Thèse soutenue

Modélisation et optimisation de la prise de décision pour la gestion de maladies infectieuses se propageant sur des réseaux de métapopulations animales
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Lina Cristancho Fajardo
Direction : Elisabeta VerguPauline Ezanno
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 17/03/2022
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Agriculture, alimentation, biologie, environnement, santé (Paris ; 2015-....)
Partenaire(s) de recherche : référent : AgroParisTech (France ; 2007-....)
graduate school : Université Paris-Saclay. Graduate School Biosphera (2020-....)
Laboratoire : Mathématiques et Informatique Appliquées  du Génome à l'Environnement (Jouy-en-Josas, Yvelines) - AgroParisTech (France ; 2007-....)
Jury : Président / Présidente : Nicolas Vayatis
Examinateurs / Examinatrices : Pauline Ezanno, Rowland Kao, Ludovic Mailleret, Anne Cori, Guillaume Fournié
Rapporteurs / Rapporteuses : Rowland Kao, Ludovic Mailleret

Résumé

FR  |  
EN

Cette thèse porte sur la modélisation et l'optimisation de la maîtrise d'un agent pathogène se propageant dans une metapopulation d’animaux d’élevage via un réseau d'échanges commerciaux, en tenant compte des processus de décision concernant l'adoption de mesures de maîtrise.D'une part, concernant la prise de décision des éleveurs, un modèle stochastique intégrant la dynamique intra-troupeau de la maladie (composantes démographiques et réseau d’échanges) et la dynamique des décisions des éleveurs a été développé et exploré par simulations intensives et analyses de sensibilité. En particulier, un mécanisme de décision dynamique qui tient compte du comportement aléatoire des éleveurs, de leur apprentissage et de la dynamique d'imitation stratégique a été proposé. Le modèle a été formalisé pour une dynamique d'infection théorique (modèle SIR), et une mesure de contrôle spécifique (vaccination). Ce premier modèle a été étendu et adapté à une maladie réelle, la BVD (diarrhée virale bovine), où tant la transmission de l'agent pathogène que les échanges d'informations entre éleveurs peuvent passer par le réseau d'échanges, mais aussi par un voisinage géographique.D'autre part, dans une perspective plus générale, il a été supposé qu'un planificateur social central cherchait à allouer dynamiquement et de manière optimale une ressource limitée entre les différentes sous-populations d'un réseau de métapopulation donné, afin de réduire la propagation d’un agent pathogène. L'approche, basée sur des scores permettant de classer les sous-populations pour l'allocation des ressources, a été formalisée pour le modèle épidémiologique théorique considéré dans la première partie de la thèse, pour deux mesures différentes (vaccination et traitement). De nouveaux scores ont été obtenus par l'adaptation d'une approche d'optimisation gloutonne au cadre des métapopulations. Par le biais de simulations, les performances de ces nouveaux scores ont été comparées à celles de plusieurs heuristiques qui pourraient être appropriées lorsque le réseau de métapopulation correspond à un réseau de commerce d'animaux.