accumulated elements.

• Dynamic [46]: an accumulator that additionally provides efficient algorithms
(Add, Delete,WitnesUpdate) that respectively adds/removes elements from the
accumulated set and the accumulator, and updates the witness accordingly. Notice
that Add and Delete also output updated information aux.

• Publicly Updatable [57]: updates performed without the secret key.
• Universal [98]: witnesses can be generated to prove membership or non-membership.

When the accumulator is non-universal, then the witness creation and verifi-
cation algorithms of Definition 5.1.1 have a new syntax: formally, witness cre-
ation algorithm is WitCreate((skacc, )pkacc,X ,accX , x) and verification algorithm is
Verify(pkacc,accX , x,witx).

• Delegatable non-membership proofs [7]: it is possible for a user to give to
another entity the ability to prove non-membership of the former’s element, without
the latter knowing the concerned element. The main idea is to replace the witness
by a proof of a proof system, satisfying some properties.

• Trusted vs. Non-Trusted Setup [57]: in the trusted setup model a trusted third
party runs the setup algorithm Gen and discards skacc afterwards, while in the
non-trusted model such trusted third party does not exist. When considering the
state of the art it seems most reasonable (regarding the efficiency of the schemes)
to define a security model with respect to such trusted setup as [57] did and as we
will do subsequently. We emphasize that this model is compatible with all existing
constructions.

• Low Update Frequency [124]: the accumulator is dynamic, and witnesses do not
have to be updated at each update of the accumulator (for witnesses associated
to elements not added or removed of the accumulator).

• Old Accumulator Compatibility [124]: the accumulator is dynamic, and verifica-
tion still holds with an updated witness and an old (not updated) accumulator, for
an element already present (or not) in the old accumulator.
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• Asynchronous [124]: the accumulator satisfies both low update frequency and
old accumulator compatibility.

• Determinantal [103]: a accumulator with a structure consistent with CLPØ-style
([53]) set (non-)membership non interactive zero knowledge scheme.

• Dually computable [22]: an accumulator with two evaluation algorithms, one that
takes as input only the secret key of the scheme while the other takes as input the
public key solely. Outputs of both algorithms are distinguishable. This feature is
one of our contributions regarding cryptographic accumulators and we present it
more in details in Section 5.3.

We now give all security properties that could be found in the literature. The basic
property of a secure cryptographic accumulator is the impossibility for an adversary to
prove that a value is accumulated while this is not the case. This property, known as
collision resistance is formally given in Definition 5.1.3 therefore we do not present it
again here. Based on that, several definitions have been proposed in the literature and
we discuss all of them in the case of dynamic and universal accumulators.

• One-Wayness [27]: it is hard for an adversary who is given a set X = (x1, · · · , xN),
their accumulation result accX , and another value x′

/∈ X (resp. x′ ∈ X ) to output
a value wit

′
such that Verify(pkacc,accX , x

′
,wit

′
, 0) = 1 (resp. Verify( pkacc,accX ,

x
′
,wit

′
, 1) = 1).

• Strong One-Wayness [18]: given X = (x1, · · · , xN) and acc, it is hard for an adver-
sary to output x′

/∈ X (resp. x′ ∈ X ) and wit
′
such that Verify(pkacc,accX , x

′
,wit

′
, 0)

= 1 (resp. Verify(pkacc,accX , x
′
,wit

′
, 1) = 1).

• Undeniability [102]: it is hard for an adversary to output an accumulator acc, a
value x′ and two witnesses wit

′
and wit

′′
such that both Verify(pkacc,accX , x

′
,wit

′
, 0)

= 1 and Verify(pkacc,accX , x
′
,wit

′′
, 1) = 1) hold.

• One-Way-Domain [59]: the accumulator is collision resistant, and the set of
values that can be accumulated is the span of a one-way function. Hence, it is
computationally intractable to find witnesses for random values in the accumulator’s
domain.

• Indistinguishability [57]: given the public key, the adversary chooses two sets X0

and X1 and obtain the evaluation of one of the two. It has to decide which one.
• Zero-knowledge accumulator [73]: accumulated value, and (non-)membership

witnesses leak nothing about the accumulated set at any given point in the security
game (even after insertions and deletions, if the accumulator is dynamic).

• Element hiding [16]: publicly available auxiliary information aux output by update
algorithms (Add or Delete) and associated to an accumulator does not lead any
information about the elements in the accumulated set.
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• Add-Del indistinguishability [16]: no adversary given publicly available informa-
tion aux output by update algorithms (Add or Delete) can learn if an operation is
an addition or a deletion.

• Obliviousness [16]: when both element hiding and Add-Del indistinguishability
hold.

Note 5.1.4 Some works [46, 113, 14, 97] complete cryptographic accumulator with
zero-knowledge proof-of-knowledge protocols: a client that knows his value x is (or
is not) in X , can efficiently prove to a third-party that his value is (resp. is not) in the
set, without revealing x. This privacy notion is different from the one we will focus on,
zero-knowledge notion of [73] in which the entire protocol execution (as observed by a
curious client or an external attacker) leaks nothing.

In Table 5.1, we present a comparison of existing constructions for accumulators. We
present them according to the four categories we have previously seen, and compare
them with respect to the different properties and functionalities that they provide.

Note 5.1.5 When doing the state of the art we noticed something surprising: there is no
accumulator scheme with private evaluation (meaning that Eval takes as input skacc) and
public witness generation (meaning that WitCreate takes as input only pkacc). Indeed,
either both evaluation and witness creation are either public [101] or private [73], or
witness generation is private while evaluation is public [82]. We summarize in Table 5.2
how evaluation and witness generation are done, depending on the type of accumulator
scheme.

In Section 5.4.1 we present a pairing based accumulator scheme that has private
evaluation and public witness generation, filling the above gap in accumulators state of
the art.

5.2 Discussions on Accumulators

In the accumulators literature, it is admitted without formal proof that symmetric accu-
mulators cannot have a size less than linear in the number of accumulated elements.

2If we do not take into account the work of [28].
3Actually, [132] improves the dynamic property of [73]: the latter has efficient membership witness

update but inefficient non-membership witness update. The former proposes a way to update non-
membership witnesses efficiently.

4Secret key can be given for witness generation in order to improve efficiency. Creation is still possible
without it.
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Table 5.1: Comparison of existing asymmetric accumulators constructions. A
√

indicates
that the property has been proven by another paper. “Sec.”, “ST”,“ U”, “T” respectively means
“section”, “semi trusted", “untrusted” and “trusted”. When a notion is not specified in a paper, but
implied by another one which is satisfied by the paper’s definition, then we indicate this relation
by a

√
. When a notion is informally defined we indicate it by a

√
, and when a slightly different

notion is defined we indicate it by a ≈.
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Type Schemes

Hash [44] Public
√ √

U
√ √ √

≈
based [125] Public

√ √
U

√ √ √

Lattice [82] Private
√ √

T
√ √ √

based [99] Public T
√ √ √

[113] Public
√ √ √

T
√ √ √ √

[15] Public
√ √ √

T
√ √ √ √

[54] Public
√ √ √

T
√ √ √

Pairing [45] Public
√ √ √

T
√ √ √

based [14] Both
√ √ √ √

T
√ √

≈ 2 √

[8] Public ≈
√ √

T
√ √ √

[73]
√

Private
√ √ √ √

T
√ √ √ √ √ √

[101] s.1 Public
√ √

T
√ √ √ √

[101] s.2 Public
√ √ √

T
√ √ √ √ √

[132] Public
√ √ √ 3 √

T
√ √ √ √ √ √

[103] Public
√ √ √ √

ST ≈

Sec. 5.4.2/ Public
√ √ √

T
√ √ √ √ √ √

[22]
[27] Public T

√

[18] Public
√ √

T
√ √ √

Number [46] Public
√ √ √

T
√ √ √ √

theoretic [59] Public
√ √

T
√ √ √ √

[98] Both
√ √ √ √

T
√ √ √

[134] Private
√ √

T
√ √ √

[35] Public
√ √ √ √

T
√ √ √ √

Table 5.2: Comparison of evaluation and witness creation according to the type of accumulator
instantiation.

Type Evaluation Witness Generation
Hash based Public Public

Public Public
Lattices Public Private

Number Theoretic Public Public 4

Pairing based Public Public
Private Private

In this section we formally define symmetric accumulators and prove the lower bound
on their size. Additionally we propose some discussions about relations between
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accumulators security, about undeniability [102] and delegatable [7] properties. We
complete this section with a discussion on future possible applications of accumula-
tors, following our new usage of cryptographic accumulators for encryption that we
present more in details in Section 6.2.

5.2.1 Symmetric Accumulators

Informally, an asymmetric accumulator requires witness for verification, while a sym-
metric accumulator does not require a witness for verification [88, 119] (and is mostly
trapdoor-less meaning that skacc = ∅). The two types of accumulators were formally
named in [88]. In this section we fill a gap in the accumulator literature: while it was
admit that symmetric accumulators constructions produce large size accumulated value,
this has never been properly prove. We first formally define symmetric accumulator
and then prove that their size cannot be less than linear in the number of accumulated
elements.

Definition 5.2.1 Symmetric cryptographic accumulator [27]. A symmetric crypto-
graphic accumulator scheme consists in three algorithms:

• Gen(λ): the generation algorithm takes as input a security parameter λ and
outputs a pair of public-secret keys (pkacc, skacc).

• Eval((skacc),pkacc,X ): the evaluation algorithm takes as input a (secret key skacc,
a) public key pkacc and a set of elements X . It outputs the accumulator accX of X .

• Verify(pkacc,accX , x): the verification algorithm takes as input a public key pkacc,
an accumulator accX and an element x. It outputs 1 if x ∈ X , and 0 otherwise.

Definition 5.2.2 Correctness. A symmetric cryptographic accumulator scheme is
said to be correct if for all security parameter λ, every honestly generated key pair
(skacc,pkacc)← Gen(λ), every set of elements X and every element x ∈ X :

Pr [Verify(pkacc,Eval((skacc, )pkacc,X ), x) = 1] = 1.

Definition 5.2.3 Symmetric accumulator one-wayness [27]. A symmetric accumu-
lator scheme is said to be one-way if all PPT adversaries A have at most negligible
advantage in the game presented in Figure 5.2, where A’s advantage is defined as

AdvOne-Way
A (λ) := Pr

 accX ∗ = accX ∧ X ̸= X ∗X ∗ ← A(pkacc,X ,accX ) :

accX ← Eval(skacc,pkacc,X )
accX ∗ ← Eval(skacc,pkacc,X ∗)

 .
Let C be a challenger.
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SETUP: on input λ, C runs Gen(λ) to get (skacc,pkacc). She chooses a set of
elements X , runs Eval(skacc,pkacc,X ) to get accX and sends (pkacc,X ,accX )
to A.

GUESS: A returns a set X ∗ and wins if X ∗ ̸= X and accX ∗ = accX where accX ∗ ←
Eval(skacc,pkacc,X ∗).

Figure 5.2: Symmetric accumulators one-wayness security game.

Theorem 5.2.1 A symmetric accumulator cannot produce accumulated value with size
less than linear in the number of elements in the accumulated set.

Proof 5.2.1 Let N ∈ N, [N ] = {1, · · · , N} and D the set of all possible sets over [N ].
Let X be a random variable over D. X is uniformly distributed over D, thus as |D| = 2N

we have that the entropy H(X) is equal to log2(2
N) = N . Suppose that there exists

an accumulator that accumulated X into a short value, i.e. a value with size less
than linear in N . Then, as the minimal amount of information needed to represent X
is H(X) = N , there exists two sets (i.e. two values of X) that have the same accu-
mulated value thanks to the pigeonhole principle. Thus the accumulator is not one-way.□

5.2.2 Relations Between Security Properties

When looking at accumulators’ security properties we can classify them into two cate-
gories: one that protects the witness (i.e. that prevents forgery of witnesses), and one
that protects the accumulated set (i.e. that hides information about the set). We present
this classification in Table 5.3.

Table 5.3: Classification of accumulator security properties.

Protect the witness Protect the accumulated set
(Strong) One-wayness Indistinguishability

Collision resistance Zero knowledge
One-way domain Obliviousness

Undeniability

Plus we notice that the properties in the first column are computational ones while in
the second column they are decisional.
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Note 5.2.1 Properties that protect the accumulated set define privacy security for accu-
mulators schemes. As already observed in [56, 106, 57], when formulating a notion of
privacy for cryptographic accumulators the fact that the accumulation value computation
must be randomized becomes evident.

Comparison between indistinguishability and zero-knowledge. The notion of zero-
knowledge differs from the privacy notion of [57], by protecting not only the originally
accumulated set but also all subsequent updates.

In fact, [73] formally proved that, for cryptographic accumulators, zero-knowledge is a
strictly stronger property than indistinguishability. In other words: every zero-knowledge
dynamic universal accumulator is also indistinguishable under the definition of [57],
while the opposite is not always true.

Comparison between zero-knowledge and obliviousness. While being really simi-
lar at first glance, both properties are actually different in the sense that they require that
different elements protect the information about the set: on one hand, a zero-knowledge
adversary is given accumulators and witnesses while on the other hand an oblivious
adversary is given accumulators and update information.

Therefore there is no relation between zero-knowledge and obliviousness.

Relations between other properties At first, as the adversary is given more and more
flexibility, it is easy to see that the following holds: One-Way Domain =⇒ Collision
Resistance =⇒ Strong One-Wayness =⇒ One-Wayness, while the opposite is
not true.

Regarding undeniability, it has been proven in Appendix C.1 of [57] that every undeniable
universal accumulator is collision-resistant. As mentioned in [102], a black-box reduction
in the other direction is impossible. In particular, [43] provides a collision-resistant uni-
versal accumulator and exhibit an example to show that their scheme is not undeniable.

It remains to make the link between undeniability and one-way domain. At first, we
focus on the scheme based on sorted hash tree given in [43]. This one is proven to be
universal and collision resistant, and as state before it is not undeniable. It can moreover
be used for domain that is in the span of a one-way function. Hence, one-way domain
does not imply undeniability. For the opposite, we do not succeed in proving that this is
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true or false, and we leave it as an open problem.

In Figure 5.3, we summarize all the above properties and their relation, based on
related work, but also on our new results. In the figure an arrow means “implies”,
a crossed out arrow means “does not imply” and a dash arrow means “not proven”.
Notice that as there is no relation between obliviousness and other properties we do
not include the former in the figure.

Figure 5.3: Relations between security properties of accumulators.

5.2.3 Discussion About Undeniability

As explained in Section 5.1.2, there are usually three cases regarding the setup:
schemes without a trapdoor key, schemes with a trapdoor key without a trusted setup,
and eventually schemes with a trapdoor key and a trusted setup. We also need to take
into account the fact that the accumulated value can be computed publicly (without
knowing the trapdoor) or privately.

In the trapdoor-less setting, as anyone can compute an accumulator, undeniability is a
required property. Indeed, an adversary can compute itself an accumulator while the
set of pre-image is not none, and not necessarily unique. In the trapdoor setting, when
the accumulated value can be computed publicly, or when the setup is in the no-trusted
setting, undeniability is needed as any adversary can compute its own (possibly fake)
accumulated value. We now focus on the trusted setup setting, and prove, as state
in [73], that this is an overkill in terms of security.

In the undeniability security game, when adversary can compute itself accumulated
value (or if the setup is untrusted), there is no distinction to make between x∗ ∈ X ∗ or
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x∗ /∈ X ∗. However, when the only way for the adversary A to compute acc∗ is to request
the challenger by giving a set X ∗ we need to consider both cases:

• If x∗ ∈ X ∗, then Verify(pkacc,acc∗, x∗,witx∗ , 0) = 1 by definition. To win the game,
A must find a non-membership witness wit

′

x∗ such that Verify(pkacc,acc∗, x∗,wit
′

x∗ ,

1) = 1. This means that A wins the undeniability game if it wins the collision
resistant game.

• If x∗ /∈ X ∗, then Verify(pkacc,acc∗, x∗,wit
′

x∗ , 1) = 1 by definition. To win the game,
A must find a membership witness such that Verify(pkacc,acc∗, x∗witx∗ , 0) = 1.
That means that A wins the undeniability game if it wins the collision resistance
game.

In both cases, collision-resistance is enough, and then undeniability is not required.

5.2.4 Discussion About Delegatable Accumulators

To the best of our knowledge, only one accumulator provides delegatable non-membership
proofs: [8]. For their purpose they only consider the delegatable capability for non-
membership proofs but it can be defined for membership proofs as well, and will consider
both cases in this section. Our goal here is to find a generic way to build accumulators
schemes with delegation of proofs.

Accumulators and proof systems. To understand [8]’s construction, let us have a
look at their definition of accumulators, given in the extended version of their paper [7].
In their definition an accumulator is constructed from another primitive, called a proof
system. Briefly, such primitive is a protocol between a prover and a verifier where an
honest prover can convince a verifier about the truth of a statement with the help of a
witness, while an adversary cannot convince a verifier of a false statement. The formal
definition of proof systems is given below.

Definition 5.2.4 Proof System [7]. Let R be an efficiently computable relation of
(Para,Sta, Wit) with setup parameters Para, a statement Sta, and a witness Wit. A
non-interactive proof system for R consists of 3 PPT algorithms: a Setup, a prover
Prove, and a verifier Verify. A non-interactive proof system (Setup,Prove,Verify) must
be complete and sound. Completeness means that for every PPT adversary A,∣∣∣∣∣∣∣Pr

 Para← Setup(λ); (Sta,Wit)← A(Para);
Proof← Prove(Para,Sta,Wit) :

Verify(Para,Sta,Proof) = 1 if (Para,Sta,Wit) ∈ R

− 1

∣∣∣∣∣∣∣
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is negligible. Soundness means that for every PPT adversary A,∣∣∣∣∣Pr
[

Para← Setup(λ); (Sta,Proof)← A(Para) :
Verify(Para,Sta,Proof) = 0 if (Para,Sta,Wit) /∈ R,∀Wit

]
− 1

∣∣∣∣∣
is negligible.

We now give two properties of proof systems that we will need in the rest of this section.

Definition 5.2.5 Witness indistinguishability[80, 7]. A proof system is said to satisfy
witness indistinguishability if the advantage of any malicious verifier V of winning the
security game presented in Figure 5.4 is negligible. Let P be an honest prover.

• SETUP: P , on input security parameter λ and relation R, runs Setup(λ) to get
Para and send it to V along with R.

• CHALLENGE: V choose a statement Sta along with two witnesses Wit0 and
Wit1 and sends (Sta,Wit0,Wit1) to P. The latter chooses b← {0, 1} and runs
Prove(Para,Sta,Witb) to get Proofb. P sends Proofb to V.

• GUESS: V outputs a guess bit b′ ∈ {0, 1} and wins the security game if b′ = b.

Figure 5.4: Adaptive witness indistinguishability security game for proof systems.

Definition 5.2.6 Randomizable proof system [7]. A proof system is said to be
randomizable if has another PPT algorithm RandProof that takes as input a tuple
(Para,Sta,Proof) of setup parameters Para, statement Sta and proof Proof and returns
another valid proof Proof

′
, which is indistinguishable from a proof produced by Prove.

In [8, 7] accumulators are universal as the authors require non-membership proofs
to build delegatable anonymous credentials. According to their definition, a univer-
sal accumulator is composed of a setup algorithm Setup that defines all parameters
of the accumulator scheme, an evaluation algorithm Accu that aggregates a large
size set of values into a constant size value (the accumulator), a membership proof
system (Setup,ProveMem,VerifyMem) that proves membership of elements given as
input, and a non-membership proof system (Setup,ProveNM,VerifyNM) that proves
non-membership of elements given as input. In their definition there are also two other
PPT algorithms CompMemWit and CompNMWit that take as input the scheme public
key, the accumulated set along with its accumulator and an element, and return respec-
tively a witness for membership and non-membership proof for the given element.
As we will see in the next paragraph, proof systems’ properties are essential to obtain
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delegatable (non-)membership proof. That is why we now rewrite our definition of
accumulators (Definition 5.1.1, in Section 5.1) to highlight the underlying proof systems.

Definition 5.2.7 Static universal accumulator with proof systems. We consider
(Setup,ProveMem,VerifyMem) and (Setup,ProveNM,VerifyNM) respectively a mem-
bership and a non-membership proof system along with their associated algorithms
CompMemWit and CompNMWit. A static universal cryptographic accumulator scheme
is a tuple of efficient algorithms defined as follows:

• Gen(λ, b): this generation algorithm takes as input a security parameter λ and a
bound b ∈ N ∪ {∞} such that if b ̸=∞ then the number of elements that can be
accumulated is bounded by b. It returns a key pair (skacc,pkacc), where skacc = ∅
if no trapdoor exists and pkacc contains the parameter b.

• Eval((skacc, )pkacc,X ): this evaluation algorithm takes as input the accumulator
(secret key skacc and) public key pkacc and a set X to be accumulated. It returns
an accumulator accX together with some auxiliary information aux.

• WitCreate((skacc, )pkacc,X ,accX ,aux, x,Type): this witness creation algorithm takes
as input the accumulator (secret key skacc and) public key pkacc, an accumula-
tor accX , the associated set X , auxiliary information aux, an element x and a
boolean Type. If Type = 0 and x ∈ X it runs CompMemWit(pkacc,X ,accX , x)

to get a membership witness mwitXx and returns it, if Type = 1 and x /∈ X it
run CompNMWit(pkacc,X ,accX , x) to get a non-membership witness nmwitXx and
returns it.

• Verify(pkacc,accX ,witXx , x,Type): this verification algorithm takes as input the accu-
mulator public key pkacc, an accumulator accX , a witness witXx , an element x and a
boolean Type. If witXx = mwitXx , and Type = 0 it runs ProveMem(pkacc,accX ,mwitXx )
to get ProofMem and returns the output of VerifyMem(pkacc,accX ,ProofMem).
If witXx = nmwitXx , and Type = 1 it runs ProveNM(pkacc,accX ,nmwitXx ) to get
ProofNM and returns the output of VerifyNM(pkacc,accX ,ProofNM). Otherwise it
returns 0.

In the sequel we will refer to accumulators in the sense of Definition 5.2.7.

Delegatable (non-)membership proofs. Now we formally define the delegatable
proofs property, adapted from [8] and for both membership and non-membership proofs.
In the following, D denotes the space of values to be accumulated.

Definition 5.2.8 Delegatable proofs . An accumulator allows delegatable proofs if it
additionally provides the following algorithms.
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• Dele(pkacc, x,Type): the delegation algorithm takes as input the public key pkacc,
an element x and boolean parameter Type. It outputs a delegating key Dely and
auxiliary information req = Type.

• Vali(pkacc,Dely, req): the validation algorithm takes as input the public key pkacc,
a delegating key Dely and auxiliary information req. If Dely is valid it returns 1,
otherwise it returns 0.

• Rede(pkacc,Dely, req): the re-delegation algorithm takes as input the public key
pkacc, a delegating key Dely and auxiliary information req. If Vali(pkacc,Dely, req) =
1, the algorithm returns an other delegating key Del

′

x and auxiliary information req.
• CompProof(pkacc,Dely, req,X ,accX ): the proof computation algorithm takes as

input the public key pkacc, a delegating key Dely and auxiliary information req, a
set X and the associated accumulated value accX . If x,X |= req it returns a proof
(similar to those output by ProveMem and ProveNM) according to req,X and x.

These algorithms verify, for every PPT algorithms A,A1,A2:
• Delegability: the following is negligible∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



(skacc,pkacc)← Gen(λ);
(x,Type,X )← A1(pkacc);accX ← Eval(pkacc,X );

witx ←WitCreate(pkacc,X ,accX , x,Type);
Proof0 ← Prove(pkacc,accX ,aux,witx);
(Dely, req)← Dele(pkacc, x,Type);

Proof1 ← CompProof(pkacc,Dely, req,X ,accX );

b← {0, 1} ; b′ ← A2(accX ,witx,Dely,Proofb) :
(x,X |= req) ∧ b = b

′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
• Unlinkability: the following is negligible∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



(skacc,pkacc)← Gen(λ);
(y0, y1)← D;Type← A,

(Dely, req)← Dele(pkacc, y0,Type);
b← {0, 1} ;

(Delyb , reqb)← Dele(pkacc, yb,Type);
b
′ ← A(pkacc,Dely,Delyb) :

b = b
′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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• Redelegability: the following is negligible∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(skacc,pkacc)← Gen(λ); (Type, x)← A1(pkacc);

(Dely, req)← Dele(pkacc), x,Type);
(Del0y, req0)← Dele(pkacc), x,Type);
(Del1y, req1)← Rede(pkacc,Dely, req);
b← {0, 1} ; b′ ← A2(pkacc,Dely,Delby) :

b = b
′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
• Verifiability: the following is negligible∣∣∣∣∣∣∣Pr

 (skacc,pkacc)← Gen(λ); (Type, x)← A(pkacc);

(Dely, req)← Dele(pkacc, x,Type) :
Vali(pkacc,Dely, req) = 1 if x ∈ D

− 1

∣∣∣∣∣∣∣
and

∣∣∣∣∣∣∣∣∣∣
Pr


(skacc,pkacc)← Gen(λ);Del

′
← A(pkacc) :

Vali(pkacc,Del
′
) = 0

if Del
′
/∈

{
Del

∣∣∣∣∣ Del← Dele(pkacc, x
′
,Type);

x
′ ∈ D

}
− 1

∣∣∣∣∣∣∣∣∣∣
,

where the condition Del
′
/∈
{

Del|Del← Dele(pkacc, x
′
,Type);x′ ∈ D

}
means that

the delegation key Del
′
does not correspond to a delegation key correctly com-

puted, for any element x′ of the domain D.

Delegatable (non-)membership proofs and proof systems. Let us see that the
additional algorithms Dele,Rede,Vali,CompProof required to obtain an accumulator
with delegatable (non-)membership proofs can be rewrite to highlight the underly-
ing proof systems algorithms. As we are dealing with both kinds of proofs, we use
(Setup,Prove,PSVerify) to denote a general proof system, representing either the mem-
bership or the non-membership proof system. The output of Prove is denoted Proof.
The setup algorithm Setup of the proof system is run by the accumulator generation
algorithm Gen thus Para the setup parameters of the proof system are included in pkacc.
Let the proof system be randomizable, i.e. it has another algorithm RandProof that
takes as input a proof and outputs a randomized one.
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• Dele(pkacc, x,Type) : the algorithm creates a proof system statement Sta from
the public parameters, a proof system witness Wit for x,Type and computes
a proof system proof Proof0 from Prove(Para,Sta,Wit). It outputs Proof and
req = {Type,Sta}.

• Vali(pkacc,Proof, req) : if the verification algorithm of PSVerify on inputs (Para,Sta,
Proof outputs 1, the algorithm outputs 1 otherwise it outputs 0.

• Rede(pkacc,Proof, req): if Vali(pkacc,Proof, req) = 1, it runs RandProof(pkacc,Sta,
Proof) to get a randomized proof Proof

′
.

• CompProof(pkacc,Proofy, req,X ,accX , ): if X , x |= req, where x is the witness
used to create Proofy, it uses homomorphic property of the proof system to obtain
a new proof Proof

′

x, computed from and from the underlying witness x and the
new statement Sta

′
, corresponding to X and accX .

We now prove that Unlinkability, Redelegability and Verifiability properties are satisfied
if the underlying proof system is witness indistinguishable and randomizable.

Lemma 5.2.1 Unlinkability is satisfied thanks to the witness indistinguishability property
of the (non-)membership proof system.

Proof 5.2.2 We rewrite the unlinkability property, using the (non-)membership proof
system, which gives us:

Pr



(skacc,pkacc)← Gen(1λ);
(Wit0,Wit1)← D;Sta← A,

Proof0 ← Prove(pkacc,Wit0,Sta);
b← {0, 1} ;Proofb ← Prove(pkacc,Witb,Sta);

b
′ ← A(pkacc,Proof0,Proofb) :

b = b
′


This corresponds to the probability in the witness indistinguishability security game of
the (non-)membership proof system, which is negligible. Thus, so is the probability
defined in Unlinkability. □

Lemma 5.2.2 Redelegability is satisfied thanks to the randomizable property of the
(non-)membership proof system.

