Design and control of a new pulsating power decoupling circuit for grid-connected photovoltaic systems - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2022

Design and control of a new pulsating power decoupling circuit for grid-connected photovoltaic systems

Conception et contrôle d'un nouveau circuit de découplage de puissance pulsée pour les systèmes photovoltaïque connecté au réseau

Résumé

Today, grid-connected photovoltaic systems are becoming an increasingly important part of renewable energy. The power conversion system's heart is the grid-connected interface converter based on power electronics. The single-phase inverter is the best compromise for low power applications as an interface for power conversion. Single-stage systems offer higher efficiency and lower cost and size. However, the PV voltage drops under low irradiance conditions, leading to inverter shut down and the total injected power loss.As a consequence, single-stage systems suffer from a low operating range. This work addresses the critical issues of the single-stage single-phase grid-connected PV system, including reliability and efficiency. A fast terminal sliding mode combined with direct power control is proposed in the first part. It is associated with a maximum power point tracking algorithm with power output. Simulations and experimental results on a 1kW test bench show the proposal's effectiveness in terms of dynamic performance, low total harmonic distortion and robustness to irradiance variations. Single-phase power systems also face pulsating power at twice the mains frequency on the DC bus. This pulsating power should not be transferred to the PV side as it reduces the efficiency of the solar panel. Thus, the second part of this work proposes a dual-function decoupling circuit: it mitigates pulsating power and compensates for the voltage drop. Thanks to the following additional power converters, these objectives are fulfilled: a low power flyback and an H-bridge. The hybrid compensator increases the inverter's operating range, prevents its shutdown, and increases the system reliability. A 1kW experimental bench has been designed to evaluate the proposal for several operating points. The steady-state results show that the hybrid compensator can simultaneously achieve 85% compensation of the pulsating power and 20% compensation of the voltage drop. The circuit also shows good transient responses. In the third part of this work, monitoring and fault diagnosis of PV modules are addressed to increase system reliability, efficiency, and safety. The proposed fault diagnosis method is based on online PV impedance spectroscopy without additional equipment. It does not require interrupting the power production and uses the pulsating power decoupling circuit as an impedance spectroscopy tool. The simulation results, using MATLAB-Simulink®, show a reduction of more than 80% ripples amplitude of the PV modules terminal voltage. The results also show that impedance spectroscopy can estimate the PV module impedance parameters with a lower than 5% relative error. The evolution of these parameters during operation should make it possible to monitor the health of the panel.
Aujourd'hui, les systèmes photovoltaïques connectés au réseau sont de plus en plus utilisés parmi les systèmes à énergies renouvelables. L’élément clé du système de conversion de puissance est le convertisseur statique connecté au réseau. Pour les applications de faible puissance, le convertisseur monophasé est le meilleur compromis. Les structures de conversion mono-étage permettent d’avoir un rendement plus élevé ainsi qu'un coût et une taille réduits. Cependant, dans des conditions de faible irradiation la tension PV chute, ce qui entraîne l'arrêt de l'onduleur et la perte totale de puissance injectée. Par conséquent, les systèmes à un étage de conversion souffrent d'une plage de fonctionnement réduite. Dans ce travail, nous proposons des solutions pour améliorer le rendement et la fiabilité des systèmes mono-étage connectés au réseau. Pour cela, dans la première partie, un contrôleur basé sur le mode glissant terminal rapide est combiné à un contrôle direct de la puissance. Il est associé à un algorithme de suivi du point de puissance maximale. Les simulations et les résultats expérimentaux sur un banc d'essai de 1kW montrent l'efficacité de la proposition en termes de performance dynamique, de faible distorsion harmonique totale et de robustesse aux variations d'irradiance. Les systèmes mono-étage sont également confrontés à une ondulation de puissance sur le bus continu à la fréquence double de celle du réseau. Ces ondulations de puissance sont néfastes à la durée de vie des panneaux solaires. Ainsi, la deuxième partie de ce travail propose de développer un dispositif qui simultanément réduit les ondulations de puissance et compense la chute de tension. Le dispositif est constitué de deux convertisseurs statiques : un flyback à faible puissance et un pont complet (H-bridge). Le compensateur hybride augmente la plage de fonctionnement de l'onduleur, empêchant son arrêt. Il contribue aussi à augmenter la fiabilité du système. Un banc expérimental de 1kW a été dimensionné et réalisé. Il a permis d’évaluer le dispositif sur plusieurs points de fonctionnement. Les résultats en régime permanent montrent que le compensateur hybride peut simultanément réaliser une atténuation de 85% des ondulations de puissance et une compensation de 20% de la chute de tension. Le dispositif a également de bonnes performances en régime transitoire. Dans la troisième partie de ce travail, la surveillance des modules PV est abordée afin d'augmenter la fiabilité. La méthode proposée est basée sur la spectroscopie d'impédance. Elle ne nécessite pas d’équipement supplémentaire car elle utilise le circuit qui permet d’atténuer les ondulations de puissance. De plus elle ne nécessite pas d'interrompre la production d'électricité. Les résultats de simulation, à l'aide de MATLAB-Simulink®, montrent une réduction de plus de 80% de l'amplitude des ondulations de la tension aux bornes des modules PV. Les résultats montrent que la spectroscopie d'impédance permet d’estimer les paramètres de l'impédance du module PV avec une erreur relative inférieure à 5%. L’évolution de ces paramètres en cours de fonctionnement devrait permettre de surveiller l’état de santé du panneau.
Fichier principal
Vignette du fichier
2022UPAST004_HEYDARI_archivage.pdf (4.14 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03663415 , version 1 (10-05-2022)

Identifiants

  • HAL Id : tel-03663415 , version 1

Citer

Elaheh Heydari. Design and control of a new pulsating power decoupling circuit for grid-connected photovoltaic systems. Electric power. Université Paris-Saclay; Tarbiat Modares university (Téhéran), 2022. English. ⟨NNT : 2022UPAST004⟩. ⟨tel-03663415⟩
172 Consultations
141 Téléchargements

Partager

Gmail Facebook X LinkedIn More