Thèse soutenue

Évaluation des méthodologies de réseaux neuronaux pour la compréhension des phénomènes d'interface dans les matériaux intégrés dans les domaines de la microélectronique : application au cas de l'épitaxie en phase solide dans le silicium

FR  |  
EN
Auteur / Autrice : Ruggero Lot
Direction : Anne HemeryckStefano De Gironcoli
Type : Thèse de doctorat
Discipline(s) : MicroNano Systèmes
Date : Soutenance le 12/12/2022
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)
Jury : Président / Présidente : Magali Benoit
Examinateurs / Examinatrices : Anne Hemeryck, Stefano De Gironcoli, Normand Mousseau, Francesca Baletto, Милица Тодоровић
Rapporteurs / Rapporteuses : Normand Mousseau, Francesca Baletto

Résumé

FR  |  
EN

La loi de Moore est terminée mais tout n'est pas perdu. Pour maintenir une plus grande densité de transistors, la modification de la géométrie des dispositifs, qui passe du planaire au tridimensionnel, a été l'une des premières approches adoptées avec succès pour tirer parti de la dimension zéro. Récemment, l'intégration monolithique 3D a notamment été proposée pour aligner différents wafers l'un sur l'autre. Avec cette technique, une couche de silicium amorphe est déposée sur le dessus du transistor, cette couche amorphe est ensuite cristallisée par épitaxie en phase solide (SPE) à basse température. L'épitaxie en phase solide dans le Silicium est un phénomène général qui consiste à faire repousser une structure de type diamant parfaite à partir d'un matériau amorphe en contact direct avec un substrat cristallin sans qu'il soit nécessaire de le liquéfier. Les industriels s'aident alors de simulations numériques pour l'optimisation de leur procédé, mais les codes actuels ne capturent pas l'ensemble des événements microscopiques qui se produisent au sein du matériau. Cela est dû à la très faible connaissance que nous avons des phénomènes microscopiques qui doivent être étudiés plus en détails. Ce travail réalise une étude ab-initio complète de l'épitaxie en phase solide dans le silicium en s'appuyant sur des approches numériques à l'état de l'art. Tout d'abord, un potentiel interatomique de réseau neuronal est développé et ajusté sur un ensemble de données construit de toutes pièces pour ce procédé spécifique. Les points de l'ensemble de données sont résolus en énergie et en forces avec la théorie de la fonctionnelle de la densité. Un intérêt particulier est donné sur la construction et la véracité du jeu de données utilisé pour entrainer le potentiel : choix de la fonctionnelle, échantillonnage exhaustif de chaque région d'espace de phase d'intérêt, reproductibilité des propriétés physiques nécessaires à la modélisation des phénomènes physiques de la SPE. Ce réseau de neurones a ensuite été utilisé pour étudier l'épitaxie en phase solide avec la dynamique moléculaire. Les simulations montrent une variété de phénomènes qui n'étaient pas accessibles auparavant avec des potentiels moins précis, et donnent une interprétation microscopique à la barrière d'activation expérimentale observée. En complément, une approche statistique à partir d'une série de structures issues de la DFT a été réalisée pour discuter la pertinence de la qualité de l'amorphe utilisé dans notre simulation SPE. Nous avons déterminé que plusieurs métriques comme la géométrie de nos structures amorphes et l'excès d'énergie par rapport au silicium diamant sont conformes avec la littérature.