Proof 5.2.3 We rewrite the redelegability property, using the (non-)membership proof
system’s algorithms, which gives us
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Pr



(skacc,pkacc)← Gen(λ);
Sta,Wit← A1(pkacc);

Proof← Prove(pkacc,Wit,Sta);
Proof0 ← Prove(pkacc,Wit,Sta);

Proof1 ← RandProof(pkacc,Sta,Proof);
b← {0, 1} ; b′ ← A2(pkacc,Proof,Proofb) :

b = b
′


This corresponds to the probability in the randomized security game of the (non-
)membership proof system, which is negligible. Thus, so is the probability defined
in Redelegability. □

Lemma 5.2.3 Verifiability is satisfied thanks to the completeness and soundness of the
(non-)membership proof system.

Proof 5.2.4 We rewrite the verifiability property, using the (non-)membership proof
system’s algorithms, which gives us

Pr

 (skacc,pkacc)← Gen(λ); (Sta,Wit)← A(pkacc);

Proof← Prove(pkacc,Sta,Wit) :
PSVerify(pkacc,Sta,Proof) = 1 if (pkacc,Sta,Proof) ∈ R


and

Pr

[
(skacc,pkacc)← Gen(λ); (Sta,Proof)← A(pkacc) :

PSVerify(pkacc,Sta,Proof) = 0 if (pkacc,Sta,Proof) /∈ R, ∀tt

]
This corresponds to the soundness probability of the proof system, and is overwhelming.
Thus so is the second probability of Verifiability. □

Note 5.2.2 In [7], they proved that their accumulator satisfies unlinkability as they used
a composable ZK proof system. Actually, only witness indistinguishability is required.

How to obtain delegability? The witness indistinguishability and randomizable prop-
erty of proof systems are not enough to obtain an accumulator with delegatable (non-
)membership proof as delegability cannot be proven. To solve this issue, [8] uses a
primitive they introduced: homomorphic proofs.
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Definition 5.2.9 Homomorphic proofs [8]. Let (PSSetup,Prove, PSVerify) be a proof
system for a relation R and Para← PSSetup(λ). Consider a subset Π of all (Sta,Wit,
Proof) such that (Para,Sta,Wit) ∈ R and PSVerify(Para,Sta, Proof) = 1, and an oper-
ation +Π : Π × Π → Π. Π is a set of homomorphic proofs if (Π,+Π) satisfies closure,
associativity and commutativity. Consider an IΠ = (Sta0,Wit0,Proof0) ∈ Π. Π is a
set of strongly homomorphic proofs if (Π,+Π, IΠ) forms an Abelian group where IΠ is
the identity element.

Note 5.2.3 As stated in [8], one can randomize a proof computed from the homomor-
phic operation to get another proof, indistinguishable from a proof generated by Prove.

Lemma 5.2.4 Delegability is satisfied thanks to the homomorphic proofs and the ran-
domizable property of the (non-)membership proof system.

Proof 5.2.5 We rewrite the delegability property, using the (non-)membership proof
system which gives us:

Pr



(skacc,pkacc)← Gen(λ);
(Sta0,Sta,Wit)← A1(pkacc);

Proof0 ← Prove(pkacc,Sta,Wit);
Proof← Prove(pkacc,Sta0,Wit);

Proof1 ← RandProof(pkacc,+Π(Proof));
b← {0, 1} ; b′ ← A2(Sta,Wit,Proof,Proofb) :

(Sta,Wit,Proofb) ∈ R ∧ b = b
′


Thanks to the homomorphic proofs and randomizable property of the (non-)membership
proof system, this probability is negligible, so is the probability in Delegability. □

Conclusion. Combining the above paragraphs we obtain the following theorem.

Theorem 5.2.2 If the membership (resp. non-membership) proof system is witness
indistinguishable, randomizable and has homomorphic proofs then the accumulator
satisfies Delegability,Unlinkability, Redelegability and Verifiability for membership (resp.
non-membership) proofs.

Therefore we can conclude with the following way to obtain an accumulator with del-
egatable (non-)membership proofs:
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1. Find the underlying (non-)membership prove system
2. If the proof system is not witness indistinguishable or randomizable or does not

have homomorphic proofs, change it to obtain the required properties.

Applying the above on an example. We tried to apply the above transformation to
the accumulator scheme of [73]. To do so, we used Groth Sahai (GS) proof system [81]
as, as proven by [7], GS proof system [81] satisfies all required properties to obtain
a delegatable accumulator (i.e. it produces homomorphic proofs). Thus finding the
correct GS statement for membership will lead to delegatable membership proofs, and
the same goes for non-membership proofs. Unfortunately we were only able to obtain
delegation for membership proofs but not for non-membership proofs. We leave this
question as an open problem.

5.2.5 Discussion on Accumulator Applications

Originally, accumulators were used for timestamping and membership testing [27] but
over time their usage become multiple: fail stop signatures [18], membership revoca-
tion in group signature [46], ID based ring signatures [113], anonymous credentials
(delegatable) [8] or attribute-based anonymous credentials [14]), distributed public key
infrastructure [125], e-cash [15]. Refer to several surveys on a cryptographic accumula-
tor, such as [123], for details on accumulators’ applications.

We wanted to draw attention on one surprising thing: while the purpose of cryptographic
accumulators is to make constant the size of cryptographic objects, few attempts have
been done to use them for encryption schemes, such as [11, 72, 135]. The works of
[72, 11] propose broadcast encryption schemes that use (RSA based) cryptographic
accumulator, to manage users’ secret keys: let N ∈ N be the number of users in the
broadcast encryption scheme. For an index i ∈ [N ], a secret key is created for each
subset of [N ] that contains i and the secret key of user identified by index i is an
accumulator of the secret keys created for the subsets. To decrypt a message, user
“extract” (with a process similar to the generation of a witness) the secret key correspond-
ing to the subset associated to the ciphertext. More recently, Wang and Chow [135]
present an identity-based broadcast encryption scheme that uses a degenerated notion
of accumulators, composed only of algorithms Gen and Eval. In their scheme, the
evaluation algorithm Eval is used during encryption to hide some randomness (the latter
being used to mask the message) and the compactness of its output is required for
the scheme efficiency. However they do not take into account the other functionality
of cryptographic accumulators, the efficient membership proof, in their scheme. Also
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notice that some works propose to use accumulators to add revocation functionality
previously existing encryption scheme, such as [83] who adds revocation to Lewko and
Water’s hierarchical identity-based encryption scheme [96].

In Section 6.2 we proposed an encryption scheme that uses cryptographic accumulator
for both key management and encryption. While our scheme suffers from large pub-
lic key size, it opens a door to a new field of works that build encryption scheme
from accumulator.

5.3 Our Contributions to Accumulators’ Formalism

We now present two of our contributions regarding cryptographic accumulators with
private evaluation and public witness generation. The first one is a new security property,
called unforgeability of private evaluation, that protects the accumulator itself when the
latter is computed using the secret key of the scheme. Our second contribution is a new
kind of accumulators, called dually computable accumulators, that has two evaluation
algorithms: Eval that takes as input the secret key of the scheme, and PublicEval that
takes as input the public key of the scheme.

5.3.1 New Security Property of Unforgeability of Private Evaluation

Surprisingly when looking at all security properties presented in Sections 5.1.2 and
5.2.2 we notice that there is no property that protect the accumulator itself, especially
when the latter computation requires the knowledge of the scheme’s secret key. In the
undeniability property the accumulator might be forged but only in order to help forging
both membership and non-membership witnesses for the same element. In some
applications, the accumulator itself can be an important data to protect: for example
when the accumulator represents a revocation list, having a property proving that only
the trusted authority can compute this revocation list will improve the general security of
the protocol. This is an important gap in cryptographic accumulator schemes security.

We fill this gap by providing the following property that states that it must be hard to
“forge” a privately computed accumulator that passes the verification algorithm with an
honestly computed witness.
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Definition 5.3.1 Unforgeability of private evaluation (UPE). An accumulator scheme
with private evaluation is said to satisfy unforgeability of private evaluation if all PPT
adversaries A have at most negligible advantage in the game presented in Figure 5.5,
where A’s advantage is defined as

AdvUPE
A (λ) := Pr


Verify(pkacc,acc∗, x,witx) = 1:

(skacc,pkacc)← Gen(λ),
(X ∗,acc∗)← A(pkacc);

accX ∗ ← Eval(skacc,X ∗), x← X ∗;

witx ←WitCreate(pkacc,accX ∗ ,X ∗, x)

 .

Let C be a challenger.

SETUP: on input λ, C runs Gen(λ) to get (skacc,pkacc) and sends pkacc to A.
GUESS: A returns a set X ∗ and a forged accumulator acc∗ and wins

if for any x ∈ X ∗, Verify(pkacc,acc∗, x,witx) = 1 where witx ←
WitCreate(pkacc,accX ∗ ,X ∗, x) and accX ∗ ← Eval(skacc,X ∗).

Figure 5.5: Unforgeability of private evaluation security game.

5.3.2 Introducing Dually Computable Accumulators

We now introduce a new functionality for accumulators with private evaluation and public
witness generation: dually computable. Informally, a dually computable accumulator is
a cryptographic accumulator scheme with an additional evaluation algorithm PublicEval
that uses solely the scheme public key.

Definition 5.3.2 Dually computable accumulator. Starting from a static, universal
accumulator Acc = (Gen,Eval,WitCreate,Verify), we say that Acc is dually computable
if it also provides two algorithms PublicEval and PublicVerify such that:

• PublicEval(pkacc,X ): this evaluation algorithm takes as input the accumulator
public key pkacc and a set X . It outputs an accumulator accpX of X and auxiliary
information auxp.

• PublicVerify(pkacc,accpX ,witx, x,Type): this verification algorithm takes as in-
put the accumulator public key pkacc, a publicly computed accumulator accpX
of X , an element x, a witness witx for x and boolean Type, computed from
WitCreate(pkacc,X ,accpX , auxp, x,Type). If witx is a correct membership witness
( i.e. x ∈ X ) and Type = 0, or if witx is a correct non-membership witness ( i.e.
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x /∈ X ) and Type = 1 then the algorithm outputs 1, otherwise it outputs 0.

Note 5.3.1 When the algorithm WitCreate is run with a publicly computed accumulator
(accp) instead of a privately computed one(acc), the output witness will be written witp.

A dually computable accumulator must satisfy four properties: correctness and dual
collision resistance as any cryptographic accumulator, correctness of duality and distin-
guishability two properties that we introduced. In the correctness and collision resistance
definitions, we highlight in blue the parts related to PublicEval and PublicVerify. Without
these parts, the definitions are exactly as Definitions 5.1.2 and 5.1.3.

Definition 5.3.3 Correctness. A dually computable accumulator is said to be correct if
for all security parameters λ, all integer b ∈ N ∪ {∞}, all set of values X , all boolean
type and all element x such that if Type = 0 then x ∈ X and if Type = 1 then x /∈ X the
following holds

Pr



(skacc,pkacc)← Gen(λ, b),
(accX ,aux)← Eval(skacc,pkacc,X ),

(accpX ,auxp)← PublicEval(pkacc,X ),
witx ←WitCreate(pkacc,X ,accX ,aux, x,Type),

witpx ←WitCreate(pkacc,X ,accpX ,auxp, x,Type) :
Verify(pkacc,accX ,witx, x,Type) = 1

∧PublicVerify(pkacc,accpX ,witpx, x,Type) = 1


= 1

The following property states that a witness computed for a privately (resp. publicly)
computed accumulator as input of the WitCreate algorithm must pass the PublicVerify
(resp. Verify) algorithm, with publicly (resp. privately) computed accumulator for the
same set as the privately (resp. publicly) computed accumulator.

Definition 5.3.4 Correctness of duality. A dually computable accumulator is said to
satisfy correctness of duality if for all security parameters λ, all integer b ∈ N ∪ {∞}, all
set of values X all boolean type and all element x such that if Type = 0 then x ∈ X and
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if Type = 1 then x /∈ X the following holds

Pr



(skacc,pkacc)← Gen(λ, b),
(accX ,aux)← Eval(skacc,pkacc,X ),

(accpX ,auxp)← PublicEval(pkacc,X ),
witx ←WitCreate(pkacc,X ,accX ,aux, x,Type),

witpx ←WitCreate(pkacc,X ,accpX ,auxp, x,Type) :
(Verify(pkacc,accX ,witpx, x,Type) = 1)

∧(PublicVerify(pkacc,accpX ,witx, x,Type) = 1)


= 1

Definition 5.3.5 Distinguishability. A dually computable accumulator satisfies dis-
tinguishability, if for any security parameter λ and integer b ∈ N ∪ {∞}, any keys
(skacc,pkacc) generated by Gen(λ, b), and any set X : accX ← Eval(skacc,pkacc,X ) and
accpX ← PublicEval(pkacc,X ) are trivially distinguishable.

Definition 5.3.6 Dual collision resistance (DCR). A dually computable accumulator is
said to satisfy dual collision resistance if all PPT adversaries A have at most negligible
advantage in the game presented in Figure 5.6, where A’s advantage is defined as

AdvDCRA (λ) := Pr



Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 0) = 1 ∧ x∗ /∈ X ∗

∨(PublicVerify(pkacc,accpX ∗ ,witx∗ , x∗,Type = 0) = 1 ∧ x∗ /∈ X ∗)

∨Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 1) = 1 ∧ x∗ ∈ X ∗

∨(PublicVerify(pkacc,accpX ∗ ,witx∗ , x∗,Type = 1) = 1 ∧ x∗ ∈ X ∗) :

(skacc,pkacc)← Gen(λ, b), (X ∗,witx∗ , x∗)← A(pkacc),

accX ∗ ← Eval(skacc,X ∗),

accpX ∗ ← PublicEval(pkacc,X ∗)


Let C be a challenger.

Note 5.3.2 Notice that in the above security game the adversary does not query the
challenger for witnesses as witness generation is done publicly in a dually computable
accumulator.

5.4 Another Contribution: Our New Accumulators Schemes

We now present our two new cryptographic accumulators schemes. Our first scheme
improves the state of the art by being the first accumulator scheme with private eval-
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SETUP: on input λ, C runs Gen(λ) to get (skacc,pkacc) and sends pkacc to A.
ACCUMULATOR QUERY: A chooses a set X and sends it to C. C returns to A accX ,

where accX ← Eval(skacc,X ).
GUESS: A returns a set X ∗, an element x∗ and a witness witx∗ and

wins if Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 0) = 1 ∧ x∗ /∈ X ∗

or PublicVerify(pkacc,accpX ∗ ,witx∗ , x∗,Type = 0 = 1 ∧ x∗ /∈ X ∗) or
Verify(pkacc,accX ∗ ,witx∗ , x∗,Type = 1) = 1 ∧ x∗ ∈ X ∗ or
PublicVerify(pkacc,accpX ∗ ,witx∗ , x∗,Type = 1) = 1 ∧ x∗ ∈ X ∗.

ACCUMULATOR QUERY: A can continue to query accumulator for sets X .

Figure 5.6: Collision resistance security game for dually computable accumulators.

uation while having public witness generation. Our second scheme is the first dually
computable accumulator in the literature and is based on our first scheme.

5.4.1 Our Universal Accumulator with Private Evaluation and Pub-
lic Witness Generation

Our first construction fills the gap raised in Note 5.1.5 and is a unique combination of
dual pairing vector spaces (Definitions 2.3.1, 2.3.2) and the accumulator of Nguyen [113]
that we present below.

Nguyen’s accumulator. In 2005, Nguyen proposed the first cryptographic accumu-
lator based on bilinear pairing. His scheme is bounded by q ∈ N and we present
it in Figure 5.7.

• Gen(λ, q): run a bilinear group generation algorithm to get Γ = (p,G1,G2,
GT , e, g1, g2) and choose a random s ← Z∗

p. Set skacc = s and pkacc =
g1, g

s
1, · · · , gs

q

1 , g2, g
s
2, · · · , gs

q

2 .
• Eval(pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accX = g

q∑
i=0

ais
i

1 , and return accX .

• WitCreate(pkacc,accX ,X , x): let {bi}i=0,··· ,q be the coefficients of the polyno-

mial ChX\{x}[Z] =
∏

x∈X ,x ̸=x
(x+ Z). Compute witx = g

q∑
i=0

bis
i

2 , and return witx.

• Verify(pkacc,accX ,witx, x): return 1 if e(accX , g2) = e(gx1 · gs1,witx), 0 otherwise.

Figure 5.7: Nguyen’s [113] cryptographic accumulator scheme.
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Correctness of the Nguyen’s scheme can easily be shown: let X be a set and x be an

element of X . As x ∈ X , we have that
q∑
i=0

ais
i = (x + s) ·

q∑
i=0

bis
i and thus

e(gx1 · gs1,witx) = e(g
(x+s)
1 , g

q∑
i=0

bis
i

2 ) = e(g1, g2)
(x+s)

q∑
i=0

bis
i

= e(g1, g2)

q∑
i=0

ais
i

= e(accX , g2).

Regarding security, the scheme was proven to be collision resistant under the q-SBDH
problem (Definition 2.2.12).

Note 5.4.1 Nguyen’s accumulator was originally in the symmetric bilinear setting. We
present it in the asymmetric bilinear setting to make the comparison with our accumula-
tor scheme easier. Notice that the choice of representing accumulators with elements
of G1 and witnesses with elements of G2 is ours and groups can easily be swapped.

Note 5.4.2 Notice that [113]’s accumulator supports subset queries and multiset set-
tings as characteristic polynomial Ch can be defined for a multiset and for the set X \ I,
where I ⊂ X .

Originally, Nguyen [113]’s accumulator was non-universal. Later, Damgard et al. [55]
and Au et al. [14] proposed a way to compute non-membership witnesses: while
membership witnesses use the fact that the polynomial (x+ Z) divides ChX [Z] if x ∈ X ,
meaning that there exits a polynomial Q[Z] such that ChX [Z] = (x + Z) · Q[Z], they
decided to exploit the fact that if x /∈ X , then there exists an integer r such that
ChX [Z] = (x+ Z) ·Q[Z] + r. Thus the non-membership witness is composed of gQ(s)

2

(which is the same element than in membership witness) and gr2. Verification is done
by checking if e(accX , g2) = e(gx1 · gs1, g

Q(s)
2 ) · e(g1, gr2). Unfortunately, recently Biryukov et

al. [28] proved that this way to compute non-membership witness breaks the collision
resistance property of the scheme.
For this reason (and as they wanted to reach another level of privacy security), Ghosh
et al. [73] defined non-membership witnesses with Bezout coefficients: let X be a set
and x /∈ X . As x /∈ X , the gcd of ChX [Z] and (x + Z) is 1. Then with the Extended
Euclidean algorithm, compute the polynomials q1[Z], q2[Z] (the Bezout coefficients) such
that ChX · q1[Z] + q2[Z] · (x+Z) = 1. The non-membership witness is composed of gq1(s)2

and gq2(s)2 and verification is done by checking if e(accX , g
q1(s)
2 ) · e(gx1 ·gs1, g

q2(s)
2 ) = e(g1, g2).

We will use their idea to make our scheme universal.
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Intuition. Let us now present the intuition of our construction. It is easy to see that
with Nguyen’s accumulator, both evaluation and witness generation are either done
publicly or privately but it is not possible to have one algorithm executed privately while
the other is executed publicly. Indeed, a trivial idea to have private evaluation and public
witness creation would be to keep secret the elements of G1 for the private evaluation
and use the elements of G2 as public elements. But this does not work as gs1 must be
given publicly for verification.
That is why we use dual pairing vector spaces (see Section 2.3), with dimension n = 2.
Let D,D∗ be two dual orthonormal bases such that D = (d1,d2) and D∗ = (d∗

1,d
∗
2).

By playing with the bases d1,d
∗
1,d2 and d∗

2, we can keep secret some elements and
publish some others as follows:

• gd1
1 , g

d1s
1 , · · · gd1sq

1 are not publicly given since used for private evaluation;
• gd

∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

q

2 , g
d∗
2

2 , g
d∗
2s

2 , · · · gd
∗
2s

q

2 are publicly used for witness creation; and
• gd

∗
1

2 , gd2
1 , g

d2s
1 , gd2sq

1 are publicly used for verification.

Thanks to that and the transformation from
∏
x∈X

(x + s) to
q∑
i=0

ais
i, using the character-

istic polynomial result given in Definition 2.1.2, the above public elements are easily
computable from the knowledge of the successive powers of s in groups G1 or G2, as
it is done in Nguyen. We obtain our scheme presented in Figure 5.8. Our scheme
allows multiset setting and subset queries, thus we replace x by I in the construction.
However, a non-membership witness for subset I is only computed if X ∩ I = ∅. Our
scheme is, as Nguyen’s, bounded: let q ∈ N be its bound. Notice that we write in green
elements needed when considering the scheme universal. Those elements can be
removed when considering our accumulator scheme non-universal. Highlighting our
scheme when non-universal will be helpful to build a data sharing scheme, that we
present in Section 6.2.

Theorem 5.4.1 Our accumulator is correct.

Proof 5.4.1 Correctness of membership: let X , I be two sets such that I ⊂ X . Let
{ai, bi, ci}qi=0 be respectively the coefficients of polynomials ChX [Z] =

∏
x∈X

(x + Z),

ChX\I [Z] =
∏

x∈X\I
(x + Z) and ChI [Z] =

∏
x∈I

(x + Z). Let accX ← Eval(skacc,X ) and

mwitI ←WitCreate(pkacc,accX ,X , I, 0). We have that

e(g
d2

q∑
i=0

cis
i

1 ,mwitI) = e(g
d2

q∑
i=0

cis
i

1 , g
d∗
2

q∑
i=0

bis
i

2 ) = e(g1, g2)
ψ

q∑
i=0

cis
i·

q∑
i=0

bis
i

.
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• Gen(λ, q): run a bilinear group generation algorithm to get Γ =
(p,G1,G2,GT , e, g1, g2). Then choose a random s ← Z∗

p, and run Dual(Z2
p)

to get D = (d1,d2),D
∗ = (d∗

1,d
∗
2). Let ψ ∈ Z∗

p be a random such that
d1 · d∗

1 = d2 · d∗
2 = ψ. Set skacc = (s,D,D∗),

pkacc =

(
Γ, gd2

1 , g
d2s
1 , · · · , gd2sq

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · ,
g
d∗
1s

q

2 , g
d∗
2

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2 , e(g1, g2)
ψ

)
,

and return skacc,pkacc.
• Eval(skacc,pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accX = g
d1

q∑
i=0

ais
i

1 , and return accX .

• WitCreate(pkacc,accX ,X , I,Type): let {bi}i=0,··· ,q be the coefficients of the
polynomial ChX\I [Z] =

∏
x∈X\I

(x+ Z) and let {ci}i=0,··· ,q be the coefficients of

the polynomial ChI [Z] =
∏
x∈I

(x+ Z)

– If Type = 0 (membership), compute mwitI = g
d∗
2

q∑
i=0

bis
i

2 , and return mwitI .

– If Type = 1 (non-membership), using Extended Euclidean algorithm,
compute polynomials q1[Z], q2[Z] such that ChX [Z]q1[Z] + ChI [Z]q2[Z] =

1. Then, set W1 = g
d∗
1q1(s)

2 and W2 = g
d∗
2q2(s)

2 . Output nmwitI = (W1,W2).
• Verify(pkacc,accX ,witI , I,Type):

– If Type = 0, and witI is not a membership witness, it outputs 0. Else, the

algorithm returns 1 if e(accX , g
d∗
1

2 ) = e(g
d2

q∑
i=0

cis
i

1 ,mwitI), 0 otherwise.
– If Type = 1, and witI is not a non-membership witness, it outputs 0.

Else, the algorithm returns 1 if e(accX ,W1) · e(g
d2

q∑
i=0

cis
i

1 ,W2) = e(g1, g2)
ψ,

0 otherwise.

Figure 5.8: Our universal accumulator scheme, with private evaluation and public witness
generation.

Here notice that Nguyen’s scheme correctness comes into play, and as I ⊂ X we have

e(g
d2

q∑
i=1

cis
i

1 ,mwitI) = e(g1, g2)
ψ

q∑
i=0

ais
i

= e(accX , g
d∗
1

2 ).

Correctness of non-membership: let X , I be two sets such that I ̸⊂ X and I ∩ X = ∅.
Let {ai, ci}qi=0 be respectively the coefficients of polynomials ChX [Z] =

∏
x∈X

(x+ Z), and

ChI [Z] =
∏
x∈X

(x + Z). Let accX ← Eval(skacc,X ) and nmwitI = (W1,W2)← WitCreate
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(pkacc,accX ,X , I, 1). We have that

e(accX ,W1) · e(g
d2

q∑
i=0

cis
i

1 ,W2) = e(g
d1

q∑
i=0

ais
i

1 , g
d∗
1q1(s)

2 ) · e(g
d2

q∑
i=0

cis
i

1 , g
d∗
2q2(s)

2 )

= e(g1, g2)
ψChX (s)q1(s) · e(g1, g2)ψq2(s)ChI(s)

= e(g1, g2)
ψ(ChX (s)q1(s)+q2(s)ChI(s)).

Again, thanks to Nguyen’s scheme correctness and as I ̸⊂ X , we have

e(accX ,W1) · e(g
d2

q∑
i=0

cis
i

1 ,W2) = e(g1, g2)
ψ·1 = e(g1, g2)

ψ.

Regarding security our scheme is, as Nguyen’s scheme, collision resistant under the
q-SBDH problem (Definition 2.2.12).

Theorem 5.4.2 Our accumulator satisfies collision resistance under the q-SBDH prob-
lem.

Proof 5.4.2 We prove the contrapositive. Let C be a q-SBDH challenger, B an adversary
against collision resistance of the accumulator, that wins with non-negligible advantage.
In Figure 5.9 we build A an adversary that breaks the q-SBDH assumption using B.

• On input λ, q ∈ N, C runs bilinear group generation to get Γ = (p,G1,G2,
GT , e, g1, g2) and chooses α← Z∗

p. It sends Γ, gα1 , · · · , gα
q

1 , g2, g
α
2 , · · · , gα

q

2 to A.
• A runs Dual(Z2

p) to get D = (d1,d2) and D∗ = (d∗
1,d

∗
2) such that d1 · d∗

1 =
d2 · d∗

2 = ψ, where ψ ∈ Z∗
p. Then it sets

pkacc =

(
Γ, gd2

1 , g
d2α
1 , · · · , gd2αq

1 , g
d∗
1

2 , g
d∗
1α

2 , · · · ,
g
d∗
1α

q

2 , g
d∗
2

2 , g
d∗
2α

2 , · · · , gd
∗
2α

q

2 , e(g1, g2)
ψ

)

and sends it to B.
• B makes an accumulator query: it chooses set X and sends it to A. The latter

uses its knowledge of d1 to return to B accX = g
d1ChX (α)
1 . This step can be

repeated an unbounded number of times.
• At some point, B answers either with (X ∗, x∗,mwitx∗) where x∗ /∈ X ∗ and

mwitx∗ is a membership witness of x∗ for set X ∗, or with (X , x∗,nmwitx∗ =
(W1,W2)) where x∗ ∈ X ∗ and nmwitx∗ is a non-membership witness of x∗ for
set X ∗.

• A returns to C, either (x∗, e(g1, (mwitd
∗
2
x∗)

1/ψr · (g
−Q(α)
2 )1/r)) or

(x∗, e(gd1Q(α)
1 ,W1)

ψ−1 · e(gd2
1 ,W2)

ψ−1) as its answer to break the assumption.

Figure 5.9: Construction of q-SBDH adversary from collision resistance adversary.
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Let us see that the solution output by A is correct.

