Thèse soutenue

Capacité prévisionnelle de la modélisation discrète pour application aux ouvrages géotechniques complexes

FR  |  
EN
Auteur / Autrice : Bilal Al Tfaily
Direction : Luc SibilleAbdelkrim BennabiRodaina Aboul Hosn
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, électrochimie
Date : Soutenance le 19/12/2023
Etablissement(s) : Université Grenoble Alpes
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Sols, solides, structures - risques (Grenoble)
Jury : Président / Présidente : Fabrice Emeriault
Examinateurs / Examinatrices : Claire Silvani
Rapporteurs / Rapporteuses : Emilien Azéma, Mohamed Guessasma

Résumé

FR  |  
EN

L'ingénierie géotechnique est un domaine crucial dans la conception et la construction de fondations, de tunnels, de remblais et autres ouvrages en interaction avec le sol ou la roche. Cependant, la description de la réponse élastoplastique du sol, avec des déformations fortement non linéaires et irréversibles ainsi qu’une règle d'écoulement non associée, reste complexe. La difficulté est encore plus élevée dans le cas de chemins de chargement non monotones où les relations constitutives phénoménologiques nécessitent des paramètres d’histoire ad hoc et des essais mécaniques avancés pour leur calibration.La méthode des éléments discrets s'est avérée être une méthode efficace pour décrire quantitativement la réponse constitutive des sols, même dans le cas de chargements complexes (avec rotation des axes principaux de contraintes ou des cycles de chargement/déchargement) où les relations constitutives élastoplastiques conventionnelles peuvent conduire à des réponses simulées non réalistes. Pour les sols granulaires à granulométrie étroite, une représentation directe des grains du sol par des particules polyédriques ou à partir de level set est possible, tandis que pour les sols plus fins ou à granulométrie plus étalée, des solutions alternatives doivent être envisagées. Des particules sphériques avec des lois de contact enrichies ou des agrégats de sphères peuvent être utilisées pour conserver un modèle numérique relativement léger afin de résoudre des problèmes aux limites avec un coût en calcul limité. Cependant, même si ces modèles donnent des résultats satisfaisants pour des essais de cisaillement direct ou des compressions triaxiales drainées par rapport aux mesures expérimentales, leur validation par rapport à des trajets de chargement plus complexes tels que la compression isochore ou le chemin à déviateur de contrainte constant présente encore des difficultés, en particulier pour les assemblages granulaires initialement lâches.Dans cette étude, nous proposons tout d'abord de comparer de tels modèles. Cette comparaison se fait en termes de capacités prédictives à l'échelle macroscopique des réponses constitutives des sols, en particulier pour des trajets de chargement complexes. Deux types de modèles discrets sont considérés : (i) des particules sphériques avec une résistance au roulement, (ii) des agrégats simples composés de 2 à 6 sphères. Les modèles sont calibrés à partir de deux compressions triaxiales drainées sur du sable d’Hostun dense et lâche. Ils sont ensuite évalués, en fonction de la réponse macroscopique, sur des trajets de chargement nettement différents des trajets de calibration (compressions isochores, chemins de contrainte circulaires dans le plan déviatoire, chemin à déviateur de contrainte constant, etc.).Ensuite, nous étudions l'importance de la description de l'anisotropie de la micro-structure initiale et de la loi de frottement inter-particules dans les réponses simulées des assemblages granulaires lâches pour différents types de chemins de chargement. Cela montre comment la combinaison des deux peut modifier de manière importante les réponses simulées pour certains chemins de chargement. Cette étude est réalisée avec un modèle numérique discret composé de sphères comparé à des résultats expérimentaux réalisés sur un sable.Enfin, le modèle est utilisé pour simuler l'interaction non linéaire entre une fondation superficielle d'une structure de bâtiment et le sol lors de sollicitations sismiques intenses, comme testé expérimentalement pour le projet TRISEE avec un modèle physique à échelle 1. Une technique de discrétisation adaptative est mise en œuvre pour limiter le nombre de particules dans un tel problème aux limites et rendre le calcul possible avec un ordinateur de bureau classique. Les résultats numériques sont comparés aux mesures expérimentales du projet TRISEE, ainsi qu'à des simulations numériques par éléments finis (FEM) ou des modèles basés sur des macro-éléments.