Suppose that B outputs (X ∗, x∗,mwitx∗). As x∗ /∈ X ∗, there exist Q[Z], r such that
ChX ∗ [Z] = Q[Z] · (x∗ + Z) + r. As mwitx∗ is a membership witness, we have that
e(g

d2(x∗+α)
1 ,mwitx∗) = e(accX ∗ , g

d∗
1

2 ). Therefore, e(gd2(x∗+α)
1 ,mwitx∗) = e(g1, g2)

ψ(α+x∗)Q(α)+ψr

and

(e(g1, (mwit d∗
2

x∗ )1/ψr · (g−Q(α)
2 )1/r))α+x

∗
= e(g1, g2)

(α+x∗)Q(α)
r+1 · (g1, g2)

−(α+x∗)Q(α)
r = e(g1, g2).

Notice that A knows d∗
2, ψ and r and can compute g−Q(α)

2 from the challenge tuple. Thus,
(x∗, e(g1, (mwit d∗

2
x∗ )1/ψr · (g−Q(α)

2 )1/r)) is a solution to the q-SBDH problem.

Now, suppose that B outputs (X ∗, x∗,nmwitx∗ = (W1,W2)). As x∗ ∈ X ∗, there exists
Q[Z] such that ChX ∗ [Z] = Q[Z](x∗ + Z). As (W1,W2) is a non-membership witness, we
have that e(accX ∗ ,W1) · e(gd2(x∗+α)

1 ,W2) = e(g1, g2)
ψ. Therefore,

e(accX ∗ ,W1) · e(gd2(x∗+α)
1 ,W2) = e(g1, g2)

ψ

⇐⇒ e(g
d1Q(α)(x∗+α)
1 ,W1) · e(gd2(x∗+α)

1 ,W2) = e(g1, g2)
ψ

⇐⇒ e(g
d1Q(α)
1 ,W1)

(x∗+α) · e(gd2
1 ,W2)

(x∗+α) = e(g1, g2)
ψ

⇐⇒ (e(g
d1Q(α)
1 ,W1) · e(gd2

1 ,W2))
(x∗+α) = e(g1, g2)

ψ

⇐⇒ (e(g
d1Q(α)
1 ,W1)

ψ−1 · e(gd2
1 ,W2)

ψ−1

)(x
∗+α) = e(g1, g2)

Notice that A knows d1,d2 and ψ and can compute gQ(α)
1 from the challenge tuple. Thus

(x∗, e(gd1Q(α)
1 ,W1)

ψ−1 · e(gd2
1 ,W2)

ψ−1) is a solution to the q-SBDH problem.

As A breaks the assumption when B breaks the collision resistance of the accumulator,
we have that A’s advantage is equal to B’s advantage, meaning that A breaks the
q-SBDH assumption with non-negligible advantage. □

Comparison with Nguyen’s accumulator. As already stated, by construction our
cryptographic accumulator is closed to Nguyen’s accumulator [113]. We now com-
pare in Table 5.4 our accumulator to [113]’s when considering the latter universal
and in the asymmetric bilinear pairing setting. We highlight in red the differences
between both schemes.
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Table 5.4: Comparison between Nguyen’s accumulator and ours.

Operation Nguyen [113] Ours

Evaluation
accX = g

∏
x∈X

(x+s)

1 accX = g
d1

∏
x∈X

(x+s)

1

Membership
Witness mwitx = g

∏
x∈X\{x}

(x+s)

2 mwitx = g
d∗
2

∏
x∈X\{x}

(x+s)

2 .

Non-Membership
Witness nmwitx = (W1,W2) = (g

q1(s)
2 , g

q2(s)
2 ) nmwitx = (W1,W2) = (g

d∗
1q1(s)

2 , g
d∗
2q2(s)

2 ).

Membership
Verification e(accX , g2)

?
= e(gx1 · gs1,mwitx) e(accX , g

d∗
1

2 )
?
= e(gd2x

1 · gd2s
1 ,mwitx)

Non-Membership
Verification e(accX ,W1) · e(gx1 · gs1,W2)

?
= e(g1, g2) e(accX ,W1) · e(gd2x

1 · gd2s
1 ,W2)

?
= e(g1, g2)

ψ

Unforgeability of private evaluation. We now prove that our accumulator (presented
in Figure 5.8) satisfies our new security property, presented in Definition 5.3.1, unforge-
ability of private evaluation, if the fixed argument dual pairing vector spaces inversion
problem holds (see Definition 2.3.10.)

Theorem 5.4.3 If the fixed argument dual pairing vector spaces inversion problem
holds, then our accumulator satisfies unforgeability of private evaluation.

Proof 5.4.3 We prove the contrapositive. Let B be an adversary that breaks UPE
security with non negligible advantage. We build A an adversary that uses B to break
FA-DPVS-I assumption.
A is given (Γ, gd2

1 , g
d∗
1

2 , g
d∗
2

2 ). She chooses s ← Zp, creates pkacc and sends it to B. B
answer to A with a tuple of message-forged accumulator (X ∗,acc∗). A knows that for
any x ∈ X ∗, e(acc∗, g

d∗
1

2 ) = e(g
d2(x+s)
1 ,witx) and that e(gd2(x+s)

1 ,witx) = e(g1, g2)
ψ
∑q

i=1 ais
i.

Thus e(acc∗, g
d∗
1

2 ) = e(g1, g2)
ψ
∑q

i=1 ais
i. As A knows X ∗ she can recover {ai}qi=0 and as

she knows s, she can compute (
∑q

i=0 ais
i)−1 and obtains that e((acc∗)(

∑q
i=0 ais

i)−1
, g

d∗
1

2 ) =

e(g1, g2)
ψ.

Thus A outputs (acc∗)(
∑q

i=0 ais
i)−1 as her answer and wins the game with an advantage

equal to B’s advantage, therefore with non-negligible advantage. □

Note 5.4.3 Notice that by construction in our scheme an accumulator is an element of
G2

1.
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5.4.2 Our Dually Computable Accumulator

We now present our second cryptographic accumulator scheme, which is the first
dually computable accumulator. We start with an overview of our construction and
then give its presentation.

Overview of the construction. We started from our first accumulator scheme, pre-

sented in Figure 5.8. Our idea is to set accpX = g
d∗
1

∏
x∈X

(x+s)

2 , which is publicly computable
as gd

∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

q

2 are given in pkacc
1. With the description of Eval as in the previous

scheme, we directly obtain what we need. Moreover, the two accumulators are easily
distinguishable as the secretly computed one is composed of two elements in G1 while
the publicly generated one is composed of two elements in G2. Indeed, as stated in
Definition 2.2.2, an asymmetric bilinear pairing group possesses efficient algorithms for
deciding membership of the groups.
Regarding witnesses, membership witnesses can be computed as in our first accumula-

tor: mwitx = g
d∗
2

∏
x∈X\{x}

(x+s)

2 . For both privately and publicly computed accumulators, we
are able to provide two very close verification equations. In fact, we remark that we ob-
tain a sort of symmetry between the two accumulators, as e(accX , g

d∗
1

2 ) = e(gd1
1 ,accpX ),

which two are equals to e(gd2x
1 · gd2s

1 ,mwitx), which is computable from the knowledge of
the witness.
For non-membership witness, an issue raised. Indeed, if we define non-membership
witnesses as in our first scheme, i.e. nmwitx = (W1,W2) = (g

d∗
1q1(s)

2 , g
d∗
2q2(s)

2 ), verifi-
cation with publicly computed accumulator is not working. That is because in the
non-membership verification, we have e(accX ,W1). Therefore, as accX is replaced
by accpX which is composed of two elements of G2, the pairing with W1 cannot work.
The only solution to solve this problem is to have a different witness for accp and
acc. As this does not correspond to our definition of dually computable accumulator
(we recall that we require correctness of duality, meaning that a witness is working
with both kind of accumulator in the verification algorithm), we decided to present a
non-universal dually computable accumulator and leave as an open problem to build
a universal dually computable accumulator.

Construction. In Figure 5.10, we present the full description of our first dually com-
putable scheme, from the above intuition. We highlight in blue the algorithms and
elements associated to public evaluation.

1We could have also chosen to define PublicEval such that it returns g
d∗
2ais

i

2
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• Gen(λ, q): run a bilinear group generation algorithm to get Γ = (p,G1,G2,
GT , e, g1, g2). Then choose a random s ← Z∗

p, and run Dual(Z2
p) to get D =

(d1,d2),D
∗ = (d∗

1,d
∗
2). Let ψ ∈ Z∗

p be the random such that d1 ·d∗
1 = d2 ·d∗

2 = ψ.
Set skacc = (s,D,D∗),

pkacc =

(
Γ, gd1

1 , g
d2
1 , g

d2s
1 , · · · , gd2sq

1 , g
d∗
1

2 ,

g
d∗
1s

2 , · · · , gd
∗
1s

q

2 ,g
d∗
2

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2

)

and return skacc,pkacc.
• Eval(skacc,pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accX = g
d1

q∑
i=0

ais
i

1 , and return accX .

• PublicEval(pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accpX = g
d∗
1

q∑
i=0

ais
i

2 , and return accpX .

• WitCreate(pkacc,accX \accpX ,X , I): let {bi}i=0,··· ,q be the coefficients of the

polynomial ChX\I [Z] =
∏

x∈X\I
(x+ Z). Compute witI = witpI = g

d∗
2

q∑
i=0

bis
i

2 , and

return witI = witpI .
• Verify(pkacc,accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polynomial

ChI [Z] =
∏
x∈I

(x + Z) and return 1 if e(accX , g
d∗
1

2 ) = e(g
d2

q∑
i=0

cis
i

1 ,witI), 0 other-

wise.
• PublicVerify(pkacc,accpX ,witpI , I): let {ci}i=0,··· ,q be the coefficients of

the polynomial ChI [Z] =
∏
x∈I

(x + Z) and return 1 if e(gd1
1 ,accpX ) =

e(g
d2

q∑
i=0

cis
i

1 ,witpI), 0 otherwise.

Figure 5.10: Our dually computable accumulator scheme.

Theorem 5.4.4 Our scheme is correct, satisfies dual collision resistance under q-SBDH
problem, distinguishability and correctness of duality.

Lemma 5.4.1 Our dually computable accumulator is correct.

Proof 5.4.4 Correctness for privately computed accumulator is done as for membership
witnesses in Proof 5.4.1. Let us do the proof for publicly computed accumulators.

Let X , I be two sets such that I ⊂ X . Let {ai, bi, ci}qi=0 be respectively the coefficients
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of polynomials ChX [Z] =
∏
x∈X

(x+Z), ChX\I [Z] =
∏

x∈X\I
(x+Z) and ChI [Z] =

∏
x∈I

(x+Z).

Let accpX ← PublicEval(skacc,X ) and witpI ←WitCreate(pkacc,accpX ,X , I). We have
that

e(g
d2

q∑
i=0

cis
i

1 ,witpI) = e(g
d2

q∑
i=0

cis
i

1 , g
d∗
2

q∑
i=0

bis
i

2 ) = e(g1, g2)
ψ

q∑
i=0

cis
i·

q∑
i=0

bis
i

.

Here notice that Nguyen’s scheme correctness comes into play, and as I ⊂ X we have

e(g
d2

q∑
i=1

cis
i

1 ,witpI) = e(g1, g2)
ψ

q∑
i=0

ais
i

= e(gd1
1 ,accpX ).

Lemma 5.4.2 Our dually computable accumulator satisfies dual collision resistance
under q-SBDH problem.

Proof 5.4.5 Dual collision resistance for privately computed accumulator is done as
for membership witnesses in Proof 5.4.2. Let us do the proof for publicly computed
accumulators.

The proof is done by proving the contrapositive as in Figure 5.9. At the end of the
game, B outputs (X ∗, x∗,witpx∗) where x∗ /∈ X ∗ and witpx∗ is a membership witness
for x∗. As x∗ /∈ X ∗, there exist Q[Z], r such that ChX ∗ [Z] = Q[Z] · (x∗ + Z) + r. As
witpx∗ is a membership witness, we have that e(gd2(x∗+s)

1 ,witpx∗) = e(gd1
1 ,accpX ∗), where

accpX ∗ ← PublicEval(pkacc,X ∗). Therefore, e(gd2(x∗+α)
1 ,witpx∗) = e(g1, g2)

ψ(α+x∗)Q(α)+ψr

and

(e(g1, (witp d∗
2

x∗ )1/ψr · (g−Q(α)
2 )1/r))α+x

∗
= e(g1, g2)

(α+x∗)Q(α)
r+1 · (g1, g2)

−(α+x∗)Q(α)
r = e(g1, g2).

Notice that A knows d∗
2, ψ and r and can compute g−Q(α)

2 from the challenge tuple. Thus,
(x∗, e(g1, (witp d∗

2
x∗ )1/ψr · (g−Q(α)

2 )1/r)) is a solution to the q-SBDH problem. □

Lemma 5.4.3 Our dually computable accumulator satisfies distinguishability.

Our accumulator satisfies distinguishability as a privately computed accumulator is
composed of two elements in G1 while a publicly computed accumulator is composed of
two elements in G2. In fact, in a bilinear environment, we know that there are an efficient
algorithm for deciding membership of the groups (see e.g., Definition 2.2.2).

Lemma 5.4.4 Our dually computable accumulator satisfies correctness of duality.
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Correctness of duality is satisfied as we have one unique witness (i.e. wit = witp) and,
as explained above, we have a symmetry between the two accumulators:

e(accX , g
d∗
1

2 )︸ ︷︷ ︸
from Eval

= e(g
d2

q∑
i=0

cis
i

1 ,witI)︸ ︷︷ ︸
from WitCreate(pkacc,accX ,X ,I)

= e(g
d2

q∑
i=0

cis
i

1 ,witpI)︸ ︷︷ ︸
from WitCreate(pkacc,accpX ,X ,I)

= e(gd1
1 ,accpX )︸ ︷︷ ︸

from PublicEval

.

Thus, the proof is exactly the same than in Proof 5.4.1.

5.5 Conclusion of This Chapter

This chapter introduced cryptographic accumulators schemes. Our contributions regard-
ing that primitive is the definition of a new security property, call unforgeability of private
evaluation along with the introduction of a new kind of accumulators: dually computable
accumulators. In such scheme there are two evaluation algorithms Eval and PublicEval
that take as input respectively only the secret key of the scheme (skacc) and the public
key of the scheme (pkacc).
We also proposes two instantiations of accumulators: one scheme that satisfies our
new security property and one dually computable scheme.
Regarding cryptographic accumulators literature we provide a formal proof for the lower
bound on symmetric accumulator size along with discussions on accumulators’ appli-
cations and the delegatable property. As for the latter, we investigate a generic way to
bring the property to any accumulator, and we leave as an open problem to know if (and
how) all proof systems can be turned into homomorphic proofs. Doing the same thing
for other properties, such as asynchronous, might be an interesting challenge and is
therefore a lead for future works.
In Chapter 6.2 we will see how our dually computable accumulator scheme can be used
to build a specific data sharing scheme, called attribute-based encryption.
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Chapter 6 – Applications to Data Sharing

IN this chapter we present two advanced cryptographic schemes used for data sharing:
broadcast encryption and attribute-based encryption. For each of them, we give a
formal definition along with associated properties, then we present our constructions
from the primitives studied in the previous sections. The primitive of broadcast en-
cryption is presented in Section 6.1 while in Section 6.2 we focus on the primitive
of attribute-based encryption. We end this chapter in Section 6.3 with a use case
for attribute-based encryption.

6.1 Broadcast Encryption

The first data sharing scheme we study in this thesis is broadcast encryption (BE), intro-
duced in 1993 by Fiat and Naor [66]. In a broadcast encryption scheme the encryption
algorithm takes as input the public key pk, a message m, a subset S ⊆ [N ] of users (N
being the number of users in the system), and such that the output ciphertext can be
decrypted by any user in the subset S. Regarding related work, Boneh et al. [38] were
the first to achieve constant size ciphertext (i.e., independent of the number of users
in the set), but the security was only selective and proven in the generic group model.
Recently, Agrawal et al. ([9]) achieves constant size parameters with a security proven
in the standard model. But it is only selective secure and their scheme combines both
pairings and lattices. Lastly, Gay et al. ([71]) proposes a scheme based on pairings
with constant size ciphertext. As far as we know, this is the only BE scheme with a
constant-size ciphertext and providing adaptive security in the standard model.
In this manuscript, we also study a variant of broadcast encryption: augmented broad-
cast encryption (AugBE). An augmented broadcast encryption scheme is a broadcast
encryption scheme in which the encryption algorithm takes as additional input an index
ind ∈ [N+1]. As for any BE scheme, the output ciphertext can be decrypted by any user
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in the subset S, but it is additionally required that the user’s index is greater or equal to
ind. In particular, if ind = N + 1, no one can decrypt. The first AugBE constructions [40,
70] give a ciphertext’s size in O(

√
N). In [75], using both pairings and lattices, Goyal et

al. propose a selectively secure construction with ciphertext size in O(N ϵ) (0 < ϵ ≤ 1/2).
Goyal et al. also propose in [77] a generic construction of an AugBE based on positional
witness encryption (PWE). Their scheme is the first one providing constant parameters.
However, currently only few instantiations of positional witness encryption exist and all
rely on multilinear maps.
In the following, we first give broadcast encryption and augmented broadcast encryption
definitions and properties, including our new definition of anonymous augmented broad-
cast encryption scheme. Then in Section 6.1.3 we present our contributions regarding
BE and AugBe: new generic constructions from identity-based encryption with wildcards
schemes. Finally we end this section with a presentation of our new broadcast encryp-
tion and augmented broadcast encryption schemes, and we compare them to the state
of the art. We also present briefly Boneh et al. [40]’s generic construction of a third
primitive, called broadcast and trace, from augmented broadcast encryption scheme.
Using our new AugBE scheme and this construction, we obtain a new broadcast and
trace scheme that we compare with existing ones.

6.1.1 Definitions and Properties

Definition 6.1.1 Broadcast encryption [66, 71]. A broadcast encryption scheme
consists of four algorithms.

• Setup(λ,N): the setup algorithm takes as input a security parameter λ ∈ N and a
number of users N ∈ N. It outputs public parameters pk and a master secret key
msk.

• KeyGen(msk, i): the key generation algorithm takes as input a master secret key
msk and an index i ∈ [N ]. It outputs a secret key ski for user i.

• Encrypt(pk, S,m): the encryption algorithm takes as input a public key pk, a
message m and a subset S ⊆ [N ]. It outputs a ciphertext ctS.

• Decrypt(pk, S, i, ski, ctS): the decryption algorithm takes as input a public key pk,
a subset S, an index i, a secret key ski and a ciphertext ctS, and it returns a
message m′.

Definition 6.1.2 Correctness [71]. A broadcast encryption scheme is said to be correct
if for all security parameter λ ∈ N, all number of users N ∈ N, every honestly generated
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key pairs (msk,pk) ← Setup(λ,N), every messages m, every set S ⊆ [N ] and every
i ∈ [N ] such that i ∈ S:

Pr [Decrypt(pk, S, i,KeyGen(msk, i),Encrypt(pk, S,m)) = m] = 1.

Definition 6.1.3 Adaptive indistinguishability (IND-BE) [71]. A broadcast encryption
scheme is said to satisfy adaptive indistinguishability security if all PPT adversaries A
have at most negligible advantage in winning the game presented in Figure 6.1, where
A’s advantage is defined as AdvIND-BE

A (λ) :=
∣∣Pr [b′ = b

]
− 1/2

∣∣. Let C be a challenger.

SETUP: C on inputs (λ,N) runs Setup(λ,N) to generate pk and msk, and gives pk
to A.

KEY QUERY: A issues queries to C for index i ∈ [N ]. C returns ski ←
KeyGen(msk, i).

CHALLENGE: A selects two challenge messages m0,m1 and a challenge set
S∗ ⊆ [N ] of users. A sends m0,m1 and S∗ to C. The latter picks b ∈ {0, 1}
randomly and computes ct∗ ← Encrypt(pk, S∗,mb) which is returned to A.

KEY QUERY: A makes queries for index i ∈ [N ]. C returns ski ← KeyGen(msk, i)
to A.

GUESS: A outputs her guess b′ ∈ {0, 1} for b, and wins the game if b′ = b and if, for
all index i ∈ [N ] for which a key was queried, the condition i /∈ S∗ holds.

Figure 6.1: Adaptive indistinguishability security game for broadcast encryption schemes.

Definition 6.1.4 Anonymous broadcast encryption scheme (ANO-BE) [19, 100]. A
broadcast encryption scheme is said to be adaptively anonymous if all PPT adversaries
A have at most negligible advantage in the game presented in Figure 6.2, where C is a
challenger and A’s advantage is defined as AdvANO-BE

A (λ) =
∣∣Pr [b′ = b

]
− 1/2

∣∣.
Note 6.1.1 Many broadcast encryption schemes require the encryption set S to be
publicly given as an input of decryption algorithm. Otherwise even authorized users will
not be able to decrypt. However, anonymous schemes do not need the encryption set
description as an input for the decryption algorithm.

Definition 6.1.5 Augmented broadcast encryption scheme (AugBE) [40, 77]. An
augmented broadcast encryption scheme consists of three algorithms.

• Setup(λ,N): the setup algorithm takes as input a security parameter λ ∈ N and a
number of users N ∈ N. It outputs a master secret key msk, a public key pk and
secret keys {sk1, · · · , skN}, where ski is the secret key for user i.
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SETUP: C on inputs λ,N runs Setup(λ,N) to generate pk and msk, and gives pk
to A.

KEY QUERY: A issues queries to C for index i ∈ [N ]. C returns ski ←
KeyGen(msk, i).

CHALLENGE: A selects two challenge messages m0,m1 and two distinct challenge
sets S0, S1 ⊆ [N ] of users. A passes m0,m1 and S0, S1 to C. The latter picks
b ∈ {0, 1} randomly and computes ct∗ ← Encrypt(pk, Sb,mb) which is returned
to A.

KEY QUERY: A continues to make queries for index i ∈ [N ] C answers ski ←
KeyGen(msk, i) to A.

GUESS: A outputs her guess b′ ∈ {0, 1} for b, and wins the game if b′ = b and if, for
all index i ∈ [N ] for which a key was queried, the condition i /∈ S0 ∧ i /∈ S1 or
i ∈ S0 ∧ i ∈ S1 and if m0 ̸= m1 then i /∈ S0 ∩ S1 holds.

Figure 6.2: Adaptive anonymous security game for broadcast encryption schemes.

• Encrypt(pk, S,m, ind): the encryption algorithm takes as input a public key pk, a
set of users S ⊆ [N ], a message m and an index ind ∈ [N + 1]. It outputs a
ciphertext ct.

• Decrypt(pk, ski, S, ct): the decryption algorithm takes as input a public key pk, a
secret key ski, a set of users S ⊆ [N ], and a ciphertext ct, and it returns a message
m′.

Note 6.1.2 More recently, Goyal et al. [75] gave another definition of augmented
broadcast encryption in which there are two encryption algorithms called Encrypt and
Index-Encrypt. The former takes as input the scheme public key, a set of users and
a message to encrypt while the latter as an additional input which is an index ind. In
the following, we will consider only the original AugBE definition, i.e., the one with one
encryption algorithm only.

Definition 6.1.6 Correctness [77]. An augmented broadcast encryption scheme is
said to be correct if for every security parameter λ ∈ N, all number of users N ∈ N, every
message m, every set S such that S ⊆ [N ], every index ind ∈ [N ], all i ∈ [N ] such that
i ∈ S ∩ {ind, · · · , N}, and every honestly generated keys (msk,pk, {sk1, · · · , skN})←
Setup(λ,N):

Pr [Decrypt(pk, ski, S,Encrypt(pk, S,m, ind)) = m] = 1.

Definition 6.1.7 Message-hiding security (MH-AugBE) [77]. An augmented broad-
cast encryption scheme is said to satisfy adaptive message-hiding security if all
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PPT adversaries A have at most negligible advantage in the game presented in Fig-
ure 6.3, where C is a challenger and A’s advantage is defined as AdvMH-AugBE

A (λ) :=∣∣Pr [b′ = b
]
− 1/2

∣∣.
SETUP: C on inputs λ,N runs Setup(λ,N) to obtain msk,pk, {ski}i∈[N ] and gives

pk to A.
KEY QUERY: A chooses an index i ∈ [N ] and sends it to C, who responds with

ski.
CHALLENGE: A chooses two challenge messages m0,m1 and a challenge

set S∗ and sends it to C. C chooses b ∈ {0, 1} randomly, runs ct∗ ←
Encrypt(pk, S∗,mb, N + 1) and gives ct∗ to A.

KEY QUERY: A chooses an index i ∈ [N ] and sends it to C, who responds with
ski.

GUESS: A outputs her guess b′ ∈ {0, 1} for b, and wins the game if b′ = b.

Figure 6.3: Adaptive message-hiding security game for augmented broadcast encryption
schemes.

Definition 6.1.8 Index-hiding security (IH-AugBE) [77]. An augmented broadcast
encryption scheme is said to satisfy adaptive index-hiding security if all PPT adversaries
A have at most negligible advantage in the game presented in Figure 6.4, where C is a
challenger and A’s advantage is defined as AdvIH-AugBE

A (λ) :=
∣∣Pr [b′ = b

]
− 1/2

∣∣.
SETUP: C on inputs λ,N runs Setup(λ,N) to obtain pk,msk, {ski}i∈[N ] and gives

pk to A.
KEY QUERY: at each query, A chooses an index i ∈ [N ] and sends it to C. C

responds with ski. Let S be the set of indices for which a key is queried by A.
C adds i to S.

CHALLENGE: A chooses a challenge message m, a challenge set S∗ and a chal-
lenge index ind ∈ [N ] and sends them to C. C chooses b ∈ {0, 1} randomly,
runs ct∗ ← Encrypt(pk, S∗,m, ind + b) and gives ct∗ to A.

KEY QUERY: at each query, A chooses an index i ∈ [N ] and sends it to C who
adds i to S. C responds with ski.

GUESS: A outputs her guess b′ ∈ {0, 1} for b, and wins the game if b′ = b and if, for
index i ∈ [N ] for which a key was queried, the condition ind /∈ S ∩ S∗ holds.

Figure 6.4: Adaptive index-hiding security game for augmented broadcast encryption schemes.
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6.1.2 Our Contribution: Anonymous Augmented Broadcast En-
cryption

In this thesis, we introduce a new security property for augmented broadcast encryption
scheme: anonymity. The below definition, close to the one for broadcast schemes
([100]), provides the adaptive version.

Definition 6.1.9 Anonymous augmented broadcast encryption (ANO-AugBE). An
augmented broadcast encryption scheme is said to be adaptively anonymous if all
PPT adversaries A have at most negligible advantage in the game presented in Fig-
ure 6.5, where C is a challenger and A’s advantage is defined as Advano-augbe

A (λ) :=∣∣Pr [b′ = b
]
− 1/2

∣∣.
SETUP: C on inputs λ,N runs Setup(λ,N) to obtain pk, msk, {ski}i∈[N ], and gives

pk to A.
KEY QUERY: A can issue queries to the challenger for index i ∈ [N ]. C responds

with ski.
CHALLENGE: A selects a challenge message m, two distinct challenge sets

S0, S1 ⊆ [N ] of users and a challenge index ind ∈ [N + 1]. A passes
m, S0, S1, ind to C. The latter picks b ∈ {0, 1} randomly and computes
ct∗ ← Encrypt(pk, Sb,m, ind) which is returned to A.

KEY QUERY: A makes queries for index i ∈ [N ] C responds with ski.
GUESS: A outputs her guess b′ ∈ {0, 1} for b, and wins the game if b′ = b and if,

for all index i ∈ [N ] for which a key was queried, if i ≥ ind then the condition
i ∈ S0 ∩ S1 holds.

Figure 6.5: Adaptive anonymous security game for augmented broadcast encryption schemes.

In the following theorem we prove that this new anonymity property implies index-hiding
security.

Theorem 6.1.1 If an augmented broadcast encryption scheme is anonymous, then it is
also index-hiding.

Proof 6.1.1 Let C be a challenger and B be an adversary that wins the index-hiding
security game with non negligible advantage.
Informally, index-hiding means that

• without the key skind, an adversary cannot distinguish between an encryption for
index ind and one for index ind + 1;
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• and if ind is not in the target set S∗, then no adversary can distinguish an encryp-
tion for index ind and one for index ind + 1 ([40]).

Thus B can either distinguish which index was used in encryption when ind ∈ S∗ and
without knowing skind, or she can distinguish the encryption index when ind /∈ S∗, know-
ing skind. Therefore she either chooses ind ∈ S∗ or ind /∈ S∗ but in this case she asks
skind otherwise she would have advantage equal to 1/2.

We construct, in Figure 6.6, an adversary A that wins the anonymous security game
with non negligible advantage.

SETUP: C on inputs λ,N runs Setup(λ,N) → (msk,pk, sk1, · · · , skN), and sends
pk to A, and B.

KEY QUERY: B chooses i ∈ [N ], sends it to A who sends it to C. The later sends
ski to A who sends it to B.

CHALLENGE: B chooses a challenge message m, a challenge set S∗ of users and
a challenge index ind ∈ [N ] and sends m, S∗, ind to A. The latter creates the
sets S0 = S∗∩{ind, · · · , N} and S1 = S∗∩{ind + 1, · · · , N}. A sends m, S0, S1

to C. C chooses b← {0, 1} randomly and sets ct∗ ← Encrypt(pk, Sb,m, 1). It
sends ct∗ to A who sends it to B.

KEY QUERY: A and B act like in the previous KEY QUERY step. C sends ski to A
who sends it to B.

GUESS: B outputs her guess b′ to A, who outputs it as her own guess.

Figure 6.6: Construction of ANO-AugBE adversary from IH-AugBE adversary.

We have that if all B’s queries satisfy the game constraints, then all A’s queries have
the same property. Thus A’s simulation is perfect and the advantage of A is the same
as B’s. This concludes the proof. □

Note 6.1.3 If ind ∈ S∗, then ind ∈ S0 ∧ ind /∈ S1 thus adversary cannot query skind. If
ind /∈ S∗, then ind /∈ S0 ∧ ind /∈ S1 thus adversary can query skind.

Note 6.1.4 Index-hiding does not imply anonymous. Indeed, in the index-hiding security
game, in the case where ind is not in the challenge, knowing the challenge set does not
help determining if ind or ind + 1 was used for encryption.
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6.1.3 From WIBE to (Aug)BE: Our Generic Constructions

In this section we present two generic broadcast encryption constructions from identity-
based encryption with wildcards: one for a basic BE scheme and the other for an
AugBE scheme. We also formalize which properties of WIBE are needed in order to
obtain a secure BE (resp. AugBE). As in a broadcast encryption scheme there is no
key delegation from user to another, we do not consider this feature of the underlying
identity-based encryption with wildcards scheme, and thus replace KeyDer by KeyGen
in the WIBE definition. For sake of simplicity, we admit in proofs that the number of keys
queried is always lower or equal to the maximal number Q of keys that an adversary
is allowed to query. All proofs are done for adaptive security definitions and can be
adapted to the selective case. The length of patterns is L ∈ N.

First notice that any subset S∗ ⊆ [N ] can be represented as a pattern P ∈ {0, ⋆}N ,
where for j ∈ [N ], Pj = ⋆ if j ∈ S∗ and Pj = 0 otherwise. This fact can then be used to
associate such pattern to the BE encryption set S. Additionally, any user identity i ∈ [N ]

can be represented as a pattern P i ∈ {0, 1}N such that for j ∈ [N ], P i
j = 1 if i = j and

P i
j = 0 otherwise. This finally gives us that i ∈ S iff P i belongs to P . Regarding AugBE,

we have noticed that the decrypting condition i ≥ ind for any i ∈ [N ], ind ∈ [N + 1]

can be rewritten as i ∈ {ind, ind + 1, · · · , N + 1}. It follows that the AugBE decrypting
condition becomes i ∈ S ∩ {ind, ind + 1, · · · , N + 1}.
In the sequel, we set L the length pattern of the WIBE schemes to be equal to N the
number of users in the BE and AugBE schemes.

Broadcast Encryption from WIBE. LetWIBE = (Setup,KeyGen,Encrypt, Decrypt)

be an identity-based encryption with wildcards scheme for key pattern space {0, 1}N \
{
0N
}

and ciphertext pattern space {0, ⋆}N \
{
0N
}

. We construct a broadcast encryption
scheme BE = (Setup,Encrypt,Decrypt) in Figure 6.7.

Setup(λ,N ): run Setup(λ,N) to get pk,msk and set pk = pk and msk = msk.
KeyGen(msk, i ∈ [N ]): define P

′ ∈ {0, 1}N such that for j ∈ [N ], P ′
j = 0 if j ̸= i

and P ′
j = 1 if i = j. Then run KeyGen(msk,P

′
) to get ski and set ski = ski.

It outputs ski.
Encrypt(pk, S,m): first, associate S with a pattern P in {0, ⋆}N such that for

j ∈ [N ], Pj = ⋆ if j ∈ S and Pj = 0 otherwise. Then compute ct =
Encrypt(pk,P ,m) and outputs ct = ct.

Decrypt(pk, ski, ct, S): gets m′ ← Decrypt(ski,P , ct).

Figure 6.7: Generic construction of broadcast encryption scheme from identity-based encryption
with wildcards scheme.
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Note 6.1.5 Encryption for pattern 0N is not relevant here as it means that no one can
decrypt, that is why we excluded this pattern of encryption pattern space. Secret key for
pattern 0N is not relevant either as it does not match any of the users.

Theorem 6.1.2 The broadcast encryption scheme obtained is correct if the underlying
identity-based encryption with wildcards is correct.

Proof 6.1.2 P i ∈⋆ P implies that P i
i = Pi or P i = ⋆. As P i

i = 1, we have that P i = ⋆

and thus i /∈
−
W (P ), i.e. i ∈ S. Suppose that i ∈ S. By construction for all j ∈ [N ], j ̸= i,

P i
j = 0 and either P i

j = 0 = Pj or Pj = ⋆, and Pi = ⋆, i.e. P i ∈⋆ P . Then correctness
follows from WIBE’s correctness. □

Theorem 6.1.3 If WIBE satisfies IND-WIBE security, then the obtained BE scheme
satisfies IND-BE security.

Proof 6.1.3 Let B be an adversary against IND-BE security, that wins with non negligible
advantage. In Figure 6.8 we construct A an adversary against IND-WIBE that uses B
and wins with non negligible advantage. Let C be a challenger.

SETUP: C on inputs (λ,N) runs Setup(λ,N)→ (msk,pk) and gives pk to A, who
gives it to B.

KEY QUERY: B chooses an index i ∈ [N ] and sends it to A, who creates P i, for
j ∈ [N ], such that P i

j = 1 if i = j and P i
j = 0 otherwise. A sends P i to C. The

latter runs KeyDer(msk,P i)→ skP i and sends skP i to A, who sends it as ski
to B.

CHALLENGE: B chooses two challenge messages m0,m1 and a challenge set S∗;
it sends it to A who creates the pattern P ∗, for j ∈ [N ] s.t. P ∗

j = 0 if j /∈ S∗,
P ∗
j = ⋆ otherwise, and sends P ∗,m0,m1 to C. C chooses b ∈ {0, 1} randomly

and runs ct∗ ← Encrypt(pk,P ∗,mb). It sends ct∗ to A who sends it to B.
KEY QUERY: B chooses index i ∈ [N ], sends it to A, who creates P i, for j ∈ [N ],

s.t. P i
j = 1 if i = j and P i

j = 0 otherwise. A sends P i to C. C runs
KeyDer(msk,P i)→ skP i and sends skP i to A, who sends it as ski to B.

GUESS: B outputs a bit b′ to A who outputs it as its guess.

Figure 6.8: Construction of IND-WIBE adversary from IND-BE adversary.

If all B’s queries satisfy the game constraints, then all A’s queries have the same
property. Thus, A’s simulation is perfect and the advantage of A is the same as B’s. □
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Theorem 6.1.4 If the underlying identity-based encryption with wildcards satisfies
pattern-hiding security, then the obtained broadcast encryption scheme is anonymous.

Proof 6.1.4 Let B be an adversary against anonymous security, that wins with non
negligible advantage. In Figure 6.9 we construct A, an adversary against pattern-hiding
security that uses B and wins with non negligible advantage. Let C be a challenger.

SETUP: C on inputs λ,N runs Setup(λ,N) → (msk,pk) and sends pk to A, who
sends it to B.

KEY QUERY: B chooses i ∈ [N ], sends it to A who creates the pattern P i such
that for j ∈ [N ], P i

j = 1 if i = j and P i
j = 0 otherwise. A sends P i to C who

runs KeyDer(msk,P i)→ skP i. A receives skP i and sends it to B as ski.
CHALLENGE: B chooses challenge message m, two challenge sets S0, S1 and

sends them to A who creates patterns P 0,P 1 s.t. for j ∈ [N ], P 0
j = ⋆ if j ∈ S0,

P 0
j = 0 otherwise, and P 1

j = ⋆ if j ∈ S1, P 1
j = 0 otherwise. m,P 0,P 1 are sent

to C. C chooses b ← {0, 1} randomly and runs ct∗ ← Encrypt(pk,P b,m). C
sends ct∗ to A, who sends it to B.

KEY QUERY: B and A proceeds as in the first KEY QUERY step. C runs
KeyDer(msk,P i)→ skP i. skP i is sent to A, who sends it to B as ski.

GUESS: B outputs its guess b′ to A, who outputs it as its guess.

Figure 6.9: Construction of PH-WIBE-CPA adversary from ANO-BE adversary.

If all B’s queries satisfy the game constraints, then all A’s queries have the same
property. Thus A’s simulation is perfect, and the advantage of A is the same as B’s.
This concludes the proof. □

Augmented Broadcast Encryption from WIBE. LetWIBE = (Setup,KeyGen,Encrypt,

Decrypt) be an identity-based encryption with wildcards scheme for key pattern space
{0, 1}N \

{
0N
}

and ciphertext pattern space {0, ⋆}N . We now construct an augmented
broadcast encryption scheme AugBE = (Setup,Encrypt,Decrypt) in Figure 6.10.

Note 6.1.6 Here encryption for pattern 0N corresponds to encryption for index N + 1.

Note 6.1.7 As the underlying WIBE is pattern-hiding, the AugBE decryption algorithm
does not take as input the set for which the message was encrypted.

Theorem 6.1.5 The augmented broadcast encryption scheme obtained is correct if the
underlying identity-based encryption with wildcards scheme is correct.
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Setup(λ,N ): and run Setup(λ,N) to obtain pk,msk. Then for each i ∈ [N ], define
P

′ ∈ {0, 1}N such that for j ∈ [N ], P ′
j = 0 if j ̸= i and P ′

j = 1 if i = j. Then set
ski = ski = KeyGen(msk,P

′
), (pk,msk) = (pk,msk). It outputs msk, pk and

{ski}i∈[N ].
Encrypt(pk, S, ind,m): here ind ∈ [N +1]. Associate S with a pattern P ∗ in {0, ⋆}N

such that for j ∈ [N ], P ∗
j = ⋆ if j ∈ S and P ∗

j = 0 otherwise. Then define the
pattern P ind ∈ {0, ⋆}N such that for j ∈ [N ], P ind

j = 0 if j < ind and P ind
j = ⋆

otherwise. Define P ∈ {0, ⋆}N such that for j ∈ [N ], Pj = P ∗
j ∧ P ind

j with the
following rule : ⋆ ∧ 0 = 0. Finally compute ct = ct = Encrypt(pk,P ,m) and
outputs ct.

Decrypt(pk, ski, ct): compute m′ ← Decrypt(ski, ct).

Figure 6.10: Generic construction of augmented broadcast encryption scheme from identity-
based encryption with wildcards scheme.

Proof 6.1.5 P i ∈⋆ P implies that P i
i = Pi or Pi = ⋆. As P i

i = 1, we have that P i = ⋆

and thus i /∈
−
W (P ), i.e. i ∈ S ∧ i ≥ ind. Suppose that i ∈ S ∧ i ≥ ind. By construction

for all j ∈ [N ], j ̸= i, P i
j = 0 and either P i

j = 0 = Pj or Pj = ⋆, and Pi = ⋆, i.e. P i ∈⋆ P .
Then correctness follows from WIBE’s correctness. □

Theorem 6.1.6 If the underlying identity-based encryption with wildcards scheme sat-
isfies adaptive IND-WIBE security, then the obtained augmented broadcast encryption
scheme satisfies adaptive message-hiding security.

Proof 6.1.6 Let B be an adversary against message-hiding security, that wins with non
negligible advantage. In Figure 6.11 we construct A an adversary against IND-WIBE
that uses B and wins with non negligible advantage. Let C be a challenger.

SETUP: C on inputs λ,N runs Setup(λ,N) → (msk,pk) and sends pk to A, who
sends it to B.

KEY QUERY: B chooses i ∈ [N ], sends it to A who creates the pattern P i such
that for j ∈ [N ], P i

j = 1 if i = j, P i
j = 0 otherwise. A sends P i to C, who

responds with skP i ← KeyDer(msk,P i). A sends skP i to B as ski.
CHALLENGE: B chooses two challenge messages m0,m1 and a challenge set

S∗. It sends m0,m1, S
∗ to A, who creates pattern P ∗, such that for j ∈ [N ],

P ∗
j = 0. A sends m0,m1, P

∗ to C, who chooses b← {0, 1} randomly and runs
ct∗ ← Encrypt(pk,P ∗,mb). C gives ct∗ to A, who sends it to B.

KEY QUERY: A,B, C act like in the previous KEY QUERY step.
GUESS: B outputs its guess b′ to A, who outputs it as its guess.

Figure 6.11: Construction of IND-WIBE adversary from MH-AugBE adversary.
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If all B’s queries satisfy the game constraints, then all A’s queries have the same
property. Thus A’s simulation is perfect and the advantage of A is the same as B’s. This
concludes the proof. □

Note 6.1.8 Pattern P ∗ is equal to 0N . Then, for all i ∈ [N ], P i /∈⋆ P ∗: the WIBE
adversary’s constraint is always verified and we do not specify it in the proof.

Theorem 6.1.7 If the underlying WIBE satisfies adaptive pattern-hiding security, then
the obtained AugBE scheme satisfies adaptive anonymous security.

Proof 6.1.7 Let C be a challenger and B be an adversary that wins the anonymous
security game with non negligible advantage. We construct, in Figure 6.12, an adversary
A that uses B and wins the pattern-hiding security game with non negligible advantage.

SETUP: C on inputs λ,N runs Setup(λ,N) → (msk,pk) and sends pk to A, who
sends it to B.

KEY QUERY: B chooses i ∈ [N ], sends it to A who creates the pattern P i such
that for j ∈ [N ], P i

j = 1 if i = j, P i
j = 0 otherwise. A sends P i to C, who

responds with skP i ← KeyDer(msk,P i). A sends skP i to B as ski.
CHALLENGE: B chooses a challenge message m, two challenge sets S0, S1 and

sends m, S0, S1 to A. The latter creates the patterns P 0, P 1 such that for
j ∈ [N ], P 0

j = ⋆ if j ∈ S0, P 0
j = 0 otherwise, and P 1

j = ⋆ if j ∈ S1, P 1
j = 0

otherwise. A sends m,P 0,P 1 to C. C chooses b← {0, 1} randomly and sets
ct∗ ← Encrypt(pk,P b,m). It sends ct∗ to A who sends it to B.

KEY QUERY: A and B act like in the previous KEY QUERY step. C runs
KeyDer(msk,P i)→ skP i and sends skP i to A who sends it as ski to B.

GUESS: B outputs its guess b′ to A, who outputs it as its guess.

Figure 6.12: Construction of PH-WIBE adversary from ANO-AugBE adversary.

If all B’s queries satisfy the game constraint, then all A’s queries have the same prop-
erty. Thus A’s simulation is perfect, and the advantage of A is the same as B’s. This
concludes the proof. □

Combining theorem 6.1.1 and 6.1.7 we obtain that if the underlying WIBE satisfies
adaptive pattern-hiding security then the built AugBE scheme satisfies adaptive index-
hiding security.

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

167



Chapter 6 – Applications to Data Sharing

6.1.4 Concrete (Augmented) Broadcast Encryption Schemes

In this section we present our new broadcast encryption scheme and augmented
broadcast encryption scheme, both obtained thanks to the combination of our generic
constructions and our identity-based encryption with wildcards schemes presented
in Section 4.3.

A New Broadcast Encryption Scheme. Using our generic construction in Sec-
tion 6.1.3 and our first identity-based encryption with wildcards scheme (Section 4.3,
Figure 4.9) with L = N we obtain an instantiation of a broadcast encryption scheme
that we present in Figure 6.13.

Setup(λ,N): generate an asymmetric bilinear pairing group Γ =
(p,G1,G2,GT , g1, g2, e) for prime order p. Sample random dual orthonormal
bases (D,D∗) ← Dual(Z4

p). Let d1, · · · ,d4 denote the elements of D and
d∗
1, · · · ,d∗

4 denote the elements of D∗. Pick α, a1, · · · , aN ← Zp. The master
secret key is msk = (α, g

d∗
1

2 , g
d∗
2

2 , a1, · · · , aN) and the public key is

pk = (Γ, p, e(g1, g2)
αd1.d

∗
1 , gd1

1 ,h1 = ga1·d2
1 , · · · ,hN = gaN ·d2

1 ).

KeyGen(msk, i ∈ [N ]): pick r ← Zp. Compute a = g
αd∗

1+r·ai·d∗
1−r·d∗

2
2 and bj = g

r·aj ·d∗
1

2

for j ∈ [N ] \ {i}. The secret key is ski = (a, {bj}j∈[N ]\{i}).

Encrypt(pk, S,m ∈ GT ): choose s ← Zp and compute ct = (c1, c2) where c1 =
m · (e(g1, g2)αd

∗
1·d1)s, c2 = gsd1

1 ·
∏
j∈S

hsj.

Decrypt(ski, ct, S): compute a
′
= a

∏
j∈S∩([N ]\{i})

bj and finally C1 · 1
e(c2,a

′ )
.

Figure 6.13: Our adaptively secure broadcast encryption scheme in prime order group, with
constant size ciphertext.

In Table 6.1, we give a comparison between our broadcast encryption scheme and
existing schemes.

based on that table, we remark that our scheme is not as efficient as [9]’s scheme, which
is currently the most efficient BE scheme in the literature. However, our scheme satisfies
the stronger adaptive security notion, and is proven secure under standard assumption.
Compare to the adaptively secure scheme given in [71], we have a bigger user secret
key (ski) size, but a shorter public key (pk) size. To be exhaustive, [41] proposed
a scheme with all parameters in poly(log(N)), with adaptive security. However, this
scheme is using multilinear maps and its security is proven in the generic group model
(see paragraph 3.1.4) [42] proposed a scheme with all parameters in poly(N, log(N))
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Table 6.1: Broadcast Encryption schemes comparison; “GGM”, “Sym” and “Asym” stand for
“Generic Group Model”, “Symmetric” and “Asymmetric” respectively. Here t ∈ N, such that t
divides N .

Scheme |pk| |ski| |ct| Security Assumption Model Settings
[38] O(N) O(1) O(1) Selective N-BDHE GGM Sym pairings
[49] O(t+N/t) O(N/t) O(t) Adaptive k−Lin Standard Asym pairings
[71] O(N2) O(1) O(1) Adaptive k−Lin Standard Asym pairings

LWE,[9] O(λ) O(λ) O(λ) Selective Standard Lattices
KOALA

Ours O(N) O(N) O(1) Adaptive SXDH Standard Asym pairings

using lattices, but no security proof is given.

With our second identity-based encryption with wildcards scheme (Figure 4.11) and our
generic constructions, setting L = N , we obtain a new anonymous broadcast encryption
scheme. Our scheme does not improve the efficiency of the Libert et al. scheme [100],
which is the best known so far. In particular, their scheme has pk and ski sizes in
respectively O(N) and O(1) while in our scheme the same parameters have sizes in
O(N2) and O(N) respectively. Regarding security, their scheme achieves the stronger
CCA security in the standard model while we only reach a CPA security. However, in
Libert et al.’s scheme, each user has to try each element of the ciphertext to find the
one she can truly decrypt, while this is not necessary in our construction.

Note 6.1.9 In the anonymous broadcast encryption setting, notice that [100] said that
achieving shorter than linear size for ciphertext is impossible when considering the used
users set description as part of the ciphertext.

A New Augmented Broadcast Encryption Scheme. Using our generic construction
and our second identity-based encryption with wildcards scheme (Figure 4.11) with
L = N we obtain an instantiation of an augmented broadcast encryption scheme,
presented in Figure 6.14.

Our augmented broadcast encryption scheme is the first proven adaptively secure in
the standard model. We compare it to the literature in Table 6.2.
Notice the augmented broadcast encryption scheme obtained from our second WIBE
instantiation is actually the first known anonymous AugBE.
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Setup(λ,N): generate an asymmetric bilinear pairing group Γ =
(p,G1,G2,GT , g1, g2, e) for prime order p. Sample random dual orthonormal
bases (D,D∗) ← Dual(Z4N+2

p ). Let d0, · · · ,d4N+1 denote the elements of D
and d∗

0, · · · ,d4N+1∗ denote the elements of D∗. Pick α ← Zp. The master
secret key is msk = (α, g

d∗
0

2 , g
d∗
1

2 , · · · g
d∗
N

2 , g
d∗
3N+1

2 · · · , gd
∗
4N

2 ) and the public key is

pk = (Γ, p, e(g1, g2)
αd0.d

∗
0 , gd0

1 , g
d4L+1

1 ,h1 = gd1
1 , · · · ,hN = gdN

1 ).

For each i ∈ [N ], pick r ∈ Zp,η ∈ ZL
p and set secret key ski to

g
αd∗

0+rd
∗
i+

N∑
l=1

ηl·d∗
3N+l

2 .

Encrypt(pk, S, ind,m ∈ GT ): choose s1, s2, s3 ← Zp and compute ct = (c1, c2)
where

c1 = m · (e(g1, g2)αb
∗
0·b0)s1 , c2 = g

s1d0+s2d4N+1

1 ·
∏

j∈[N ]\S,j≥ind
hs3j .

Decrypt(ski, ct): compute c1 · 1
e(c2,ski)

.

Figure 6.14: Our adaptively anonymous augmented broadcast encryption scheme in prime
order group.

Table 6.2: Augmented Broadcast Encryption schemes comparison; “Multi” and “PWE” mean
respectively “Multilinear Map” and “Positional Witness Encryption”.

EncScheme |pk| |ski| |ct| Security Model Settings
Algo

[40] 1 O(
√
N) O(

√
N) O(

√
N) Adaptive GGM Pairing c.o.

[75] 2 Ω(N) Ω(N2) O(N ϵ) Selective GGM Pairing, lattices
[77] 1 poly(λ) poly(λ) poly(λ) Adaptive Multi PWE
Ours 1 O(N2) O(N) O(N) Adaptive Standard Pairings p.o.

Broadcast and Trace Scheme. There exists another variant of broadcast encryption,
called Broadcast and Trace (BT) [112]. Such a scheme is a primitive that combines
broadcast encryption scheme and traitor tracing (TT) [52] schemes. We recall that the
latter is a primitive in which a message is encrypted for the whole subset [N ] but if some
subset of traitors uses their secret keys to produce a pirate decoder, then the tracing
procedure can identify at least one of the traitors.
In [40, 77], it was demonstrated that a broadcast and trace scheme can be constructed
from any message and index-hiding AugBE. Briefly, the idea of the construction is that
for the broadcast part the AugBE encryption algorithm is used with index ind = 1, while
the traitor tracing part is done by running the AugBE encryption algorithm several times,
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with different indices. Let us see how the traitor tracing part works. Suppose that one
has a black box access to a pirate decoder, meaning that she can learn the result of
decryption output by the decoder. She then encrypts several messages with index
equals to 1, then to 2, etc. At some point, for index j ∈ [N ] the decoder will output a
correct decryption while for index j + 1 the decryption will fail. It means that the (or one
of the) traitor(s) has an index that is greater or equal to j but strictly lower than j + 1,
thus traitor’s index is equal to j.
As for traitor tracing, broadcast and trace schemes can achieve either public (anyone
can find the traitors) or private (traitors can only be retrieved by the owner of a specific
master key) traceability, and both cases are useful for different kinds of use cases.
Theoretically speaking, public traceability is however known to be harder to achieve [39].
By construction, the original (i.e. given by Boneh and Waters) AugBE definition [40]
gives a publicly traceable broadcast and trace scheme while Goyal et al. [75]’s definition
with two encryption algorithms is suitable for the private case.

Following the generic construction given in [40, 77], our augmented broadcast encryption
scheme can itself be turned into a broadcast and trace scheme. Table 6.3 gives a
comparison between our resulting broadcast and trace scheme and existing ones. We
also specify in this table if the users set used for encryption must be given additionally
to the ciphertext, in order to make the decryption working. A “×” means that the set
does not have to be given.

Table 6.3: Broadcast and Trace schemes comparison; tk, “p.o”, “c.o”, “PWE”, “std” “Multi”, “P”
and “S” mean tracing key, “prime order” “composite order”, “Positional Witness Encryption”,
“standard”, “multilinear”, “public” and “secret respectively, 0 < ϵ ≤ 1/2. In the column “Users set”
a “
√

” indicates that the set is given along with the ciphertext while a “×” means that it is not the
case.

Scheme |pk| |ski| |ct| Users set Security Model tk Settings
[40] O(

√
N) O(

√
N) O(

√
N)

√
Adaptive GGM P Pairing c.o.

[75] Ω(N) Ω(N2) O(N ϵ)
√

Selective GGM S Pairing, lattices
[77] poly(λ) poly(λ) poly(λ)

√
Adaptive Multi P PWE

[139] O(N) O(N) O(1)
√

Adaptive GGM S Pairings p.o.
Ours O(N2) O(N) O(N) × Adaptive Std P Pairings p.o.

As we can see our scheme is the first BT scheme (as far as we know) that does not need
the description of the user sets to be able to decrypt, and that has security proven in the
standard model. Moreover, our scheme is publicly traceable, and uses pairings in prime
order group while other existing publicly traceable schemes are using either pairings
in composite order group (less secure), or positional witness encryption. Regarding
efficiency, our resulting BT scheme has a complexity similar to a “trivial” scheme [120]
(with all parameters sizes linear in the number of users). However, the claimed of our
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work is not to provide a new efficient Broadcast and Trace scheme, but a new generic
way to build AugBE schemes, and our generic construction could be more efficient than
a “trivial” BT scheme, even if our current instantiation is not.

Moreover, we also consider that our proposal has the additional feature of anonymity,
that the trivial construction could not have without being less efficient than ours. With
such property, the users set is included in the ciphertext and no longer given in the clear
which leads to a linear additional computational cost during decryption. Anonymity in
the context of BT seems to be an overkill, but we think that for applications in which
being in the used users set reveals some private information about users, it might be a
real interest to use an anonymous scheme. Eventually, the derivation of our anonymous
AugBE to an anonymous BT scheme is quite direct from the generic construction given
in [40]. A formal definition of an anonymous BT scheme is quite straightforward from the
one of anonymous AugBE and can be found in e.g., [10]. The only existing anonymous
BT is the one of [10], which is based on the anonymous BE scheme of [100]: it directly
inherit advantages and drawbacks compare to our resulting scheme. Hence, if our new
instantiation of a BT scheme is not more efficient than the “trivial” scheme, it has some
specific features that could not be obtained so easily “trivially”. Notice that Blazy et al.
[29] proposed an anonymous trace and revoke broadcast encryption scheme, but their
definition differs slightly from the one we use, therefore we do not take into account
their scheme in our comparison as it would not make sense.

6.2 Attribute-Based Encryption

The second data sharing scheme we study in this manuscript is attribute-based encryp-
tion (ABE) scheme, introduced by Sahai and Waters [126] in 2005. In such encryption
scheme, secret keys and ciphertexts are associated to some subset of attributes, and
decryption is possible if there exists a relation between the secret key’s attributes and
the ciphertext’s attributes. In more details, in a Ciphertext Policy ABE (CP-ABE) the
ciphertext is associated to an access policy while the secret key is associated to a set
of attributes. Decryption becomes possible if the set of attributes satisfies the policy.
There exists the dual of a CP-ABE, known as Key Policy ABE (KP-ABE) in which
the roles of attributes and access policies are swapped. There exist several ways to
define an access policy in the literature: through threshold structure [126], tree-based
structure [78], boolean formulas [94], linear secret sharing schemes [136], circuits [36],
. . . . The main aim of research in ABE is to build efficient schemes in terms of both time
and space complexities, while supporting complex access policies. Unfortunately, most
existing schemes propose ciphertexts with a size linear in the number of attributes in
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the scheme [78, 92, 91], while some other constructions succeed in proposing constant
size ciphertext, but at the cost of quadratic-size user private key [13].
In the sequel we first formally define attribute-based encryption and its properties. Then
in Section 6.2.2 we present one of our contributions, which is the construction of a cipher-
text policy attribute-based encryption scheme from dually computable accumulators. In
Section 6.2.3, we detail the obtained CP ABE scheme, prove its correctness and security
and compare it to the state of the art. We end this section with a key policy version of our
attribute-based encryption scheme, and compare it to existing schemes, in Section 6.2.4.

6.2.1 Definitions and Properties

Definition 6.2.1 Ciphertext policy attribute-based encryption (CP-ABE) [126]. A
ciphertext policy attribute-based encryption scheme consists of four algorithms.

• Setup(λ): the setup algorithm takes as input a security parameter λ and outputs a
master public key pk and a master secret key msk.

• KeyGen(pk,msk,Υ): the key generation algorithm takes as input a master public
key pk, a master secret key msk, a key attribute Υ and outputs a private key skΥ.

• Encrypt(pk,Π,m): the encryption algorithm takes as input a master public key pk,
an access policy Π, and a message m. It outputs a ciphertext ctΠ.

• Decrypt(pk, skΥ,Υ, ctΠ,Π): the decryption algorithm takes as input a master public
key pk, a private key skΥ along with an associated set of attributes Υ, a ciphertext
ctΠ and its associated access policy Π, and it returns a message m′.

Definition of key policy attribute-based encryption can easily be obtained from the above
definition, with the roles of attributes sets and access policies swapped.

Definition 6.2.2 Correctness. A CP-ABE scheme is said to be correct if for all security
parameter λ ∈ N, every attributes set Υ, every access policy Π such that Υ satisfies
Π, every messages m, and every honestly generated keys (pk,msk)← Setup(λ) and
skΥ ← KeyGen(pk,msk,Υ):

Pr [Decrypt(pk, skΥ,Υ,Encrypt(pk,Π,m),Π) = m] = 1.

Note 6.2.1 ABE schemes can be bounded, meaning that during the setup phase a
bound in the number of attributes allowed in the scheme is given and keys and cipher-
texts can be created for an arbitrarily number of attributes at the condition that this
number is lower than a given.
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Definition 6.2.3 Adaptive indistinguishability security (Ada-IND). A CP-ABE scheme
is said to satisfy adaptive indistinguishability security if all PPT adversaries A have at
most negligible advantage in the game presented in Figure 6.15, where C is a challenger
and A’s advantage is defined as AdvAda−INDA (λ) :=

∣∣Pr [b′ = b
]
− 1

2

∣∣.
SETUP: on input λ, C samples (pk,msk)← Setup(λ) and gives pk to A.
KEY QUERY: A chooses an attributes set Υ and sends it to C who replies with

skΥ ← KeyGen(pk,msk,Υ).
CHALLENGE: A submits a pair of equal length challenge messages m0,m1 and a

challenge access policy Π∗ to C. The latter samples b← {0, 1} randomly and
replies to A with ctΠ∗ ← Encrypt(pk,Π∗,mb).

KEY QUERY: A chooses an attributes set Υ and sends it to C who replies with
skΥ ← KeyGen(pk,msk,Υ).

GUESS: A outputs her guess b′ ∈ {0, 1} for b, and wins the game if b′ = b and if,
for all attributes set Υ for which a key was queried, Υ does not satisfy Π∗.

Figure 6.15: Adaptive indistinguishability security game for ciphertext policy attribute-based
encryption schemes.

Again, adaptive indistinguishability security for key policy attribute-based encryption
schemes can easily be derived from the above definition, by switching the roles of
attributes sets and access policies.

6.2.2 CP-ABE From Dually Computable Accumulators: The Differ-
ent Steps of Our Construction

In this section we propose a way to obtain an ABE scheme for which both the ciphertext
and the user secret key are constant, while obtaining very good time complexities.
To reach such objective of compactness, our idea is to employ our notion of dually
computable accumulators in the following manner: the secret key, computed by the
authority, corresponds to a privately computed accumulator of the users’ attributes set,
while the encryption corresponds to a one-time-pad with a mask derived from a publicly
computed accumulator of the access policy. Decryption is then possible if the decryptor
can demonstrate that the intersection of their accumulator and the one associated
with the ciphertext is not empty, utilizing membership witnesses for both the privately
computed and the publicly computed accumulators. However, while it is relatively
straightforward to use accumulators to represent sets of attributes, understanding
how they can serve as a concise representation of access policies is more complex.
In this study, we introduce a way to represent monotone boolean formulas that is
compatible with the use of accumulators, and then show how to employ our dually
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computable accumulator to obtain a compact, efficient and secure ABE. Unfortunately
as our construction relies on pairing-based accumulators’ specific features we are
not able to propose a generic construction of attribute-based encryption scheme from
dually computable accumulators.

Basic idea. Having both private evaluation and public witness creation permits us to
transform a cryptographic accumulator into an encryption scheme. More precisely, in our

CP-ABE, the user secret key is a privately computed accumulator accX = g
d1

∏
x∈X

(x+s)

1 ,
where X is a representation of the user’s attributes. In parallel, the ciphertext is a
one-time-pad between the message m and a mask H that is computed using a publicly
computable accumulator accpY , where Y is a representation of the access policy.
However, with the dually computable accumulator of the previous section as given in
Figure 5.10, this construction is not efficient and secure, thus we have to make some
changes on the accumulator scheme. Before going into those details, we first explain
how we can define X and Y. In the sequel let Q = 2q − 1, where q ∈ N is the bound
on the number of attributes in the ABE.

Representation of boolean formulas and attributes with cryptographic accumula-
tors. In our ABE, access policies are expressed as disjunctions of conjunctions (DNF),
without “NO” gates. Hence, a policy could be written Π = π1 ∨ π2 ∨ · · · ∨ πl, where l ∈ N,
and πi is a conjunction of attributes. Let Yi be the set of attributes present in clause
πi, for i = 1, · · · , l. Our idea is to define Y as the set {H(Yi)}li=1, where H is a hash
function that takes as input a set of elements and returns an element in Zp, for a prime
p. During the encryption process, we create the accumulator accpY using PublicEval
(see below).

For a set Υ of attributes for a given user, we create X as the set of hash values (using
H) of all non-empty subsets of Υ1. During the key generation process, the authority
hence creates the accumulator accX using Eval.

Encryption and decryption. For a given user, if her set of attributes Υ satisfies the
policy Π, it means that there exists a non-empty subset of Υ that corresponds to a
clause πi in Π. As H is deterministic, it follows that one element, called ξ in the sequel,
is present in both accumulators: accX (the one corresponding to the non-empty subsets
of Υ) and accpY (the one that corresponds to Π). Based on that, we propose that during
the encryption process, the mask H is computed using the public verification equation

1It follows that if |Υ| = k, then |X | = 2k − 1.
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PublicVerify, as e(gd1
1 ,accpY)

α, where α is some randomness.

During decryption, a user having a valid set of attributes precisely knows both the clause
πi and the element in Υ that match together. The next step is then for the user to
generate a witness for such element, and thanks to the verification algorithms, retrieve
H and then the message. But as both accumulators are not related to the same sets,
we cannot directly use the properties of a dually computable accumulator. The user
hence needs to compute two witnesses (one for each accumulator), and we need to
find a way to combine them appropriately for the decryption to work.

Let witYξ ,witXξ be membership witnesses for ξ and respectively Y , and X . For verification,
we compute A = e(witYξ , (g

d∗
2α

2 )ξ · gd
∗
2sα

2 ) and B = e(witXξ , (g
d∗
2α

2 )ξ · gd
∗
2sα

2 ). Multiplying
A and B gives us

e(witYξ · witXξ , (g
d∗
2α

2 )ξ · gd
∗
2sα

2 )

thanks to bilinear pairing properties. To prove simultaneously that ξ is in both accumu-
lators, we need to “force” the decryptor to compute e(A · B, (gd

∗
2α

2 )ξ · gd
∗
2sα

2 ) instead of
e(A, (g

d∗
2α

2 )ξ · gd
∗
2sα

2 ) · (B, (gd
∗
2α

2 )ξ · gd
∗
2sα

2 ).

An easy way to do that is to give with the ciphertext (A · B)α instead of gd
∗
2α

2 , g
d∗
2sα

2 .
But this implies to know witnesses during encryption whereas they are only known
during decryption. Our idea is then to “anticipate” the witnesses or at least a part of them.

Notice that for any set S = {s1, · · · , sT}, its polynomial representation
T∏
i=1

(s + Z) is

actually composed of the elementary symmetric polynomials for T variables: σ1 =
T∑
i=1

si, · · · , σT =
T∏
i=1

si (see Definition 2.1.3). Indeed,
T∏
i=1

(s+ Z) = ZT + σ1Z
T−1 + · · · σT

(see Note 2.1.1). Thus, if we know one element s̃ of S, we know that s̃ is a factor of σT .
We use this idea to anticipate a part of both witnesses for element ξ.

Let {ci, ti}Qi=0 be respectively the coefficients of ChX\{ξ}[Z] and ChY\{ξ}[Z]. Our first idea
is to separate coefficients c0 and t0 of the others. Thus, in our scheme for clause πj (and
associated set Yj) and non-empty subset pj∗ , a witness that ξ = H(pj∗) is accumulated

in accX is now equal to (gd1c0
1 , g

d∗
2

Q∑
i=1

cis
i

2 ) and a witness that ξ = H(Yj) is accumulated in

accpY is now equal to (gd1t0
1 , g

d∗
2

Q∑
i=1

tis
i

2 ). This gives us our first intermediate accumulator,
presented in Figure 6.16. In orange we highlight the differences with our accumulator
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presented in Figure 5.10, in Section 5.4.2.

• Gen(λ, q): run a bilinear group generation algorithm to get Γ = (p,G1,G2,
GT , e, g1, g2). Then choose a random s ← Z∗

p, and run Dual(Z2
p) to get D =

(d1,d2),D
∗ = (d∗

1,d
∗
2). Let ψ ∈ Z∗

p be the random such that d1 ·d∗
1 = d2 ·d∗

2 = ψ.
Set skacc = (s,D,D∗), and

pkacc =

(
Γ, gd1

1 , g
d2
1 , g

d2s
1 , · · · , gd2sq

1 , g
d∗
1

2 ,

g
d∗
1s

2 , · · · , gd
∗
1s

q

2 ,g
d∗
2s

2 , · · · , gd
∗
2s

q

2

)
.

Return skacc,pkacc.

• Eval(skacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accX = g
d1

q∑
i=0

ais
i

1 , and return accX .

• PublicEval(pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accpX = g
d∗
1

q∑
i=0

ais
i

2 , and return accpX .

• WitCreate(pkacc,accX \accpX ,X , I): let {bi}i=0,··· ,q be the coefficients of the

polynomial ChX\I [Z] =
∏

x∈X\I
(x+Z). Compute W1 = gd1b0

1 and W2 = g
d∗
2

q∑
i=1

bis
i

2 ,

and return witI = (W1,W2).

• Verify(pkacc,accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the poly-
nomial ChI [Z] =

∏
x∈I

(x + Z) and the return 1 if e(accX , g
d∗
1

2 ) =

e(W1, g
d∗
1

q∑
i=0

cis
i

2 ) · e(g
d2

q∑
i=0

cis
i

1 ,W2), 0 otherwise.

• PublicVerify(pkacc,accpX ,witI , I): let {ci}i=0,··· ,q be the coefficients of
the polynomial ChI [Z] =

∏
x∈I

(x + Z) and return 1 if e(gd1
1 ,accpX ) =

e(W1, g
d∗
1

q∑
i=0

cis
i

2 ) · e(g
d2

q∑
i=0

cis
i

1 ,W2), 0 otherwise.

Figure 6.16: The first intermediate accumulator scheme.

However, the values c0 and t0 depend on X \ {ξ} and Y \ {ξ} respectively. While Y is
known during encryption, X and ξ are only known during decryption. Therefore, we
cannot anticipate c0 and t0 during decryption.
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To solve this, we choose two values x0, y0 that do not correspond to an output of H
and add them to the sets X and Y respectively. As x0, y0 /∈ Im(H), we know that x0
and y0 will always be in sets X \ {ξ} and Y \ {ξ} respectively. Thus, x0 is a factor of
c0 while y0 is a factor of t0. Therefore, we can anticipate a part of the first element of
both witnesses with gd1x0

1 for the witness associated to accX and gd1y0
1 for the witness

associated to accpY .

Now that we can anticipate a part of the witnesses, we can combine them by setting
aux1 = g

d1α(x0+y0)
1 . Let δ, δ′ ∈ N such that c0 = x0δ and t0 = y0δ

′. We can compute

e(auxδδ01 , (g
d∗
1

2 )ξ · gd
∗
1s

2 )

= e((g
d1α(x0+y0)
1 )δδ

′
, g

d∗
1(ξ+s)

2 )

= e(g
d1αδδ

′
(x0+y0)

1 , g
d∗
1(s+ξ)

2 )

= e(g1, g2)
ψαδ

′
c0(s+ξ) · e(g1, g2)ψαδt0(s+ξ)

As the verification that ξ ∈ X will give e(g1, g2)
ψα

Q∑
i=0

ais
i

(if ξ is indeed in the set) we have
to give in encryption the auxiliary information aux2 = g−αd1

2 to remove this extra term and
recover the mask. Notice that aux2 will work only with privately computed accumulator,
and will be used for the verification of membership in the accumulator of the secret key.

Managing the randomness α and a constant-size ciphertext. We now have to
compute the rest of witness such that it is randomized by α. The trivial solution is to
give gαd

∗
2s

2 , · · · , gαd
∗
2s

Q

2 but this will result in a linear size for the ciphertext. Thus, it seems
more efficient to give gαd2(s+ξ)

1 . But as ξ is unknown at the time of encryption, we have
to give gαd2s

1 and gαd2
1 . With the latter it is possible to cheat: with gd

∗
2

2 , g
d∗
2s

2 , · · · gd
∗
2s

Q

2 we

can compute g
d∗
2

Q∑
i=0

mis
i

2 and recover the mask.

Our idea to avoid this is to anticipate the value of ξ. We do as we did to anticipate c0 and
t0. We choose another value z0 that is not in Im(H) that we add in X and Y. Then z0
is an element accumulated in both accX (the secret key) and accpY (used in the mask
of the message). During decryption, we prove the membership of {ξ, z0}, and thus we
need the polynomial Z2 + Z(ξ + z0) + ξ · z0 = Z2 + Zz0 + ξ(Z + z0). Therefore, we
give with the ciphertext the auxiliary information ele3 = g

αd2(z0s+s2)
1 and ele4 = g

αd2(z0+s)
1 .

As s is secret, there is no way to cheat.
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Auxiliary information in the ciphertext. As is, the scheme is not secure. In-

deed, from aux1 = g
d1α(x0+y0)
1 and

{
g
d∗
1s

i

2

}Q
i=0

(publicly known), anyone can compute

(e(g1, g2)
ψα

Q∑
i=0

mis
i

)x0+y0 . As x0, y0 are publicly known, anyone can recover e(g1, g2)
ψα

Q∑
i=0

mis
i

=

H and thus the message.

To correct this we set: α = α1 · α2 for α1, α2 two randoms, aux1 = g
d1α2(x0+y0)
1 , ele3 =

g
α1α2d2(z0s+s2)
1 , ele4 = g

α1α2d2(z0+s)
1 , and aux2 = g

−α1α2d
∗
1

2 . To have correctness during
membership verification, we need more auxiliary information (ele1, ele2) are equal to
(g

d∗
1α1(z0s+s2)

2 , g
d∗
1α1(z0+s)

2 ).

At this point we obtain a CP-ABE that is working, but unfortunately we are not able
to prove its security. Therefore, we have to modify the underlying accumulator, as
we explain in the next subsection.

Managing the dual system encryption framework. We want to prove adaptive
security of our scheme with the dual system encryption framework, and the decisional
subspace assumption in G1 and G2, as it relies on the hidden subspaces of dual pairing
vector spaces. We now have to define semi-functional keys and ciphertexts, that will
be used in the security proof. We recall that our CP-ABE secret key for attributes sets

Υ is equal to accX = g
d1

Q∑
i=0

ais
i

1 . During decryption we compute e(accX ,aux2) where
aux2 = g

−α1α2d
∗
1

2 is given in the ciphertext, for α1, α2 ← Zp. As aux2 is the only part of
the ciphertext to interact with the secret key, it is the only part that need semi-functional
form. To define SF keys and aux2, we need to double the dimension of the used DPVS:
we now have D = (d1,d2,d3,d4) and D∗ = (d∗

1,d
∗
2,d

∗
3,d

∗
4), where d3,d4,d

∗
3,d

∗
4 will be

used for semi-functional space. Thus, trivially we can define for a secret key skΥ and
ciphertext auxiliary information aux2 their semi-functional forms as:

sk(SF )
Υ = skΥ · gd3t3

1 and aux(SF )
2 = aux2 · gd

∗
3z3

2

for t3, z3 ← Zp.

When using the DS2 assumption to change challenge ciphertext from normal form to
semi-functional, we will use the element t1, which is equal either to gτ1d

∗
1

2 or to gτd
∗
1+τ2d

∗
3

2 ,
to build either aux2 or aux(SF )

2 . However, the random τ1 will have to appear in other parts
of the ciphertext as e(accX ,aux2) = e(accX , g

d∗
1

2 )τ1 thus for membership verification we

have to be able to reconstruct τ1
q∑
i=0

ais
i. And as τ1 is only given in exponent of the
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assumption’s challenge we do not know it and will not be able to use it for other parts of
the ciphertext, especially because in the ciphertext there are elements of G1 and we
only have τ1 as exponent of an element of G2.

Thus, we have to change the way we define semi-functional keys and ciphertexts. To
do so we have to also modify normal secret keys and ciphertexts. Let us now define
normal and semi-functional keys and ciphertexts as follows:

skΥ = g
d1

q∑
i=0

ais
i+z2d2

1 , aux2 = g
rd∗

1+t2d
∗
2

2

sk(SF )
Υ = g

d1

q∑
i=0

ais
i+z2d2+z4d4

1 , aux(SF )
2 = g

rd∗
1+t2d

∗
2+t4d

∗
4

2

where z2, z4, t2, t4 ← Zp. We easily notice that during membership verification between
a normal key and a normal ciphertext, we have an extra term e(g1, g2)

ψz2t2. To remove
this extra term, we can add in the key g−d2t2

1 and in the ciphertext gd
∗
2z2

2 .
But as we add an element to normal keys and one to normal ciphertexts, we have to
modify the semi-functional keys and ciphertext by adding them g−d2t2−d4t4

1 and gd
∗
2z2+d∗

4z4
2

respectively. Notice that we keep the same randoms for coefficients of d4 and d∗
4 in both

parts of the semi-functional key and ciphertext (as the assumption’s challenge gives us
only one coefficient for d4,d

∗
4 and if we randomized it for the second part of SF keys and

ciphertext, again we will not be able to remove the extra term). But doing so we obtain
that a semi-functional key always decrypt a semi-functional ciphertext, which should not
be possible.

To fix this issue, we can define normal keys and ciphertexts as follows:

skΥ = g
d1

q∑
i=0

ais
i+(d1−d2)

1 , aux2 = g
rd∗

1+(d∗
1+d∗

2)
2 .

With this definition, we obtain in the accumulator verification e(g1, g2)ψγ · e(g1, g2)−ψγ, as

we wanted. But we also obtain e(g1, g2)
ψγ

q∑
i=0

ais
i

, an extra term we cannot remove.

At this point, our idea is to increase the dimension of the used DPVS of the accumulator
to 3 (and thus 6 for the ABE to have semi-functional spaces). Then, we define normal
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and semi-functional keys and ciphertexts as:

skΥ = g
d1

q∑
i=0

ais
i+(d2−d3)

1 , aux2 = g
rd∗

1+(d∗
2+d∗

3)
2

sk(SF )
Υ = g

d1

q∑
i=0

ais
i+(d2−d3)+z5d5+z6d6

1 , aux(SF )
2 = g

rd∗
1+(d∗

2+d∗
3)+t5d

∗
5+t6d

∗
6

2

where z5, z6, t5, t6 ← Zp. Decryption of a normal ciphertext by a normal or SK key will
work as no extra term will be in the result and decryption of a SF ciphertext by a normal
key will also work. However, decryption of a SF ciphertext by a SK key will not work as
it has an extra term: e(g1, g2)ψ(t5z5+t6z6)6.

Though there is one problem when defining keys and ciphertexts like this. In the
security proof, we use the challenge of DS2 assumption t2, t3 to build the challenge
ciphertext. (t2, t3) are either equals to (g

τ1d
∗
2

2 , g
τ1d

∗
3

2 ) or to (g
τ1d

∗
2+τ2d

∗
5

2 , g
τ1d

∗
3+τ2d

∗
6

2 ). We set
aux2 = g

−α1α2d
∗
1

2 · t2 · t3. In the both case, we have that d∗
2,d

∗
3 are randomized by τ1.

Thus we need to define aux2 = g
rd∗

1+z(d
∗
2+d∗

3)
2 for z ← Zp. As the same goes when

using the challenge of DS1 assumption to build the challenge key, we have to define

skΥ = g
d1

q∑
i=0

ais
i+r(d2−d3)

1 for r ← Zp. We carry these modifications in sk(SF )
Υ and aux(SF )

2 .

But notice that with way of building the challenge ciphertext, when t2, t3 are equals to
g
τ1d

∗
2+τ2d

∗
5

2 , g
τ1d

∗
3+τ2d

∗
6

2 we have that t5 = t6 = τ2 (and the same goes for the challenge key
where z5 = z6 = τ2). Thus, we do not obtain an SF ciphertext (or SF key). To solve this
issue we actually randomized d3 in the keys and d∗

2 in the ciphertext, with the same
random γ. Therefore, we define normal and SF keys and ciphertext as follows:

skΥ = g
d1

q∑
i=0

ais
i+(d2−γd3)

1 , aux2 = g
rd∗

1+(γd∗
2+d∗

3)
2

sk
(SF )
Υ = g

d1

q∑
i=0

ais
i+(d2−γd3)+z5d5+z6d6

1 , aux(SF )
2 = g

rd∗
1+(γd∗

2+d∗
3)+t5d

∗
5+t6d

∗
6

2

This gives us our second intermediate accumulator, presented in Figure 6.17. We
highlight in green the differences with our first intermediate accumulator scheme, pre-
sented in Figure 6.16. Notice that we do not include gr(d

∗
2−γd∗

3)
2 in the publicly computed

accumulator as we do not need a semi-functional form of it.

Finally, to conclude our security proof, we will do a change of bases from (D,D∗) to
(F , F ∗). By the way we define it, we obtain f 1 = d1 − ηd5 where η ← Zp. It means
that each part of the ciphertext that uses d1 will have a semi-functional part in bases F ,

6This idea is inspired by the IBE of [51].
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• Gen(λ, q): run a bilinear group generation algorithm to get Γ =
(p,G1,G2,GT , e, g1, g2). Then choose randoms s, γ ← Z∗

p, and run Dual(Z3
p) to

get D = (d1,d2,d3),D
∗ = (d∗

1,d
∗
2,d

∗
3). Let ψ ∈ Z∗

p be the random such that
d1 · d∗

1 = d2 · d∗
2 = d3 · d∗

3 =ψ. Set skacc = (s, γ,D,D∗), and

pkacc =

(
Γ, gd1

1 , g
d2
1 , g

d2s
1 , · · · , gd2sq

1 , g
d∗
1

2 , g
d∗
1s

2 ,

· · · , gd
∗
1s

q

2 , g
d∗
2γ

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2 , g
d∗
3

2

)
.

Return skacc,pkacc.

• Eval(skacc,pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polyno-
mial ChX [Z] =

∏
x∈X

(Z + x). Then pick r ← Zp and compute accX =

g
d1

q∑
i=0

ais
i+r(d2−γd3)

1 , and return accX .

• PublicEval(pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accpX = g
d∗
1

q∑
i=0

ais
i

2 , and return accpX .

• WitCreate(pkacc,accX \accpX ,X , I): let {bi}i=0,··· ,q be the coefficients of the

polynomial ChX\I [Z] =
∏

x∈X\I
(x+Z). Compute W1 = gd1b0

1 and W2 = g
d∗
2

q∑
i=1

bis
i

2 ,

and return witI = (W1,W2).

• Verify(pkacc,accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polynomial

ChI [Z] =
∏
x∈I

(x+ Z) and return 1 if e(accX , g
d∗
1

2 ·g
d∗
2γ

2 · gd
∗
3

2 ) = e(W1, g
d∗
1

q∑
i=0

cis
i

2 ) ·

e(g
d2

q∑
i=0

cis
i

1 ,W2), 0 otherwise.

• PublicVerify(pkacc,accpX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the poly-

nomial ChI [Z] =
∏
x∈I

(x + Z) and return 1 if e(gd1
1 ,accpX ) = e(W1, g

d∗
1

q∑
i=0

cis
i

2 ) ·

e(g
d2

q∑
i=0

cis
i

1 ,W2), 0 otherwise.

Figure 6.17: The second intermediate accumulator scheme.

and our ciphertext will no longer be a correct SF ciphertext. Indeed, we defined (and
we need for the other parts of the proof) a SF ciphertext as being a normal ciphertext
with only element aux2 having a semi-functional part. Therefore, we need to replace d1
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by d3 in ciphertexts to avoid this issue. As in our CP-ABE the anticipation of the first
element of the membership witness, aux1, uses d1, we modify our accumulator so that
W1 has in exponent d3. Plus, as in the CP-ABE ciphertext the mask of the message is
e(gd1

1 ,accpY), we have to change the way to publicly computed accumulators: we now
use {b∗3si}

q
i=0 instead of {b∗1si}

q
i=0. We also change elements ele1, ele2 in our CP-ABE

ciphertext: we replace d∗
1 by d∗

3 to keep correctness. That gives us our last accumulator
scheme (the one that we will use in our CP-ABE scheme), presented in Figure 6.18.
We highlight in purple the differences with the intermediate accumulator of Figure 6.17.

Note 6.2.2 To prove security of our attribute-based encryption scheme we will use DS1
and DS2 with parameter k = 3 and n = 2k = 6, and so DPVS of dimension 6.

6.2.3 Our CP-ABE Scheme From Dually Computable Accumulator

The resulting CP-ABE is fully given in Figure 6.19. As said above, it permits to manage
access policies expressed as disjunctions of conjunctions without “NO” gates. For sake
of clarity, we use the same color notations than in the accumulator of Figure 6.18 and we
highlight in red the elements used for anticipation of the witnesses and the intersection
of both sets.

Theorem 6.2.1 Our ciphertext policy attribute-based encryption scheme is correct.

Proof 6.2.1 We have that

e(aux δδ
′

1 , ele1 · eleξ2)
= e((g

α2d3(x0+y0)
1 )δδ

′
, g

α1d
∗
3(z0s+s

2)
2 · (gα1d

∗
3(z0+s)

2 )ξ)

= e(g
α2d3δδ

′
(x0+y0)

1 , g
αd∗

3(s
2+s(z0+ξ)+z0ξ)

2 )

= e(g1, g2)
ψα1α2(s2+s(z0+ξ)+z0ξ)c0δ

′
· e(g1, g2)ψα1α2(s2+s(z0+ξ)+z0ξ)t0δ

and

e(ele3 · eleξ4,W δ
′

2 ·W
′δ
2 )

= e(g
α1α2d2(z0s+s2)
1 · (gα1α2d2(z0+s)

1 )ξ, (g
d∗
2

Q∑
i=1

cis
i

2 )δ
′
· (g

d∗
2

Q∑
i=1

tis
i

2 )δ)

= e(g
α1α2d2(s2+s(z0+ξ)+z0ξ)
1 , g

d∗
2δ

′ Q∑
i=1

cis
i+d∗

2δ
Q∑

i=1
tis

i

2 )

= e(g1, g2)
ψα1α2(s2+s(z0+ξ)+z0ξ)δ

′ Q∑
i=1

cis
i
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• Gen(λ, q): run a bilinear group generation algorithm to get Γ =
(p,G1,G2,GT , e, g1, g2). Then choose randoms s, γ ← Z∗

p, and run Dual(Z3
p) to

get D = (d1,d2,d3),D
∗ = (d∗

1,d
∗
2,d

∗
3). Let ψ ∈ Z∗

p be the random such that
d1 · d∗

1 = d2 · d∗
2= d3 · d∗

3 =ψ. Set skacc = (s, γ,D,D∗), and

pkacc =

(
Γ, gd3

1 , g
d2
1 , g

d2s
1 , · · · , gd2sq

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

q

2 ,

g
d∗
2γ

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

q

2

)
,

and return skacc,pkacc.

• Eval(skacc,pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polyno-
mial ChX [Z] =

∏
x∈X

(Z + x). Then pick r ← Zp and compute accX =

g
d1

q∑
i=0

ais
i+r(d2−γd3)

1 , and return accX .

• PublicEval(pkacc,X ): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X

(Z + x). Then compute accpX = g
d∗
3

q∑
i=0

ais
i

2 , and return accpX .

• WitCreate(pkacc,accX \accpX ,X , I): let {bi}i=0,··· ,q be the coefficients of the

polynomial ChX\I [Z] =
∏

x∈X\I
(x+Z). Compute W1 = gd3b0

1 and W2 = g
d∗
2

q∑
i=1

bis
i

2 ,

and return witI = (W1,W2).

• Verify(pkacc,accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the poly-
nomial ChI [Z] =

∏
x∈I

(x + Z) and return 1 if e(accX , g
d∗
1

2 ·g
d∗
2γ

2 · gd
∗
3

2 ) =

e(W1, g
d∗
3

q∑
i=0

cis
i

2 ) · e(g
d2

q∑
i=0

cis
i

1 ,W2), 0 otherwise.

• PublicVerify(pkacc,accpX ,witI , I): let {ci}i=0,··· ,q be the coefficients of
the polynomial ChI [Z] =

∏
x∈I

(x + Z) and return 1 if e(gd3
1 ,accpX ) =

e(W1, g
d∗
3

q∑
i=0

cis
i

2 ) · e(g
d2

q∑
i=0

cis
i

1 ,W2), 0 otherwise.

Figure 6.18: The dually computable accumulator used in our CP-ABE scheme.

·e(g1, g2)
ψα1α2(s2+s(z0+ξ)+z0ξ)δ

Q∑
i=1

tis
i

.
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• Setup(λ, 1q): generate bilinear group Γ = (G1,G2,GT , p, e, g1, g2), dual pair-
ing vector spaces (D,D∗) ← Dual(Z6

p) such that D = (d1, · · · ,d6), D∗ =
(d∗

1, · · · ,d∗
6) and di · d∗

i = ψ, for i = 1, · · · , 6 and ψ ∈ Z∗
p. Also choose

γ, s, x0, y0, z0 ← Zp and a hash function H that takes as input an attributes
set and outputs an element of Zp \ {γ, s, x0, y0, z0}. Set Q = 2q − 1, msk =(
γ, s, gd2

2 ,
{
gd1si

1

}Q
i=0

,
{
gd3si

1

}Q
i=1

)
and

pk =

(
Γ, gd3

1 , g
d2
1 , g

d2s
1 , · · · , gd2sQ

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)
.

Return msk,pk.
• KeyGen(pk,msk,Υ): let k ∈ N be the number of attributes in Υ. Compute
p1, · · · , p2k−1 all the non-empty subsets of Υ and set X = {H(pi)}2

k−1
i=1 ∪{x0, z0}.

Compute {ai}i=0,··· ,Q the coefficients of the polynomial ChX [Z] = (x0+Z) · (z0+

Z) ·
2k−1∏
i=1

(H(pi) + Z). Pick r ← Zp and set skΥ = accX = g
d1

Q∑
i=0

ais
i+r(d2−γd3)

1 .

• Encrypt(pk,Π,m): let Π = π1 ∨ π2 ∨ · · · ∨ πl be the access policy, where l ∈ N

is the number of clauses in the policy, and πi for i = 1, · · · , l is a conjunction of
attributes. Define Yi for i = 1, · · · , l as the set of attributes associated to clause
πi and Y = ∪li=1H(Yi) ∪ {y0, z0}. Let {mi}Qi=0 be the coefficients of polynomial
ChY [Z]. Choose z, α1, α2 ← Zp and do

– Mask computation: define accpY = g
d∗
3

Q∑
i=0

mis
i

2 and H = e(gd3
1 ,accpY)

α1α2.
– Anticipation of the witnesses and auxiliary information computation: set

aux1 = g
α2d3(x0+y0)
1 and aux2 = g

−d∗
1α1α2+z(γd

∗
2+d∗

3)
2 .

– Anticipation of the intersection: set ele1 = g
α1d

∗
3(z0s+s

2)
2 , ele2 = g

α1d
∗
3(z0+s)

2 ,
ele3 = g

α1α2d2(z0s+s2)
1 , and ele4 = g

α1α2d2(z0+s)
1 .

Set ctΠ = (ele1, ele2, ele3, ele4,aux1,aux2,m ·H) and return ctΠ.

• Decrypt(pk, skΥ,Υ, ctΠ,Π): find pj∗ (for j∗ ∈
{
1, · · · , 2k − 1

}
) the non-empty

subset of Υ that satisfies Π It means that there exist j ∈ [1, · · · , l] such that
Yj = pj∗ and H(Yj) = H(pj∗) = ξ. Let {ci}Qi=0 be the coefficients of the
polynomial ChX [Z]/((z0 + Z)(ξ + Z)). Let {ti}Qi=0 be the coefficients of the
polynomial ChY [Z]/((z0 + Z)(ξ + Z)). Find δ, δ

′ ∈ Zp such that c0 = x0δ and

t0 = y0δ
′. Set W2 = g

d∗
2

Q∑
i=1

cis
i

2 , W ′
2 = g

d∗
2

Q∑
i=1

tis
i

2 and compute

m ·H(
e(auxδδ

′

1 , ele1 · eleξ2) · e(ele3 · ele
ξ
4,W2

δ′ ·W2
′δ) · e(accX ,aux2)δ

′
)δ−1

Figure 6.19: Our adaptively secure ciphertext policy attribute-based encryption scheme with
constant size ciphertexts and secret keys.
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Therefore

e(aux δδ
′

1 , ele1 · eleξ2) · e(ele3 · ele
ξ
4,W

δ
′

2 ·W
′δ
2 )

= e(g1, g2)
ψα1α2(s2+s(z0+ξ)+z0ξ)δ

′ Q∑
i=0

cis
i

·e(g1, g2)
ψα1α2(s2+s(z0+ξ)+z0ξ)δ

Q∑
i=0

tis
i

If ξ belongs to X and ξ belongs to Y, then

e(aux δδ
′

1 , ele1 · eleξ2) · e(ele3 · ele
ξ
4,W

δ
′

2 ·W
′δ
2 )

= e(g1, g2)
ψα1α2δ

′ Q∑
i=0

ais
i

· e(g1, g2)
ψα1α2δ

Q∑
i=0

mis
i

The last pairing is equal to

e(accX ,aux2)
δ
′

= e(g
d1

Q∑
i=0

ais
i+r(d2−γd3)

1 , g
−d∗

1α1α2+z(γd
∗
2+d∗

3)
2 )δ

′

= e(g1, g2)
−α1α2ψ

Q∑
i=0

ais
iδ

′

· e(g1, g2)rzγψ · e(g1, g2)−rzγψ

= e(g1, g2)
−α1α2ψ

Q∑
i=0

ais
iδ

′

so multiplying it with e(aux δδ
′

1 , ele1 ·eleξ2)·e(ele3 ·ele
ξ
4,W

δ
′

2 ·W
′δ
2 ) gives e(g1, g2)

ψα1α2δ
Q∑

i=0
mis

i

.
As δ is publicly known, one can from that recover H and then m. Therefore, the scheme
is correct. □

Theorem 6.2.2 Our ciphertext attribute-based encryption scheme satisfies adaptive
indistinguishability under SXDH problem.

To prove the security of our scheme, we prove that the encryption of challenge message
is indistinguishable from the encryption of a random message. Let Nq ∈ N be the
number of secret keys that the adversary is allowed to query.3 To prove security of our
scheme, we use a sequence Nq + 3 of games (our proof is inspired of Chen et al. [51]’s
IBE security proof) and Water’s dual system encryption framework (see Section 3.5).

• GameReal is the original security game, as presented in Figure 6.15.
3As the number of attributes in the scheme is bounded, so is the number of keys that an adversary

can query.
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• Game0 is the same as GameReal except that the challenge ciphertext is a semi-
functional ciphertext.

• Gamei for i = 1, · · · , Nq is the same as Game0 except that the first i keys are
semi-functional.

• GameFinal is the same as GameNq except that the challenge ciphertext is an
encryption of a random message.

Now we define semi-functional keys and ciphertexts. Let t5, t6, z5, z6 ← Zp.
• a semi-functional key for Υ, sk (SF )

Υ , is computed from normal key skΥ as sk (SF )
Υ =

skΥ · gt5d
∗
5+t6d

∗
6

1 = g
d∗
1

Q∑
i=0

ais
i+r(d∗

2−γd∗
3)+t5d

∗
5+t6d

∗
6

1

• a semi-functional ciphertext for Π, ct (SF )
Π , is computed as a normal ciphertext ctΠ

except that aux (SF )
2 = aux2 · gz5d5+z6d6

2 .

Notice that normal keys can decrypt SF ciphertexts, and normal ciphertexts can be
decrypted by SF keys. However, decryption of a SF ciphertext by a SF key leads to an
additional term: 1/e(g1, g2)(t5z5ψ+t6z6ψ)δ

−1.

Our proof is using assumptions DS1 and DS2 (Definition 2.3.4) that hold if SXDH holds.
Informally, the proof is done as follows.

• First we prove that if there exists an adversary that can distinguish GameReal
from Game0 then we can build an adversary that breaks the DS2 assumption
with parameters k = 3 and n = 6. To do so the main idea is to use the assump-
tion’s challenge to build the challenge ciphertext. Depending on the value of the
challenge we will either obtain a normal ciphertext or a semi-functional one.

• Then we prove that if there exists an adversary that can distinguish Gamej−1

from Gamej for j = 1, · · · , Nq we can build an adversary that breaks the DS1
assumption with k = 3 and n = 6. The idea is to use the assumption’s challenge
to build the j-th key. Thus, depending on the value of the challenge we will either
obtain a normal key or a semi-functional one. To build the challenge ciphertext,
we use the assumption’s parameters to obtain a semi-functional ciphertext.

• Finally, we prove that GameNq is computationally indistinguishable from GameFinal,
with a change of dual orthonormal bases. Doing so, we randomized the coefficient
of d∗

1 in the aux2 term of the ciphertext, thereby severing its link with the blinding
factor. That gives us the encryption of a random message.
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Lemma 6.2.1 If there exists a PPT algorithm A such that AdvGameReal
A −AdvGame0

A is non-
negligible, then there exists a PPT algorithm B with non-negligible advantage against
assumption DS2 with k = 3 and n = 6.

Proof 6.2.2 INIT: B is given ∆ = (Γ, gb11 , g
b2
1 , g

b3
1 , g

b∗1
2 , g

b∗2
2 , g

b∗3
2 , g

b∗4
2 , g

b∗5
2 , g

b∗6
2 , u1, u2, u3, µ2)

along with t1, t2, t3. B must decide if t1, t2, t3 are distributed as g
τ1b

∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 or
g
τ1b

∗
1+τ2b

∗
4

2 , g
τ1b

∗
2+τ2b

∗
5

2 , g
τ1b

∗
3+τ2b

∗
6

2 .

SETUP: B first chooses a random invertible matrix A ∈ Z3×3
p . It implicitly sets dual

orthonormal bases D,D∗ to: d∗
1 = b∗1,d

∗
2 = b∗2, d

∗
3 = b∗3, (d

∗
4,d

∗
5,d

∗
6) = (b∗4, b

∗
5, b

∗
6) · A,

d1 = b1, d2 = b2, d3 = b3, (d4,d5,d6) = (b4, b5, b6) · (A−1)⊤.

We note that D,D∗ are properly distributed and reveal no information about A. Notice
also that B cannot produce gd4

1 , g
d5
1 , g

d6
1 , but these will not be needed to create normal

keys. B chooses random values γ, s, x0, y0, z0 ∈ Zp and a hash function H that takes as
input attributes set and outputs an element of Zp \ {γ, s, x0, y0, z0}. A is given the public
key

pk =

(
Γ, gd3

1 , g
d2
1 , g

d2s
1 , · · · , gd2sQ

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)

The master key is msk = (γ, s, g
d∗
2

2 ,
{
gd1si

1

}Q
i=0

,
{
gd3si

1

}Q
i=1

).

KEY QUERY: msk is known to B, which allows B to respond to all of A’s key queries by
calling the normal key generation algorithm.

CHALLENGE: A sends to B a challenge policy Π∗ and two challenge messages m0,m1.
B chooses a random bit b ∈ {0, 1} and encrypts mb under Π∗ as follows: z, α1, α2 ← Zp

and

accpY = g
b∗3

Q∑
i=0

mis
i

2 H = e(gb31 ,accpY)
α1α2

aux1 = g
α2b3(x0+y0)
1 aux2 = g

−b∗1α1α2

2 · tγ2 · t3
ele1 = g

α1b
∗
3(z0s+s

2)
2 ele2 = g

α1b
∗
3(z0+s)

2

ele3 = g
α1α2b2(z0s+s2)
1 ele4 = g

α1α2b2(z0+s)
1

where Y = {H(Yi)}li=1∪{y0, z0}, and Yi for i = 1, · · · , l is a set that contains the elements
of the clause π∗

i . It gives the ciphertext ct∗ = (ele1, ele2, ele3, ele4,aux1,aux2,m ·H) to
A.

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

188



Chapter 6 – Applications to Data Sharing

• If (t1, t2, t3) = (g
τ1b

∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 ), we have a normal ciphertext with randomness
z = τ1.

accpY = g
d∗
3

Q∑
i=0

mis
i

2 H = e(gd3
1 ,accpY)

α1α2

aux1 = g
α2d3(x0+y0)
1 aux2 = g

−d∗
1α1α2+τ1(γd

∗
2+d∗

3)
2 · tγ2 · t3

ele1 = g
α1d

∗
3(z0s+s

2)
2 ele2 = g

α1d
∗
3(z0+s)

2

ele3 = g
α1α2d2(z0s+s2)
1 ele4 = g

α1α2d2(z0+s)
1

Thus B has properly simulated GameReal.

• If (t1, t2, t3) = (g
τ1b

∗
1+τ2b

∗
4

2 , g
τ1b

∗
2+τ2b

∗
5

2 , g
τ1b

∗
3+τ2b

∗
6

2 ), then we have that aux2 is equal to
g
−d∗

1α1α2+τ1(γd
∗
2+d∗

3)+τ2γb
∗
5+τ2b

∗
6

2 .

This ciphertext has an additional term with coefficients in bases b∗5, b
∗
6, which form the

vector τ2(γ, 1). To compute coefficients in the bases (d∗
5,d

∗
6) we multiply the matrix A−1

by the transpose of this vector. Since A is random, these new coefficients are uniformly
random. Thus, in this case, the ciphertext is SF (with coefficients in the base D) and B
has properly simulated Game0. This allows B to leverage A’s non-negligible difference
in advantage between GameReal and Game0 to achieve a non-negligible advantage
against DS2. □

Lemma 6.2.2 If there exists a PPT algorithm A such that AdvGamej−1

A − Adv
Gamej

A (for
j = 1, · · · , Nq) is non-negligible, then there exists a PPT algorithm B with non-negligible
advantage against assumption DS1 with k = 3 and n = 6.

Proof 6.2.3 INIT: B is given ∆ = (Γ, g
b∗1
2 , g

b∗2
2 , g

b∗3
2 , g

b1
1 , g

b2
1 , g

b3
1 , g

b4
1 , g

b5
1 , g

b5
1 , u1, u2, u3, µ2)

along with t1, t2, t3, distributed either as gτ1b11 , gτ1b21 , gτ1b31 or gτ1b1+τ2b31 , gτ1b2+τ2b41 , gτ1b3+τ2b61 .

SETUP: B chooses a random invertible matrix A ∈ Z3×3
q . Then it implicitly sets dual

orthonormal bases D,D∗ to: d∗
1 = b∗1, d

∗
2 = b∗2, d

∗
3 = b∗3 (d∗

4,d
∗
5,d

∗
6) = (b∗4, b

∗
5, b

∗
6) · A,

d1 = b∗1, d
∗
2 = b∗2, d

∗
3 = b∗3, (d4,d5,d6) = (b4, b5, b6) · (A−1)⊤.

We note that D,D∗ are properly distributed and reveal no information about A. B
chooses random values γ, s, x0, y0, z0 ∈ Zp and a hash function H that takes as input
attributes set and outputs an element of Zp \ {γ, s, x0, y0, z0}. A is given the public key

pk =

(
Γ, gd3

1 , g
d2
1 , g

d2s
1 , · · · , gd2sQ

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)
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The master key is msk = (γ, s, g
d∗
2

2 ,
{
gd1si

1

}Q
i=0

,
{
gd3si

1

}Q
i=1

).

KEY QUERY: B knows msk and gd5
1 , g

d6
1 , thus can easily call the key generation algorithm

or produce semi-functional keys. It allows B to answer to all A’s key queries.
• To answer the first j-1 key queries that A makes, B runs the semi-functional key

generation algorithm to produce semi-functional keys.
• To answer to the j-th key query for Υj, B responds with:

skΥj = g
b1

Q∑
i=0

ais
i

1 · t2 · t−γ3

where {ai}Qi=0 are the coefficients of polynomial ChX [Z] and X =
{
H(pji )

}2k−1

i=1
∪

{x0, z0}, k ∈ N is the size of Υj and
{
pji
}2k−1

i=1
are all the non-empty parties of Υj.

– If t1, t2, t3 = gτ1b11 , gτ1b21 , gτ1b31 , then skΥj is a normal key with randomness

r = τ1: skΥj = g
d1

Q∑
i=0

ais
i+τ1(d2−γd3)

1 . Thus B has properly simulated Gamej−1.

– If t1, t2, t3 = gτ1b1+τ2b31 , gτ1b2+τ2b41 , gτ1b3+τ2b61 , then: skΥj = g
d1

Q∑
i=0

ais
i+τ1(d2−γd3)+τ2(b4−γb6)

1 .
• For the remaining key queries, B runs the normal key generation algorithm.

CHALLENGE: At some point, A sends to B two challenge messages m0,m1 and a
challenge policy Π∗ = π∗

1 ∨ · · · ∨ π∗
l . B chooses a random bit b ∈ {0, 1} and encrypts mb

under Π∗ as follows: z, α1, α2 ← Zp and

accpY = g
b∗3

Q∑
i=0

mis
i

2 H = e(gb31 ,accpY)
α1α2

aux1 = g
α2b3(x0+y0)
1 aux2 = g

−b∗1α1α2

2 · uγ2 · u3
ele1 = g

α1b
∗
3(z0s+s

2)
2 ele2 = g

α1b
∗
3(z0+s)

2

ele3 = g
α1α2b2(z0s+s2)
1 ele4 = g

α1α2b2(z0+s)
1

which is equal to

accpY = g
d∗
3

Q∑
i=0

mis
i

2 H = e(gd3
1 ,accpY)

α1α2

aux1 = g
α2d3(x0+y0)
1 aux2 = g

−d∗
1α1α2

2 · uγ2 · u3
ele1 = g

α1d
∗
3(z0s+s

2)
2 ele2 = g

α1d
∗
3(z0+s)

2

ele3 = g
α1α2d2(z0s+s2)
1 ele4 = g

α1α2d2(z0+s)
1

where Y = {H(Yi)}li=1 ∪ {y0, z0}, and Yi for i = 1, · · · , l is a set that contains the ele-
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ments of the clause π∗
i .

Suppose that B decides not to be honest, and find the nature of the j-th key by herself.
To do so, she creates a SF ciphertext for a policy Π such that Υj satisfies Π. She
tries to decrypt it with skΥj to learn if skΥj is a normal or a SF key (a normal key will
decrypt correctly while a SF key will with high probability fail to decrypt). Let’s see that
by construction even if skΥj is SF it will decrypt correctly.

Suppose that t1, t2, t3 = gτ1b1+τ2b31 , gτ1b2+τ2b41 , gτ1b3+τ2b61 . During decryption, B computes
e(skΥj ,aux2) which is equal to

e(g
b1

Q∑
i=0

ais
i+τ1b2+τ2d5+γ(−τ1b3−τ2d6)

1 , g
−b∗1αα2+γ(µ1b

∗
2+µ2b

∗
5)+µ1b

∗
3+µ2b

∗
6

2 )

This can be decomposed as

e(g
b1

Q∑
i=0

ais
i

1 , g
−b∗1αα2

2 ) · e(gτ1b21 , g
γµ1b

∗
2

2 ) · e(gτ2b51 , g
γµ2b

∗
5

2 )

·e(g−γτ1b31 , g
µ1b

∗
3

2 ) · e(g−γτ2b61 , g
µ2b

∗
6

2 )

thanks to dual pairing vector spaces properties.

As Π is satisfied by Υj, the first pairing will cancel itself with the rest of the verification
equation. And by construction, the four others cancel with each other. Thus, it will
decrypt, and B will have no information about the j-th key’s nature.

Note 6.2.3 Notice that in order to create an SF ciphertext, B must use elements u2 and
u3 of the assumption, as she does not know g

d∗
5

2 and gd
∗
6

2 .

In the authorized case, Υj does not satisfy Π∗. Let us see that when t1, t2, t3 = gτ1b1+τ2b31 ,

gτ1b2+τ2b41 , gτ1b3+τ2b61 , the extra coefficients in bases (b∗5, b
∗
6) of the ciphertext and the extra

coefficients in bases (b5, b6) of the key are distributed as random vectors in the spans of
(d∗

5,d
∗
6) and (d5,d6) respectively. To express them in bases (d∗

5,d
∗
6) and (d5,d6) respec-

tively, we multiply them by A−1 and A⊤ respectively. Since the distribution of everything
given to A except for the j-th key and the challenge ciphertext is independent of the
random matrix A and Υj does not satisfy Π∗, we can conclude that these coefficients
are uniformly random. Thus, B has properly simulated Gamej in this case.

If t1, t2, t3 = gτ1b11 , gτ1b21 , gτ1b31 then the coefficients of the semi-functional part of the ci-
phertext are uniformly random. Thus, B has properly simulated Gamej−1 in this case.
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Therefore, B can leverage A’s non-negligible difference in advantage between these
games to obtain a non-negligible advantage against DS1. □

Lemma 6.2.3 For any PPT adversary A, AdvGameFinal
A ≤ Adv

GameNq

A .

We prove this lemma, by randomizing the coefficient of d∗
1 in the aux2 term of the

ciphertext, thereby severing its link with the blinding factor.

Proof 6.2.4 We pick η ∈ Zp and define new dual orthonormal bases F = (f 1, · · · ,f 6)

and F ∗ = (f ∗
1, · · · ,f ∗

6) as follows:

f ∗
1 = d∗

1, f ∗
2 = d∗

2, f ∗
3 = d∗

3, f ∗
4 = d∗

4, f ∗
5 = ηd∗

1 + d∗
5, f ∗

6 = d∗
6

f 1 = d1 − ηd5, f 2 = d2, f 3 = d3, f 4 = d4, f 5 = d5, f 6 = d6

It is easy to see that F and F ∗ are also dual orthonormal, and are distributed the same
as D and D∗.

Then, the public key, challenge ciphertext, and queried secret keys in GameNq are
expressed over bases D and D∗:

pk =

(
Γ, gd3

1 , g
d2
1 , g

d2s
1 , · · · , gd2sQ

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)

ctΠ =


accpY = g

d∗
3

Q∑
i=0

mis
i

2 H = e(gd3
1 , g

d∗
3

Q∑
i=0

mis
i

2 )α1α2

aux1 = g
α2d3(x0+y0)
1 aux2 = g

−d∗
1α1α2+z(γd

∗
2+d∗

3)+z5d
∗
5+z6d

∗
6

2

ele1 = g
α1d

∗
3(z0s+s

2)
2 ele2 = g

α1d
∗
3(z0+s)

2

ele3 = g
α1α2d2(z0s+s2)
1 ele4 = g

α1α2d2(z0+s)
1


{skΥj}j∈[Nq ]

=

accX · g
tj5d5+t

j
6d6

1 = g
d1

Q∑
i=0

aji s
i+rj(d2−γd3)+t

j
5d5+t

j
6d6

1


j∈[Nq ]

Then we can express them over bases F , F ∗ as:

pk =

(
Γ, g

f3
1 , g

f2
1 , g

f2s
1 , · · · , gf2s

Q

1 , g
f∗
1

2 , g
f∗
1s

2 , · · · , gf
∗
1s

Q

2 , g
f∗
2γ

2 ,

g
f∗
2s

2 , · · · , gf
∗
2s

Q

2 , g
f∗
3

2 , g
f∗
3s

2 , · · · , gf
∗
3s

Q

2 ,H, x0, y0, z0

)
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ctΠ =


accpY = g

f∗
3

Q∑
i=0

mis
i

2 H = e(g
f3
1 , g

f∗
3

Q∑
i=0

mis
i

2 )α1α2

aux1 = g
α2f3(x0+y0)
1 aux2 = g

−f∗
1α

′
+z(γf∗

2+f∗
3)+z5f

∗
5+z6f

∗
6

2

ele1 = g
α1f

∗
3(z0s+s

2)
2 ele2 = g

α1f
∗
3(z0+s)

2

ele3 = g
α1α2f2(z0s+s

2)
1 ele4 = g

α1α2f2(z0+s)
1


{skΥj}j∈[Nq ]

=

accX · g
tj

′
5 f5+t

j
6f6

1 = g
f1

Q∑
i=0

aji s
i+rj(d2−γd3)+t

j′
5 f5+t

j
6f6

1


j∈[Nq ]

where
α

′
= α1α2 − z5η{

t
′j
5 = tj5 + η

Q∑
i=0

ajis
i

}
j∈[Nq ]

,

which are all uniformly distributed.

In other words, the coefficient α1α2 of d∗
1 in the aux2 term of the challenge ciphertext

is changed to random coefficient α′ ∈ Zp of f ∗
1, thus the challenge ciphertext can be

viewed as a semi-functional encryption of a random message in GT . Moreover, the
coefficients

{
tj

′

5

}
j∈[Nq ]

of f 5 in the
{

sk (SF )

Υj

}
j∈[Nq ]

are uniformly distributed since
{
tj5
}

of

d5 are all independent random values. Thus (pk, ct (SF )
Π ,

{
sk (SF )

Υj

}
i∈[Nq ]

) expressed over

bases F and F ∗ is properly distributed as (pk, ct (SF )
ΠR

,
{

sk (SF )

Υj

}
i∈[Nq ]

) in GameFinal.

In the adversary’s view, both (D,D∗) and (F , F ∗) are consistent with the same public
parameters. Therefore, the challenge ciphertext and queried secret keys above can
be expressed as keys and ciphertext in two ways, in GameNq over bases (D,D∗) and
in GameFinal over bases (F , F ∗). Thus, GameQ and GameFinal are statistically indistin-
guishable. □

Lemma 6.2.4 For any adversary A, AdvGameFinal
A (λ) = 0.

Proof 6.2.5 The value of β is independent of the adversary’s view in GameFinal. Hence,
AdvGameFinal

A (λ) = 0. □

Comparison. It is known that monotone boolean formulas can be put under DNF form,
where the latter represents the minterm of the formula, i.e. a minimal set of variables
which, if assigned the value 1, forces the formula to take the value 1 regardless of
the values assigned to the remaining variables [61]. It is also known that the circuit
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complexity class monotone NC1 is captured by monotone boolean formulas of log-depth
and fan-in two [87]. Therefore, our CP-ABE can directly deal with monotone NC1 circuits.
We present in Table 6.4 a comparison of (bounded) CP-ABE scheme for monotone NC1

circuits, based on pairings4. All schemes in this table overpass the one-use restriction
on attributes, which imposes that each attribute is only present once in the access policy.
All schemes are single authority, and secure in the standard model.

Table 6.4: Comparison of CP-ABE schemes for monotone NC1 circuits, based on pairings. Here
q is the bound on the number of attributes in the scheme, and l is the number of rows in the
access matrix when the policy is expressed with LSSS matrix.

S
ch

em
es

|pk| |ct| |sk| A
da

pt
iv

e
S

ec
ur

ity

A
ss

um
pt

io
n

G
ro

up
O

rd
er

P
ai

rin
g

[136] O(q) O(l) O(q) × Non Static Prime Symmetric
[91] O(q) O(l) O(q)

√
Static Composite Symmetric

[94] O(q) O(l) O(q)
√

Non Static Prime Symmetric
[87] O(q) O(q) O(l)

√
Static Prime Asymmetric

Our O(2q) O(1) O(1)
√

Static Prime Asymmetric

As we can see our scheme is the first one to obtain constant size for both ciphertexts
and secret keys. However, this is done at the cost of the public key size, which become
exponential. This drawback comes from the fact that for accumulating user’s attributes
set we are running the hash function H on each non-empty subset of this set. Doing
so we obtain an easy way to check if an attributes set verifies an access policy: if it
does, one of non-empty subsets of the set is equal to one clause of the access policy.
We argue that the size of the public key is less important than the size of the other
parameters, as it can easily be stored on-line. Additionally, while the sets (and access
policies) representation might be scary at first glance, this is not an issue in practice
as (i) it is not necessary to keep all elements in memory and (ii) for each decryption,
only the useful part will have to be computed again. Finding another way to accumulate
attributes sets and access policies in order to have efficient membership verification
may lead to a more efficient CP-ABE, with shorter public key size. We leave it as an
open problem. We also leave as an open problem the case of unbounded ABE schemes

4Some works are expressing their monotone boolean formula through Linear Secret Sharing Scheme
(LSSS) matrix, see [93] for more details on this transformation.
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[12, 50], and the case of non-monotonic access formulas [115, 116], even if we give
some intuitions about it in the note below.

Note 6.2.4 To improve our CP-ABE scheme so that it deals with “NO” gates, we might
need to use universal accumulators. A universal accumulator scheme provides both
membership and non-membership proofs. We might use non-membership proofs to
deal with “NO” gates. The dually computable feature can easily be defined for universal
accumulator schemes. However, we were not able to construct such schemes. Our ac-
cumulator of Figure 5.8 can be made universal, following [73]’s idea for non-membership
proofs: the use of Bezout’s coefficients. Using Extended Euclidean algorithm, compute
polynomials q1[Z], q2[Z] such that ChX [Z]q1[Z] + ChI [Z]q2[Z] = 1 (at the condition that
I ∩ X = ∅ otherwise the gcd of their associate polynomials is not equal to 1). Then, set
W1 = g

d1q1(s)
2 and W2 = g

d2q2(s)
2 . However, when universal, our accumulator is no longer

dually computable: in the non-membership verification, we have e(accX ,W1). Therefore,
as accX is replaced by accpX which is composed of two elements of G2, the pairing with
W1 cannot work. To keep it working, we would have to modify the witness, and thus we
would no longer satisfies correctness of duality. Plus, the modification requires the use
of private elements.

6.2.4 Our KP-ABE Scheme From Dually Computable Accumulator

In this section we present a key policy attribute-based encryption scheme, which is built
as our ciphertext policy attribute-based encryption scheme of Section 6.2.3, and we
compare it to existing schemes. Our KP-ABE is presented in Figure 6.20. We use the
same color notations than in Figure 6.19.

Theorem 6.2.3 Our scheme is correct and satisfies adaptive indistinguishability under
SXDH.

Correctness and security proofs of our KP-ABE can be done as for our CP-ABE.

In Table 6.5 we compare our KP-ABE with other KP-ABE schemes. All schemes are for
single authority, secure in the standard model, bounded and in the pairing settings.
As we notice for our CP-ABE, there exist schemes that are unbounded or deal with
non-monotonic access policies. We leave as an open problem to modify our KP-ABE
to achieve such properties.
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• Setup(λ, 1q): generate bilinear group Γ = (G1,G2,GT , p, e, g1, g2), dual pair-
ing vector spaces (D,D∗) ← Dual(Z6

p) such that D = (d1, · · · ,d6), D∗ =
(d∗

1, · · · ,d∗
6) and di · d∗

i = ψ, for i = 1, · · · , 6 and ψ ∈ Z∗
p. Also choose

γ, s, x0, y0, z0 ← Zp and a hash function H that takes as input an attributes
set and outputs an element of Zp \ {γ, s, x0, y0, z0}. Set Q = 2q − 1,

msk =

(
γ, s, g

d∗
2

2 ,
{
gd1si

1

}Q
i=0

,
{
gd3si

1

}Q
i=1

)
and

pk =

(
Γ, gd3

1 , g
d2
1 , g

d2s
1 , · · · , gd2sQ

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)
.

Return msk,pk.
• KeyGen(pk,msk,Π): let Π = π1∨π2∨· · ·∨πl be the access policy, where l ∈ N

is the number of clauses in the policy, and πi for i = 1, · · · , l is a conjunction
of attributes. Define Yi for i = 1, · · · , l as the set of attributes associated to
clause πi and Y = ∪li=1H(Yi) ∪ {y0, z0}. Let {mi}Qi=0 be the coefficients of

polynomial ChY [Z]. Pick r ← Zp and set skΠ = accY = g
d1

Q∑
i=0

mis
i+r(d2−γd3)

1

• Encrypt(pk,Υ,m): let k ∈ N be the number of attributes in Υ. Compute
p1, · · · , p2k−1 all the non-empty parties of Υ and set X = {H(pi)}2

k−1
i=1 ∪{x0, z0}.

Compute {ai}i=0,··· ,Q the coefficients of the polynomial ChX [Z] = (x0 + Z) ·

(z0 + Z) ·
2k−1∏
i=1

(H(pi) + Z). Choose z, α1, α2 ← Zp and do

– Mask computation: define accpX = g
d∗
3

Q∑
i=0

ais
i

2 and H = e(gd3
1 ,accpX )

α1α2 .
– Anticipation for the witnesses and auxiliary information computation: set

aux1 = g
α2d3(x0+y0)
1 and aux2 = g

−d∗
1α1α2+z(γd

∗
2+d∗

3)
2 .

– Anticipation of the element computation: set ele1 = g
α1d

∗
3(z0s+s

2)
2 , ele2 =

g
α1d

∗
3(z0+s)

2 , ele3 = g
α1α2d2(z0s+s2)
1 and ele4 = g

α1α2d2(z0+s)
1

Set ctΥ = (ele1, ele2, ele3, ele4,aux1,aux2,m ·H) and return ctΥ.

• Decrypt(pk, skΠ,Π, ctΥ,Υ): Find pj∗ (for j∗ ∈
{
1, · · · , 2k − 1

}
) such that Υ

satisfies Π It means that there exist j ∈ [1, · · · , l] such that pj∗ = Yj and
H(pj∗) = H(Yj) = ζ. Let {ci}Qi=0 be the coefficients of the polynomial
ChX [Z]/((z0 + Z)(ζ + Z)). Let {ti}Qi=0 be the coefficients of the polynomial
ChY [Z]/((z0+Z)(ζ +Z)). Find δ, δ′ ∈ Zp such that c0 = x0δ and t0 = y0δ

′ . Set

W2 = g
d∗
2

Q∑
i=1

cis
i

2 , W ′
2 = g

d∗
2

Q∑
i=1

tis
i

2 and compute

m ·H(
e(auxδδ

′

1 , ele1 · eleζ3) · e(ele2 · ele
ζ
4,W2

δ′ ·W2
′δ) · e(accX ,aux2)δ

′
)δ−1

Figure 6.20: Our adaptively secure key policy attribute-based encryption scheme with constant
size ciphertexts and secret keys.
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Table 6.5: Comparison of KP-ABE schemes for monotone NC1 circuits, based on pairings. Here
q is the bound on the number of attributes in the scheme, and l is the number of rows in the
access matrix when the policy is expressed with LSSS matrix.
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[78] O(q) O(l) O(q) × Static Yes Prime Symmetric
[91] O(q) O(q) O(l)

√
Static No Composite Symmetric

[94] O(q) O(q) O(l)
√

Non Static No Prime Symmetric
[87] O(n) O(n) O(l)

√
Static No Prime Asymmetric

Our O(2q) O(1) O(1)
√

Static No Prime Asymmetric

6.3 Use Case

In this section we present a specific use case requiring data sharing schemes. We
here focus on connected objects and the data they produce. Connected objects have
an important role in our daily life: from connected clocks to connected watches, they
have different functions to play but all of them require security. First, these objects are
configured to fit user’s specific needs so it must avoid another to change (maliciously
on purpose or by mistake) the settings. For example, no one would enjoy being woke
up in the middle of the night because someone hacked their connected clock and
changed the alarm. Furthermore, these objects deal with user personal data and even
sensitive confidential information. Therefore the privacy level guaranteed by the devices
must be really high. As an example, the data coming from a connected tensiometer or
glucometer can reveal a lot of information about the individual attached to those objects.
It also happens that resource owners want to share to others (called users in the sequel,
and denoted U) some data collected or produced by their connected devices (called a
resource in the sequel): we can imagine that one would like to share with his personal
fitness trainer the number of footsteps collected by the pedometer of his smart watch,
or that one neighbor wants to give to the all neighborhood access to his connected
weather station. For this purpose, a very appealing setting is to store the resource
coming from connected objects into a central server, since it permits a larger and more
flexible sharing.

Here we hence consider such case, and introduce a Central Server (CS) that will
centralize the data coming from a set of connected objects. But owners of these must
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be able to have full control on this sharing capacity: granting access only to authorized
users and being able to stop sharing whenever they want. One natural way to give
and remove access to a connected device is to associate the access to a policy, which
defines the conditions to satisfy in order to obtain access. Doing so, only users having
the right attributes (which can be names, addresses, ages, ...) satisfying the defined
access policy will access the data of the devices. For this purpose, we also consider an
Authorization Server (AS), who will help to check whether the access policy is verified
by the attributes of the user accessing the data store in CS.

In the following, we present an innovative way to use identity-based encryption with
wildcard schemes to do access control in the above scenario, through a sharing platform
called COPP (“Connected Objects Preserving Privacy”). We first present the context,
the actors and the security requirements of the platform in Section 6.3.1. Then in
Section 6.3.2 we present our generic solution using identity-based encryption with
wildcard scheme and the required properties for the latter. Finally, in Section 4.3.3 we
present a WIBE scheme satisfying all desired features. Our work present an innovative
way to use identity-based encryption with wildcard schemes to do access control in
the above scenario and could also lead to new constructions of cryptographic-based
access control since this is the first time, as far as we know, that a WIBE is used
for such kind of access control.

6.3.1 Presentation

From the above context, our purpose is to find a way to prevent any non authorized user
to access a resource, but also to protect the privacy of both (i) the owner of a resource
who wants to share it with some users, and (ii) the user who is requesting an access to
a resource. For this to succeed, we need to manage two issues at the same time.

• Access policies can themselves leak personal information: imagine a healthcare
organization that stores patient medical records electronically and implements
an access policy that restricts access to medical records based on the patient’s
medical condition. For example, the policy that might allow only authorized
healthcare professionals to access the medical records of patients with certain
sensitive conditions, such as HIV. If an outsider learn this access policy, she could
infer that patients likely have HIV, as this condition is explicitly mentioned in the
policy as criteria for restricted access. It means that in terms of privacy, access
policies should be protected to anyone but the owner of the resource that defines
it, and the AS that will manage access to the resource according to the policy.

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

198



Chapter 6 – Applications to Data Sharing

• The identity of the user can also leak information about the resource owner. In-
deed, taking the same example as above and considering the condition having
heart issue, if one learn that a cardiologist is trying to access a resource from one
user, then it also learn that the resource owner has heart issues. Hence, user’s
attributes should also be protected to anyone (including AS) but the user himself.
But to prevent a user to cheat on the attribute she has (to access a resource she
would not normally has the right to), we need to introduce a new entity, namely the
Identity provider (IdP), whose role is to certify the attributes of the requesting users.

Based on that, we now consider the following work-flow. At first, a resource owner can
store his resources to CS and define an access policy that is given to AS. In parallel,
any user can obtain from IdP a certification of his attributes. Eventually, a user can
request AS to obtain access to a specific resource. If the attributes of the user verify
the access policy attached to the requested resource, the user obtains a token that
can be used with CS to obtain the resource.

Basic solutions. To manage the above, one basic solution could be for the user to
send his attributes to AS, so that the latter can verify if they match the access policy.
But this is not satisfactory as AS will accumulate too much information on users, as
explained in the above second item. Another solution could be to add some trust
between AS and IdP. In this case, AS could send the access policy to IdP who can
check the validity of the user’s attributes, hence validating this access to the resource.
In this case, the user’s attributes are no more available to AS, and the user does not
obtain any information about the access policy. But this is still not satisfactory, as IdP is
in this case too powerful. She can easily decide whether a user can or cannot access to
a resource, independently on his attributes and the access policy. Additionally, we do
not verify the above first security item for obvious reasons.

In this thesis, we propose a cryptographic solution verifying all the above security items:
protection of the access to a resource from non-authorized users, protection of the
access policy, and protection of user’s attributes. In the sequel, we will focus on access
policies expressed as disjunctions of conjunctions, i.e. boolean formulas composed of
OR of AND. For simplicity, we also suppose that each resource is only associated to
one access policy. Our protocol still works if several policies are associated to each
object, but it becomes less easy to read and less efficient.
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Related work. Based on this setting, there are multiple ways to treat our problem
using different security tools.

• Role-Based Access Control [64, 127]: in such a system, an entity (in our case
AS) authenticates a user and verifies if it has the right attributes according to a
given access policy. If it has the advantage of preventing the user of knowing the
access policy attached to a resource, the main issue of such technique in our
use case is that such entity should know everything about the users’ attributes (to
verify their validity according to the access policy). Hence, it is not fully relevant.

• Anonymous Credential Systems [48]: this primitive permits a user to prove to
third parties that she has some certified attributes, without revealing who she is
among the set of users having the same attributes. Such system could be used
to manage some access policies, the IdP being the entity certifying the attributes
of users. But such solution does not provide attribute confidentiality (except by
adding some complex zero-knowledge proofs of knowledge), nor access policy
secrecy as the user needs to know it to properly choose his attributes.

• Attribute-Based Signatures [104](ABS): in such a scheme, a signing key is
related to some attributes and the signature of a message is generated thanks to
an access policy. It results that if the attributes embedded in the key that has been
used to generate the signature verify the access policy used to sign the message,
then the verification process will outputs “true”. The signing key is generated
thanks to a master secret key (e.g., managed by IdP) and a set of attributes. In
our context, the user can hence generate a signature to obtain the authorization to
access a resource, then protecting his attributes. But the concept of “policy-hiding”
ABS does not exist yet, as far as we know, and seems to be hard to obtain.

• Attribute-Based Encryption [126](ABE): this primitive, which has already been
detailed Section 6.2, is the equivalent of ABS but for encryption. In our context,
such cryptographic tool can be used by playing the usual authentication system
based on encryption: AS generates a random, encrypt it and if the user can send
back the initially chosen random value, it means that she has correctly decrypted
the received ciphertext [65]. To fit our use case, we need to modify such primitive
by two means: (i) having a key generation which does not permit the issuer to
obtain any information about the user attributes; (ii) having a ciphertext which does
not reveal the access policy that has been used. In this case, we talk about “policy-
hiding” ABE. As far as we know, it does not exist an ABE with both properties
in the literature. The policy-hiding property has been extensively studied, and
many papers can be found in the literature [138, 110, 17, 107]. Regarding the
privacy-preserving key generation, we can cite [131, 5].
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Our idea. Our idea is to create a new kind of ABE by using an identity-based en-
cryption with wildcard (WIBE) scheme. As explained previously, and detailed below,
from such basic cryptographic concept, we need to add three functionalities: (i) the
way to treat attributes and an access policy with a WIBE; (ii) the way to hide the
access policy during decryption; (iii) the way to obtain a decryption key in a blind man-
ner. As for the ABE, such tool can quite naturally be used in our setting, as we will
see below. Before that, we investigate the required properties for the identity-based
encryption with wildcard scheme.

Actors, architecture and requirements. We consider a set of connected objects
that belong to several different owners (a Data Owner is denoted DO). Each connected
object regularly generates some data that we call resources. A resource is denoted Ri

and the set of resources is R. We also denote k = |R|. A resource is considered as
sensitive and must be protected to non authorized entities. But as it is most of the time
done in our modern world, we assume that the resource owner cannot directly manage
the storage and the access to his resources. Hence, the storage of such sensitive data
is delegated to a so called Central Server CS. But for the confidentiality of the resources,
the latter only provides access to a resource if the requestor (a user U) provides a valid
token. Such token is generated by an Authorization Server (AS), which is responsible
for the management of the access to the resources. More precisely, we consider that
the access to a resource Ri is conditioned by an access policy πi. The latter is defined
for each resource by the data owner DO of the said resource.

An access policy is most of the time defined over a set of attributes, and this is the case
in our setting. It follows that each user U should be associated to a set of attributes
AU (names, addresses, emails...), related to the access policies. As we do not want
each user to freely manage his own attributes, as she can try to cheat to obtain more
resources, those are managed by an identity provider (IdP), which is considered as an
independent entity. Then the COPP platform allows a user U to access a resource Ri

if and only if his attributes satisfy the access policy πi protecting Ri. This verification
that the access policy is verified is mandatory and permits the user to obtain a valid
token, thanks to AS, that is eventually sent to CS to obtain the resource. Notice that
this does not mean that AS could know whether a user U has or has not access to a
requested resource. In our solution, this will not be the case. As a user is considered
as an individual in our study, his attributes should be protected against non-authorized
entities. This should include AS and CS.

Finally, we also consider that the access policy is something sensitive. As explain
previously, some policies could reveal information about the data owner (“access is
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provided to users having the attribute cardiologist” means that this data owner certainly
has heart problems) and the user (“access is provided to users having the attribute
cardiologist” means that this user is a cardiologist, “access is provided to Mr. Smith”
means that the name of the user is Smith). We give more details about this requirement
just below. From this general overview, we obtain Table 6.6 which summarizes what
information is known by whom. We consider that the introduction of all those actors is
the best way to protect the privacy of all individuals, namely data owners and users.

Table 6.6: Summary of the knowledge of each actor.

Actor Resource Access policy User attributes User has access Requested resource
DO x x
CS x x x
AS x x
U x x x x

IdP x

Access policy secrecy. As shown above, it is important to provide the secrecy of
the access policy, w.r.t. the Central Server and the Identity Provider. But what about
the user? Does she need to obtain the information about the access policy? Through
the following two examples we show that users and even authorized users should
not learn the whole access policy.

Example 1. Imagine a financial institution that grants employees varying levels of
access to customer financial data based on their job roles. For example, the access
policy can states that only employees with the “higher” roles can access the accounts of
the most valuable customers, and all other employees are restricted from doing so. A
(malicious) employee with “low” role will not be able to access the resource (as wanted),
but she might infer that the customers with this level of protection are likely valuable
individuals. This could lead to targeted unauthorized access or potential data breaches
targeting these customers. In this scenario, the access policy inadvertently discloses
sensitive financial information by implying the wealth status of certain customers, which
could have significant consequences for their privacy and security.

Example 2. Imagine a company that holds a portfolio of valuable patents and trade
secrets. To protect their intellectual property, they restricts access to specific projects
and proprietary information with the use of an access policy: only individuals directly
involved in a project have access to its related documents. There are three reasons
why even authorized users must not know the access policy:
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• By not disclosing the specificities of the access policy to authorized users, the com-
pany minimizes the risk of attackers gaining insight into the company’s intellectual
property protection measures.

• Even trusted employees may inadvertently leak information or fall victim to social
engineering attacks. If employees were fully aware of the access policy and its
intricacies, it could make it easier for them to exploit or bypass the policy, potentially
leading to data breaches.

• By keeping authorized users unaware of the access policy, the company helps
maintain the integrity of their intellectual property and ensures that access is
granted only to those who genuinely require it.

In this scenario, the company prioritizes the protection of their intellectual property by
limiting knowledge of the access policy among authorized users. This approach helps
mitigate risks associated with both external threats and unintentional internal breaches,
safeguarding their valuable assets.

Note 6.3.1 To access a resource, a user must grant access to some of his personal
attributes. By hiding the access policy from the user, the user remains unaware of which
attributes she is consenting to provide access to. Following the GDPR, we need to find a
suitable lawful basis to permit such treatment of such personal attributes. If we consider
the “consent” lawful basis, it seems hard to prevent the user from knowing the access
policy. Indeed, in such case, the service provider must precisely informed an individual
about the way his personal data are used. This seems to mean that the user should know
which of his attributes are used, and how. If we can certainly inform the user about which
of his attributes are used, it is infeasible to hide the access policy and explain the user
how his attributes are used! Another option could be to use the “contract” lawful basis,
which states that the processing is necessary for a contract the service provider has with
the individual. We could easily consider that the user has signed a contract to access
the resources, hence permitting some specified actors to use his personal data. Again,
we can provide the user which of his attributes are used. As our purpose in this thesis is
not to discuss about lawful issues, we defer such discussions to legal experts and jurists.

Procedures. Based on the above, we consider the four following steps for our system:
1. a Setup phase which is executed by the AS and the IdP, which permits them to

generate all the needed parameters and keys. In particular, each of them obtains
a private key, and a global public key is also output;

2. a StoreResource step, in which DO stores a new resource Ri on CS and send the
related access policy πi to AS;

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

203



Chapter 6 – Applications to Data Sharing

3. a KeyQuery protocol that is executed between a user (with a set of attributes), the
IdP and the AS. The IdP can identify the user and verify his attributes. At the end
of the protocol, the user obtains a secret key which is related to his attributes;

4. a ResourceQuery protocol between a user (having played the previous step), AS
and CS, which permits the former to get access to some resources. AS permits
a user with a set of attributes verifying the access policy to get of token that is
eventually given to CS to access the resource.

A summary of the actors and architecture is given in Figure 6.21.

Figure 6.21: Actors and Architecture.

Security requirements. As a summary regarding security, we require the follow-
ing requirements.

• For a given resource Ri, a set {Uj}j of users, each Uj having a set of attributes
AUj

that does not verify the access policy πi defined by AS for Ri, must not access
Ri.

• For a given resource, the access policy must only be known by AS and DO.
• For a given user Uj, the set of attributes AUj

verifying the access policy πi attached
to a resource Ri should not be revealed to AS nor CS.

We additionally assume the following, additionally to the fact that we consider no
coalitions between the different actors:

• DO is honest;
• AS is honest but curious, meaning that it will correctly define the access policy

attached to a resource, but can try to obtain some information about users’
attributes;
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• CS is honest but curious, trying to obtain information about the user’s attributes
and the access policy;

• IdP is honest but curious, and can want to obtain some information about the
access policy, and the resource;

• users U are dishonest and can try to cheat to obtain access to more resources,
and to obtain more information about access policies;

Requested features for WIBE. Before entering into the formal presentation of our
solution with identity-based encryption with wildcard scheme, we first sketch how we
can add the three above functionalities to a WIBE scheme, informally speaking.

Policies, attributes and patterns. We here consider that an access policy π is
represented as a disjunction of conjunctions. For simplicity of the reading, we consider
policies with only one clause even if our scheme will be working with policies considering
several clauses (but be less efficient). Notice that a clause can be seen as a conjunction,
thus it can be transformed into a pattern P

′ of space {0, 1}L, where for l = 1, · · · , L,
P

′

l = 1 if attribute l is in the clause, and P
′

l = 0 otherwise. It follows that we can
associate to each user a pattern P of space {0, ⋆}L, where for l = 1, · · · , L, Pl = ⋆ if
user has attribute l, Pl = 0 otherwise. Thus, we have that the key decrypts the ciphertext
only if for l = 1, · · · , L, Pl = P

′

l or Pl = ⋆, which will be denoted by P
′ ∈⋆ P. Based on

that, it is easy to see that a “basic” WIBE is enough to manage such feature. What
we need is to add two different procedures:

• Att2Pattern which takes as input a set AU of attributes and which outputs a pattern
PU using the above transformation;

• AP2Pattern which takes as input an access policy π and which outputs a pattern
P′ using the above transformation;

Hiding the access policy. The next step is to hide the access policy during the
decryption phase. As we now manage an access policy as described just above, what
we need is a WIBE scheme in which the pattern is hidden with the sole knowledge of
the ciphertext. Such concept already exists and known as an anonymous WIBE (see
Definition 4.1.5).

Note 6.3.2 Here anonymous security is enough for the WIBE, there is no need to
consider our stronger security property of pattern-hiding.
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Attribute-protecting key generation. To obtain such feature, we can use a privacy-
preserving key generation WIBE scheme, as presented in Chapter 4 (Section 4.2 and
Definition 4.2.1). Doing so, we will have a scheme in which the user does not have to
send its P = (P1, · · · , PL) in the clear to obtain the associated decryption keys.

6.3.2 Our Generic Solution

In this section, we show how a privacy-preserving key generation identity-based encryp-
tion with wildcard scheme (Definition 4.2.2) with policy hiding can be used within the
COPP platform. Our protocol is also using signature schemes (Definition 3.4.1).

Basic idea. Based on the architecture given in Section 6.3.1, we give a possible
instanciation based on WIBE. For simplicity, we present the protocol with only one user
U with attributes set A and one resource R associated to policy π, but the protocol
easily works when there are several users and resources. The basic idea is as follows:

• during the Setup phase, the AS, playing the role of the KGC, generates the WIBE
master secret key. The IdP generates a key pair for a digital signature. The IdP
will also play the role of the PAC for the WIBE scheme. This is given by operations
circled in blue in Figure 6.22;

• the StoreResource phase simply consists for the Data Owner DO to send, through
two different secure channels (using e.g., TLS), (i) a new resource R to CS and
(ii) the accompanied access policy π to AS. We consider that a unique identifier
permits to make the link between the two. This step is represented by red circles in
Figure 6.22. Compare to the others, this phase is no more detailed in the sequel,
as we do not really have anything to add;

• the KeyQuery protocol corresponds to the privacy-preserving key generation
phase in which the user obtains a secret key based on her attributes. The IdP
verifies the attributes (i.e., the pattern in the WIBE sense), and the AS generates
the user’s secret key, in a blind manner, as described by operations circled in
green in Figure 6.22;

• in the ResourceQuery phase, when receiving a query to access a resource R by
a user U, the CS chooses a random challenge t and sends it to U, who forwards it
to AS. The latter signs it and encrypts both t and the signature σ based on the
underlying access policy π. It finally sends the ciphertext to the user. Based on the
secret key obtains in the KeyQuery step, the user can decrypt it to retrieve t and σ
iff her attributes verifies the access policy (otherwise, the resulting value has no
sense w.r.t. t and the signature and CS will reject the query). This is represented
by operations circled in purple in Figure 6.22.
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Figure 6.22: Our basic protocol.

Details. Let Π = (Setup, UserTemKeyGen, BlindTokenGen, BlindKeyGen, KeyExtract,
Encrypt, Decrypt) be a WIBE scheme as given in Definition 4.2.1. We also need a
signature scheme Σ = (KeyGen,Sign,Verify) which is existentially unforgeable against
chosen message attacks (see Definition 3.4.3). Again, we present the protocol with only
one user U with attributes set A and one resource R associated to policy π.

• Setup:
1. AS runs the WIBE Π.Setup to obtain pk and msk. It also runs the Σ.Setup

algorithm to obtain a signature key pair (skAS, vkAS).
2. IdP executes the signature Σ.Setup algorithm to obtain its key pair (sk, vk).

Refer to operations circled in blue in Figure 6.23.
• KeyQuery: this step is executed by each user U having a set A of attributes, in

collaboration with IdP and AS.
1. U makes a request to IdP, by authenticating himself using the COPP interface,

and by executing the Π.UserTemKeyGen algorithm, on input pk, to obtain the
temporary key pair (tpkuser, tskuser). The public part is sent to IdP.

2. From the authentication, IdP retrieves the set A of attributes of this user and
executes the Att2Pattern procedure on input A to get the corresponding pat-
tern P. It then answers with a blind token btP by executing Π.BlindTokenGen
on input the pattern P and the user temporary public key (tpkuser). It eventu-
ally signs the resulting blind token btP using Σ.Sign on input its private key
sk. It sends btP and the resulting signature σ to the user.

3. U sends to AS (via COPP) the blind token btP and the IdP signature σ.
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4. AS checks the validity of the signature σ, using Σ.Verify and the public key
pkIdP. If it is correct, it runs the blind key generation algorithm Π.BlindKeyGen
on input the master secret key msk and the blind token btP, which outputs
the blind secret key bskP. The latter is finally sent to user U.

5. U uses COPP to extracts her final secret key skA by executing Π.KeyExtract
on input the blind secret key bskP and her temporary secret key tskuser.

Refer to operations circled in green in Figure 6.23.
• ResourceQuery: we consider that U has previously played the KeyQuery protocol.

She is thus in possession of a secret key skA , based on her attributes A .
1. U makes through COPP a request to CS for resource R, identified by IdR.
2. CS generates a random challenge t, sends it back to U who forwards it to AS
3. AS first runs AP2Pattern routine to transform π into a pattern P∗. It then

signs IdR∥t using Σ.Sign and its signing key skAS, obtaining σt. The value
τ = (IdR, t, σt) corresponds to the access token. It then runs the WIBE
encryption Π.Encrypt on input the pattern P∗ and the message τ to get the
ciphertext ct. Eventually, AS sends ct to user U.

4. U runs the WIBE algorithm Π.Decrypt with U ’s secret key skA and gets a
value τ̃ , which is sent to the Central Server CS resource server for resource
R.

5. If U ’s attributes allow her to access the resource, then CS retrieves ((IdR, t, σt)

from τ̃). If σt is a valid signature for pkAS on the message IdR∥t, if t is similar
to the one it has sent during step 1., and if IdR exists, then the corresponding
resource R is sent to U.

Refer to operations circled in purple in Figure 6.23.
We now show that our above proposal verifies three properties.

Secrecy of the resource. If a non authorized user can access a resource for which
she does not have the right attributes, it means that (i) she has corrupted IdP to obtain
a secret key for attributes she does not have (but we have assume that such coalition is
not possible), (ii) she has broken the indistinguishability of the WIBE scheme by being
able to decrypt a message while not having a valid secret key (which is assumed to
be infeasible), or (iii) she has broken the signature scheme to forge an AS signature to
generate a token that will be accepted by CS (which is also infeasible).

Secrecy of the access policy. Such security property is given by the way the access
policy is treated (see Table 6.6), and from the anonymity property of the WIBE scheme.
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Figure 6.23: Our detailed protocol.

Secrecy of user’s attributes. During the execution of a complete sequence, the
only way for non-authorized to obtain any information about the user’s attribute is to (i)
corrupt the IdP (but such coalition is our of scope), or (ii) break the privacy-preserving
key generation property of the WIBE scheme (which is assumed to be infeasible).

6.3.3 Our Concrete Solution: An Anonymous PPKG-WIBE

We now present a WIBE scheme that matches all the requirements defined above.

Core WIBE construction. The basis of our identity-based encryption with wildcard
scheme is an idea given in [3] and presented in Section 4.2: the construction of an anony-
mous WIBE from an inner product encryption scheme. We however need to modify such
construction since (i) their proposal considers a key derivation from another key, which
we do not need and (ii) we have some specific restrictions regarding our patterns spaces.

Hiding the access policy. Based on the above core generic WIBE construction, our
idea is then to build our own scheme on [91]’s IPE scheme, which satisfies attribute-
hiding property (Definition 3.3.4), meaning that ciphertexts do not give information about
the associated vector. Doing so, we protect the access policy almost for free. Another
option would have been to use the construction by Okamoto and Takashima [114] or
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by Chen et al. [51]. At the cost of an efficiency lost, those schemes achieve adaptive
and attribute hiding security, based on a static and standard assumption, hence more
secure than [91].
But with the current version of the scheme, we do not protect users attributes as in
order to obtain a secret key, any user must send its attributes to the owner of the master
secret key. Hence, we need to provide a privacy-preserving key generation such that
the master secret key owner does not learn users attributes.

Privacy-preserving key generation. Our WIBE scheme presented in Figure 4.16,
in Section 4.16 is a PPKG-WIBE scheme, based on the combination of Abdalla et
al. [3] generic construction of anonymous WIBE from IPE and the Lewko et al. [91]
attribute-hiding IPE scheme. Notice our scheme do not consider key derivation from
another key. Combining this with the above paragraph, we have that our PPKG-WIBE
scheme once adapted to our new patterns spaces is a good candidate to instantiate
our generic solution for the use case.

Patterns spaces restrictions. Our PPKG-WIBE scheme (Figure 4.16) is dealing with
patterns that belong to {0, 1, ⋆}L. For the use case, patterns spaces are equal to {0, 1}L

and {0, ⋆}L for ciphertexts and keys respectively. For algorithms ExtendingCtPattern
and ExtendingKeyPatternRandomized this change is not an issue as {0, 1}L ⊂ {0, 1, ⋆}L

and {0, ⋆}L ⊂ {0, 1, ⋆}L. We present in Figure 6.24 an example of the execution of
both algorithms of such subsets. Therefore our PPKG-WIBE scheme can be used
for the use case.

Figure 6.24: ExtendingKeyPatternRandomized and ExtendingCtPattern on a example.

6.4 Conclusion of This Chapter

This chapter introduced two data sharing schemes: broadcast encryption (and its vari-
ants) and attribute-based encryption. Our contributions regarding the first primitive
is a generic construction of (augmented) broadcast encryption scheme from (pattern-
hiding) identity-based encryption with wildcard, along with two new schemes: a constant

Anaïs Barthoulot | PhD Thesis | University of Limoges

Licence CC BY-NC-ND 3.0

210



Chapter 6 – Applications to Data Sharing

size ciphertext broadcast encryption scheme and an augmented broadcast encryption
scheme, both proven to be adaptively secure in the standard model. As for attribute-
based encryption, we first propose a new scheme that is the first one in the literature to
have constant size ciphertext and secret keys. This ABE scheme is based on our dually
computable accumulator scheme, presented in Section 5.4. We also investigate a use
case centered on access control within the realm of connected devices, and propose
an identity-based encryption with wildcard scheme that protects both the privacy of the
access policies and users’ attributes.
Regarding our ABE from dually computable accumulator, the size of its public key is
a major drawback. This increase of the size is coming from the way we decided to
represent sets of attributes and access policies and how we defined verification that an
access policy is satisfied. Finding another way to represent them and to check if the
attribute set verifies the access policy might lead to a more efficient scheme. We leave
this question an open problem. Our construction relies strongly on some features of
pairing-based accumulators (such as the use of the characteristic polynomial to repre-
sent a set of elements). That makes it unfortunately not generalizable. Finding a way to
build attribute-based encryption from dually computable accumulators without relying
on some specific features to obtain a generic construction is a challenging problem that
we leave open. Another thing to improve regarding this construction is the complexity of
supported access policies. Indeed currently our scheme is only dealing with disjunctions
of conjunctions, which is not suitable for fine-grained access control. Building a ABE
scheme from a dully computable accumulator that deals with complex access policies is
a challenge for a future work.
Finally a last open question is about our data sharing schemes resistance to quantum
computers. As we instantiate our identity-based encryption with wildcard schemes and
accumulators schemes with pairing, our obtained broadcast encryption, augmented
broadcast encryption and attribute-based encryption schemes are not quantum resis-
tant. However, for the (augmented) broadcast encryption scheme as we provide a
generic construction, building lattice-based (for example) identity-based encryption with
wildcard schemes with all the required properties (and efficiently) will lead to (efficient)
quantum resistant data sharing schemes. But building such identity-based encryption
with wildcard schemes is quite challenging. As for accumulators, finding, for exam-
ple, lattice-based accumulators that are efficient and can be dually computable might
lead to an efficient quantum resistant attribute-based encryption scheme. However,
currently there are only few accumulators based on lattices and they suffer from large
accumulated values (or witnesses).
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THe conclusion of this thesis is divided into two parts: one that summarizes all of
our contributions and another that addresses an open problem.

7.1 Our Results

This thesis presents two methods for data sharing: broadcast encryption and attribute-
based encryption. The initial chapters, Chapters 2 and 3, provide the necessary
mathematical background and cryptographic fundamentals. Chapter 4 focuses on
identity-based encryption with wildcards, a primitive employed as a building block in
Chapter 6 (specifically in Section 6.1) for broadcast encryption schemes. Additionally,
we propose a generic construction of augmented broadcast encryption, a broadcast
encryption variant, using the same kind of ideas. This construction is made possible
through the introduction in Section 4.2 of the novel pattern-hiding security property.
Leveraging our identity-based encryption with wildcards schemes from Section 4.3,
including one with pattern-hiding capabilities, we create new (augmented) broadcast
encryption schemes that are adaptively secure in the standard model. In Section 6.2,
we present a novel attribute-based encryption scheme based on a cryptographic accu-
mulator scheme introduced in Section 5.4. This new attribute-based encryption scheme
represents the first instance in the literature with constant size ciphertexts and secret
keys. The key idea behind its design is to exploit our new feature of accumulators,
known as dually computable, as presented in Section 5.3. Finally, Section 6.3, explores
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a specific use case wherein the data sharing scheme must adhere to varying levels of
privacy. We propose a solution for this use case, utilizing a newly introduced feature
of identity-based encryption with wildcards, termed privacy preserving key generation
(introduced in Section 4.2).

The main focus of this thesis was to establish formal connections between various
cryptographic primitives. While we were able to provide generic constructions for
some of them, such as constructing broadcast encryption schemes from identity-based
encryption with wildcards, there is still work to be done. For example, one open problem
left unresolved by this thesis is the generic construction of attribute-based encryption
schemes from dually computable accumulators. Another connection we attempted to
prove is the relationship between accumulators and locally verifiable aggregate signature
schemes [76]. Unfortunately, our attempts were unsuccessful, and we have presented
the results of these attempts in a short article [24] at the CFail 2023 conference.

7.2 Locally Verifiable Aggregate Signatures and Accu-

mulators

Here, we briefly describe locally verifiable aggregate signature schemes, along with
another primitive called aggregate signature [37], to underscore the similarities with
accumulators. In the sequel we consider the single-signer setting, meaning that ag-
gregation of signatures is possible only when signatures were generated using the
same verification key. We restrict our attention to this setting as there are similarities
with cryptographic accumulators only when considering single-signer (locally verifiable)
aggregate signature schemes.

Aggregate Signatures [37]. An aggregate signature scheme is a signature scheme
(see Definition 3.4.1) that also provides two algorithms Aggregate and AggVerify, where

• Aggregate takes as input a verification key, along with a set of message-signature
pairs and returns a shorter aggregate signature σ̂;

• and AggVerify takes as input a verification key, a set of messages and an aggre-
gate signature, and outputs 1 if the aggregate signature is valid with respect to the
set of messages, 0 otherwise.

Aggregate signatures must satisfy correctness (as any signature scheme, refer to
Definition 3.4.2) and must also satisfy correctness of aggregation, meaning that for all
security parameters, all signing and verification keys generated honestly, all messages,
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all signatures and all aggregate signatures generated honestly, the AggVerify algorithm
outputs 1. Regarding efficiency, aggregate signature schemes have a compactness of
aggregation requirement: the size of an aggregate signature is a fixed polynomial in
the security parameter, independent of the number of aggregations. As for security, an
aggregate signature scheme must satisfy aggregated unforgeability, which is the same
definition as unforgeability of signature schemes (see Definition 3.4.3) except that now
the adversary must produce a set of messages along with a forged aggregate signature.

Locally Verifiable Aggregate Signatures [76]. A locally verifiable aggregate signa-
tures scheme (LVAS), is an aggregate signature scheme with two additional algorithms
LocalOpen and LocalAggVerify such that

• LocalOpen takes as input a verification key, an aggregate signature, a set of
l ∈ N messages and an index ind in [l] and returns auxiliary information aux
corresponding to the message of index ind;

• and LocalAggVerify takes as input a verification key, an aggregate signature, one
message and auxiliary information associated, and returns 1 if the aggregate
signature contains the signature of the message, 0 otherwise.

This local opening brings efficient verification: the verification algorithm takes as input
one specific message instead of all messages, to prove that the signature of this mes-
sage is indeed in the aggregate signature. A LVAS scheme must satisfy correctness of
local opening meaning that for all security parameter, all signing and verification keys
generated honestly, all messages, all honestly computed signatures and aggregate sig-
natures, and all honestly generated auxiliary information, the LocalAggVerify algorithm
returns 1. It must also satisfy compactness of aggregation as for aggregate signature
schemes and compactness of opening that requires that the size of the auxiliary infor-
mation is fixed polynomial in the security parameter, and is independent of the number
of aggregations.
Regarding security, LVAS scheme must satisfy aggregated unforgeability with adver-
sarial opening: this definition is similar to unforgeability of signature schemes (see
Definition 3.4.3) except that this time the adversary must produce a tuple of aggregate
signature-auxiliary information-message that passes the LocalAggVerify algorithm.

Similarities between signature and symmetric accumulator. We can easily build
a signature scheme from an accumulator scheme with private evaluation and public
generation. Indeed, set sk = skacc, vk = pkacc, let the signature of a message m be
the accumulator of the set {m} and let the signature verification be the accumulator
verification algorithm. Correctness of the signature scheme comes straight from the
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correctness of the accumulator scheme. The construction can be done the other way
round: the accumulator scheme can be build from the signature scheme, however it
results in a bounded accumulator scheme, with bound equals to 1 in our case. As for
security, the question is more tricky: an adversary of the accumulator security will try
to find another set that has the same accumulator (i.e. the same signature) as one
given as challenge, while an adversary of the signature security will try to produce a
new pair of message-signature. Thus we were not able to make the reduction from
one to the other as both adversaries are requiring different inputs, and have different
outputs that cannot be used to solve the other’s security game.

Similarities between aggregate signatures and symmetric accumulator. Using
an aggregate signature scheme to build a symmetric accumulator will solve the above
problem of the bound equals to 1. Indeed, when the set to accumulate contains more
than one element, the Eval algorithm runs the Sign algorithm on all elements of the
set, then queries the Aggregate algorithm on all pairs of element-signature and returns
the aggregate signature as the accumulator of the set. However, there is some issue
when defining the verification algorithm Verify from the aggregate verification algorithm
AggVerify: the latter is expecting as input a set of messages while the former is only
expecting one element (i.e. one message). This difference of syntax traduces the fact
that AggVerify is doing verification for all messages at the same time, while Verify is
doing verification for one element (i.e. message) only. Thus the construction in this way
is not working.
Now let us do the construction in the other way round. It is more complicated as we
need to find a way to define Aggregate. Using an additive accumulator scheme [46]
might be the answer, as such accumulator schemes provide an algorithm Add that
takes as input the scheme (secret and) public key(s), a set of elements along with its
accumulator and an element y to add, and returns an accumulator corresponding to the
union of the original set and {y}. Then Aggregate is defined as follow: it runs Eval on
one message of the set given as input, then runs the addition algorithm Add to obtain
an accumulator of all messages, that will be output as an aggregate signature. However
notice that the Aggregate algorithm takes as input only the verification key, therefore
we need to use an accumulator scheme with public addition, meaning that Add only
takes as input the accumulator public key and not the accumulator secret key. As for
the aggregate verification algorithm AggVerify, we can define it such that it runs the
accumulator verification algorithm Verify for all messages taken as input and outputs 0 if
Verify returns 0 at least once.
Regarding security, our attempt to prove the security of the construction above through
a security reduction was hindered by the differing inputs and outputs in the accumulator
and aggregate signature security games, preventing us from completing the proof.
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Additionally, we have observed a significant point concerning the construction men-
tioned above: in Theorem 5.2.1, we established that symmetric accumulator schemes
result in accumulator sizes that grow linearly with the number of accumulated elements.
Consequently, if we were able to build an aggregate signature scheme based on a
symmetric accumulator, it would not satisfy the compactness of aggregation property,
as an aggregate signature is treated as an accumulator within our construction.

To address the challenge posed by the varying inputs in the verification algorithms, one
potential solution could involve using a locally verifiable aggregate signature scheme
instead of an aggregate signature scheme. The former provides a verification algorithm
for a single message only. However, it is important to note that this verification algorithm
also requires auxiliary information as input, which symmetric accumulator schemes
cannot provide. Asymmetric accumulator schemes, on the other hand, can provide
this information through the use of witnesses. This leads us to a comparison between
asymmetric accumulators and locally verifiable aggregate signature schemes.

Similarities between locally verifiable aggregate signatures and asymmetric ac-
cumulators. We can easily build an asymmetric accumulator scheme (with private
evaluation and public key generation) from a LVAS scheme:

• the Gen algorithm runs the Setup algorithm;
• the Eval algorithm runs the Sign algorithm for each element of the set, then runs

the Aggregate algorithm on all obtained signatures;
• the WitCreate algorithm runs the LocalOpen algorithm;
• and the Verify algorithm runs the LocalAggVerify algorithm.

Here all algorithm are consistent in the inputs/outputs, the correctness of the accumula-
tor scheme directly comes from the LVAS correctness of local opening and the scheme
has constant size accumulators and witnesses thanks to the LVAS compactness of
aggregation and compactness of local opening.

The other way round, the construction is a little bit more complicated but still possible:
• Setup runs the accumulator scheme algorithm Gen;
• Sign runs the Eval algorithm on a singleton;
• Verify runs the algorithms WitCreate and Verify of the accumulator scheme;
• Aggregate runs the Eval algorithm on a set composed of one message then run

the Add algorithm to include all the other messages’ signatures;
• AggVerify runs the accumulator scheme algorithms WitCreate and Verify for each

messages;
• LocalOpen runs the algorithm WitCreate;
• and LocalAggVerify runs the accumulator Verify algorithm.
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In order for the construction to function properly, the accumulator scheme must pos-
sess private evaluation and public witness creation capabilities, and it must also be
additive, with a publicly computable Add algorithm, as previously demonstrated with
the symmetric accumulator. It is worth noting that if the accumulator scheme permits
subset queries [59], meaning that witnesses can be generated for a subset of elements
rather than just one element, then the efficiency of AggVerify improves. It is evident
that the correctness of the LVAS is derived from the correctness of the accumulator
scheme. As for the compactness of aggregation and local opening, these are assured if
the accumulator scheme maintains constant-sized accumulators and witnesses.
Regarding security, the unforgeability of local opening property in the LVAS scheme
appears somewhat analogous to the collision resistance security property of accumula-
tor schemes (see Definition 5.1.3). However, there are intricacies in these reductions:
while our property of unforgeability of private evaluation (see Definition 5.3.1) might
prove useful in demonstrating the unforgeability of the aggregate signature, it lacks
the inclusion of the challenge witness being forged in our property. To our knowledge,
there is no security property in the cryptographic accumulator literature that guards
against the forgery of both the accumulator and witnesses. And what about oracle
queries? In the collision resistance security game, the adversary is granted the freedom
to query the oracle for any sets without restrictions. In the aggregated unforgeability
with adversarial opening security game, the adversary can query the oracle for any
messages except the challenge message. When conducting security reductions from
one adversary to the other, we encountered certain limitations that altered the adver-
sary’s advantage in winning the collision resistance security game, in a manner that
we were unable to accurately assess.

Table 7.1: Summary of the different constructions. “A.”, “S.”, “
√

”, “×” and “≈” respectively mean
“asymmetric”, “symmetric”, “working”, “not working”, and “working under some conditions”. In
red we highlight the most inefficient construction, and in green the best construction we made.

From To Problems Working Security
S. accumulator Signature Existence ≈ ×

Signature S. accumulator Bounded by 1
√

×
(Additive) S. accumulator Aggregate signature Public Add, sizes ≈ ×

Aggregate signature S. accumulator Verify/AggVerify × ×
LVAS A. accumulator No

√
×

(Additive) A. accumulator LVAS Public Add ≈ ×

Conclusion. At first glance, cryptographic accumulators and locally verifiable aggre-
gate signatures share many similarities. Table 7.1 summarizes the different construc-
tions we made in this study. However, demonstrating that they are indeed the same is
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not a straightforward task, even in the single-signer setting. Furthermore, addressing
the multi-signer scenario presents significant challenges, as it would necessitate the
creation of a novel class of cryptographic accumulators where accumulators computed
from different keys could be “accumulated” together. This innovative development could
have numerous potential applications, and we conclude this thesis by posing this intrigu-
ing open question.
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Chiffrement avancé pour le partage de données sensibles

Résumé : Les données, y compris les données privées, jouent aujourd’hui un rôle prépondérant
dans notre quotidien. Les recherches actuelles se concentrent principalement sur le stockage
de ces données, en mettant l’accent sur la possibilité de les traiter de manière sécurisée
même lorsqu’elles sont chiffrées. Cependant, au-delà de leur conservation, ces données
doivent également être partagées de diverses manières : soit entre un individu et un groupe
d’individus, parfois unis par des caractéristiques communes qui définissent les règles de
partage, soit simplement entre deux individus. À l’heure actuelle, ces différents modes de
partage ne sont pas encore bien maîtrisés, que ce soit en raison de leur coût élevé en
termes de performance ou de leurs fonctionnalités limitées. Cette thèse se penche sur
divers schémas de chiffrement adaptés au partage de données sensibles, en proposant de
nouvelles constructions. Tout d’abord, nous examinons deux primitives cryptographiques : les
schémas de chiffrement basés sur l’identité avec caractère générique et les accumulateurs
cryptographiques, qui serviront de point de départ pour nos nouvelles constructions. En ce
qui concerne les schémas de chiffrement basés sur l’identité avec caractère générique, nous
introduisons une nouvelle propriété de sécurité et proposons deux nouvelles instanciations,
dont l’une satisfait cette nouvelle propriété de sécurité que nous avons définie. Pour les
accumulateurs cryptographiques, nous présentons un nouveau type d’accumulateur, ainsi
qu’un schéma amélioré par rapport à l’état de l’art, et un deuxième schéma illustrant notre
nouvelle fonctionnalité. Nous introduisons également une nouvelle propriété de sécurité pour
cette primitive et soulevons de nombreuses questions concernant différentes propriétés de
cette dernière. Enfin, nous explorons la construction de schémas de chiffrement adaptés au
partage de données en utilisant les deux primitives précédentes. Nous proposons une con-
struction générique de schéma de chiffrement de groupe (y compris le chiffrement de groupe
“augmenté”) à partir de schémas de chiffrement basés sur l’identité avec caractère générique.
Grâce à nos instantiations de la primitive, nous obtenons un nouveau schéma de chiffrement
de groupe qui améliore l’état de l’art en offrant une sécurité adaptative plutôt que simplement
sélective, tout en préservant l’efficacité des meilleurs schémas grâce à une taille de chiffré
constante. Pour les schémas de chiffrement de groupe “augmentés”, la combinaison d’une
de nos instantiations de schémas de chiffrement basés sur l’identité avec caractère générique
et notre construction générique nous permet d’obtenir un nouveau schéma, le premier à
garantir une sécurité adaptative dans le modèle standard. Malheureusement, en termes
d’efficacité, notre schéma n’est pas plus efficace qu’une solution “triviale”. Cependant, grâce
à nos constructions génériques, une amélioration de la primitive sous-jacente contribuera
à l’amélioration des schémas de chiffrement de groupe “augmentés”. Nous proposons
également un schéma de chiffrement basé sur les attributs en utilisant notre nouveau type
d’accumulateurs. Ce schéma est le premier à offrir une taille constante pour la clé secrète
et le chiffré, indépendamment du nombre d’attributs dans le schéma, tout en garantissant



une sécurité adaptative. Cependant, cette efficacité est obtenue au détriment de la taille
exponentielle de la clé publique, et notre construction, reposant sur des spécificités propres à
l’instantiation de notre nouvel accumulateur avec des couplages, ne peut pas être généralisée.
Enfin, à travers un cas d’usage concret, nous proposons une nouvelle approche du contrôle
d’accès grâce aux schémas de chiffrement basés sur l’identité avec caractère générique.

Mots clés : cryptographie, chiffrement par attributs, chiffrement de groupe, chiffrement basé
sur l’identité avec caractère générique, accumulateurs cryptographiques

Advanced Encryption for the Sharing of Sensitive Data

Abstract: Data, including private information, plays a pivotal role in our daily lives today.
Current research predominantly focuses on data storage, with an emphasis on the ability
to securely process data even when it is encrypted. However, beyond mere preservation,
data must also be shared in various ways: either among an individual and a group of
individuals, sometimes bound by common characteristics defining sharing rules, or simply
between two individuals. Currently, these different modes of sharing are not yet well-mastered,
either due to their high performance cost or limited functionalities. This thesis delves into
various encryption schemes tailored for sharing sensitive data, proposing new constructions.
Firstly, we investigate two cryptographic primitives: identity-based encryption schemes with
wildcards and cryptographic accumulators, which serve as a starting point for our new
constructions. Regarding identity-based encryption schemes with wildcards, we introduce a
new security property and propose two new instantiations, one of which satisfies this new
security property that we have defined. For cryptographic accumulators, we present a new
type of accumulator, an improved scheme compared to the state of the art, and a second
scheme illustrating our new functionality. We also introduce a new security property for this
primitive and raise numerous questions concerning various properties of the latter. Finally,
we explore the construction of encryption schemes suited for data sharing using the two
aforementioned primitives. We propose a generic construction of a group encryption scheme
(including “augmented” group encryption) based on identity-based encryption schemes with
wildcards. With our instantiations of the primitive, we achieve a new group encryption scheme
that enhances the state of the art by offering adaptive security rather than just selective,
while preserving the efficiency of the best schemes due to a constant ciphertext size. For
“augmented” group encryption schemes, the combination of one of our instantiations of
identity-based encryption schemes with wildcards and our generic construction enables
us to obtain a new scheme, the first to guarantee adaptive security in the standard model.
Unfortunately, in terms of efficiency, our scheme is no more efficient than a “trivial” solution.
However, thanks to our generic constructions, an enhancement of the underlying primitive



will contribute to improving “augmented” group encryption schemes. We also propose an
attribute-based encryption scheme using our new type of accumulators. This scheme is
the first to offer a constant size for the secret key and ciphertext, regardless of the number
of attributes in the scheme, while guaranteeing adaptive security. However, this efficiency
comes at the cost of an exponential size for the public key, and our construction, relying on
specific features of our new accumulator instantiation with pairings, cannot be generalized.
Finally, through a concrete use case, we introduce a novel approach to access control using
identity-based encryption schemes with wildcards.

Keywords: cryptography, attribute-based encryption, (augmented) broadcast encryption,
identity-based encryption with wildcard, cryptographic accumulators
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